1
|
Zheng F, Dong T, Chen Y, Wang L, Peng G. Border-associated macrophages: From physiology to therapeutic targets in Alzheimer's disease. Exp Neurol 2025; 383:115021. [PMID: 39461707 DOI: 10.1016/j.expneurol.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Border-associated macrophages (BAMs) constitute a highly heterogeneous group of central nervous system-resident macrophages at the brain boundaries. Despite their significance, BAMs have mainly been overlooked compared to microglia, resulting in a limited understanding of their functions. However, recent advancements in single-cell immunophenotyping and transcriptomic analyses of BAMs have revealed a previously unrecognized complexity in these cells, in addition to their critical roles under non-pathological conditions and diseases like Alzheimer's disease (AD), Parkinson's disease, glioma, and ischemic stroke. In this review, we discuss the origins, self-renewal capabilities, and extensive heterogeneity of BAMs, and clarify their important physiological functions such as immune monitoring, waste removal and vascular permeability regulation. We also summarize experimental evidence linking BAMs to the progression of AD. Finally, we review therapeutic strategies targeting brain innate immune cells mainly focusing on strategies aimed at modulating BAMs to treat AD and evaluate their potential in clinical applications.
Collapse
Affiliation(s)
- Fangxue Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Taiwei Dong
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yi Chen
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Wang
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Tran TT, Nagasawa T, Nakao M, Somamoto T. Expression of two CD83 homologs in macrophage subpopulations isolated from the brain and kidney of ginbuna crucian carp. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110038. [PMID: 39580042 DOI: 10.1016/j.fsi.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
There are numerous fish diseases that affect the central nervous system. However, few studies have investigated the immune cells and immunological responses of fish brains. Meanwhile, microglial cells, as the brain's first line of defense, play a vital role in neuroimmunology. Furthermore, CD83 is a co-stimulatory protein that regulates immunological responses and the activation of dendritic cells and macrophages. Although CD83 expression has been linked to the initial activation of microglia in various disease scenarios in mammals, its role in teleost microglial biology remains unclear. In a recent investigation, we discovered that Ginbuna crucian carp (Gb) contains two CD83 homologs (GbCD83 and GbCD83-L). In this study, we used modified procedures of mouse-based macrophage culture from the brain and kidney to identify that GbCD83-L is highly expressed by the brain microglia-like cells and kidney-resident macrophages (KRMs) at both the protein and gene levels. Interestingly, GbCD83-L was considerably elevated in the microglia-like cells and KRMs after 24 h of lipopolysaccharide stimulation. These findings provide the first evidence of CD83 as a potential marker for active microglia and KRMs in teleosts, thus making it a crucial regulator in fish neuroimmunology and a candidate for future immunomodulatory applications in aquaculture.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
3
|
Murani E, Trakooljul N, Hadlich F, Wimmers K. Transcriptional signature of a hypersensitive glucocorticoid receptor variant in the neuroendocrine system suggests enhanced vulnerability to brain disorders. Brain Behav Immun 2024; 124:335-346. [PMID: 39674558 DOI: 10.1016/j.bbi.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
The natural substitution Ala610Val in the porcine glucocorticoid receptor (GRAla610Val) leads to a profound compensatory downregulation of the hypothalamic-pituitary-adrenal (HPA) axis in early ontogeny. In this study, we leveraged this unique animal model to explore mechanisms of HPA axis regulation and consequences of its genetically-based persistent hypoactivity. To this end, we examined transcriptional signature of GRAla610Val in the hypothalamus, hippocampus, amygdala and adrenal gland in resting conditions (i.e. baseline glucocorticoid level) using mRNA sequencing. In addition, we studied transcriptome responses to two different doses of dexamethasone in the hypothalamus and hippocampus, depending on GRAla610Val. Across tissues, GRAla610Val consistently influenced the expression of several clustered protocadherins, particularly PCDHB7. Clustered protocadherins play an important role in neuronal connectivity and are implicated in different neurobiological disorders. Moreover, in line with our previous findings in blood immune cells, we found higher expression of pro-inflammatory genes, including canonical members of the TLR4 signaling pathway, in the brain of Val carriers. While the pro-inflammatory priming occurs already at resting conditions in the amygdala, in hypothalamus and hippocampus this seems to be associated with a stronger downregulation of several marker genes of homeostatic microglia, such as SALL1, by dexamethasone in Val carriers. Regarding the regulation of the HPA axis, GRAla610Val showed a dose-dependent effect on the central regulator of the axis, CRH, suggesting a dynamic adaptation to the glucocorticoid hypersensitivity of the Val variant. In the adrenal gland, GRAla610Val appears to downregulate cortisol production by impairing mitochondrial function. Overall, the transcriptional signature of GRAla610Val provides strong evidence that GR hypersensitivity leads to increased susceptibility to brain disorders.
Collapse
Affiliation(s)
- Eduard Murani
- Competence Field Genetics and Genomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Nares Trakooljul
- Competence Field Genetics and Genomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Competence Field Genetics and Genomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Competence Field Genetics and Genomics, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Gallerand A, Han J, Ivanov S, Randolph GJ. Mouse and human macrophages and their roles in cardiovascular health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1424-1437. [PMID: 39604762 DOI: 10.1038/s44161-024-00580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024]
Abstract
The past 15 years have witnessed a leap in understanding the life cycle, gene expression profiles, origins and functions of mouse macrophages in many tissues, including macrophages of the artery wall and heart that have critical roles in cardiovascular health. Here, we review the phenotypical and functional diversity of macrophage populations in multiple organs and discuss the roles that proliferation, survival, and recruitment and replenishment from monocytes have in maintaining macrophages in homeostasis and inflammatory states such as atherosclerosis and myocardial infarction. We also introduce emerging data that better characterize the life cycle and phenotypic profiles of human macrophages. We discuss the similarities and differences between murine and human macrophages, raising the possibility that tissue-resident macrophages in humans may rely more on bone marrow-derived monocytes than in mouse.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024; 18:2906-2926. [PMID: 38712663 PMCID: PMC11619806 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Adam M. H. Young
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Harry J. C. J. Bulstrode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
6
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2024; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
7
|
Zhan T, Tian S, Chen S. Border-Associated Macrophages: From Embryogenesis to Immune Regulation. CNS Neurosci Ther 2024; 30:e70105. [PMID: 39496482 PMCID: PMC11534460 DOI: 10.1111/cns.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Border-associated macrophages (BAMs) play a pivotal role in maintaining brain homeostasis and responding to pathological conditions. Understanding their origins, characteristics, and roles in both healthy and diseased brains is crucial for advancing our knowledge of neuroinflammatory and neurodegenerative diseases. This review addresses the ontogeny, replenishment, microenvironmental regulation, and transcriptomic heterogeneity of BAMs, highlighting recent advancements in lineage tracing and fate-mapping studies. Furthermore, we examine the roles of BAMs in maintaining brain homeostasis, immune surveillance, and responses to injury and neurodegenerative diseases. Further research is crucial to clarify the dynamic interplay between BAMs and the brain's microenvironment in health and disease. This effort will not only resolve existing controversies but also reveal new therapeutic targets for neuroinflammatory and neurodegenerative disorders, pushing the boundaries of neuroscience.
Collapse
Affiliation(s)
- Tiantong Zhan
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sixuan Tian
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
| |
Collapse
|
8
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
9
|
Chen J, Crouch EE, Zawadzki ME, Jacobs KA, Mayo LN, Choi JJY, Lin PY, Shaikh S, Tsui J, Gonzalez-Granero S, Waller S, Kelekar A, Kang G, Valenzuela EJ, Birrueta JO, Diafos LN, Wedderburn-Pugh K, Di Marco B, Xia W, Han CZ, Coufal NG, Glass CK, Fancy SPJ, Alfonso J, Kriegstein AR, Oldham MC, Garcia-Verdugo JM, Kutys ML, Lehtinen MK, Combes AJ, Huang EJ. Proinflammatory immune cells disrupt angiogenesis and promote germinal matrix hemorrhage in prenatal human brain. Nat Neurosci 2024; 27:2115-2129. [PMID: 39349662 PMCID: PMC11537974 DOI: 10.1038/s41593-024-01769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 08/19/2024] [Indexed: 10/28/2024]
Abstract
Germinal matrix hemorrhage (GMH) is a devastating neurodevelopmental condition affecting preterm infants, but why blood vessels in this brain region are vulnerable to rupture remains unknown. Here we show that microglia in prenatal mouse and human brain interact with nascent vasculature in an age-dependent manner and that ablation of these cells in mice reduces angiogenesis in the ganglionic eminences, which correspond to the human germinal matrix. Consistent with these findings, single-cell transcriptomics and flow cytometry show that distinct subsets of CD45+ cells from control preterm infants employ diverse signaling mechanisms to promote vascular network formation. In contrast, CD45+ cells from infants with GMH harbor activated neutrophils and monocytes that produce proinflammatory factors, including azurocidin 1, elastase and CXCL16, to disrupt vascular integrity and cause hemorrhage in ganglionic eminences. These results underscore the brain's innate immune cells in region-specific angiogenesis and how aberrant activation of these immune cells promotes GMH in preterm infants.
Collapse
Affiliation(s)
- Jiapei Chen
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth E Crouch
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Kyle A Jacobs
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Lakyn N Mayo
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Ja-Yoon Choi
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Pin-Yeh Lin
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Saba Shaikh
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tsui
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Susana Gonzalez-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Shamari Waller
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Avani Kelekar
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kaylee Wedderburn-Pugh
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Di Marco
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Wenlong Xia
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole G Coufal
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Stephen P J Fancy
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Arnold R Kriegstein
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael C Oldham
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, Valencia, Spain
| | - Matthew L Kutys
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- UCSF-UC Berkeley Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Alexis J Combes
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA.
- Pathology Service 113B, San Francisco VA Health Care Systems, San Francisco, CA, USA.
| |
Collapse
|
10
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
11
|
Li L, Sun B, Harris OA, Luo J. TGF-β Signaling in Microglia: A Key Regulator of Development, Homeostasis and Reactivity. Biomedicines 2024; 12:2468. [PMID: 39595034 PMCID: PMC11592028 DOI: 10.3390/biomedicines12112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are crucial for normal brain development and function. They become reactive in response to brain injury and disease, a process known as microglial reactivity. This reactivity, along with microglial homeostasis, is tightly regulated by the local microenvironment and interactions with surrounding cells. The TGF-β signaling pathway plays an essential role in this regulation. Recent genetic studies employing microglia-specific manipulation of the TGF-β signaling pathway have shed light on its significance in microglial development, homeostasis and reactivity. This review provides an updated overview of how TGF-β signaling modulates microglial function and reactivity, contributing to our understanding of microglial biology in health and disease.
Collapse
Affiliation(s)
- Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Odette A. Harris
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Richard SA, Roy SK, Asiamah EA. Pivotal Role of Cranial Irradiation-Induced Peripheral, Intrinsic, and Brain-Engrafting Macrophages in Malignant Glioma. Clin Med Insights Oncol 2024; 18:11795549241282098. [PMID: 39421649 PMCID: PMC11483687 DOI: 10.1177/11795549241282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant (high-grade) gliomas are aggressive intrinsic brain tumors that diffusely infiltrate the brain parenchyma. They comprise of World Health Organization (WHO) grade III and IV gliomas. Ionizing radiation or irradiation (IR) is frequently utilized in the treatment of both primary as well as metastatic brain tumors. On the contrary, macrophages (MΦ) are the most copious infiltrating immune cells of all the different cell types colonizing glioma. MΦ at tumor milieu are referred to as tumor-associated macrophages (TAMΦ). In malignant gliomas milieu, TAMΦ are also polarized into two distinct phenotypes such as M1 TAMΦ or M2 TAMΦ, which are capable of inhibiting or promoting tumor growth, respectively. Cranial-IR such as x- and γ-IR are sufficient to induce the migration of peripherally derived MΦ into the brain parenchyma. The IR facilitate a more immunosuppressive milieu via the stimulation of efferocytosis in TAMΦ, and an upsurge of tumor cell engulfment by TAMΦ exhibited detrimental effect of the anti-tumoral immune response in glioma. The MΦ inside the tumor mass are associated with multiple phenomena that include IR resistance and enrichment of the M2 MΦ after IR is able to facilitate glioblastoma multiforme (GBM) recurrence. Reviews on the role of cranial IR-induced peripheral and brain-engrafting macrophages (BeMΦ) in glioma are lacking. Specifically, most studies on peripheral, intrinsic as well as beMΦ on IR focus on WHO grade III and IV. Thus, this review precisely focuses primary on WHO grade III as well as IV gliomas.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Sagor Kumar Roy
- Department of Neurology, TMSS Medical College and Hospital, Bogura, Bangladesh
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
13
|
Wellford SA, Chen CW, Vukovic M, Batich KA, Lin E, Shalek AK, Ordovas-Montanes J, Moseman AP, Moseman EA. Distinct olfactory mucosal macrophage populations mediate neuronal maintenance and pathogen defense. Mucosal Immunol 2024; 17:1102-1113. [PMID: 39074615 PMCID: PMC11483463 DOI: 10.1016/j.mucimm.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The olfactory mucosa is important for both the sense of smell and as a mucosal immune barrier to the upper airway and brain. However, little is known about how the immune system mediates the conflicting goals of neuronal maintenance and inflammation in this tissue. A number of immune cell populations reside within the olfactory mucosa and yet we have little understanding of how these resident olfactory immune cells functionally interact with the chemosensory environment. Identifying these interactions will allow therapeutic manipulations that treat disorders such as post-viral olfactory dysfunction. Macrophages are the most prevalent immune cell type in the uninflamed olfactory mucosa and here, we identify two distinct tissue macrophage populations in murine olfactory mucosa. P2ry12hi macrophages are transcriptionally specialized for neuron interactions, closely associated with olfactory neuron cell bodies, long-term tissue residents, and functionally specialized to phagocytose cells and debris, including olfactory neurons. Conversely, MHC Class IIhi macrophages are transcriptionally dedicated to cytokine production and antigen presentation, localized primarily within the olfactory lamina propria, more rapidly replaced by blood monocytes, and rapidly produce chemokines in response to viral infection. We further show that these macrophage signatures are present in human olfactory biopsies, and P2ry12-like olfactory macrophages are reduced in patients with long-term smell loss following COVID-19. Together, these data show that two olfactory macrophage populations regulate neurons and initiate the immune response, contributing to our understanding of both olfactory immunity and tissue-resident macrophage biology.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ching-Wen Chen
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Marko Vukovic
- Broad Institute of MIT and Harvard, Cambridge, MA, United States; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, United States; Department of Chemistry, MIT, Cambridge, MA, USA
| | - Kristen A Batich
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - Elliot Lin
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, United States; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States; Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, United States; Department of Chemistry, MIT, Cambridge, MA, USA; Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA, United States; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States; Program in Immunology, Harvard Medical School, Boston, MA, United States
| | - Annie Park Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
14
|
Saeki K, Pan R, Lee E, Kurotaki D, Ozato K. IRF8 defines the epigenetic landscape in postnatal microglia, thereby directing their transcriptome programs. Nat Immunol 2024; 25:1928-1942. [PMID: 39313544 DOI: 10.1038/s41590-024-01962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Microglia are innate immune cells in the brain. Transcription factor IRF8 (interferon regulatory factor 8) is highly expressed in microglia. However, its role in postnatal microglia development is unknown. We demonstrate that IRF8 binds stepwise to enhancer regions of postnatal microglia along with Sall1 and PU.1, reaching a maximum after day 14. IRF8 binding correlated with a stepwise increase in chromatin accessibility, which preceded the initiation of microglia-specific transcriptome. Constitutive and postnatal Irf8 deletion led to a loss of microglia identity and gain of disease-associated microglia (DAM)-like genes. Combined analysis of single-cell (sc)RNA sequencing and single-cell transposase-accessible chromatin with sequencing (scATAC-seq) revealed a correlation between chromatin accessibility and transcriptome at a single-cell level. IRF8 was also required for microglia-specific DNA methylation patterns. Last, in the 5xFAD model, constitutive and postnatal Irf8 deletion reduced the interaction of microglia with amyloidβ plaques and the size of plaques, lessening neuronal loss. Together, IRF8 sets the epigenetic landscape, which is required for postnatal microglia gene expression.
Collapse
Affiliation(s)
- Keita Saeki
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Columbia University, School of Medicine, New York, NY, USA
| | - Eunju Lee
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
16
|
Nemec KM, Uy G, Chaluvadi VS, Purnell FS, Elfayoumi B, O'Brien CA, Aisenberg WH, Lombroso SI, Guo X, Blank N, Oon CH, Yaqoob F, Temsamrit B, Rawat P, Thaiss CA, Wang Q, Bennett ML, Bennett FC. Microglia replacement by ER-Hoxb8 conditionally immortalized macrophages provides insight into Aicardi-Goutières Syndrome neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613629. [PMID: 39345609 PMCID: PMC11430044 DOI: 10.1101/2024.09.18.613629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microglia, the brain's resident macrophages, can be reconstituted by surrogate cells - a process termed "microglia replacement." To expand the microglia replacement toolkit, we here introduce estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages, a cell model for generation of immune cells from murine bone marrow, as a versatile model for microglia replacement. We find that ER-Hoxb8 macrophages are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells. Furthermore, ER-Hoxb8 progenitors are readily transducible by virus and easily stored as stable, genetically manipulated cell lines. As a demonstration of this system's power for studying the effects of disease mutations on microglia in vivo, we created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to Aicardi-Goutières Syndrome (AGS), an inherited interferonopathy that primarily affects the brain and immune system. We find that Adar1 knockout elicited interferon secretion and impaired macrophage production in vitro, while preventing brain macrophage engraftment in vivo - phenotypes that can be rescued with concurrent mutation of Ifih1 (MDA5) in vitro, but not in vivo. Lastly, we extended these findings by generating ER-Hoxb8 progenitors from mice harboring a patient-specific Adar1 mutation (D1113H). We demonstrated the ability of microglia-specific D1113H mutation to drive interferon production in vivo, suggesting microglia drive AGS neuropathology. In sum, we introduce the ER-Hoxb8 approach to model microglia replacement and use it to clarify macrophage contributions to AGS.
Collapse
Affiliation(s)
- Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Genevieve Uy
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - V Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Freddy S Purnell
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine. Philadelphia, PA, USA
| | - Bilal Elfayoumi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chet Huan Oon
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Temsamrit
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priyanka Rawat
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
17
|
Wang X, Zhang XY, Liao NQ, He ZH, Chen QF. Identification of ribosome biogenesis genes and subgroups in ischaemic stroke. Front Immunol 2024; 15:1449158. [PMID: 39290696 PMCID: PMC11406505 DOI: 10.3389/fimmu.2024.1449158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Xiao-Yu Zhang
- The College of Life Sciences, Northwest University, Xian, China
| | - Nan-Qing Liao
- School of Medicine, Guangxi University, Nanning, China
| | - Ze-Hua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
18
|
Xu X, Niu M, Lamberty BG, Emanuel K, Ramachandran S, Trease AJ, Tabassum M, Lifson JD, Fox HS. Microglia and macrophages alterations in the CNS during acute SIV infection: A single-cell analysis in rhesus macaques. PLoS Pathog 2024; 20:e1012168. [PMID: 39283947 PMCID: PMC11426456 DOI: 10.1371/journal.ppat.1012168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV and the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and establish a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12 days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the homeostatic and preactivated microglia population decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin G Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shawn Ramachandran
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andrew J Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mehnaz Tabassum
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
19
|
Du S, Drieu A, Cheng Y, Storck SE, Rustenhoven J, Mamuladze T, Bhattarai B, Brioschi S, Nguyen K, Ou F, Cao J, Rodrigues PF, Smirnov I, DeNardo D, Ginhoux F, Cella M, Colonna M, Kipnis J. Brain-Engrafted Monocyte-derived Macrophages from Blood and Skull-Bone Marrow Exhibit Distinct Identities from Microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606900. [PMID: 39211090 PMCID: PMC11361186 DOI: 10.1101/2024.08.08.606900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 + microglia precursors in the YS. We found that brain-engrafted MDMs exhibit transcriptional and epigenetic characteristics akin to meningeal macrophages, likely due to environmental imprinting within the meningeal space. Utilizing parabiosis and skull transplantation, we demonstrated that monocytes from both peripheral blood and skull bone marrow can repopulate microglia-depleted brains. Our results reveal the heterogeneous origins and cellular dynamics of brain parenchymal macrophages at baseline and in models of microglia depletion.
Collapse
|
20
|
Sierra A, Miron VE, Paolicelli RC, Ransohoff RM. Microglia in Health and Diseases: Integrative Hubs of the Central Nervous System (CNS). Cold Spring Harb Perspect Biol 2024; 16:a041366. [PMID: 38438189 PMCID: PMC11293550 DOI: 10.1101/cshperspect.a041366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microglia are usually referred to as "the innate immune cells of the brain," "the resident macrophages of the central nervous system" (CNS), or "CNS parenchymal macrophages." These labels allude to their inherent immune function, related to their macrophage lineage. However, beyond their classic innate immune responses, microglia also play physiological roles crucial for proper brain development and maintenance of adult brain homeostasis. Microglia sense both external and local stimuli through a variety of surface receptors. Thus, they might serve as integrative hubs at the interface between the external environment and the CNS, able to decode, filter, and buffer cues from outside, with the aim of preserving and maintaining brain homeostasis. In this perspective, we will cast a critical look at how these multiple microglial functions are acquired and coordinated, and we will speculate on their impact on human brain physiology and pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Laboratory, Science Park of UPV/EHU, E-48940 Leioa, Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, 48940 Leioa, Spain
- Ikerbasque Foundation, Bilbao 48009, Spain
| | - Veronique E Miron
- BARLO Multiple Sclerosis Centre, Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto M5B 1T8, Canada
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, United Kingdom
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
21
|
Yamasaki A, Imanishi I, Tanaka K, Ohkawa Y, Tsuda M, Masuda T. IRF8 and MAFB drive distinct transcriptional machineries in different resident macrophages of the central nervous system. Commun Biol 2024; 7:896. [PMID: 39043941 PMCID: PMC11266354 DOI: 10.1038/s42003-024-06607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
The central nervous system (CNS) includes anatomically distinct macrophage populations including parenchyma microglia and CNS-associated macrophages (CAMs) localized at the interfaces like meninges and perivascular space, which play specialized roles for the maintenance of the CNS homeostasis with the help of precisely controlled gene expressions. However, the transcriptional machinery that determines their cell-type specific states of microglia and CAMs remains poorly understood. Here we show, by myeloid cell-specific deletion of transcription factors, IRF8 and MAFB, that both adult microglia and CAMs utilize IRF8 to maintain their core gene signatures, although the genes altered by IRF8 deletion are different in the two macrophage populations. By contrast, MAFB deficiency robustly affected the gene expression profile of adult microglia, whereas CAMs are almost independent of MAFB. Our data suggest that distinct transcriptional machineries regulate different macrophages in the CNS.
Collapse
Affiliation(s)
- Ayato Yamasaki
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Iroha Imanishi
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
Saeki K, Pan R, Lee E, Kurotaki D, Ozato K. IRF8 configures enhancer landscape in postnatal microglia and directs microglia specific transcriptional programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.25.546453. [PMID: 37645844 PMCID: PMC10461927 DOI: 10.1101/2023.06.25.546453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microglia are innate immune cells in the brain. Transcription factor IRF8 is highly expressed in microglia. However, its role in postnatal microglia development is unknown. We demonstrate that IRF8 binds stepwise to enhancer regions of postnatal microglia along with Sall1 and PU.1, reaching a maximum after day 14. IRF8 binding correlated with a stepwise increase in chromatin accessibility, which preceded the initiation of microglia-specific transcriptome. Constitutive and postnatal Irf8 deletion led to a loss of microglia identity and gain of disease-associated microglia-like genes. Combined analysis of scRNA-seq and scATAC-seq revealed a correlation between chromatin accessibility and transcriptome at a single-cell level. IRF8 was also required for microglia-specific DNA methylation patterns. Lastly, in the 5xFAD model, constitutive and postnatal Irf8 deletion reduced the interaction of microglia with Aβ plaques and the size of plaques, lessening neuronal loss. Together, IRF8 sets the epigenetic landscape, which is required for postnatal microglia gene expression.
Collapse
Affiliation(s)
- Keita Saeki
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Richard Pan
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
- MD-PhD Candidate in Neurobiology and Behavior, Columbia University, School of Medicine, New York, NY
| | - Eunju Lee
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Daisuke Kurotaki
- International Research Center for Medical Sciences, Kumamoto University, 860-011 Kumamoto City, Japan
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
23
|
Bedolla A, Wegman E, Weed M, Stevens MK, Ware K, Paranjpe A, Alkhimovitch A, Ifergan I, Taranov A, Peter JD, Gonzalez RMS, Robinson JE, McClain L, Roskin KM, Greig NH, Luo Y. Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice. Nat Commun 2024; 15:5306. [PMID: 38906887 PMCID: PMC11192737 DOI: 10.1038/s41467-024-49596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
While TGF-β signaling is essential for microglial function, the cellular source of TGF-β1 ligand and its spatial regulation remains unclear in the adult CNS. Our data supports that microglia but not astrocytes or neurons are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia-Tgfb1 KO leads to the activation of microglia featuring a dyshomeostatic transcriptome that resembles disease-associated, injury-associated, and aged microglia, suggesting microglial self-produced TGF-β1 ligands are important in the adult CNS. Astrocytes in MG-Tgfb1 inducible (i)KO mice show a transcriptome profile that is closely aligned with an LPS-associated astrocyte profile. Additionally, using sparse mosaic single-cell microglia KO of TGF-β1 ligand we established an autocrine mechanism for signaling. Here we show that MG-Tgfb1 iKO mice present cognitive deficits, supporting that precise spatial regulation of TGF-β1 ligand derived from microglia is required for the maintenance of brain homeostasis and normal cognitive function in the adult brain.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Max Weed
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Kierra Ware
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Information Services for Research, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anastasia Alkhimovitch
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Igal Ifergan
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aleksandr Taranov
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua D Peter
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rosa Maria Salazar Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - J Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
| | - Lucas McClain
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Krishna M Roskin
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, US
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA.
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Barry-Carroll L, Gomez-Nicola D. The molecular determinants of microglial developmental dynamics. Nat Rev Neurosci 2024; 25:414-427. [PMID: 38658739 DOI: 10.1038/s41583-024-00813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Microglia constitute the largest population of parenchymal macrophages in the brain and are considered a unique subset of central nervous system glial cells owing to their extra-embryonic origins in the yolk sac. During development, microglial progenitors readily proliferate and eventually colonize the entire brain. In this Review, we highlight the origins of microglial progenitors and their entry routes into the brain and discuss the various molecular and non-molecular determinants of their fate, which may inform their specific functions. Specifically, we explore recently identified mechanisms that regulate microglial colonization of the brain, including the availability of space, and describe how the expansion of highly proliferative microglial progenitors facilitates the occupation of the microglial niche. Finally, we shed light on the factors involved in establishing microglial identity in the brain.
Collapse
Affiliation(s)
- Liam Barry-Carroll
- Nutrineuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Bordeaux, France
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
25
|
Gross PS, Laforet VD, Manavi Z, Zia S, Lee SH, Shults N, Selva S, Alvarez E, Plemel JR, Schafer DP, Huang JK. Senescent-like microglia limit remyelination through the senescence associated secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595605. [PMID: 38826296 PMCID: PMC11142216 DOI: 10.1101/2024.05.23.595605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The capacity to regenerate myelin in the central nervous system (CNS) diminishes with age. This decline is particularly evident in multiple sclerosis (MS), which has been suggested to exhibit features of accelerated biological aging. Whether cellular senescence, a hallmark of aging, contributes to remyelination impairment remains unknown. Here, we show that senescent cells (SCs) accumulate within demyelinated lesions after injury, and their elimination enhances remyelination in young mice but not in aged mice. In young mice, we observed the upregulation of senescence-associated transcripts primarily in microglia after demyelination, followed by their reduction during remyelination. However, in aged mice, senescence-associated factors persisted within lesions, correlating with inefficient remyelination. We found that SC elimination enhanced remyelination in young mice but was ineffective in aged mice. Proteomic analysis of senescence-associated secretory phenotype (SASP) revealed elevated levels of CCL11/Eotaxin-1 in lesions, which was found to inhibit efficient oligodendrocyte maturation. These results suggest therapeutic targeting of SASP components, such as CCL11, may improve remyelination in aging and MS.
Collapse
|
26
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
27
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
28
|
Xu X, Niu M, Lamberty BG, Emanuel K, Trease AJ, Tabassum M, Lifson JD, Fox HS. Microglia and macrophages alterations in the CNS during acute SIV infection: a single-cell analysis in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588047. [PMID: 38617282 PMCID: PMC11014596 DOI: 10.1101/2024.04.04.588047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.
Collapse
Affiliation(s)
- Xiaoke Xu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Meng Niu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrew J. Trease
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehnaz Tabassum
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
29
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Yu C, Lad EM, Mathew R, Shiraki N, Littleton S, Chen Y, Hou J, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Bowes Rickman C, Proia AD, Colonna M, Haass C, Saban DR. Microglia at sites of atrophy restrict the progression of retinal degeneration via galectin-3 and Trem2. J Exp Med 2024; 221:e20231011. [PMID: 38289348 PMCID: PMC10826045 DOI: 10.1084/jem.20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nobuhiko Shiraki
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Alan D. Proia
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Pestal K, Slayden LC, Barton GM. Krüppel-like Factor (KLF) family members control expression of genes required for serous cavity and alveolar macrophage identities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582578. [PMID: 38464159 PMCID: PMC10925242 DOI: 10.1101/2024.02.28.582578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Tissue-resident macrophages adopt distinct gene expression profiles and exhibit functional specialization based on their tissue of residence. Recent studies have begun to define the signals and transcription factors that induce these identities. Here we describe an unexpected and specific role for the broadly expressed transcription factor Kruppel-like Factor 2 (KLF2) in the development of embryonically derived Large Cavity Macrophages (LCM) in the serous cavities. KLF2 not only directly regulates the transcription of genes previously shown to specify LCM identity, such as retinoic acid receptors and GATA6, but also is required for induction of many other transcripts that define the identity of these cells. We identify a similar role for KLF4 in regulating the identity of alveolar macrophages in the lung. These data demonstrate that broadly expressed transcription factors, such as Group 2 KLFs, can play important roles in the specification of distinct identities of tissue-resident macrophages.
Collapse
Affiliation(s)
- Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Leianna C Slayden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
32
|
Rao Y, Peng B. Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. FUNDAMENTAL RESEARCH 2024; 4:237-245. [PMID: 38933508 PMCID: PMC11197774 DOI: 10.1016/j.fmre.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that play vital roles in CNS development, homeostasis and disease pathogenesis. Genetic defects in microglia lead to microglial dysfunction, which in turn leads to neurological disorders. The correction of the specific genetic defects in microglia in these disorders can lead to therapeutic effects. Traditional genetic defect correction approaches are dependent on viral vector-based genetic defect corrections. However, the viruses used in these approaches, including adeno-associated viruses, lentiviruses and retroviruses, do not primarily target microglia; therefore, viral vector-based genetic defect corrections are ineffective in microglia. Microglia replacement is a novel approach to correct microglial genetic defects via replacing microglia of genetic defects with allogenic healthy microglia. In this paper, we systematically review the history, rationale and therapeutic perspectives of microglia replacement, which would be a novel strategy for treating CNS disorders.
Collapse
Affiliation(s)
- Yanxia Rao
- Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
33
|
Boland R, Kokiko-Cochran ON. Deplete and repeat: microglial CSF1R inhibition and traumatic brain injury. Front Cell Neurosci 2024; 18:1352790. [PMID: 38450286 PMCID: PMC10915023 DOI: 10.3389/fncel.2024.1352790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health burden affecting millions of people. Sustained neuroinflammation after TBI is often associated with poor outcome. As a result, increased attention has been placed on the role of immune cells in post-injury recovery. Microglia are highly dynamic after TBI and play a key role in the post-injury neuroinflammatory response. Therefore, microglia represent a malleable post-injury target that could substantially influence long-term outcome after TBI. This review highlights the cell specific role of microglia in TBI pathophysiology. Microglia have been manipulated via genetic deletion, drug inhibition, and pharmacological depletion in various pre-clinical TBI models. Notably, colony stimulating factor 1 (CSF1) and its receptor (CSF1R) have gained much traction in recent years as a pharmacological target on microglia. CSF1R is a transmembrane tyrosine kinase receptor that is essential for microglia proliferation, differentiation, and survival. Small molecule inhibitors targeting CSF1R result in a swift and effective depletion of microglia in rodents. Moreover, discontinuation of the inhibitors is sufficient for microglia repopulation. Attention is placed on summarizing studies that incorporate CSF1R inhibition of microglia. Indeed, microglia depletion affects multiple aspects of TBI pathophysiology, including neuroinflammation, oxidative stress, and functional recovery with measurable influence on astrocytes, peripheral immune cells, and neurons. Taken together, the data highlight an important role for microglia in sustaining neuroinflammation and increasing risk of oxidative stress, which lends to neuronal damage and behavioral deficits chronically after TBI. Ultimately, the insights gained from CSF1R depletion of microglia are critical for understanding the temporospatial role that microglia develop in mediating TBI pathophysiology and recovery.
Collapse
Affiliation(s)
- Rebecca Boland
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
34
|
Cuní-López C, Stewart R, Oikari LE, Nguyen TH, Roberts TL, Sun Y, Guo CC, Lupton MK, White AR, Quek H. Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer's disease. J Neuroinflammation 2024; 21:50. [PMID: 38365833 PMCID: PMC10870454 DOI: 10.1186/s12974-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain's resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that captures AD patient-specific microglial characteristics using physiologically relevant and experimentally flexible culture conditions. METHODS To address this shortcoming, we developed novel 3D Matrigel-based monocyte-derived microglia-like cell (MDMi) mono-cultures and co-cultures with neuro-glial cells (ReNcell VM). We used single-cell RNA sequencing (scRNAseq) analysis to compare the transcriptomic signatures of MDMi between model systems (2D, 3D and 3D co-culture) and against published human microglia datasets. To demonstrate the potential of MDMi for use in personalized pre-clinical strategies, we generated and characterized MDMi models from sixteen AD patients and matched healthy controls, and profiled cytokine responses upon treatment with anti-inflammatory drugs (dasatinib and spiperone). RESULTS MDMi in 3D exhibited a more branched morphology and longer survival in culture compared to 2D. scRNAseq uncovered distinct MDMi subpopulations that exhibit higher functional heterogeneity and best resemble human microglia in 3D co-culture. AD MDMi in 3D co-culture showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-β. Drug testing assays revealed patient- and model-specific cytokine responses. CONCLUSION Our study presents a novel, physiologically relevant and AD patient-specific 3D microglia cell model that opens avenues towards improving personalized drug development strategies in AD.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Romal Stewart
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Tam Hong Nguyen
- Scientific Services, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
- Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, 2170, Australia
| | - Yifan Sun
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Christine C Guo
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- ActiGraph LLC, Pensacola, FL, 32502, USA
| | - Michelle K Lupton
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Anthony R White
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, The University of Queensland, Lucia, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
35
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
36
|
Dalmau Gasull A, Glavan M, Samawar SKR, Kapupara K, Kelk J, Rubio M, Fumagalli S, Sorokin L, Vivien D, Prinz M. The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol 2024; 147:37. [PMID: 38347231 PMCID: PMC10861620 DOI: 10.1007/s00401-023-02676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
There are several cellular and acellular structural barriers associated with the brain interfaces, which include the dura, the leptomeninges, the perivascular space and the choroid plexus epithelium. Each structure is enriched by distinct myeloid populations, which mainly originate from erythromyeloid precursors (EMP) in the embryonic yolk sac and seed the CNS during embryogenesis. However, depending on the precise microanatomical environment, resident myeloid cells differ in their marker profile, turnover and the extent to which they can be replenished by blood-derived cells. While some EMP-derived cells seed the parenchyma to become microglia, others engraft the meninges and become CNS-associated macrophages (CAMs), also referred to as border-associated macrophages (BAMs), e.g., leptomeningeal macrophages (MnMΦ). Recent data revealed that MnMΦ migrate into perivascular spaces postnatally where they differentiate into perivascular macrophages (PvMΦ). Under homeostatic conditions in pathogen-free mice, there is virtually no contribution of bone marrow-derived cells to MnMΦ and PvMΦ, but rather to macrophages of the choroid plexus and dura. In neuropathological conditions in which the blood-brain barrier is compromised, however, an influx of bone marrow-derived cells into the CNS can occur, potentially contributing to the pool of CNS myeloid cells. Simultaneously, resident CAMs may also proliferate and undergo transcriptional and proteomic changes, thereby, contributing to the disease outcome. Thus, both resident and infiltrating myeloid cells together act within their microenvironmental niche, but both populations play crucial roles in the overall disease course. Here, we summarize the current understanding of the sources and fates of resident CAMs in health and disease, and the role of the microenvironment in influencing their maintenance and function.
Collapse
Affiliation(s)
- Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martina Glavan
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, USA
| | - Sai K Reddy Samawar
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Joe Kelk
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Marina Rubio
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Stefano Fumagalli
- Laboratory of Stroke and Vascular Dysfunctions, Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de La Côte de Nacre, Caen, France
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Balak CD, Han CZ, Glass CK. Deciphering microglia phenotypes in health and disease. Curr Opin Genet Dev 2024; 84:102146. [PMID: 38171044 DOI: 10.1016/j.gde.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.
Collapse
Affiliation(s)
- Christopher D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Biomedical Sciences Graduate Program, University of California, San Diego, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
39
|
Larson KC, Martens LH, Marconi M, Dejesus C, Bruhn S, Miller TA, Tate B, Levenson JM. Preclinical translational platform of neuroinflammatory disease biology relevant to neurodegenerative disease. J Neuroinflammation 2024; 21:37. [PMID: 38297405 PMCID: PMC10832185 DOI: 10.1186/s12974-024-03029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Neuroinflammation is a key driver of neurodegenerative disease, however the tools available to model this disease biology at the systems level are lacking. We describe a translational drug discovery platform based on organotypic culture of murine cortical brain slices that recapitulate disease-relevant neuroinflammatory biology. After an acute injury response, the brain slices assume a chronic neuroinflammatory state marked by transcriptomic profiles indicative of activation of microglia and astrocytes and loss of neuronal function. Microglia are necessary for manifestation of this neuroinflammation, as depletion of microglia prior to isolation of the brain slices prevents both activation of astrocytes and robust loss of synaptic function genes. The transcriptomic pattern of neuroinflammation in the mouse platform is present in published datasets derived from patients with amyotrophic lateral sclerosis, Huntington's disease, and frontotemporal dementia. Pharmacological utility of the platform was validated by demonstrating reversal of microglial activation and the overall transcriptomic signature with transforming growth factor-β. Additional anti-inflammatory targets were screened and inhibitors of glucocorticoid receptors, COX-2, dihydrofolate reductase, and NLRP3 inflammasome all failed to reverse the neuroinflammatory signature. Bioinformatics analysis of the neuroinflammatory signature identified protein tyrosine phosphatase non-receptor type 11 (PTPN11/SHP2) as a potential target. Three structurally distinct inhibitors of PTPN11 (RMC-4550, TN0155, IACS-13909) reversed the neuroinflammatory disease signature. Collectively, these results highlight the utility of this novel neuroinflammatory platform for facilitating identification and validation of targets for neuroinflammatory neurodegenerative disease drug discovery.
Collapse
Affiliation(s)
- Kelley C Larson
- Vigil Neuroscience, Watertown, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Lauren H Martens
- , Neumora Therapeutics, Watertown, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Michael Marconi
- Department of Molecular Pathology, Massachusetts General Hospital, Boston, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Christopher Dejesus
- Atalanta Therapeutics, Boston, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Suzanne Bruhn
- Charcot-Marie-Tooth Association, Glenolden, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Thomas A Miller
- Walden Biosciences, Cambridge, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Barbara Tate
- FARA, Homestead, USA
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA
| | - Jonathan M Levenson
- FireCyte Therapeutics, Beverly, USA.
- Tiaki Therapeutics, Inc., c/o Dementia Discovery Fund, 201 Washington Street, 39th Floor, Boston, MA, 02108, USA.
| |
Collapse
|
40
|
Ramaswami G, Yuva-Aydemir Y, Akerberg B, Matthews B, Williams J, Golczer G, Huang J, Al Abdullatif A, Huh D, Burkly LC, Engle SJ, Grossman I, Sehgal A, Sigova AA, Fremeau RT, Liu Y, Bumcrot D. Transcriptional characterization of iPSC-derived microglia as a model for therapeutic development in neurodegeneration. Sci Rep 2024; 14:2153. [PMID: 38272949 PMCID: PMC10810793 DOI: 10.1038/s41598-024-52311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there has been no systematic assessment of similarity of these cells to primary human microglia along with their responsiveness to external cues expected of primary cells in the brain. In this study, we performed transcriptional characterization of commercially available human inducible pluripotent stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia and express many key microglial transcription factors and functional and disease-associated genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations, representing both homeostatic and activated states present in normal and diseased primary microglia. Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in responses between cell subpopulations in homeostatic and activated states and deconvolute bulk expression changes into their corresponding single cell states. In summary, our results demonstrate that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of in vivo microglia, and thus represent a promising model system for therapeutic development in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiaqi Huang
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | - Yuting Liu
- CAMP4 Therapeutics Corporation, Cambridge, MA, USA
| | | |
Collapse
|
41
|
Bedolla AM, McKinsey GL, Ware K, Santander N, Arnold TD, Luo Y. A comparative evaluation of the strengths and potential caveats of the microglial inducible CreER mouse models. Cell Rep 2024; 43:113660. [PMID: 38217856 PMCID: PMC10874587 DOI: 10.1016/j.celrep.2023.113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/02/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1YFP-CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, and Tmem119CreER), focusing on (1) recombination specificity, (2) leakiness (the degree of tamoxifen-independent recombination in microglia and other cells), (3) the efficiency of tamoxifen-induced recombination, (4) extraneural recombination (the degree of recombination in cells outside of the CNS, particularly myelo/monocyte lineages), and (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines, which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.
Collapse
Affiliation(s)
- Alicia M Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Gabriel L McKinsey
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kierra Ware
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center.
| |
Collapse
|
42
|
Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Liu X, Wang Y, Zhang S, Lu S, Lang J, Zhao Y. The roles of tissue resident macrophages in health and cancer. Exp Hematol Oncol 2024; 13:3. [PMID: 38229178 PMCID: PMC10790434 DOI: 10.1186/s40164-023-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.
Collapse
Affiliation(s)
- Minmin Cao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanying Lan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Guixi Community Health Center of the Chengdu High-Tech Zone, Chengdu, China
| | - Binghua Xiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaomeng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shichuan Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Zhao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
43
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
44
|
Holtman IR, Glass CK, Nott A. Interpretation of Neurodegenerative GWAS Risk Alleles in Microglia and their Interplay with Other Cell Types. ADVANCES IN NEUROBIOLOGY 2024; 37:531-544. [PMID: 39207711 DOI: 10.1007/978-3-031-55529-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia have been implicated in numerous neurodegenerative and neuroinflammatory disorders; however, the causal contribution of this immune cell type is frequently debated. Genetic studies offer a unique vantage point in that they infer causality over a secondary consequence. Genome-wide association studies (GWASs) have identified hundreds of loci in the genome that are associated with susceptibility to neurodegenerative disorders. GWAS studies implicate microglia in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and to a lesser degree suggest a role for microglia in vascular dementia (VaD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), and other neurodegenerative and neuropsychiatric disorders. The contribution and function of GWAS risk loci on disease progression is an ongoing field of study, in which large genomic datasets, and an extensive framework of computational tools, have proven to be crucial. Several GWAS risk loci are shared between disorders, pointing towards common pleiotropic mechanisms. In this chapter, we introduce key concepts in GWAS and post-GWAS interpretation of neurodegenerative disorders, with a focus on GWAS risk genes implicated in microglia, their interplay with other cell types and shared convergence of GWAS risk loci on microglia.
Collapse
Affiliation(s)
- Inge R Holtman
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
- Department of Medicine, School of Medicine, UC San Diego, La Jolla, CA, USA.
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| |
Collapse
|
45
|
Frumer GR, Shin SH, Jung S, Kim JS. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024; 72:5-18. [PMID: 37501579 DOI: 10.1002/glia.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.
Collapse
Affiliation(s)
- Gal Ronit Frumer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
47
|
Boura-Halfon S, Haffner-Krausz R, Ben-Dor S, Kim JS, Jung S. Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. Methods Mol Biol 2024; 2713:481-503. [PMID: 37639143 DOI: 10.1007/978-1-0716-3437-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
50
|
Kim JS, Jung S. Visualization, Fate Mapping, Ablation, and Mutagenesis of Microglia in the Mouse Brain. ADVANCES IN NEUROBIOLOGY 2024; 37:53-63. [PMID: 39207686 DOI: 10.1007/978-3-031-55529-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Since the classical studies of Pío del Río-Hortega, microglia research has come a long way. In particular, recent advances in bulk and single-cell (sc) transcriptomics have yielded many fascinating new insights into these intriguing immune cells at the interface with the central nervous system (CNS), both in small animal models and human samples. In parallel, tools developed by advanced mouse genetics have revealed the unique ontogeny of microglia and their striking dynamic interactions with other cells in the brain parenchyma. In this chapter, we will discuss various applications of the Cre/loxP-based approach that have enabled the study of microglia in their physiological context of the mouse brain. We will highlight selected key findings that have shaped our current understanding of these cells and discuss the technical intricacies of the Cre/loxP approach and some remaining challenges.
Collapse
Affiliation(s)
- Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel.
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|