1
|
Lopes MES, Marcantonio CC, Salmon CR, Mofatto LS, Nociti Junior FH, Eick S, Deschner J, Cirelli JA, Nogueira AVB. Effects of periodontal disease on the proteomic profile of the periodontal ligament. J Proteomics 2025; 314:105384. [PMID: 39800186 DOI: 10.1016/j.jprot.2025.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into control and experimental periodontitis groups. The PDL was isolated using laser capture microdissection and protein extracts were analyzed by mass spectrometry. Data analysis utilized specialized software, and Gene Ontology enrichment analysis identified significant protein functions. The data are available via ProteomeXchange with identifier PXD055817. Proteins such as SerpinB1, C5, and Lgals3 were validated through immunohistochemistry, and their gene expression was examined in an in vitro human PDL cell line. This study identified 1326 proteins, with 156 unique to the control group, 294 unique to the periodontitis group, and 876 common to both groups. Enrichment analysis revealed that proteins associated with the regulation of enzyme activity and RNA binding were significantly represented in the periodontitis group. There were increased levels of SerpinB1, C5, and Lgals3 in the periodontitis group based on proteomic and immunohistochemical analyses. Furthermore, these targets showed increased gene expression in stimulated human PDL cells. This study provides insights into the periodontitis-related alterations in the protein composition of the PDL and PDL cells, identifying both novel and previously known disease-associated proteins. SIGNIFICANCE: The periodontal ligament plays a crucial role in oral functions by providing structural support to the tooth. Due to the presence of undifferentiated mesenchymal cells, research into its regenerative capacity is ongoing. Pathological conditions can affect these functions and protein composition. Currently, there is a lack of comprehensive research specifically focusing on evaluating the periodontal ligament in both healthy and diseased states. This pioneering study screened for protein alterations and the mechanisms related to periodontitis. The possibility of using proteomic analysis to evaluate the protein alterations that occur in periodontitis, a disease with a high global incidence, could provide therapeutic targets and new biomarkers for future clinical studies.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Cristiane Ribeiro Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil; Dental School, Centro Universitário N. Sra do Patrocínio - CEUNSP, Itu, São Paulo, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Francisco Humberto Nociti Junior
- ADA Forsyth Institute, Cambridge, MA, USA; Dental School, São Leopoldo Mandic, Department of Research, Campinas, São Paulo, Brazil
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Fox CR, Yousef NN, Varudkar N, Shiffer EM, Aquino JR, Kedarinath K, Parks GD. Resistance to complement-mediated lysis of parainfluenza virus 5-infected cells is acquired after transition from acute to persistent infection. J Virol 2025; 99:e0189524. [PMID: 39791880 PMCID: PMC11852780 DOI: 10.1128/jvi.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Persistent viral infections can be an important medical problem, with persistently infected (PI) cells extending viral shedding, maintaining inflammation, and providing potential sources for new viral variants. Given that PI cells can acquire resistance to some innate immune pathways, we tested the hypothesis that complement (C')-mediated lysis of parainfluenza virus 5 (PIV5)-infected cells would differ between acute-infected and PI cells. Biochemical and real-time cell viability assays showed effective C'-mediated lysis of A549 lung cells acutely infected with PIV5, through pathways that depended on C3 and C5, but largely independent of C6. A PIV5 PI cell line established by long-term culturing of acutely infected A549 cells showed a high-level persistent expression of PIV5 proteins and infectious virus. Under conditions that led to effective lysis of acute PIV5-infected cells, the PI cells were nearly completely resistant to C'-mediated killing. This lack of C' killing was not due to failure to activate C', since C'-treated PIV5 PI cells had extensive C3 and membrane attack complex deposition, as well as production of C3a and C5a. Transcriptomics analysis revealed the C' cascade as the most significantly upregulated pathway in PIV5 PI cells versus acute infection. Biochemical analyses showed that resistance to C' killing correlated with increased expression in PI cells of two major C' inhibitors: complement factor H and Vitronectin. The finding of acquisition of C' resistance after the transition from acute PIV5 infection to PI cells raises the potential to inform therapeutics for PIs based on modulating C' pathways. IMPORTANCE A persistent infection (PI) with RNA viruses can extend virus shedding, prolong inflammation, and be a source of new viral variants. Since profound changes to innate immune pathways can occur in PI cells, it was important to test PI cells for changes in sensitivity to the complement (C') system, powerful innate immune pathways capable of lysing infected cells. Using parainfluenza virus 5 (PIV5) as a model system, we show that PI cells are nearly completely resistant to C'-mediated lysis, in stark contrast to high sensitivity of acute PIV5-infected cells to C' killing. A key finding was the upregulated expression in PI cells of two C' inhibitors: Vitronectin and complement factor H. These are important results with strong potential to inform therapeutics, given that polymorphisms in C' genes can correlate with severity of viral infections, and clinical trials are underway with new drugs that modulate C' responses.
Collapse
Affiliation(s)
- Candace R. Fox
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Nasser N. Yousef
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Namita Varudkar
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | | | - Jenna R. Aquino
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Kritika Kedarinath
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Griffith D. Parks
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| |
Collapse
|
3
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Li B, Wu W, Lu H, Liu S, Si X, Bai B, Cheng J, Ding X, Mao S, Xue Y. Undernutrition affects metabolism and immune response in subcutaneous adipose tissue of pregnant ewes. FASEB J 2025; 39:e70259. [PMID: 39785680 DOI: 10.1096/fj.202401512r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Pregnant ewes mobilize body fat to increase energy supply for fetal growth and development upon undernutrition, which disrupts the metabolic homeostasis of the body. However, the comprehensive metabolic changes in subcutaneous adipose tissue upon undernutrition are poorly understood. In this study, an undernutrition sheep model was established to investigate the effects of undernutrition on metabolic changes, immune response, and inflammation in subcutaneous fat through transcriptome, RT-qPCR, and metabolome analysis. Results showed that undernutrition changed the total transcriptional and metabolic profiles of adipose tissue. Compared to the controls, differentially expressed genes (DEGs) involved in fatty acid synthesis, triglyceride genesis, and lipid transport were downregulated in undernourished ewes, while DEGs related to fatty acid and triglyceride degradation were upregulated. Almost all lipid-related differential metabolites (DMs) were downregulated. DEGs and DMs involved in glucose metabolism and glycogen degradation were downregulated, while glycogen synthesis and carbohydrate transport were upregulated. DEGs linked to amino acid degradation were upregulated and some amino acids and derivatives were downregulated. KEGG pathway analysis showed complement and coagulation cascades were enriched significantly by DEGs, and DEGs related to coagulation, macrophage, and inflammation were upregulated while DEGs associated with the complement system were downregulated. Undernutrition during late gestation disrupted the metabolism of lipids, carbohydrates, and amino acids in adipose tissue, which weakened the complement system and immune response and may have ultimately led to inflammation.
Collapse
Affiliation(s)
- Baoyuan Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weibin Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Shuai Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiongyuan Si
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Binqiang Bai
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Nakazawa D. Targeting complement in kidney transplantation: Therapeutic approaches based on preclinical and experimental evidence. Transplant Rev (Orlando) 2025; 39:100887. [PMID: 39612603 DOI: 10.1016/j.trre.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
The complement system is implicated in various facets of kidney transplantation, including ischemia-reperfusion injury (IRI), delayed graft function, allograft rejection, and chronic allograft injury. IRI, prevalent in cadaveric renal transplantation, leads to acute tubular necrosis and engages innate immunity, including neutrophils and the complement system, fostering a cycle of inflammation and necrosis. Experimental and preclinical evidence suggest that targeting the complement system could offer therapeutic benefits in IRI during kidney transplantation. This article explores potential therapeutic approaches targeting complement pathways in kidney transplantation, drawing from experimental and preclinical research findings.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Chen L, Sun J, Hu J, Tian Y, Du P, Guo Q, Yang C, Zhang Q, Feng S, Liao M. Identification and characterization of biosynthetic loci of lipooligosaccharide and capsular polysaccharide in Avibacterium paragallinarum. Vet Microbiol 2024; 299:110317. [PMID: 39612782 DOI: 10.1016/j.vetmic.2024.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Infectious coryza is an acute respiratory disease in chickens caused by Avibacterium paragallinarum. Lipooligosaccharides (LOSs) and capsular polysaccharides are important components of Av. paragallinarum. Herein, we identified that gene cluster L6 and two genes waaF, waaQ were associated with LOS synthesis, and two genes acbD and ccbF1 were involved in capsular synthesis. Mutant and complementary strains of these genes were generated by natural transformation. Wild-type strains produced LOS that yielded an upper and lower band. In comparison, ΔwaaQ and ΔwaaF yielded a truncated lower band and lacked the upper band, while ΔL6 did not exhibit the upper band, and the lower band was identical to that of the wild-type strain. The survival rates of wild-type strain, ΔwaaF, ΔwaaQ, and ΔL6 in chicken serum were 4.89 % ± 0.27 %, 0.0013 % ± 0.0002 %, 0.43 % ± 0.05 %, and 3.1 % ± 0.35 %, respectively. Notably, the resistances of ΔwaaF, ΔwaaQ, and ΔL6 to chicken serum were significantly lower than that of parent strain. By contrast, the survival rate of the ΔacbD strain was 55.17 % ± 0.61 %, and its resistance to chicken serum was significantly higher than that of the wild-type strain (p < 0.001). Deletion of the waaF, waaQ, L6, acbD, and ccbF1 genes resulted in enhanced formation of biofilm without altering immunogenicity in chickens. The ΔwaaF, ΔwaaQ, and ΔccbF1 strains exhibited heightened susceptibility to fowlicidin-2. Furthermore, ΔwaaF, ΔacbD, and ΔccbF1 strains shown a decrease in pathogenicity (p < 0.05). These results are valuable for advancing research on the pathogenesis of Av. paragallinarum.
Collapse
Affiliation(s)
- Ling Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Division of Culture Collection and Testing, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Juan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jialian Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ye Tian
- Division of Culture Collection and Testing, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Pengfei Du
- Division of Culture Collection and Testing, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qianqian Guo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Chenghuai Yang
- Division of Culture Collection and Testing, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qianyi Zhang
- Division of Culture Collection and Testing, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Jarvi N, Hofman K, Venkatesh A, Gorecki E, Balu-Iyer SV. Immunogenicity risk assessment of empty capsids present in adeno-associated viral vectors using predictive innate immune responses. J Pharm Sci 2024; 113:3457-3469. [PMID: 39326842 DOI: 10.1016/j.xphs.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Immunogenicity of gene therapy and the impacts on safety and efficacy are of increasing interest in the pharmaceutical industry. Unique structural aspects of gene therapy delivery vectors, such as adeno-associated viral (AAV) vectors, are expected to activate the innate immune system. The risk of innate immune activation is critical to understand due to the potential impacts on safety and on subsequent adaptive immune responses. In this study, we investigated the responses of key innate immune players-dendritic cells, natural killer (NK) cells, and the complement system-to AAV8 capsids. Immunogenicity risk was also predicted in the presence empty AAV capsids for AAV gene therapy. Compared to genome-containing "full" AAV8 capsids, empty AAV8 capsids more strongly induced proinflammatory cytokine production and migration by human and mouse dendritic cells, but the "full" capsid increased expression of co-stimulatory markers. Furthermore, in an NK cell degranulation assay, we found mixtures of empty and full AAV8 capsids to activate expression of TNF-α, IFN-γ, and CD107a more strongly in multiple NK cell populations compared to either capsid type alone. Serum complement C3a was also induced more strongly in the presence of mixed empty and full AAV8 capsid formulations. Risk for innate immune activation suggests the importance to determine acceptable limits of empty capsids. Immunogenicity risk assessment of novel biological modalities will benefit from the aforementioned in vitro innate immune activation assays providing valuable mechanistic information.
Collapse
Affiliation(s)
- Nicole Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Kirk Hofman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Aditi Venkatesh
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Emily Gorecki
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
8
|
Adeshina I, Paray BA, Bhat EA, Sherzada S, Fawole OO, Bawa DJ, da Cruz TP, Tiamiyu LO. Dietary β-Mannanase Affects the Growth, Antioxidant, and Immunes Responses of African Catfish, Clarias gariepinus, and Its Challenge Against Aeromonas hydrophila Infection. AQUACULTURE NUTRITION 2024; 2024:5263495. [PMID: 39555532 PMCID: PMC11535281 DOI: 10.1155/2024/5263495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
One of the most farmed fishes is the African catfish, Clarias gariepinus. Its production has increased by 20% annually on average during the last 20 years, but the occurrence of fish diseases, especially bacterial such as Aeromonas hydrophila infections, is hindering its activities. Also, the incorporation of plant-derived substances in aquafeeds is limited since they frequently contain different antinutritional factors, like nonstarch polysaccharides (NSPs). However, supplementing fish diets with β-mannanase could increase growth, antioxidants, and immunity. Despite the advantage of β-mannanase, its effects on growth, digestive enzymes, antioxidants, and immunity in African catfish need to be elucidated. This study examined the effects of dietary β-mannanase on the growth performance, liver enzymes, antioxidant profiles, immunity, and protection of African catfish, C. gariepinus, against A. hydrophila infection. Five isonitrogenous diets were prepared to have 400 g/kg crude protein and supplemented with β-mannanase at 0, 1500, 3000, 4500, or 6000 thermostable endo, 1,4-β-mannanase units (TMUs)/kg diet and fed to 300 juveniles of the African catfish, C. gariepinus (mean weight 12.1 ± 0.1 g) for 12 weeks. Then, 10 fish from each tank received an intraperitoneal injection of 0.1 mL of A. hydrophila (5.0 × 105 CFU/mL) and observed for 14 days. Results showed dietary β-mannanase levels considerably improved growth performance but did not affect fish survival. Also, amylase, protease, and lipase levels were significantly promoted in the fish fed with β-mannanase-fortified diets than the control group (p < 0.05). Enhanced gut villi and intestinal absorption areas, haematlogical profiles, and liver enzymes but reduced gut viscosity were observed in fish-fed β-mannanase-fortified diets (p < 0.05). In a dose-dependent order, including β-mannanase in the meals of African catfish raised the levels of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutamate cysteine ligase (GCL) activities and decreased the malondialdehyde (MDA) values in African catfish (p < 0.05). Also, fish immunity was greatly (p < 0.05) enhanced due to supplementation of the diet with β-mannanase. In addition, fish-fed diets comprising 6000 TMU β-mannanase/kg diet showed the lowest rates of fish mortality (7.5%) (p < 0.05). Therefore, feeding African catfish, Clarias gariepinus, β-mannanase enhanced growth performance, increased activity of digestive enzymes, gut morphology, enhanced generation of short-chain fatty acids, digesta potential of hydrogen (pH), and improved antioxidant profiles and immunity at the optimum dose of 5800 TMU/kg diet. Additionally, β-mannanase protected African catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- School of Aquaculture, National University of Agriculture, Port Nove, Benin
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Eijaz Ahmed Bhat
- Microbiology/Molecular Physiology of Prokaryotes, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Olaolu O. Fawole
- Department of Fisheries and Aquaculture, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Dalhatu J. Bawa
- Department of Forestry and Fisheries, Kebbi State University of Science and Technology Aliero, Lagos, Nigeria
| | - Thais Pereira da Cruz
- Animal Science Graduate Degree Program, State University of Maringa, Maringa, PR, Brazil
| | - Lateef O. Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
9
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1188-1198. [PMID: 39474574 PMCID: PMC11514617 DOI: 10.4254/wjh.v16.i10.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1368-1378. [DOI: 10.4254/wjh.v16.i10.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Sun Y, Wang Q, Zhang Z, Wang Q, Cen J, Zhu M, Pan J, Liu D, Shen H, Cai Y, Chen S. Distinct clinical profiles and patient outcomes in aCML and CNL. Ann Hematol 2024:10.1007/s00277-024-06032-z. [PMID: 39375227 DOI: 10.1007/s00277-024-06032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The classification of atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) as a single disease entity remains a topic of debate. To elucidate the characteristics of both entities, this retrospective cohort study was conducted, encompassing 36 cases of aCML and 18 cases of CNL. We discovered that aCML and CNL presented distinct blood counts, genetics, molecular profiles and outcomes. Specifically, hemoglobin levels (P < 0.001) and platelet counts (P < 0.001) were significantly lower in aCML cases than in CNL cases, with no significant difference in mean white blood cells (P = 0.637). The proportion of abnormal karyotypes was higher in aCML cases compared with CNL cases (P = 0.010). Notably, we found that aCML and CNL showed distinct gene expression profiles by transcriptome sequencing technology. The median follow-up duration for the entire cohort was 8 months (rang 0.4 to 36.6 months), and the median overall survival (OS) was significantly shorter in aCML cases (7.3 months, 95%CI 5.4 to 20.5 months) than in CNL cases (median OS not reached). The one-year OS rate for aCML patients was 31.0% (9/29), compared to 92.9% (13/14) for CNL patients. In conclusion, our study supports the notion that aCML and CNL are indeed distinct disease entities characterized by unique hematological features and clinical outcomes.
Collapse
Affiliation(s)
- Yingxin Sun
- Affiliated Hospital of Nantong University, Nantong, China
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qinrong Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Zhiyu Zhang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Qian Wang
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jiannong Cen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Mingqing Zhu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Jinlan Pan
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Dandan Liu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Hongjie Shen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Yifeng Cai
- Affiliated Hospital of Nantong University, Nantong, China.
| | - Suning Chen
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
| |
Collapse
|
12
|
de Deus JL, Faborode OS, Nandi S. Synaptic Pruning by Microglia: Lessons from Genetic Studies in Mice. Dev Neurosci 2024:1-21. [PMID: 39265565 DOI: 10.1159/000541379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Neural circuits are subjected to refinement throughout life. The dynamic addition and elimination (pruning) of synapses are necessary for maturation of neural circuits and synaptic plasticity. Due to their phagocytic nature, microglia have been considered as the primary mediators of synaptic pruning. Synaptic pruning can strengthen an active synapse by removing excess weaker synapses during development. Inappropriate synaptic pruning can often influence a disease outcome or an injury response. SUMMARY This review offers a focused discussion on microglial roles in synaptic pruning, based on the evidence gathered from genetic manipulations in mice. Genetically labeled microglia and synapses often allow assessment of their interactions in real time. Further manipulations involving synaptically localized molecules, neuronally or glial-derived diffusible factors, and their respective cognate receptors in microglia provide critical evidence in support of a direct role of microglia in synaptic pruning. KEY MESSAGE We discuss microglial contact-dependent "eat-me," "don't-eat-me," and "find-me" signals, as well as recently identified noncontact pruning, under the contexts of neural circuit, brain region, developmental window, and an injury or a disease state.
Collapse
Affiliation(s)
- Junia Lara de Deus
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Sayan Nandi
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
13
|
Mood R, Mohankumar K, Vijay M, Srivastava A. The serine protease inhibitor HAMpin-1 produced by the ectoparasite Hyalomma anatolicum salivary gland modulates the host complement system. J Biol Chem 2024; 300:107684. [PMID: 39159811 PMCID: PMC11417211 DOI: 10.1016/j.jbc.2024.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Ticks are notable vectors of diseases affecting both humans and animals, with Hyalomma anatolicum being of particular significance due to its wide distribution and capability to transmit a variety of pathogens, including Theileriaannulata and Crimean-Congo haemorrhagic fever virus. This study aimed to investigate the inhibitory effects of H. anatolicum salivary gland extract (HaSGE) and the identification of its key component on the complement system of the host's innate immune defense. We demonstrated that HaSGE exerts a dose-dependent inhibition on the complement activation in a host-specific manner. Mechanistic studies revealed that HaSGE interferes with deposition and cleavage of complement proteins C3 and C5, thus preventing the formation of the membrane attack complex. Further, we identified a serine protease inhibitor, Hyalomma anatolicum serpin-1 (HAMpin-1), from the HaSGE through proteomic analysis and characterized its structure, function, and interaction with complement proteins. HAMpin-1 exhibited potent inhibitory activity against chymotrypsin and cathepsin-G, and notably, it is the first serpin from ticks shown to inhibit the classical and lectin pathways of the complement system. The expression of HAMpin-1 was highest in the salivary glands, suggesting its crucial role in blood feeding and immune evasion. Our findings revealed one of the potential mechanisms used by H. anatolicum to modulate host immune responses at the interface, offering new insights into tick-host interactions.
Collapse
Affiliation(s)
- Rajitha Mood
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Krishnagaanth Mohankumar
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Macha Vijay
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Anand Srivastava
- Molecular Pathogenesis and Vector Laboratory, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, India.
| |
Collapse
|
14
|
Poteete O, Cox P, Ruffin F, Sutton G, Brinkac L, Clarke TH, Fouts DE, Fowler VG, Thaden JT. Serum susceptibility of Escherichia coli and its association with patient clinical outcomes. PLoS One 2024; 19:e0307968. [PMID: 39074102 DOI: 10.1371/journal.pone.0307968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
The innate immune system eliminates bloodstream pathogens such as Escherichia coli in part through complement protein deposition and subsequent bacterial death (i.e., "serum killing"). Some E. coli strains have developed mechanisms to resist serum killing, though the extent of variation in serum killing among bloodstream infection (BSI) isolates and the clinical impact of this variation is not well understood. To address this issue, we developed a novel assay that uses flow cytometry to perform high throughput serum bactericidal assays (SBAs) with E. coli BSI isolates (n = 183) to define the proportion of surviving bacteria after exposure to serum. We further determined whether E. coli resistance to serum killing is associated with clinical outcomes (e.g., in-hospital attributable mortality, in-hospital total mortality, septic shock) and bacterial genotype in the corresponding patients with E. coli BSI. Our novel flow cytometry-based SBA performed similarly to a traditional SBA, though with significantly decreased hands-on bench work. Among E. coli BSI isolates, the mean proportion that survived exposure to 25% serum was 0.68 (Standard deviation 0.02, range 0.57-0.93). We did not identify associations between E. coli resistance to serum killing and clinical outcomes in our adjusted models. Together, this study describes a novel flow cytometry-based approach to the bacterial SBA that allowed for high-throughput testing of E. coli BSI isolates and identified high variability in resistance to serum killing among a large set of BSI isolates.
Collapse
Affiliation(s)
- Orianna Poteete
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Phillip Cox
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Felicia Ruffin
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Granger Sutton
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Lauren Brinkac
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Thomas H Clarke
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Derrick E Fouts
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
- Duke Clinical Research Institute, Durham, NC, United States of America
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
15
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
16
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
17
|
Dai Y, Deng Q, Liu Q, Zhang L, Gan H, Pan X, Gu B, Tan L. Humoral immunosuppression of exposure to polycyclic aromatic hydrocarbons and the roles of oxidative stress and inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123741. [PMID: 38458516 DOI: 10.1016/j.envpol.2024.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.
Collapse
Affiliation(s)
- Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qianyun Deng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Qiaojuan Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huiquan Gan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Weickert TW, Ji E, Galletly C, Boerrigter D, Morishima Y, Bruggemann J, Balzan R, O’Donnell M, Liu D, Lenroot R, Weickert CS, Kindler J. Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning. Schizophr Bull 2024; 50:403-417. [PMID: 38102721 PMCID: PMC10919782 DOI: 10.1093/schbul/sbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND HYPOTHESES Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Danny Boerrigter
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jason Bruggemann
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, Australia
- Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ryan Balzan
- School of Psychology, Flinders University, Adelaide, SA, Australia
| | - Maryanne O’Donnell
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- Kiloh Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jochen Kindler
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
19
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
20
|
An FQ, Zhou G, Harland MT, Hussain W, Strainic MG, Jain MK, Medof ME. KLF4 and CD55 expression and function depend on each other. Front Immunol 2024; 14:1290684. [PMID: 38406578 PMCID: PMC10884306 DOI: 10.3389/fimmu.2023.1290684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The transcription factor Kruppel-like factor 4 (KLF4) regulates the expression of immunosuppressive and anti-thrombotic proteins. Despite its importance in maintaining homeostasis, the signals that control its expression and the mechanism of its transactivation remain unclarified. CD55 [aka decay accelerating factor (DAF)], now known to be a regulator of T and B cell responses, biases between pro- and anti-inflammatory processes by controlling autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in cells. The similarity in CD55's and KLF4's regulatory effects prompted analyses of their functional relationship. In vascular endothelial cells (ECs), CD55 upregulation accompanied KLF4 expression via a p-CREB and CREB Binding Protein (CBP) mechanism. In both ECs and macrophages, CD55 expression was essential for KLF4's downregulation of pro-inflammatory/pro-coagulant proteins and upregulation of homeostatic proteins. Mechanistic studies showed that upregulation of KLF4 upregulated CD55. The upregulated CD55 in turn enabled the recruitment of p-CREB and CBP to KLF4 needed for its transcription. Activation of adenylyl cyclase resulting from repression of autocrine C3ar1/C5ar1 signaling by upregulated CD55 concurrently led to p-CREB and CBP recruitment to KLF4-regulated genes, thereby conferring KLF4's transactivation. Accordingly, silencing CD55 in statin-treated HUVEC disabled CBP transfer from the E-selectin to the eNOS promoter. Importantly, silencing CD55 downregulated KLF4's expression. It did the same in untreated HUVEC transitioning from KLF4low growth to KLF4hi contact inhibition. KLF4's and CD55's function in ECs and macrophages thus are linked via a novel mechanism of gene transactivation. Because the two proteins are co-expressed in many cell types, CD55's activity may be broadly tied to KLF4's immunosuppressive and antithrombotic activities.
Collapse
Affiliation(s)
- Feng-Qi An
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Guangjin Zhou
- Cardiovascular Research of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Micah T. Harland
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Wasim Hussain
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Michael G. Strainic
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mukesh K. Jain
- Cardiovascular Research of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - M. Edward Medof
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
21
|
Saxena R, Gottlin EB, Campa MJ, Bushey RT, Guo J, Patz EF, He YW. Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol 2024; 12:1302490. [PMID: 38389705 PMCID: PMC10883309 DOI: 10.3389/fcell.2024.1302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
22
|
Luo L, Gu Z, Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu B. Synbiotics improve growth performance and nutrient digestibility, inhibit PEDV infection, and prevent intestinal barrier dysfunction by mediating innate antivirus immune response in weaned piglets. J Anim Sci 2024; 102:skae023. [PMID: 38271094 PMCID: PMC10894507 DOI: 10.1093/jas/skae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ± 1 d old) with a mean body weight (BW) of 6.62 ± 0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.
Collapse
Affiliation(s)
- Luhong Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhemin Gu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
23
|
Adeshina I, Paray BA, Bhat EA, Ibrahim AD, Tiamiyu LO. Stimulatory effect of dietary alpha-lipoic acid on growth performance, antioxidant capacity, liver enzymes, immunity and protection of African catfish, Clarias gariepinus (B.), Edwardsiella tarda infection. J Anim Physiol Anim Nutr (Berl) 2024; 108:163-173. [PMID: 37609860 DOI: 10.1111/jpn.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Edwardsiella tarda is one of the most common causes of fish diseases that hinder aquaculture. Oxidative stress in farm animals can induce a number of pathological disorders, production and general animal welfare. The use of exogenous dietary nonenzymatic antioxidants such as alpha-lipoic acid (ALA) can stop a pro-oxidant state and thus appears to have the potential to modulate the immune system and protect fish from bacterial infection. Thus, this study investigates the stimulatory effect of dietary ALA on growth performance, antioxidant capacity, liver enzymes, immunity and protection of African catfish, Clarias gariepinus (B.), against an infection with E. tarda. Five isonitrogenous and isocaloric diets (400 g/kg of crude protein) containing ALA at doses of 0.0 (control), 500, 1000, 1500 or 2000 mg/kg diet were served to 300 juveniles of African catfish (mean weight = 8.2 ± 0.2 g) adequately thrice per day for 12 weeks. Thereafter, 0.1 mL of E. tarda (ATCC 15947; 1.0 × 108 CFU/mL) was intraperitoneally injected into 10 fish from each tank and was monitored for 14 days. The results showed that ALA-fortified diets significantly boosted the fish growth, feed consumption and utilization and feed conversion ratio but no did not affect fish survival rate. The highest final fish weight (g), weight growth (g) and weight gain (%) were all considerably higher in fish fed with ALA-fortified diets (p < 0.05), especially from 1000 to 200 mg/kg ALA than the control group. Also, an enhanced hemato-biochemical, antioxidant and immune indices were noticed in African catfish-fed ALA-enriched diets. In a dose-dependent order, the levels of haematological indices such Ht, Hb, RBCs, WBCs and platelets were markedly increased (p < 0.05). Additionally, fish fed with ALA-based diets showed substantial (p < 0.05) declines in aspartate and alanine aminotransferase values, with the lowest values being found in the 2000 mg/kg diet while control group had highest values. Further, African catfish fed the feed fortified with 2000 mg ALA/kg diet showed the highest levels of lysozyme, respiratory burst, proteases and esterase activities (p < 0.05). Following exposure of fish to E. tarda infection, a significant reduction in the mortality was obtained in African catfish fed with ALA-based diets, especially from 1500 to 2000 mg ALA/kg diet (3.3%); while fish fed with the control diet had highest mortality (86.7%). Therefore, diets supplemented with ALA evoked fish growth performance, antioxidants and nonspecific immunity of African catfish. Also, resistance of African catfish to E. Tarda infection were raised when fed ALA-fortified diets at optimum inclusion rate of 1300 mg ALA/kg diet.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Bilal Ahamad Paray
- Department of Zoology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Eijaz Ahmed Bhat
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Univ Montpellier, Montpellier, France
| | - Aishat D Ibrahim
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Lateef O Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
24
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
25
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Kim HW, Ko MK, Park SH, Shin S, Kim SM, Park JH, Lee MJ. Bestatin, A Pluripotent Immunomodulatory Small Molecule, Drives Robust and Long-Lasting Immune Responses as an Adjuvant in Viral Vaccines. Vaccines (Basel) 2023; 11:1690. [PMID: 38006022 PMCID: PMC10675184 DOI: 10.3390/vaccines11111690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNβ, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (H.W.K.); (M.-K.K.); (S.H.P.); (S.S.); (S.-M.K.); (J.-H.P.)
| |
Collapse
|
27
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
New JS, Dizon BL, King RG, Greenspan NS, Kearney JF. B-1 B Cell-Derived Natural Antibodies against N-Acetyl-d-Glucosamine Suppress Autoimmune Diabetes Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1320-1331. [PMID: 37747293 PMCID: PMC10592000 DOI: 10.4049/jimmunol.2300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Environmental factors and host microbiota strongly influence type 1 diabetes (T1D) progression. We report that neonatal immunization with group A Streptococcus suppresses T1D development in NOD mice by promoting clonal expansion of N-acetyl-d-glucosamine (GlcNAc)-specific B-1 B cells that recognize pancreatic β cell-derived Ags bearing GlcNAc-containing posttranslational modifications. Early exposure to Lancefield group A cell-wall carbohydrate Ags increased production of GlcNAc-reactive serum Abs and enhanced localization of innate-like GlcNAc-specific B cells to pancreatic tissue during T1D pathogenesis. We show that B-1 B cell-derived GlcNAc-specific IgM engages apoptosis-associated β cell Ags, thereby suppressing diabetogenic T cell activation. Likewise, adoptively transferring GlcNAc-reactive B-1 B cells significantly delayed T1D development in naive recipients. Collectively, these data underscore potentially protective involvement of innate-like B cells and natural Abs in T1D progression. These findings suggest that previously reported associations of reduced T1D risk after GAS infection are B cell dependent and demonstrate the potential for targeting the natural Ab repertoire in considering therapeutic strategies for T1D.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brian L.P. Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Neil. S. Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
29
|
Fajardo C, Santos P, Passos R, Vaz M, Azeredo R, Machado M, Fernández-Boo S, Baptista T, Costas B. Early Molecular Immune Responses of Turbot ( Scophthalmus maximus L.) Following Infection with Aeromonas salmonicida subsp. salmonicida. Int J Mol Sci 2023; 24:12944. [PMID: 37629124 PMCID: PMC10454659 DOI: 10.3390/ijms241612944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Turbot aquaculture production is an important economic activity in several countries around the world; nonetheless, the incidence of diseases, such furunculosis, caused by the etiological agent A. salmonicida subsp. salmonicida, is responsible for important losses to this industry worldwide. Given this perspective, this study aimed to evaluate early immune responses in turbot (S. maximus L.) following infection with A. salmonicida subsp. salmonicida. For this, 72 fish were individually weighed and randomly distributed into 6 tanks in a circulating seawater system. For the bacterial challenge, half of the individuals (3 tanks with 36 individuals) were infected using a peritoneal injection with the bacterial suspension, while the other half of individuals were injected with PBS and kept as a control group. Several factors linked to the innate immune response were studied, including not only haematological (white blood cells, red blood cells, haematocrit, haemoglobin, mean corpuscular volume, mean cell haemoglobin, mean corpuscular haemoglobin concentration, neutrophils, monocytes, lymphocytes, thrombocytes) and oxidative stress parameters, but also the analyses of the expression of 13 key immune-related genes (tnf-α, il-1β, il-8, pparα-1, acox1, tgf-β1, nf-kB p65, srebp-1, il-10, c3, cpt1a, pcna, il-22). No significant differences were recorded in blood or innate humoral parameters (lysozyme, anti-protease, peroxidase) at the selected sampling points. There was neither any evidence of significant changes in the activity levels of the oxidative stress indicators (catalase, glutathione S-transferase, lipid peroxidation, superoxide dismutase). In contrast, pro-inflammatory (tnf-α, il-1β), anti-inflammatory (il-10), and innate immune-related genes (c3) were up-regulated, while another gene linked with the lipid metabolism (acox1) was down-regulated. The results showed new insights about early responses of turbot following infection with A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Carlos Fajardo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-620 Peniche, Portugal; (R.P.); (M.V.); (T.B.)
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz (UCA), 11510 Puerto Real, Spain
| | - Paulo Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-620 Peniche, Portugal; (R.P.); (M.V.); (T.B.)
- Department of Aquatic Production, School of Biomedicine and Biomedical Sciences, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Passos
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-620 Peniche, Portugal; (R.P.); (M.V.); (T.B.)
| | - Mariana Vaz
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-620 Peniche, Portugal; (R.P.); (M.V.); (T.B.)
| | - Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
| | - Marina Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
| | - Sergio Fernández-Boo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
| | - Teresa Baptista
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-620 Peniche, Portugal; (R.P.); (M.V.); (T.B.)
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Porto, Portugal; (C.F.); (P.S.); (R.A.); (M.M.); (S.F.-B.)
- Department of Aquatic Production, School of Biomedicine and Biomedical Sciences, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Butler AE, Moin ASM, Sathyapalan T, Atkin SL. Complement Dysregulation in Obese Versus Nonobese Polycystic Ovary Syndrome Patients. Cells 2023; 12:2002. [PMID: 37566081 PMCID: PMC10416938 DOI: 10.3390/cells12152002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
INTRODUCTION Upregulation of complement system factors are reported to be increased in polycystic ovary syndrome (PCOS) and may be due to obesity and insulin resistance rather than inherently due to PCOS. We directly compared complement factors from an obese, insulin-resistant PCOS population to a nonobese, non-insulin-resistant PCOS population in a proteomic analysis to investigate this. METHODS Plasma was collected from 234 women (137 with PCOS and 97 controls) from a biobank cohort and compared to a nonobese, non-insulin-resistant population (24 with PCOS and 24 controls). Slow off-rate modified aptamer (SOMA) scan plasma protein measurement was undertaken for the following complement system proteins: C1q, C1r, C2, C3, C3a, iC3b, C3b, C3d, C3adesArg, C4, C4a, C4b, C5, C5a, C5b-6 complex, C8, properdin, factor B, factor D, factor H, factor I, Mannose-binding protein C (MBL), complement decay-accelerating factor (DAF) and complement factor H-related protein 5 (CFHR5). RESULTS The alternative pathway of the complement system was overexpressed in both obese and nonobese PCOS, with increased C3 (p < 0.05) and properdin (p < 0.01); additionally, factor B increased in obese PCOS (p < 0.01). For inhibitors of this pathway, factor I was increased (p < 0.01) in both slim and obese PCOS, with an increase in CFHR5 and factor H in obese PCOS (p < 0.01). Complement factors iC3b, C3d and C5a, associated with an enhanced B cell response and inflammatory cytokine release, were increased in both slim and obese PCOS (p < 0.05). C3a and its product, C3adesArg, were both significantly elevated in nonobese PCOS (<0.01) but not altered in obese PCOS. Hyperandrogenemia correlated positively with properdin and iC3b in obese PCOS (p < 0.05) but not in nonobese PCOS. There was no association with insulin resistance. BMI correlated positively in both groups with factor B, factor H and C5a. Additionally, in obese PCOS, BMI correlated with C3d, factor D, factor I, CFHR5 and C5a (p < 0.05), and in nonobese PCOS, BMI correlated with properdin, iC3b, C3, C3adesArg, C3a, C4, C5, C5a and C1q. In obese controls, BMI correlated with C3, C3desArg, C3a, C3d, C4, factor I, factor B, C5a and C5, whilst in nonobese controls, BMI only correlated negatively with C1q. Comparison of nonobese and obese PCOS showed that properdin, C3b, iC3b, C4A, factor D, factor H and MBL differed. CONCLUSION The upregulation of the alternative complement pathway was seen in nonobese PCOS and was further exacerbated in obese PCOS, indicating that this is an inherent feature of the pathophysiology of PCOS that is worsened by obesity and is reflected in the differences between the nonobese and obese PCOS phenotypes. However, the increase in the complement proteins associated with activation was counterbalanced by upregulation of complement inhibitors; this was evident in both PCOS groups, suggesting that insults, such as a cardiovascular event or infection, that cause activation of complement pathways may be amplified in PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Royal College of Surgeons in Ireland Bahrain, Busaiteen P.O. Box 15503, Adliya, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland Bahrain, Busaiteen P.O. Box 15503, Adliya, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Royal College of Surgeons in Ireland Bahrain, Busaiteen P.O. Box 15503, Adliya, Bahrain; (A.S.M.M.); (S.L.A.)
| |
Collapse
|
31
|
Cao Y, Xu Y, Xia Q, Shan F, Liang J. Peripheral Complement Factor-Based Biomarkers for Patients with First-Episode Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1455-1462. [PMID: 37384352 PMCID: PMC10295471 DOI: 10.2147/ndt.s420475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Schizophrenia (SCZ) is a severe, protracted neurological disorder that causes disruptive conduct in millions of individuals globally. Discovery of potential biomarkers in clinical settings would lead to the development of efficient diagnostic techniques and an awareness of the disease's pathogenesis and prognosis. The aim of the present study was to discover and identify serum complement factor-based biomarkers in discriminating patients with first-episode SCZ from healthy controls. Methods Eighty-nine patients with first-episode SCZ and 89 healthy controls were included in this study. Psychiatric symptom severity of patients with SCZ was measured with the Brief Psychiatric Rating Scale-18 Item Version (BPRS) and the Scales for the Assessment of Negative/Positive Symptoms (SANS/SAPS). A total of 5 complement factors including complement component 1 (C1), C2, C3, C4, and 50% hemolytic complement (CH50) were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. The levels of serum complement factors in the SCZ and control groups were compared, and the receiver operating characteristic (ROC) curve method was used to assess the diagnostic values of various complement factors for separating SCZ patients from healthy controls. Pearson's correlation test was used to assess the relationships between serum complement factor concentrations and the psychiatric symptom severity. Results There was an increase in serum levels of C1, C2, C3, C4, and CH50 among patients with SCZ. Moreover, based on ROC curve analysis, the AUC value of a combined panel of C1, C2, C3, C4, and CH50 was 0.857 when used to discriminate patients with SCZ from healthy controls. Furthermore, serum C2, C3, and CH50 levels were positively correlated to the scores of SANS, SAPS, and BPRS in patients with SCZ, respectively. Conclusion These results suggested that circulating complement factors including C1, C2, C3, C4, and CH50 may have potential in discovering biomarkers for diagnosing first-episode SCZ.
Collapse
Affiliation(s)
- Yin Cao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| |
Collapse
|
32
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
34
|
Zhang H, Tang X, Feng C, Gao Y, Hong Q, Zhang J, Zhang X, Zheng Q, Lin J, Liu X, Shen L. The use of data independent acquisition based proteomic analysis and machine learning to reveal potential biomarkers for autism spectrum disorder. J Proteomics 2023; 278:104872. [PMID: 36898611 DOI: 10.1016/j.jprot.2023.104872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurological developmental disorder in children, and is associated with social isolation and restricted interests. The etiology of this disorder is still unknown. There is neither any confirmed laboratory test nor any effective therapeutic strategy to diagnose or cure it. We performed data independent acquisition (DIA) and multiple reaction monitoring (MRM) analysis of plasma from children with ASD and controls. The result showed that 45 differentially expressed proteins (DEPs) were identified between autistic subjects and controls. Among these, only one DEP was down-regulated in ASD; other DEPs were up-regulated in ASD children's plasma. These proteins are found associated with complement and coagulation cascades, vitamin digestion and absorption, cholesterol metabolism, platelet degranulation, selenium micronutrient network, extracellular matrix organization and inflammatory pathway, which have been reported to be related to ASD. After MRM verification, five key proteins in complement pathway (PLG, SERPINC1, and A2M) and inflammatory pathway (CD5L, ATRN, SERPINC1, and A2M) were confirmed to be significantly up-regulated in ASD group. Through the screening of machine learning model and MRM verification, we found that two proteins (biotinidase and carbonic anhydrase 1) can be used as early diagnostic markers of ASD (AUC = 0.8, p = 0.0001). SIGNIFICANCE: ASD is the fastest growing neurodevelopmental disorder in the world and has become a major public health problem worldwide. Its prevalence has been steadily increasing, with a global prevalence rate of 1%. Early diagnosis and intervention can achieve better prognosis. In this study, data independent acquisition (DIA) and multiple reaction monitoring (MRM) analysis was applied to analyze the plasma proteome of ASD patients (31 (±5) months old), and 378 proteins were quantified. 45 differentially expressed proteins (DEPs) were identified between the ASD group and the control group. They mainly were associated with platelet degranulation, ECM proteoglycar, complement and coagulation cascades, selenium micronutrient network, regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth factor binding proteins (IGFBPs), cholesterol metabolism, vitamin metabolism, and inflammatory pathway. Through the integrated machine learning methods and the MRM verification of independent samples, it is considered that biotinidase and carbon anhydrase 1 have the potential to become biomarkers for the early diagnosis of ASD. These results complement proteomics database of the ASD patients, broaden our understanding of ASD, and provide a panel of biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Huajie Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Xiaoxiao Tang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen 518100, PR China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen 518100, PR China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen 518100, PR China
| | - Jun Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Xinglai Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Qihong Zheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Jing Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Xukun Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research, Institutions, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, PR China.
| |
Collapse
|
35
|
Son SU, Lee HW, Shin KS. Immunostimulating activities and anti-cancer efficacy of rhamnogalacturonan-I rich polysaccharide purified from Panax ginseng leaf. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
36
|
Kim D, Lee MS, Sim H, Lee S, Lee HS. Characterization of complement C3 as a marker of alpha-amanitin toxicity by comparative secretome profiling. Toxicol Res 2023; 39:251-262. [PMID: 37008699 PMCID: PMC10050625 DOI: 10.1007/s43188-022-00163-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
In the human body, proteins secreted into peripheral blood vessels are known as the secretome, and they represent the physiological or pathological status of cells. The unique response of cells to toxin exposure can be confirmed via secretome analysis, which can be used to discover toxic mechanisms or exposure markers. Alpha-amanitin (α-AMA) is the most widely studied amatoxin and inhibits transcription and protein synthesis by directly interacting with RNA polymerase II. However, secretory proteins released during hepatic failure caused by α-AMA have not been fully characterized. In this study, we analyzed the secretome of α-AMA-treated Huh-7 cells and mice using a comparative proteomics technique. Overall, 1440 and 208 proteins were quantified in cell media and mouse serum, respectively. Based on the bioinformatics results for the commonly downregulated proteins in cell media and mouse serum, we identified complement component 3 (C3) as a marker for α-AMA-induced hepatotoxicity. Through western blot in cell secretome and C3 ELISA assays in mouse serum, we validated α-AMA-induced downregulation of C3. In conclusion, using comparative proteomics and molecular biology techniques, we found that α-AMA-induced hepatotoxicity reduced C3 levels in the secretome. We expect that this study will aid in identifying new toxic mechanisms, therapeutic targets, and exposure markers of α-AMA-induced hepatotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00163-z.
Collapse
Affiliation(s)
- Doeun Kim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Min Seo Lee
- BK21 Four-sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hyunchae Sim
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hye Suk Lee
- BK21 Four-sponsored Advanced Program for SmartPharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
37
|
Sonoli SS, Kothiwale VA, Channashetti RD. Alterations in metabolic status of healthy individuals with and without obesity during transition from adolescence to young adulthood. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: Extensive research is carried out throughout the world in healthy persons with obesity phenotype in concern with prevalence, metabolic profiling, etc. To the best of the authors’ knowledge, not many studies have investigated the status of adiponectin, specific inflammatory changes, oxidative damage in healthy adolescents and young adults with obesity. Present study was undertaken in adolescents and young adults of urban population in a district of North Karnataka, India, in a view to understand relationship between hormone adiponectin, oxidative stress markers like C3, C4, high sensitivity C-reactive protein (hs-CRP) in non-hypertensive, non-diabetic, euthyroid individuals with and without obesity.
Methods: Participant selection was done using cluster sampling technique. Participating adolescents and young adults, each with and without obesity were included in the study. Screening of participants for diabetes, hypertension, and thyroid disorders was done, their serum level of adiponectin, hs-CRP, C3, C4, ceruloplasmin (Cp), thiobarbituric acid reactive substances (TBARS), and total antioxidant capacity (TAC) were estimated using standardized methods in National Accreditation Board for Testing and Calibration Laboratories (NABL) laboratory.
Results: Adiponectin (young adults lower than adolescents, P = 0.01) levels were low, while hs-CRP and Cp (young adults higher than adolescents, P = 0.01) levels were high with increasing age in non-obese. While in persons having obesity, aging adiponectin levels were low while hs-CRP, C3, Cp levels were high significantly. Females without obesity had significantly higher values of C3 than males. Adiponectin showed higher levels in females than males, however, statistical significance could not be achieved (P = 0.308). While females with obesity, exhibited statistically lower levels of adiponectin, and higher levels of C3 and C4.
Conclusions: Being non-diabetic and non-hypertensive yet obese, tagged by one time of assay, does not suffice to be categorized as healthy. Healthy young adults with obesity are exhibiting lower levels of adiponectin and higher levels of inflammatory and oxidative stress markers compared to adolescents with obesity. This implies, the so categorized “healthy obese” participants are in a phase of transition towards an unhealthy state.
Collapse
Affiliation(s)
- Smita S. Sonoli
- Department of Biochemistry, KLE Academy of Higher Education and Research, Jawaharlal Nehru Medical College, Belagavi 590010, Karnataka, India
| | - Veerappa A. Kothiwale
- Registrar, KLE Academy of Higher Education and Research, Jawaharlal Nehru Medical College, Belagavi 590010, Karnataka, India
| | - Reshma D. Channashetti
- Department of Biochemistry, KLE Academy of Higher Education and Research, Jawaharlal Nehru Medical College, Belagavi 590010, Karnataka, India
| |
Collapse
|
38
|
Stennett A, Friston K, Harris CL, Wollman AJM, Bronowska AK, Madden KS. The case for complement component 5 as a target in neurodegenerative disease. Expert Opin Ther Targets 2023; 27:97-109. [PMID: 36786123 DOI: 10.1080/14728222.2023.2177532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Complement-based drug discovery is undergoing a renaissance, empowered by new advances in structural biology, complement biology and drug development. Certain components of the complement pathway, particularly C1q and C3, have been extensively studied in the context of neurodegenerative disease, and established as key therapeutic targets. C5 also has huge therapeutic potential in this arena, with its druggability clearly demonstrated by the success of C5-inhibitor eculizumab. AREAS COVERED We will discuss the evidence supporting C5 as a target in neurodegenerative disease, along with the current progress in developing different classes of C5 inhibitors and the gaps in knowledge that will help progress in the field. EXPERT OPINION Validation of C5 as a therapeutic target for neurodegenerative disease would represent a major step forward for complement therapeutics research and has the potential to furnish disease-modifying drugs for millions of patients suffering worldwide. Key hurdles that need to be overcome for this to be achieved are understanding how C5a and C5b should be targeted to bring therapeutic benefit and demonstrating the ability to target C5 without creating vulnerability to infection in patients. This requires greater biological elucidation of its precise role in disease pathogenesis, supported by better chemical/biological tools.
Collapse
Affiliation(s)
- Amelia Stennett
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Kallie Friston
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Claire L Harris
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Adam J M Wollman
- Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| | - Agnieszka K Bronowska
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle-Upon-Tyne, UK.,Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle-Upon-Tyne, UK
| |
Collapse
|
39
|
Sun J, Wang L, Song L. The primitive complement system in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104565. [PMID: 36216083 DOI: 10.1016/j.dci.2022.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The complement system is an important immune defense mechanism that plays essential roles in both innate and adaptive immunity of vertebrates. Since complement components are identified in deuterostome and even primitive protostome species, the origin and evolution of complement system in invertebrates have been of great interest. Recently, research on the complement system in mollusc immunity has been increasing due to their importance in worldwide aquaculture, and their phylogenetic position. Complement components including C3, C1q domain containing protein (C1qDCP), C-type lectin (CTL), ficolin-like, mannose-binding lectin (MBL)-associated serine proteases like (MASPL), and factor B have been identified, suggesting the existence of complement system in molluscs. The lectin pathway has been outlined in molluscs, which is initiated by CTL with CCP domain and MASPL protein to generate C3 cleavage fragments. The molluscan C1qDCP exhibits the capability to bind human IgG, indicating the existence of possible C1qDCP-mediated activation pathway in molluscs. The activation of C3 regulates the expressions of immune effectors (cytokines and antibacterial peptides), mediates the haemocyte phagocytosis, and inhibits the bacterial growth. Some MACPF domain containing proteins may replace the missing terminal pathway in molluscs. This article provides a review of complement system in molluscs, including its components, activation mechanisms and functions in the immune response of molluscs.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
40
|
Mouton W, Conrad A, Alcazer V, Boccard M, Bodinier M, Oriol G, Subtil F, Labussière-Wallet H, Ducastelle-Lepretre S, Barraco F, Balsat M, Fossard G, Brengel-Pesce K, Ader F, Trouillet-Assant S. Distinct Immune Reconstitution Profiles Captured by Immune Functional Assays at 6 Months Post Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:94.e1-94.e13. [PMID: 36336259 DOI: 10.1016/j.jtct.2022.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Immune reconstitution after allogeneic-hematopoietic-stem-cell transplantation (allo-HSCT) is a complex and individual process. In this cross-sectional study, whole-blood (WB) immune functional assay (IFA) was used to characterize immune function by assessing immune-related gene/pathway alterations. The usefulness of this tool in the context of infection, 6 months after transplantation, was evaluated. Sixty allo-HSCT recipients at 6 months after transplantation and 10 healthy volunteers (HV) were included. WB was stimulated in standardized TruCulture tubes using lipopolysaccharides and Staphylococcal enterotoxin B. Gene expression was quantified using a custom 144-gene panel using NanoString nCounter technology and analyzed using Ingenuity Pathway Analysis. The relationships between immune function and clinical characteristics, immune cell counts, and post-transplantation infections were assessed. Allo-HSCT recipients were able to activate similar networks of the innate and adaptive immune response compared to HV, with, nevertheless, a lower intensity. A reduced number and a lower expression of genes associated with immunoregulatory and inflammatory processes were observed in allo-HSCT recipients. The use of immunosuppressive treatments was associated with a protracted immune reconstitution revealed by transcriptomic immunoprofiling. No difference in immune cell counts was observed among patients receiving or not receiving immunosuppressive treatments using a large immunophenotyping panel. Moreover, the expression of a set of genes, including CCL3/CCL4, was significantly lower in patients with Herpesviridae reactivation (32%, 19/60), which once again was not identified using classical immune cell counts. Transcriptional IFA revealed the heterogeneity among allo-HSCT recipients with a reduced immune function, a result that could not be captured by circulating immune cell counts. This highlights the potential added value of this tool for the personalized care of immunocompromised patients.
Collapse
Affiliation(s)
- William Mouton
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| | - Anne Conrad
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France
| | - Vincent Alcazer
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; LIB TEAM, International Centre for Research in Infectiology (CIRI), Oullins, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Maxime Bodinier
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Guy Oriol
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Fabien Subtil
- Biostatistics Department, Hospices Civils de Lyon, Lyon France, Lyon 1 University, Villeurbanne, France; CNRS, Biometrics and Evolutionary Biology Laboratory UMR, Villeurbanne, France
| | - Hélène Labussière-Wallet
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Fiorenza Barraco
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marie Balsat
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Gaëlle Fossard
- Clinical Hematology Department, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Florence Ader
- Legionella Pathogenesis Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France; Infectious and Tropical Diseases Department, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France; Claude Bernard Lyon I University, Villeurbanne, France.
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virology and Human Pathology - Virpath Team, International Centre for Research in Infectiology (CIRI), Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
41
|
Hourcade DE, Mitchell LM. A Monoclonal Antibody That Provides a Model for C3 Nephritic Factors. Monoclon Antib Immunodiagn Immunother 2023; 42:9-14. [PMID: 36853837 PMCID: PMC9983123 DOI: 10.1089/mab.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023] Open
Abstract
Complement is a major innate defense system that protects the intravascular space from microbial invasion. Complement activation results in the assembly of C3 convertases, serine proteases that cleave complement protein C3, generating bioactive fragments C3a and C3b. The complement response is rapid and robust, largely due to a positive feedback regulatory loop mediated by alternative pathway (AP) C3 convertase. C3 nephritic factors (C3NEFs) are autoantibodies that stabilize AP convertase, resulting in uncontrolled C3 cleavage, which, in principle, can promote critical tissue injury similar to that seen in certain renal conditions. Investigations of C3NEFs are hampered by a challenging issue: each C3NEF is derived from a different donor source, and there is no method to compare one C3NEF to another. We have identified a widely available mouse anti-C3 mAb that, similar to many C3NEFs, can stabilize functional AP convertase in a form resistant to decay acceleration by multiple complement regulators. The antibody requires the presence of properdin to confer convertase stability, and hampers the activity of Salp20, a tic salivary protein that accelerates convertase dissociation by displacing properdin from the convertase complex. This mAb can serve as an urgently needed standard for the investigation of C3NEFs. This study also provides novel insights into the dynamics of AP convertase.
Collapse
Affiliation(s)
- Dennis E. Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lynne M. Mitchell
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
42
|
Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Osther K, Ceberg C, Redebrandt HN. Combined anti-C1-INH and radiotherapy against glioblastoma. BMC Cancer 2023; 23:106. [PMID: 36717781 PMCID: PMC9887755 DOI: 10.1186/s12885-023-10583-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A more effective immune response against glioblastoma is needed in order to achieve better tumor control. Radiotherapy can induce anti-tumor mediated immune reactions, in addition to its dose response effects. The complement system can function as a bridge between innate and adaptive immune responses. Combining radiotherapy and complement activating therapy is theoretically interesting. METHODS Radiotherapy at 8 Gy × 2 was combined with treatment against C1-inhibitor (C1-INH), a potent inhibitor of activation of the classical pathway of the complement system. Anti-C1-INH was delivered as intratumoral injections. Fully immunocompetent Fischer 344 rats with NS1 glioblastoma tumors were treated. Survival was monitored as primary outcome. Models with either intracranial or subcutaneous tumors were evaluated separately. RESULTS In the intracranial setting, irradiation could prolong survival, but there was no additional survival gain as a result of anti-C1-INH treatment. In animals with subcutaneous tumors, combined radio-immunotherapy with anti-C1-INH and irradiation at 8 Gy × 2 significantly prolonged survival compared to control animals, whereas irradiation or anti-C1-INH treatment as single therapies did not lead to significantly increased survival compared to control animals. CONCLUSIONS Anti-C1-INH treatment could improve the efficacy of irradiation delivered at sub-therapeutic doses and delay tumor growth in the subcutaneous tumor microenvironment. In the intracranial setting, the doses of anti-C1-INH were not enough to achieve any survival effect in the present setting.
Collapse
Affiliation(s)
- Emma Liljedahl
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Elise Konradsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Karolina Förnvik Jonsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Jill K. Olofsson
- grid.5254.60000 0001 0674 042XDepartment for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Osther
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Crister Ceberg
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
43
|
Lee N, Jeon YH, Yoo J, Shin SK, Lee S, Park MJ, Jung BJ, Hong YK, Lee DS, Oh K. Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. J Immunother Cancer 2023; 11:jitc-2022-006024. [PMID: 36717184 PMCID: PMC9887704 DOI: 10.1136/jitc-2022-006024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Oncolytic virus immunotherapy has revolutionized cancer immunotherapy by efficiently inducing both oncolysis and systemic immune activation. Locoregional administration has been used for oncolytic virus therapy, but its applications to deep-seated cancers have been limited. Although systemic delivery of the oncolytic virus would maximize viral immunotherapy's potential, this remains a hurdle due to the rapid removal of the administered virus by the complement and innate immune system. Infected cells produce some vaccinia viruses as extracellular enveloped virions, which evade complement attack and achieve longer survival by expressing host complement regulatory proteins (CRPs) on the host-derived envelope. Here, we generated SJ-600 series oncolytic vaccinia viruses that can mimic complement-resistant extracellular enveloped virions by incorporating human CRP CD55 on the intracellular mature virion (IMV) membrane. METHODS The N-terminus of the human CD55 protein was fused to the transmembrane domains of the six type I membrane proteins of the IMV; the resulting recombinant viruses were named SJ-600 series viruses. The SJ-600 series viruses also expressed human granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate dendritic cells. The viral thymidine kinase (J2R) gene was replaced by genes encoding the CD55 fusion proteins and GM-CSF. RESULTS SJ-600 series viruses expressing human CD55 on the IMV membrane showed resistance to serum virus neutralization. SJ-607 virus, which showed the highest CD55 expression and the highest resistance to serum complement-mediated lysis, exhibited superior anticancer activity in three human cancer xenograft models, compared with the control Pexa-Vec (JX-594) virus, after single-dose intravenous administration. The SJ-607 virus administration elicited neutralizing antibody formation in two immunocompetent mouse strains like the control JX-594 virus. Remarkably, we found that the SJ-607 virus evades neutralization by vaccinia virus-specific antibodies. CONCLUSION Our new oncolytic vaccinia virus platform, which expresses human CD55 protein on its membrane, prolonged viral survival by protecting against complement-mediated lysis and by evading neutralization by vaccinia virus-specific antibodies; this may provide a continuous antitumor efficacy until a complete remission has been achieved. Such a platform may expand the target cancer profile to include deep-seated cancers and widespread metastatic cancers.
Collapse
Affiliation(s)
- Namhee Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Suk-kyung Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Songyi Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Mi-Ju Park
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Byung-Jin Jung
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Kyoung Hong
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Keunhee Oh
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
44
|
Chaousis S, Leusch FD, Limpus CJ, Nouwens A, Weijs LJ, Weltmeyer A, Covaci A, van de Merwe JP. Non-targeted proteomics reveals altered immune response in geographically distinct populations of green sea turtles (Chelonia mydas). ENVIRONMENTAL RESEARCH 2023; 216:114352. [PMID: 36210607 DOI: 10.1016/j.envres.2022.114352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 05/26/2023]
Abstract
All seven species of sea turtle are facing increasing pressures from human activities that are impacting their health. Changes in circulating blood proteins of an individual, or all members of a population, can provide an early indicator of adverse health outcomes. Non-targeted measurement of all detectable proteins in a blood sample can indicate physiological changes. In the context of wildlife toxicology, this technique can provide a powerful tool for discovering biomarkers of chemical exposure and effect. This study presents a non-targeted examination of the protein abundance in sea turtle plasma obtained from three geographically distinct foraging populations of green turtles (Chelonia mydas) on the Queensland coast. Relative changes in protein expression between sites were compared, and potential markers of contaminant exposure were investigated. Blood plasma protein profiles were distinct between populations, with 85 out of the 116 identified proteins differentially expressed (p < 0.001). The most strongly dysregulated proteins were predominantly acute phase proteins, suggestive of differing immune status between the populations. The highest upregulation of known markers of immunotoxicity, such as pentraxin fusion and complement factor h, was observed in the Moreton Bay turtles. Forty-five different organohalogens were also measured in green turtle plasma samples as exposure to some organohalogens (e.g., polychlorinated biphenyls) has previously been identified as a cause for immune dysregulation in marine animals. The few detected organohalogens were at very low (pg/mL) concentrations in turtles from all sites, and are unlikely to be the cause of the proteome differences observed. However, the changes in protein expression may be indicative of exposure to other chemicals or environmental stressors. The results of this study provide important information about differences in protein expression between different populations of turtles, and guide future toxicological and health studies on east-Australian green sea turtles.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | - Frederic Dl Leusch
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | - Colin J Limpus
- Department of Environment and Science, Queensland Government, Ecosciences Precinct, Dutton Park QLD, 4102, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, The University of Queensland, QLD, 4067, Australia
| | - Liesbeth J Weijs
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia
| | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Jason P van de Merwe
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Gold Coast Campus, QLD, 4222, Australia.
| |
Collapse
|
45
|
Floreste FR, Titon B, Titon SCM, Muxel SM, Figueiredo ACD, Gomes FR, Assis VR. Liver vs. spleen: Time course of organ-dependent immune gene expression in an LPS-stimulated toad (Rhinella diptycha). Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110784. [PMID: 35931313 DOI: 10.1016/j.cbpb.2022.110784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
The inflammatory response comprises highly orchestrated events that are conserved amongst vertebrate groups. Hepatic and splenic cytokines are major mediators of the systemic inflammatory processes. However, the liver is still neglected as an immune organ in amphibians. This study reports organ-dependent gene expression using an anuran model. We tracked mRNA levels of immune proteins [C1s (subcomponent S of the complement protein 1), IFN-γ, IL-1β, IL-6, and IL-10] at four time-points (1 h, 3 h, 6 h, and 18 h post-injection) in spleens and livers of intraperitoneal LPS-challenged (2 mg/kg) adult male toads (Rhinella diptycha) using independent samples. We found acute C1s up-regulation in the liver 1 h post-injection, with no treatment effect in the spleen. The LPS injection did not show any effect in splenic IFN-γ gene expression while eliciting only a marginal effect in the hepatic tissue. IL-1β was up-regulated in both organs, with the liver initially displaying early expression (1 h and 3 h) and the spleen taking over late expression (18 h). Both organs exhibited similar patterns for IL-6, with early up-regulation (1 h and 3 h) and late peak (18 h). Although IL-10 was early detected and up-regulated only in the liver, both organs showed up-regulation in 6 h and 18 h post-injection. Our results show an exclusive hepatic prominence in complement protein expression during the acute-phase response. Furthermore, hepatic pro-inflammatory cytokine expression was more pronounced in earliest time-points, while the spleen offers a slower and more consistent response overall. Our data provide an organ-integrative outlook into the initial hours of the inflammation in amphibians, confirming the liver's pivotal role as a regulator in the acute-phase of the inflammatory response in amphibians.
Collapse
Affiliation(s)
- Felipe R Floreste
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil.
| | - Braz Titon
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Stefanny C M Titon
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil. https://twitter.com/StefannyTiton
| | - Sandra M Muxel
- Laboratory of Neuroimmunology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil. https://twitter.com/SandraMuxel
| | - Aymam C de Figueiredo
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Fernando R Gomes
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil
| | - Vania R Assis
- Laboratory of Behavior and Evolutionary Physiology, Institute of Biosciences, Department of Physiology, University of São Paulo, São Paulo, Brazil. https://twitter.com/VaniaRAssis1
| |
Collapse
|
46
|
Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant. Microorganisms 2023; 11:microorganisms11010117. [PMID: 36677409 PMCID: PMC9862592 DOI: 10.3390/microorganisms11010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal endophytes are friendly microorganisms that colonize plants and are important in the interactions between plants and their environment. They generate valuable secondary metabolites that are valuable to both plants and humans. Endophytic fungi with bioactivities were isolated from the leaves of the medicinal plant Ziziphus spina-christi. An efficient isolate was selected and identified as Pestalotiopsis neglecta based on nucleotide sequencing of the internal transcribed spacer region (ITS 1-5.8S-ITS 2) of the 18S rRNA gene (NCBI accession number OP529850); the 564 bp had 99 to 100% similarity with P. neglecta MH860161.1, AY682935.1, KP689121.1, and MG572407.1, according to the BLASTn analysis, following preliminary phytochemical and antifungal screening. The biological activities of this fungus' crude ethyl acetate (EtOAc) extract were assessed. With an efficient radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl and an IC50 value of 36.6 µg mL-1, P. neglecta extract has shown its potential as an antioxidant. Moreover, it displayed notable cytotoxic effects against MCF-7 (breast carcinoma, IC50 = 22.4 µg mL-1), HeLa (cervical carcinoma, IC50 = 28.9 µg mL-1) and HepG-2 (liver carcinoma, IC50 = 28.9 µg mL-1). At 10 µg mL-1, EtOAc demonstrated significant DNA protection against hydroxyl radical-induced damage. Based on FT-IR and GC-MS spectral analysis, it was detected that the EtOAc of P. neglecta product contains multiple bioactive functional groups. Subsequently, this validated the features of major different potent compounds; tolycaine, 1H-pyrazol, 1,3,5-trimethyl-, eugenol, 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethyl), and bis(2-ethylhexyl) phthalate. Since these compounds are biologically relevant in various aspects, and distinct biological activities of fungal extract were acceptable in vitro, this suggests that endophytic fungus P. neglecta may be a viable source of bioactive natural products. This could be a good starting point for pharmaceutical applications.
Collapse
|
47
|
Assis VR, Titon SCM, Titon B, Gomes FR. The Impacts of Transdermal Application of Corticosterone on Toad (Rhinella icterica) Immunity. Integr Comp Biol 2022; 62:1640-1653. [PMID: 35902322 DOI: 10.1093/icb/icac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
Recent studies have shown that acute physiological increases in endogenous glucocorticoid levels have immunostimulatory effects. Although post-acute stress immunosuppressive effects have also been described, the difference between enhancing and suppressing the immune response seems mediated by the stressor's duration, intensity, and the immune component under analysis. To elicit physiologically relevant corticosterone levels that can be found in Rhinella icterica toads after stressful events (e.g., restraint or captivity) and understand how acute increased glucocorticoid levels of different intensities affect corticosterone and testosterone plasma levels and immune parameters (in vitro plasma bacterial killing ability, neutrophil-to-lymphocyte ratio, and in vivo phagocytosis of peritoneal leukocytes), we submitted toads to the transdermal application of two corticosterone doses (1 and 10 μg). Corticosterone transdermal application increased corticosterone plasma levels with different intensities: 3 times for 1 μg and fourteen times for 10 μg, compared to the vehicle, and the neutrophil-to-lymphocyte ratio increased regardless of the corticosterone dose. However, there was no effect on testosterone levels and bacterial killing ability. Interestingly, both corticosterone doses promoted immunosuppression, decreasing peritoneal leukocytes' phagocytosis activity by 60% for toads receiving the dose of 1µg and 40% for those receiving 10 μg. Our results show the complexity of the relationship between increased corticosterone levels and immunomodulation. The different corticosterone doses promoted increases of distinct magnitudes in corticosterone plasma levels, with the less intense increase in corticosterone levels generating greater cell-mediated immunosuppression. Future studies using different corticosterone doses to achieve and compare physiological vs. pharmacological hormone levels are imperative to understanding these interrelationships between corticosterone and immune response.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
48
|
Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, Luo Y. The land-scape of immune response to monkeypox virus. EBioMedicine 2022; 87:104424. [PMID: 36584594 PMCID: PMC9797195 DOI: 10.1016/j.ebiom.2022.104424] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
Human monkeypox is a viral zoonotic smallpox-like disease caused by the monkeypox virus (MPXV) and has become the greatest public health threat in the genus Orthopoxvirus after smallpox was eradicated. The host immune response to MPXV plays an essential role in disease pathogenesis and clinical manifestations. MPXV infection leads to skin lesions with the genital area as the main feature in the current outbreak and triggers a strong immune response that results in sepsis, deep tissue abscess, severe respiratory disease, and injuries to multiple immune organs. Emerging evidence shows that the immunopathogenesis of MPXV infection is closely associated with impaired NK-cell function, lymphopenia, immune evasion, increased antibodies, increased blood monocytes and granulocytes, cytokine storm, inhibition of the host complement system, and antibody-dependent enhancement. In this overview, we discuss the immunopathology and immunopathogenesis of monkeypox to aid the development of novel immunotherapeutic strategies against monkeypox.
Collapse
Affiliation(s)
- Heng Li
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Qi-Zhao Huang
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China
| | - Zhen-Xing Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiao-Hui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Li-Lin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China,Corresponding author: Institute of Immunology, Third Military Medical University, Chongqing, 400038, PR China.
| | - Yang Luo
- College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China,Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, PR China,Department of Laboratory Medicine, Jiangjin Hospital, Chongqing University, Chongqing, 402260, PR China,Corresponding author: College of Life Sciences and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
49
|
Complement C3 Regulates Inflammatory Response and Monocyte/Macrophage Phagocytosis of Streptococcus agalactiae in a Teleost Fish. Int J Mol Sci 2022; 23:ijms232415586. [PMID: 36555227 PMCID: PMC9779060 DOI: 10.3390/ijms232415586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
The complement system is composed of a complex protein network and is pivotal to innate immunity. Complement 3 (C3) is a critical protein in the complement cascade and participates in complement activation and immune defense. In this study, C3 from Nile tilapia (Oreochromis niloticus) was cloned and its function in resisting pathogen infection was characterized. The full length of OnC3 open reading frame is 4974 bp, encoding 1657 aa, and the predicted protein mass weight is 185.93 kDa. The OnC3 amino acid sequence contains macroglobulin domains. The expression pattern of OnC3 mRNA in the tissues of healthy fish was detected, with the highest in the liver and the lowest in the muscle. After challenged with Streptococcus agalactiae and Aeromonas hydrophila, the expression of OnC3 mRNA was significantly up-regulated in the liver, spleen, and head kidney. Further, the recombinant OnC3 protein alleviated the inflammatory response and pathological damage of tissues after infected with S. agalactiae. Moreover, the OnC3 promoted the phagocytosis of monocytes/macrophages to S. agalactiae. The data obtained in this study provide a theoretical reference for in-depth understanding of C3 in host defense against bacterial infection and the immunomodulatory roles in teleost fish.
Collapse
|
50
|
CMTM4 is required for IL-17A signaling. Nat Immunol 2022; 23:1525-1526. [DOI: 10.1038/s41590-022-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|