1
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
2
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Dotta E, Maciola AK, Baccega T, Pasqual G. Dendritic cells steering antigen and leukocyte traffic in lymph nodes. FEBS Lett 2024. [PMID: 38997244 DOI: 10.1002/1873-3468.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Dendritic cells (DCs) play a central role in initiating and shaping the adaptive immune response, thanks to their ability to uptake antigens and present them to T cells. Once in the lymph node (LN), DCs can spread the antigen to other DCs, expanding the pool of cells capable of activating specific T-cell clones. Additionally, DCs can modulate the dynamics of other immune cells, by increasing naïve T-cell dwell time, thereby facilitating the scanning for cognate antigens, and by selectively recruiting other leukocytes. Here we discuss the role of DCs in orchestrating antigen and leukocyte trafficking within the LN, together with the implications of this trafficking on T-cell activation and commitment to effector function.
Collapse
Affiliation(s)
- Enrico Dotta
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Tania Baccega
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
4
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
5
|
Leyva-Castillo JM, Vega-Mendoza D, Strakosha M, Deng L, Choi S, Miyake K, Karasuyama H, Chiu IM, Phipatanakul W, Geha RS. Basophils are important for development of allergic skin inflammation. J Allergy Clin Immunol 2024; 153:1344-1354.e5. [PMID: 38336257 PMCID: PMC11070311 DOI: 10.1016/j.jaci.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.
Collapse
Affiliation(s)
- Juan-Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Maria Strakosha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
6
|
Gupta A, Song MH, Youn DH, Ku D, Sasidharan Nair V, Oh K. Prolyl hydroxylase inhibition protects against murine MC903-induced skin inflammation by downregulating TSLP. Front Immunol 2024; 15:1330011. [PMID: 38495889 PMCID: PMC10940402 DOI: 10.3389/fimmu.2024.1330011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
Previously, we reported an anti-inflammatory effect of mTORC1 in a mouse model of type 2 skin inflammation. TSLP, one of the epithelial cell-derived cytokines, was upregulated by Raptor deficiency or rapamycin treatment, which was inhibited by dimethyloxalylglycine (DMOG). However, it remains unclear how DMOG regulates TSLP expression and type 2 skin inflammation. In this study, we investigated the protective effect of DMOG on MC903 (calcipotriol)-induced type 2 skin inflammation. Morphological and immunological changes were assessed by H-E staining, flow cytometry and RT-qPCR. DMOG treatment attenuated MC903-induced skin inflammation in a T cell-independent manner. The anti-inflammatory effect of DMOG was accompanied by downregulation of TSLP and IL-33, and supplementation with recombinant TSLP and IL-33 abolished the effect of DMOG. MC903 increased ROS levels in skin tissue, which was prevented by DMOG. Furthermore, the ROS scavenger N-acetylcysteine (NAC) downregulated TSLP and ameliorated MC903-induced skin inflammation, as did DMOG. Finally, the effect of DMOG on ROS and TSLP was reduced by HIF knockdown. These results suggest that DMOG downregulates TSLP and ROS through the HIF pathway, which reduces MC903-induced skin inflammation.
Collapse
Affiliation(s)
- Anupriya Gupta
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Mi Hye Song
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dohyeon Ku
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Varun Sasidharan Nair
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kwonik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute of Medical Science, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
7
|
Baglivo I, Colantuono S, Lumaca A, Papa A, Gasbarrini A, Caruso C. The last step to achieve barrier damage control. Front Immunol 2024; 15:1354556. [PMID: 38415254 PMCID: PMC10897052 DOI: 10.3389/fimmu.2024.1354556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Heterogeneity characterises inflammatory diseases and different phenotypes and endotypes have been identified. Both innate and adaptive immunity contribute to the immunopathological mechanism of these diseases and barrier damage plays a prominent role triggering type 2 inflammation through the alarmins system, such as anti-Thymic Stromal Lymphopoietin (TSLP). Treatment with anti-TSLP monoclonal antibodies showed efficacy in severe asthma and clinical trials for other eosinophilic diseases are ongoing. The aim of this perspective review is to analyse current advances and future applications of TSLP inhibition to control barrier damage.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Roma, Italy
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’ApparatoDigerente, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Roma, Italy
| | - Arianna Lumaca
- Unità Operativa Semplice Dipartimentale (UOSD) di Allergologia, Ospedale Maria Santissima (SS) Dello Splendore, Teramo, Italy
| | - Alfredo Papa
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’ApparatoDigerente, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Roma, Italy
| | - Antonio Gasbarrini
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Roma, Italy
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’ApparatoDigerente, Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
8
|
Kimitsu T, Kamijo S, Yoshimura T, Masutani Y, Shimizu S, Takada K, Suchiva P, Ogawa H, Okumura K, Ikeda S, Takai T. Antigen Protease Activity on Intact or Tape-Stripped Skin Induces Acute Itch and T Helper Sensitization Leading to Airway Eosinophilia in Mice. JID INNOVATIONS 2024; 4:100239. [PMID: 38282648 PMCID: PMC10810837 DOI: 10.1016/j.xjidi.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 01/30/2024] Open
Abstract
Respiratory allergen sources such as house dust mites frequently contain proteases. In this study, we demonstrated that the epicutaneous application of a model protease antigen, papain, onto intact or tape-stripped ear skin of mice induced acute scratching behaviors and T helper (Th)2, Th9, Th17/Th22, and/or Th1 sensitization in a protease activity-dependent manner. The protease activity of papain applied onto the skin was also essential for subsequent airway eosinophilia induced by an intranasal challenge with low-dose papain. With tape stripping, papain-treated mice showed barrier dysfunction, the accelerated onset of acute scratching behaviors, and attenuated Th17/Th22 sensitization. In contrast, the protease activity of inhaled papain partially or critically contributed to airway atopic march responses in mice sensitized through intact or tape-stripped skin, respectively. These results indicated that papain protease activity on epicutaneous application through intact skin or skin with mechanical barrier damage is critical to the sensitization phase responses, including acute itch and Th sensitization and progression to the airway atopic march, whereas dependency on the protease activity of inhaled papain in the atopic march differs by the condition of the sensitized skin area. This study suggests that exogenous protease-dependent epicutaneous mechanisms are a target for controlling allergic sensitization and progression to the atopic march.
Collapse
Affiliation(s)
- Toru Kimitsu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoko Yoshimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yurie Masutani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiko Takada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Punyada Suchiva
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Klein M, Dijoux E, Cheminant MA, Intes L, Bouchaud G. GliSODin® prevents airway inflammation by inhibiting T-cell differentiation and activation in a mouse model of asthma. FRONTIERS IN ALLERGY 2023; 4:1199355. [PMID: 37346413 PMCID: PMC10279865 DOI: 10.3389/falgy.2023.1199355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Background Asthma is a chronic inflammatory airway disease characterized by a prevailing type 2 inflammation, airway hyperresponsiveness, and mucus hypersecretion and is driven by various factors among which oxidative molecules, called reactive oxygen species (ROS), play a major role. Superoxide dismutases (SODs) are enzymes that constitute the first line of defense against ROS. Melon SOD-gliadin, which is known as GliSODin®, is commonly used as a nutritional supplement that has proven antioxidant properties. Objectives In this study, we evaluated the efficacy and mechanism of action GliSODin® in the treatment of allergic asthma. Methods House dust mite (HDM)-induced asthmatic mice were orally exposed to GliSODin®, and airway hyperresponsiveness, lung inflammation, in vitro T-cell polarization, in vivo T-cell reactivation, and blood immunoglobulin were investigated. Results GliSODin® reduced airway hyperresponsiveness, lung innate and adaptive immune response, and HDM-specific IgE production. Coculturing CD4+ T-cell with HDM-sensitized dendritic cells and GliSODin® reduced T-cell polarization into Th2 and Th17 cells. Moreover, adoptively transferred CD4+ T cells from asthmatic mice exhibited a reduced reactivation of Th2 and Th17 cells following stimulation with HDM plus GliSODin®. Conclusion GliSODin® abrogates asthma features and reduces CD4+ T-cell polarization and reactivation. Taken together, these data suggest that GliSODin® could be used for the management of asthma symptoms.
Collapse
Affiliation(s)
- Martin Klein
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Université Laval, Québec, QC, Canada
| | - Eleonore Dijoux
- Université de Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | | | - Grégory Bouchaud
- INRAE, Biopolymères Intéractions Assemblages (BIA), Nantes, France
| |
Collapse
|
11
|
Lin YC, Chen QY, Xiao J, Shen LC, Li XT, Yang YZ, Guo PF, Lin MJ, Lin DC. Mouse Abdominal Aortic Aneurysm Model Induced by Periarterial Incubation of Papain. J Transl Med 2023; 103:100035. [PMID: 36925203 DOI: 10.1016/j.labinv.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/11/2023] Open
Abstract
For decades, numerous experimental animal models have been developed to examine the pathophysiologic mechanisms and potential treatments for abdominal aortic aneurysms (AAAs) in diverse species with varying chemical or surgical approaches. This study aimed to create an AAA mouse model by the periarterial incubation with papain, which can mimic human AAA with advantages such as simplicity, convenience, and high efficiency. Eighty C57BL/6J male mice were randomly assigned to 1 of the 4 groups: papain (1.0 or 2.0 mg), porcine pancreatic elastase, and phosphate-buffered solution. The aortic segment was wrapped for 20 minutes, and the diameter was measured using ultrasound preoperatively and postoperative days 7 and 14. Then, the mice were killed for histomorphometric and immunohistochemical analyses. According to ultrasound measurements and histomorphometric analyses, on postoperative day 7, 65% of mice in the 1.0-mg papain group and 60% of mice in the 2.0-mg papain group developed AAA. In both papain groups, 100% of mice developed AAA, and 65% of mice in the porcine pancreatic elastase group developed AAA on postoperative day 14. Furthermore, hematoxylin/eosin, elastin van Gieson, and Masson staining of tissues from the papain group revealed thickened media and intimal hyperplasia, collagen sediments, and elastin destruction, indicating that AAA histochemical alteration was similar to that of humans. In addition, the immunohistochemical analysis was conducted to detect infiltrated inflammatory cells, such as macrophages and leukocytes, in the aortic wall and hyperplasic adventitia. The expression of matrix metalloproteinase 2 and 9 was significantly upregulated in papain and human AAA tissues. Periarterial incubation with 1.0 mg of papain for 20 minutes can successfully create an experimental AAA model in mice for 14 days, which can be used to explore the mechanism and treatment of human AAA.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Qin-Ye Chen
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jie Xiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Li-Chuan Shen
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xian-Tao Li
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Yu-Ze Yang
- The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Ping-Fan Guo
- Department of Vascular Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; The First School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
12
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
13
|
Olewicz-Gawlik A, Kowala-Piaskowska A. Self-reactive IgE and anti-IgE therapy in autoimmune diseases. Front Pharmacol 2023; 14:1112917. [PMID: 36755957 PMCID: PMC9899859 DOI: 10.3389/fphar.2023.1112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland,Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Anna Olewicz-Gawlik,
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Shibuya R, Kim BS. Skin-homing basophils and beyond. Front Immunol 2022; 13:1059098. [PMID: 36618424 PMCID: PMC9815541 DOI: 10.3389/fimmu.2022.1059098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Basophils have been implicated in type 2 inflammation and numerous disorders in the skin such as helminth infection, atopic dermatitis, and urticaria. Although similar in form and function to tissue-resident mast cells, classical studies on basophils have centered on those from the hematopoietic compartment. However, increasing studies in tissues like the skin demonstrate that basophils may take on particular characteristics by responding to unique developmental, chemotactic, and activation cues. Herein, we highlight how recent studies in barrier immunology suggest the presence of skin-homing basophils that harbor a unique identity in terms of phenotype, function, and motility. These concepts may uniquely inform how basophils contribute to diseases at multiple epithelial surfaces and our ability to therapeutically target the innate immune system in disease.
Collapse
Affiliation(s)
- Rintaro Shibuya
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States,*Correspondence: Brian S. Kim,
| |
Collapse
|
15
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
17
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
18
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
19
|
Du Y, Hertoghs N, Duffy FJ, Carnes J, McDermott SM, Neal ML, Schwedhelm KV, McElrath MJ, De Rosa SC, Aitchison JD, Stuart KD. Systems analysis of immune responses to attenuated P. falciparum malaria sporozoite vaccination reveals excessive inflammatory signatures correlating with impaired immunity. PLoS Pathog 2022; 18:e1010282. [PMID: 35108339 PMCID: PMC8843222 DOI: 10.1371/journal.ppat.1010282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development. Trial registration: ClinicalTrials.gov NCT01994525. Malaria remains a serious global health problem, causing hundreds of thousands of deaths every year. An effective malaria vaccine would be an important tool to fight this disease. Previous work has shown that irradiated sporozoites, the form of the malaria parasite injected into humans by mosquitos, are not capable of progressing to a symptomatic blood stage malaria infection, and act as a protective vaccine against future malaria exposure. However the mechanisms that produce this protection are unknown. In this work, we studied individuals vaccinated with irradiated sporozoites before being exposed to live malaria parasites. Roughly half of these individual were protected against malaria. By analyzing blood samples taken at multiple points after the first vaccination using RNA sequencing and flow cytometry we identified immune responses that differed between protected and non-protected study participants. Notably, we observed a rapid increase in inflammation and interferon-associated genes in non-protected individual. We also observed protection-associated changes in T cell and NK cell associated pathways. Our study provides novel insights into immune responses associated with effective malaria vaccination, and can point the way to improved design of whole-sporozoite malaria vaccine approaches.
Collapse
Affiliation(s)
- Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Suzanne M. McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Flayer CH, Sokol CL. Sensory neurons control the functions of dendritic cells to guide allergic immunity. Curr Opin Immunol 2022; 74:85-91. [PMID: 34808584 PMCID: PMC8901476 DOI: 10.1016/j.coi.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
Dendritic cells of the innate immune system and sensory neurons of the peripheral nervous system are embedded in barrier tissues and gather information about an organisms' environment. While the mechanisms by which dendritic cells recognize and initiate adaptive immune responses to pathogens is well defined, how they sense allergens is poorly understood. Indeed, allergens induce dendritic cell maturation and migration in vivo, but not in vitro. How are adaptive immune responses to allergens initiated if dendritic cells do not directly sense allergens? Sensory neurons release neuropeptides within minutes of allergen exposure. Recent evidence demonstrated that while neuropeptides modify dendritic cell function during pathogen responses, they are required for dendritic cell function during allergic responses. These emerging studies suggest that sensory neurons do not just pass information along to the central nervous system, but also to dendritic cells, particularly during the initiation of adaptive immunity to allergens.
Collapse
Affiliation(s)
| | - Caroline L Sokol
- Corresponding author: , 149 13th St Room 8103, Charlestown, MA 02129
| |
Collapse
|
21
|
Al-Naseri A, Al-Absi S, Mahana N, Tallima H, El Ridi R. Protective immune potential of multiple antigenic peptide (MAP) constructs comprising peptides that are shared by several cysteine peptidases against Schistosoma mansoni infection in mice. Mol Biochem Parasitol 2022; 248:111459. [PMID: 35041897 DOI: 10.1016/j.molbiopara.2022.111459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
In vaccine trials, Schistosoma mansoni cathepsin B1 (SmCB1), helminth cathepsins of the L family (e.g., SmCL3), and papain consistently induce highly significant reductions in challenge worm burden and egg viability, but generated no additive protective effects when used in combination. The protective capacity of the cysteine peptidases is associated with modest (SmCB1) and poor (cathepsins L) production of cytokines and antibodies, essentially of the type 2 axis, and is only marginally reduced upon use of proteolytically inactive enzymes. In this work, peptides shared by SmCB1, cathepsins of the L family, papain and other allergens were selected, synthesized as tetrabranched multiple antigen peptide constructs (MAP-1 and MAP-2), and used in two independent experiments to immunize outbred mice, in parallel with papain. The two peptides elicited significant (P < 0.05) reduction in challenge worm burden when compared to unimmunized mice, albeit lower than that achieved by papain. Protection was associated with modest serum type 2 cytokines and antibody levels in MAP-, and papain-immunized mice. Immunization with papain also elicited a reduction in parasite egg load, viability, and granuloma numbers in liver and intestine. MAP-1 and MAP-2 immunogens displayed some opposite effects- MAP-1 leading to higher egg numbers with poor vitality, whereas MAP-2 immunization yielded fewer eggs. Cysteine peptidase thus appear to carry peptides that elicit opposing outcomes, highlighting the difficulty of reaching fully fledged protection, unless a vaccine is based on carefully selected peptides and combined with an effective adjuvant.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt; Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, 11835, Cairo, Egypt.
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
22
|
Zeng-Yun-Ou Z, Zhong-Yu J, Wei L. Bidirectional associations between eosinophils, basophils, and lymphocytes with atopic dermatitis: A multivariable Mendelian randomization study. Front Immunol 2022; 13:1001911. [PMID: 36569933 PMCID: PMC9780468 DOI: 10.3389/fimmu.2022.1001911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Despite being prone to reverse causation and having unmeasured confounding factors, many clinical observational studies have highlighted the critical association between basophils, eosinophils, and lymphocytes and atopic dermatitis (AD). Whether these cells play a causal role in AD development remains uncertain. Methods Data were obtained from the UK Biobank and the Blood Cell Consortium, from a large publicly available genome-wide association study (GWAS) with more than 500,000 subjects of European ancestry and for AD from three independent cohorts with more than 700,000 subjects of European ancestry. We performed single-variable Mendelian randomization (SVMR), followed by multivariable Mendelian randomization (MVMR) to assess the total and direct effects of immune cell counts on AD risk. Results SVMR estimates showed that genetically predicted higher eosinophil [odds ratio (OR): 1.23, 95% confidence interval (CI): 1.17-1.29, p = 5.85E-16] and basophil counts (OR: 1.11, 95% CI: 1.03-1.19, p = 0.004) had an adverse effect on the risk of AD, while a higher lymphocyte count (OR: 0.93, 95% CI: 0.89-0.98, p = 0.006) decreased the risk. Reverse MR analysis showed higher basophil (beta: 0.04, 95% CI: 0.01-0.07, p = 0.014) and lower lymphocyte counts (beta: -0.05, 95% CI: -0.09 to -0.01, p = 0.021) in patients with AD. In MVMR, the effects of eosinophils (OR: 1.19, 95% CI: 1.09-1.29, p = 8.98E-05), basophils (OR: 1.19, 95% CI: 1.14-1.24, p = 3.72E-15), and lymphocytes (OR: 0.93, 95% CI: 0.89-0.98, p = 0.006) were still significant. Discussion Mendelian randomization (MR) findings suggest that an increase in the eosinophil and basophil counts and a decrease in the lymphocyte counts are potential causal risk factors for AD. These risk factors are independent of each other.
Collapse
Affiliation(s)
- Zhang Zeng-Yun-Ou
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhong-Yu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Dermatology and Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Li Wei,
| |
Collapse
|
23
|
Basophils and Mast Cells in COVID-19 Pathogenesis. Cells 2021; 10:cells10102754. [PMID: 34685733 PMCID: PMC8534912 DOI: 10.3390/cells10102754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Basophils and mast cells are among the principal inducers of Th2 responses and have a crucial role in allergic and anti-parasitic protective immunity. Basophils can function as antigen-presenting cells that bind antigens on their surface and boost humoral immune responses, inducing Th2 cell differentiation. Their depletion results in lower humoral memory activation and greater infection susceptibility. Basophils seem to have an active role upon immune response to SARS-CoV-2. In fact, a coordinate adaptive immune response to SARS-CoV-2 is magnified by basophils. It has been observed that basophil amount is lower during acute disease with respect to the recovery phase and that the grade of this depletion is an important determinant of the antibody response to the virus. Moreover, mast cells, present in a great quantity in the nasal epithelial and lung cells, participate in the first immune response to SARS-CoV-2. Their activation results in a hyperinflammatory syndrome through the release of inflammatory molecules, participating to the “cytokine storm” and, in a longer period, inducing pulmonary fibrosis. The literature data suggest that basophil counts may be a useful prognostic tool for COVID-19, since their reduction is associated with a worse prognosis. Mast cells, on the other hand, represent a possible therapeutic target for reducing the airway inflammation characteristic of the hyperacute phase of the disease.
Collapse
|
24
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
25
|
IL-37 Targets TSLP-Primed Basophils to Alleviate Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22147393. [PMID: 34299012 PMCID: PMC8304334 DOI: 10.3390/ijms22147393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) represents a severe global burden on physical, physiological and mental health. Innate immune cell basophils are essential for provoking allergic inflammation in AD. However, the roles of novel immunoregulatory cytokine IL-37 in basophils remain elusive. We employed in vitro co-culture of human basophils and human keratinocyte HaCaT cells and an in vivo MC903-induced AD murine model to investigate the anti-inflammatory mechanism of IL-37. In the in vitro model, IL-37b significantly decreased Der p1-induced thymic stromal lymphopoietin (TSLP) overexpression in HaCaT cells and decreased the expression of TSLP receptor as well as basophil activation marker CD203c on basophils. IL-37 could also reduce Th2 cytokine IL-4 release from TSLP-primed basophils ex vivo. In the in vivo model, alternative depletion of basophils ameliorated AD symptoms and significantly lowered the Th2 cell and eosinophil populations in the ear and spleen of the mice. Blocking TSLP alleviated the AD-like symptoms and reduced the infiltration of basophils in the spleen. In CRISPR/Cas9 human IL-37b knock-in mice or mice with direct treatment by human IL-37b antibody, AD symptoms including ear swelling and itching were significantly alleviated upon MC903 challenge. Notably, IL-37b presence significantly reduced the basophil infiltration in ear lesions. In summary, IL-37b could regulate the TSLP-mediated activation of basophils and reduce the release of IL-4. The results, therefore, suggest that IL-37 may target TSLP-primed basophils to alleviate AD.
Collapse
|
26
|
Flayer CH, Perner C, Sokol CL. A decision tree model for neuroimmune guidance of allergic immunity. Immunol Cell Biol 2021; 99:936-948. [PMID: 34115905 DOI: 10.1111/imcb.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
The immune system defends the body from infectious and non-infectious threats. Distinct recognition strategies have evolved to generate antigen-specific immunity against pathogens or toxins versus antigen-independent tissue repair. Structural recognition, or the sensing of conserved motifs, guides the immune response to viruses, bacteria, fungi, and unicellular parasites. Functional recognition, which is sensing that is based on the activities of an input, guides antigen-independent tissue healing and antigen-specific Type 2 immunity to toxins, allergens, and helminth parasites. Damage-associated molecular patterns (DAMPs), released from damaged and dying cells, permit functional recognition by immune cells. However, the DAMP paradigm alone does not explain how functional recognition can lead to such disparate immune responses, namely wound healing and Type 2 immunity. Recent work established that sensory neurons release neuropeptides in response to a variety of toxins and allergens. These neuropeptides act on local innate immune cells, stimulating or inhibiting their activities. By integrating our knowledge on DAMP function with new information on the role of neuropeptides in innate immune activation in Type 2 immunity, we describe a decision tree model of functional recognition. In this model, neuropeptides complement or antagonize DAMPs to guide the development of antigen-specific Type 2 immunity through the activation of innate immune cells. We discuss why this decision tree system evolved and its implications to allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Perner
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
28
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
29
|
SoRelle JA, Chen Z, Wang J, Yue T, Choi JH, Wang K, Zhong X, Hildebrand S, Russell J, Scott L, Xu D, Zhan X, Bu CH, Wang T, Choi M, Tang M, Ludwig S, Zhan X, Li X, Moresco EMY, Beutler B. Dominant atopy risk mutations identified by mouse forward genetic analysis. Allergy 2021; 76:1095-1108. [PMID: 32810290 DOI: 10.1111/all.14564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.
Collapse
Affiliation(s)
- Jeffrey A. SoRelle
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Pathology University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhe Chen
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Yue
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Immunology University of Texas Southwestern Medical Center Dallas TX USA
| | - Kuan‐wen Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xue Zhong
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jamie Russell
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Darui Xu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Population and Data Sciences Quantitative Biomedical Research Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Miao Tang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
30
|
Shumin Z, Luying Z, Senlin L, Jiaxian P, Yang L, Lanfang R, Tingting X, Wei Z, Shuijun L, Weqian W, Qingyue W. Ambient particulate matter-associated autophagy alleviates pulmonary inflammation induced by Platanus pollen protein 3 (Pla3). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143696. [PMID: 33333306 DOI: 10.1016/j.scitotenv.2020.143696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Subpollen particles (SPPs) with diameter less than 1 mm released from allergenic pollen grains contain allergens could trigger asthma and lung inflammation after being inhaled. In the meaning time, ambient fine particles attached on the pollen grains could have further effects on the inflammation. However, the mechanisms underlying these phenomena have not been fully elucidated. In this study, the effects of autophagy triggered by PM2.5 and Platanus SPPs were evaluated by using the A549 cell lines and a pollen sensitized rat model. First, autophagy in A549 cells was analyzed after exposure to PM2.5 using acridine orange staining, real-time quantitative PCR (qRT-PCR), and western blot (WB) assays. The increased levels of ROS, superoxide dismutase, and malonaldehyde in the lung homogenates of rats exposed to SPPs indicated that inflammatory response was triggered in the lungs. Treatment with autophagy-inhibiting drugs showed that autophagy suppressed ROS formation and decreased the production of thymic stromal lymphopoietin (TSLP), a critical pathway altering the inflammatory response. Although the effect was indirect, autophagy appeared to negatively regulate TSLP levels, resulting in a compromised immune response. These results suggested that SPPs promote ROS generation and increase TSLP levels, triggering downstream inflammation reactions. However, ambient PM2.5 could aggravate autophagy, which in turn effectively suppressed ROS and TSLP levels, leading to the alleviation of the immune response and pulmonary inflammation.
Collapse
Affiliation(s)
- Zhou Shumin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhang Luying
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lu Senlin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Peng Jiaxian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Li Yang
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rao Lanfang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xie Tingting
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhang Wei
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Shuijun
- Shanghai Xuhui Center Hospital, Shanghai 200031, China
| | - Wang Weqian
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Wang Qingyue
- School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
31
|
León B, Ballesteros-Tato A. Modulating Th2 Cell Immunity for the Treatment of Asthma. Front Immunol 2021; 12:637948. [PMID: 33643321 PMCID: PMC7902894 DOI: 10.3389/fimmu.2021.637948] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
It is estimated that more than 339 million people worldwide suffer from asthma. The leading cause of asthma development is the breakdown of immune tolerance to inhaled allergens, prompting the immune system's aberrant activation. During the early phase, also known as the sensitization phase, allergen-specific T cells are activated and become central players in orchestrating the subsequent development of allergic asthma following secondary exposure to the same allergens. It is well-established that allergen-specific T helper 2 (Th2) cells play central roles in developing allergic asthma. As such, 80% of children and 60% of adult asthma cases are linked to an unwarranted Th2 cell response against respiratory allergens. Thus, targeting essential components of Th2-type inflammation using neutralizing antibodies against key Th2 modulators has recently become an attractive option for asthmatic patients with moderate to severe symptoms. In addition to directly targeting Th2 mediators, allergen immunotherapy, also known as desensitization, is focused on redirecting the allergen-specific T cells response from a Th2-type profile to a tolerogenic one. This review highlights the current understanding of the heterogeneity of the Th2 cell compartment, their contribution to allergen-induced airway inflammation, and the therapies targeting the Th2 cell pathway in asthma. Further, we discuss available new leads for successful targeting pulmonary Th2 cell responses for future therapeutics.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
32
|
Altorki T, Muller W, Brass A, Cruickshank S. The role of β 2 integrin in dendritic cell migration during infection. BMC Immunol 2021; 22:2. [PMID: 33407124 PMCID: PMC7789014 DOI: 10.1186/s12865-020-00394-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Dendritic cells (DCs) play a key role in shaping T cell responses. To do this, DCs must be able to migrate to the site of the infection and the lymph nodes to prime T cells and initiate the appropriate immune response. Integrins such as β2 integrin play a key role in leukocyte adhesion, migration, and cell activation. However, the role of β2 integrin in DC migration and function in the context of infection-induced inflammation in the gut is not well understood. This study looked at the role of β2 integrin in DC migration and function during infection with the nematode worm Trichuris muris. Itgb2tm1Bay mice lacking functional β2 integrin and WT littermate controls were infected with T. muris and the response to infection and kinetics of the DC response was assessed. Results In infection, the lack of functional β2 integrin significantly reduced DC migration to the site of infection but not the lymph nodes. The lack of functional β2 integrin did not negatively impact T cell activation in response to T. muris infection. Conclusions This data suggests that β2 integrins are important in DC recruitment to the infection site potentially impacting the initiation of innate immunity but is dispensible for DC migration to lymph nodes and T cell priming in the context of T. muris infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-020-00394-5.
Collapse
Affiliation(s)
- Tarfa Altorki
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Present address: Faculty of Medical Applied Sciences, Department of Medical Laboratory Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Werner Muller
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sheena Cruickshank
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, A.V. Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
33
|
Ulfig A, Leichert LI. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol Life Sci 2021; 78:385-414. [PMID: 32661559 PMCID: PMC7873122 DOI: 10.1007/s00018-020-03591-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated antimicrobial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neutrophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential signaling molecule, particularly its role in neutrophil extracellular trap formation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry-Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
34
|
Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. J Invest Dermatol 2021; 141:105-113.e14. [DOI: 10.1016/j.jid.2020.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
|
35
|
Wang X, Han B, Wu P, Li S, Lv Y, Lu J, Yang Q, Li J, Zhu Y, Zhang Z. Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115564. [PMID: 33254669 DOI: 10.1016/j.envpol.2020.115564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP), an important plastic contaminant in the environment, is known to cause organ toxicity. Although current research has shown that DBP-induced organ toxicity is associated with oxidative stress, the toxic effect of DBP on the lungs have not been fully elucidated. Therefore, we investigated the potential mechanism by which DBP induces pulmonary toxicity using a model of DBP-induced allergic airway inflammation in rats. The results showed that chronic exposure to DBP induced histopathological damage, inflammation, oxidative stress, apoptosis, and increased the protein levels of thymic stromal lymphopoietin (TSLP) and its downstream protein Janus kinase 1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Moreover, DBP exposure inhibited nuclear factor-erythroid-2-related factor 2 (Nrf2) and levels of its target genes NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Additionally, using in vitro experiments, we found that DBP induced oxidative stress, reduced cell viability, and inhibited the Nrf2/HO-1/NQO1 pathway in mouse alveolar type II epithelial cell line. Overall, these data demonstrate that DBP induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway.
Collapse
Affiliation(s)
- Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
36
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
37
|
Specific Antibodies and Arachidonic Acid Mediate the Protection Induced by the Schistosoma mansoni Cysteine Peptidase-Based Vaccine in Mice. Vaccines (Basel) 2020; 8:vaccines8040682. [PMID: 33207535 PMCID: PMC7712720 DOI: 10.3390/vaccines8040682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Several reports have documented the reproducible and considerable efficacy of the cysteine peptidase-based schistosomiasis vaccine in the protection of mice and hamsters against infection with Schistosoma mansoni and Schistosomahaematobium, respectively. Here, we attempt to identify and define the protection mechanism(s) of the vaccine in the outbred CD-1 mice-S. mansoni model. Mice were percutaneously exposed to S. mansoni cercariae following immunization twice with 0 or 10 μg S. mansoni recombinant cathepsin B1 (SmCB1) or L3 (SmCL3). They were examined at specified intervals post infection (pi) for the level of serum antibodies, uric acid, which amplifies type 2 immune responses and is an anti-oxidant, lipids, in particular, arachidonic acid (ARA), which is an endoschistosomicide and ovocide, as well as uric acid and ARA in the lung and liver. Memory IgG1, IgG2a, and IgG2b antibodies to the cysteine peptidase immunogen were detectable at and following day 17 pi. Serum, lung, and liver uric acid levels in immunized mice were higher than in naïve and unimmunized mice, likely as a consequence of cysteine peptidase-mediated catabolic activity. Increased circulating uric acid in cysteine peptidase-immunized mice was associated with elevation in the amount of ARA in lung and liver at every test interval, and in serum starting at day 17 pi. Together, the results suggest the collaboration of humoral antibodies and ARA schistosomicidal potential in the attrition of challenge S. mansoni (p < 0.0005) at the liver stage, and ARA direct parasite egg killing (p < 0.005). The anti-oxidant and reactive oxygen species-scavenger properties of uric acid may be responsible for the cysteine peptidase vaccine protection ceiling. This article represents a step towards clarifying the protection mechanism of the cysteine peptidase-based schistosomiasis vaccine.
Collapse
|
38
|
Substance P Release by Sensory Neurons Triggers Dendritic Cell Migration and Initiates the Type-2 Immune Response to Allergens. Immunity 2020; 53:1063-1077.e7. [PMID: 33098765 DOI: 10.1016/j.immuni.2020.10.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.
Collapse
|
39
|
Marone G, Schroeder JT, Mattei F, Loffredo S, Gambardella AR, Poto R, de Paulis A, Schiavoni G, Varricchi G. Is There a Role for Basophils in Cancer? Front Immunol 2020; 11:2103. [PMID: 33013885 PMCID: PMC7505934 DOI: 10.3389/fimmu.2020.02103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - John T Schroeder
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD, United States
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | | | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
40
|
Caffeoyl-Pro-His amide relieve DNCB-Induced Atopic Dermatitis-Like phenotypes in BALB/c mice. Sci Rep 2020; 10:8417. [PMID: 32439906 PMCID: PMC7242424 DOI: 10.1038/s41598-020-65502-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
The main factors involved in the pathogenesis of atopic dermatitis (AD) are skin barrier abnormality, allergy/immunology, and pruritus. Considering how oxidative stress influences these factors, antioxidant agents may be effective candidates in the treatment of AD. To evaluate the effect of Caffeoyl–Pro–His amide (CA-PH), an antioxidant agent, on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like phenotypes in BALB/c mice. Topical sensitization and challenge by DNCB were performed on the dorsal skin of BALB/c mice to induce AD-like cutaneous lesions, phenotypes, and immunologic response. CA-PH was applied topically for 2 weeks to assess its effects on DNCB-induced AD-like phenotypes. As a result, CA-PH relieved DNCB-induced AD-like phenotypes quantified by dermatitis severity score, scratching duration, and trans-epidermal water loss. Histopathological analysis showed that CA-PH decreased epidermal thickening, the number of mast cells, and eosinophil infiltration in dermis. Immunohistochemical staining revealed that CA-PH recovered skin barrier-related proteins: filaggrin, involucrin, and loricrin. As for the immunologic aspects, CA-PH treatment lowered mRNA or protein levels of interleukin (IL)-4, IL-6, IL-17a, IL-1b, IL-31, and IL-33 levels and thymic stromal lymphopoietin (TSLP) levels in cutaneous tissue, reducing the DNCB-induced serum IgE level elevation. In conclusion, topical CA-PH may be a therapeutic option for the treatment of AD.
Collapse
|
41
|
Steinmetz M, Laurans L, Nordsiek S, Weiß L, van der Veken B, Ponnuswamy P, Esposito B, Vandestienne M, Giraud A, Göbbel C, Steffen E, Radecke T, Potteaux S, Nickenig G, Rassaf T, Tedgui A, Mallat Z. Thymic stromal lymphopoietin is a key cytokine for the immunomodulation of atherogenesis with Freund's adjuvant. J Cell Mol Med 2020; 24:5731-5739. [PMID: 32285594 PMCID: PMC7214169 DOI: 10.1111/jcmm.15235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 02/15/2020] [Indexed: 01/06/2023] Open
Abstract
Adaptive immune responses regulate the development of atherosclerosis, with a detrimental effect of type 1 but a protective role of type 2 immune responses. Immunization of Apolipoprotein E‐deficient (ApoE−/−) mice with Freund's adjuvant inhibits the development of atherosclerosis. However, the underlying mechanisms are not fully understood. Thymic stromal lymphopoietin (TSLP) is an IL7‐like cytokine with essential impact on type 2 immune responses (Th2). Thymic stromal lymphopoietin is strongly expressed in epithelial cells of the skin, but also in various immune cells following appropriate stimulation. In this study, we investigated whether TSLP may be crucial for the anti‐atherogenic effect of Freund's adjuvant. Subcutaneous injection of complete Freund's adjuvant (CFA) rapidly led to the expression of TSLP and IL1β at the site of injection. In male mice, CFA‐induced TSLP occurred in immigrated monocytes—and not epithelial cells—and was dependent on NLRP3 inflammasome activation and IL1β‐signalling. In females, CFA‐induced TSLP was independent of IL1β and upon ovariectomy. CFA/OVA led to a more pronounced imbalance of the T cell response in TSLPR−/− mice, with increased INFγ/IL4 ratio compared with wild‐type controls. To test whether TSLP contributes to the anti‐atherogenic effects of Freund's adjuvant, we treated ApoE−/− and ApoE−/−/TSLPR−/− mice with either CFA/IFA or PBS. ApoE−/− mice showed less atherogenesis upon CFA/IFA compared with PBS injections. ApoE−/−/TSLPR−/− mice had no attenuation of atherogenesis upon CFA/IFA treatment. Freund's adjuvant executes significant immune‐modulating effects via TSLP induction. TSLP‐TSLPR signalling is critical for CFA/IFA‐mediated attenuation of atherosclerosis.
Collapse
Affiliation(s)
- Martin Steinmetz
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany.,Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Ludivine Laurans
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Sarah Nordsiek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Lena Weiß
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Bruno Esposito
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | | | - Andreas Giraud
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Cristina Göbbel
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Eva Steffen
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Tobias Radecke
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, Bonn, Germany
| | - Tienush Rassaf
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Alain Tedgui
- Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Ziad Mallat
- Paris Cardiovascular Research Center, INSERM U970, Paris, France.,Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Olivera A, Rivera J. Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods Mol Biol 2020; 2163:3-31. [PMID: 32766962 DOI: 10.1007/978-1-0716-0696-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter, we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities toward the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Juan Rivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
New insights into roles of basophils in initiating T helper type 2 immunity. CHINESE HERBAL MEDICINES 2020; 12:14-18. [PMID: 36117560 PMCID: PMC9476796 DOI: 10.1016/j.chmed.2019.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases, mainly mediated by T helper type 2 (Th2) immunity, have become a worldwide public health problem. Traditional Chinese medicine (TCM) has long been used in treating and preventing allergic symptoms. As the new target of anti-allergy TCM, basophils, after approximately 140 years since their discovery, are just now gaining respect as important contributors in the pathogenesis underlying allergic inflammation and disease. In addition to their role as effector cells, basophils can release early IL-4, migrate from circulatory system into draining lymph nodes, present antigen to naive CD4+T cells, and promote the differentiation of Th2 cells. Herein, we briefly summarized the recent research advances of the essential contributions of basophils in the initiation of Th2 immune responses.
Collapse
|
44
|
Du J, Chen X, Ye Y, Sun H. A comparative study on the mechanisms of innate immune responses in mice induced by Alum and Actinidia eriantha polysaccharide. Int J Biol Macromol 2019; 156:1202-1216. [PMID: 31758993 DOI: 10.1016/j.ijbiomac.2019.11.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine remain at cellular level, but the molecular mechanisms, especially in vivo, are ill-identified. Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity, while Alum elicits a strict Th2 response. The current experiments were designed to compare the innate immune responses in the peritoneal cavity of mice induced by two adjuvants and explore their molecular mechanisms using gene expression microarray including long noncoding RNAs (lncRNAs). AEPS induced the recruitment of monocytes, neutrophils and dendritic cells. However, Alum recruited neutrophils and eosinophils. AEPS and Alum specifically induced the differential expression of 546 and 922 genes in peritoneal cells, respectively. AEPS induced higher mRNA expression of CCL2, CCL3, CCL4, CCL7, CXCL2, CXCL3, CXCL5, CXCL10, IL-12β, and IL-23α in immune effector process, while Alum tended to Th17 response mRNAs such as IL-7A, IL-17F and IL-17RA. Furthermore, a robust adjuvant-specific expression pattern of lncRNAs was found in above mentioned biological processes, suggesting the involvement of lncRNAs in immune responses induced by AEPS and Alum. This study led to a better understanding of different molecular mechanisms of adjuvants and benefited the rational design of effective vaccines.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
45
|
Zhang S, Vieth JA, Krzyzanowska A, Henry EK, Denzin LK, Siracusa MC, Sant'Angelo DB. The Transcription Factor PLZF Is Necessary for the Development and Function of Mouse Basophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:1230-1241. [PMID: 31366712 DOI: 10.4049/jimmunol.1900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023]
Abstract
Basophils are innate immune cells associated with type 2 immunity, allergic reactions, and host defense against parasite infections. In this study, we show that the transcription factor PLZF, which is known for its essential role in the function and development of several innate lymphocyte subsets, is also important for the myeloid-derived basophil lineage. PLZF-deficient mice had decreased numbers of basophil progenitors in the bone marrow and mature basophils in multiple peripheral tissues. Functionally, PLZF-deficient basophils were less responsive to IgE activation and produced reduced amounts of IL-4. The altered function of basophils resulted in a blunted Th2 T cell response to a protein allergen. Additionally, PLZF-deficient basophils had reduced expression of the IL-18 receptor, which impacted migration to lungs. PLZF, therefore, is a major player in controlling type 2 immune responses mediated not only by innate lymphocytes but also by myeloid-derived cells.
Collapse
Affiliation(s)
- Sai Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Joshua A Vieth
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Agata Krzyzanowska
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Everett K Henry
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Mark C Siracusa
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
46
|
Karasuyama H, Miyake K, Yoshikawa S, Kawano Y, Yamanishi Y. How do basophils contribute to Th2 cell differentiation and allergic responses? Int Immunol 2019; 30:391-396. [PMID: 30169733 DOI: 10.1093/intimm/dxy026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
Basophils and mast cells share some features, including basophilic granules in the cytoplasm, cell surface expression of the high-affinity IgE receptor and release of chemical mediators such as histamine. Because of this similarity and their minority status, basophils had often been erroneously considered as minor relatives or blood-circulating precursors of tissue-resident mast cells, and therefore long been neglected or underestimated in immunological studies. Taking advantage of newly developed tools, such as basophil-depleting antibodies and engineered mice deficient for only basophils, recent studies have identified previously unappreciated roles for basophils, distinct from those played by mast cells, in allergic responses, protective immunity against parasitic infections and regulation of other immune cells. In this review, we focus on two topics that we presented and discussed in the 46th Annual Meeting of the Japanese Society for Immunology held in Sendai in December 2017. The first topic is the function of basophils as antigen-presenting cells for driving Th2 cell differentiation. We demonstrated that basophils produce few or no MHC class II (MHC-II) proteins by themselves although they can acquire peptide-MHC-II complexes from dendritic cells through trogocytosis, and present them and provide IL-4 to naive CD4 T cells, promoting Th2 cell differentiation. The second topic is the basophil-specific effector molecules involved in allergic responses. Among mouse mast cell proteases (mMCPs), mMCP-8 and mMCP-11 are expressed almost exclusively by basophils. Analyses in vitro and in vivo revealed that both proteases can induce leukocyte migration through distinct mechanisms, contributing to the development of basophil-dependent allergic inflammation.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yohei Kawano
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yoshinori Yamanishi
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
47
|
Choi HW, Suwanpradid J, Kim IH, Staats HF, Haniffa M, MacLeod AS, Abraham SN. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science 2019; 362:362/6415/eaao0666. [PMID: 30409859 DOI: 10.1126/science.aao0666] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 04/20/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Anaphylactic reactions are triggered when allergens enter the blood circulation and activate immunoglobulin E (IgE)-sensitized mast cells (MCs), causing systemic discharge of prestored proinflammatory mediators. As MCs are extravascular, how they perceive circulating allergens remains a conundrum. Here, we describe the existence of a CD301b+ perivascular dendritic cell (DC) subset that continuously samples blood and relays antigens to neighboring MCs, which vigorously degranulate and trigger anaphylaxis. DC antigen transfer involves the active discharge of surface-associated antigens on 0.5- to 1.0-micrometer microvesicles (MVs) generated by vacuolar protein sorting 4 (VPS4). Antigen sharing by DCs is not limited to MCs, as neighboring DCs also acquire antigen-bearing MVs. This capacity of DCs to distribute antigen-bearing MVs to various immune cells in the perivascular space potentiates inflammatory and immune responses to blood-borne antigens.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jutamas Suwanpradid
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Il Hwan Kim
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Herman F Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology, Newcastle upon Tyne NHS Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Amanda S MacLeod
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.,Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
48
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
49
|
Kumar S, Jeong Y, Ashraf MU, Bae YS. Dendritic Cell-Mediated Th2 Immunity and Immune Disorders. Int J Mol Sci 2019; 20:ijms20092159. [PMID: 31052382 PMCID: PMC6539046 DOI: 10.3390/ijms20092159] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells that recognize and present antigens to naïve T cells to induce antigen-specific adaptive immunity. Among the T-cell subsets, T helper type 2 (Th2) cells produce the humoral immune responses required for protection against helminthic disease by activating B cells. DCs induce a Th2 immune response at a certain immune environment. Basophil, eosinophil, mast cells, and type 2 innate lymphoid cells also induce Th2 immunity. However, in the case of DCs, controversy remains regarding which subsets of DCs induce Th2 immunity, which genes in DCs are directly or indirectly involved in inducing Th2 immunity, and the detailed mechanisms underlying induction, regulation, or maintenance of the DC-mediated Th2 immunity against allergic environments and parasite infection. A recent study has shown that a genetic defect in DCs causes an enhanced Th2 immunity leading to severe atopic dermatitis. We summarize the Th2 immune-inducing DC subsets, the genetic and environmental factors involved in DC-mediated Th2 immunity, and current therapeutic approaches for Th2-mediated immune disorders. This review is to provide an improved understanding of DC-mediated Th2 immunity and Th1/Th2 immune balancing, leading to control over their adverse consequences.
Collapse
Affiliation(s)
- Sunil Kumar
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yideul Jeong
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Muhammad Umer Ashraf
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| | - Yong-Soo Bae
- Science Research Center (SRC) for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
50
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|