1
|
Jayaraman A, Walachowski S, Bosmann M. The complement system: A key player in the host response to infections. Eur J Immunol 2024; 54:e2350814. [PMID: 39188171 DOI: 10.1002/eji.202350814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Infections are one of the most significant healthcare and economic burdens across the world as underscored by the recent coronavirus pandemic. Moreover, with the increasing incidence of antimicrobial resistance, there is an urgent need to better understand host-pathogen interactions to design effective treatment strategies. The complement system is a key arsenal of the host defense response to pathogens and bridges both innate and adaptive immunity. However, in the contest between pathogens and host defense mechanisms, the host is not always victorious. Pathogens have evolved several approaches, including co-opting the host complement regulators to evade complement-mediated killing. Furthermore, deficiencies in the complement proteins, both genetic and therapeutic, can lead to an inefficient complement-mediated pathogen eradication, rendering the host more susceptible to certain infections. On the other hand, overwhelming infection can provoke fulminant complement activation with uncontrolled inflammation and potentially fatal tissue and organ damage. This review presents an overview of critical aspects of the complement-pathogen interactions during infection and discusses perspectives on designing therapies to mitigate complement dysfunction and limit tissue injury.
Collapse
Affiliation(s)
- Archana Jayaraman
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sarah Walachowski
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Bosmann
- Department of Medicine, Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
3
|
Odunitan TT, Apanisile BT, Akinboade MW, Abdulazeez WO, Oyaronbi AO, Ajayi TM, Oyekola SA, Ibrahim NO, Nafiu T, Afolabi HO, Olayiwola DM, David OT, Adeyemo SF, Ayodeji OD, Akinade EM, Saibu OA. Microbial mysteries: Staphylococcus aureus and the enigma of carcinogenesis. Microb Pathog 2024; 194:106831. [PMID: 39089512 DOI: 10.1016/j.micpath.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Staphylococcus aureus, a common human pathogen, has long been the focus of scientific investigation due to its association with various infections. However, recent research has unveiled a tantalizing enigma surrounding this bacterium and its potential involvement in carcinogenesis. Chronic S. aureus infections have been linked to an elevated risk of certain cancers, including skin cancer and oral cancer. This review explores the current state of knowledge regarding this connection, examining epidemiological evidence, pathogenic mechanisms, and biological interactions that suggest a correlation. Although initial studies point to a possible link, the precise mechanisms through which S. aureus may contribute to cancer development remain elusive. Emerging evidence suggests that the chronic inflammation induced by persistent S. aureus infections may create a tumor-promoting environment. This inflammation can lead to DNA damage, disrupt cellular signaling pathways, and generate an immunosuppressive microenvironment conducive to cancer progression. Additionally, S. aureus produces a variety of toxins and metabolites that can directly interact with host cells, potentially inducing oncogenic transformations. Despite these insights, significant gaps remain in our understanding of the exact biological processes involved. This review emphasizes the urgent need for more comprehensive research to clarify these microbiological mysteries. Understanding the role of S. aureus in cancer development could lead to novel strategies for cancer prevention and treatment, potentially transforming therapeutic approaches.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria; Microbiology Unit, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria; Ehigie's Biochemistry and Biocomputational Laboratory, Ogbomosho, Oyo State, Nigeria.
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Waliu O Abdulazeez
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adegboye O Oyaronbi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Samuel A Oyekola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Tawakalitu Nafiu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hezekiah O Afolabi
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Dolapo M Olayiwola
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oladunni T David
- Microbiology Unit, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria
| | - Stephen F Adeyemo
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria; Division of Medical Artificial Intelligence, Helix Biogen Institute, Ogbomosho, Oyo State, Nigeria
| | - Oluwatobi D Ayodeji
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Esther M Akinade
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA
| |
Collapse
|
4
|
Ledger EVK, Edwards AM. Host-induced cell wall remodeling impairs opsonophagocytosis of Staphylococcus aureus by neutrophils. mBio 2024; 15:e0164324. [PMID: 39041819 PMCID: PMC11323798 DOI: 10.1128/mbio.01643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by increasing the thickness of its cell wall. However, the impact of cell wall thickening on susceptibility to host defenses is unclear. Using bacteria incubated in human serum, we show that host-induced increases in cell wall thickness led to a reduction in the exposure of bound antibody and complement and a corresponding reduction in phagocytosis and killing by neutrophils. The exposure of opsonins bound to protein antigens or lipoteichoic acid (LTA) was most significantly reduced, while opsonization by IgG against wall teichoic acid or peptidoglycan was largely unaffected. Partial digestion of accumulated cell wall using the enzyme lysostaphin restored opsonin exposure and promoted phagocytosis and killing. Concordantly, the antibiotic fosfomycin inhibited cell wall remodeling and maintained the full susceptibility of S. aureus to opsonophagocytic killing by neutrophils. These findings reveal that host-induced changes to the S. aureus cell wall reduce the ability of the immune system to detect and kill this pathogen through reduced exposure of protein- and LTA-bound opsonins. IMPORTANCE Understanding how bacteria adapt to the host environment is critical in determining fundamental mechanisms of immune evasion, pathogenesis, and the identification of targets for new therapeutic approaches. Previous work demonstrated that Staphylococcus aureus remodels its cell envelope in response to host factors and we hypothesized that this may affect recognition by antibodies and thus killing by immune cells. As expected, incubation of S. aureus in human serum resulted in rapid binding of antibodies. However, as bacteria adapted to the serum, the increase in cell wall thickness resulted in a significant reduction in exposure of bound antibodies. This reduced antibody exposure, in turn, led to reduced killing by human neutrophils. Importantly, while antibodies bound to some cell surface structures became obscured, this was not the case for those bound to wall teichoic acid, which may have important implications for vaccine design.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Jura G, Masiuk H, Pruss A, Kurzawski M, Sienkiewicz M, Wojciechowska-Koszko I, Kwiatkowski P. Prevalence of Selected Immune Evasion Genes and Clonal Diversity in Methicillin-Susceptible Staphylococcus aureus Isolated from Nasal Carriers and Outpatients with Cut Wound Infections. Antibiotics (Basel) 2024; 13:730. [PMID: 39200030 PMCID: PMC11350705 DOI: 10.3390/antibiotics13080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Staphylococcus aureus, being one of the most common human pathogens, is responsible for infections in both hospital and community settings. Its virulence is attributed to its ability to evade the immune system by producing immune evasion (IE) proteins. The aim of this study was to detect the frequency of selected IE genes (spin, sbi, sea, sak, chp, scin, sep, ecb), belonging to the immune evasion cluster (IEC), and IEC types in 86 methicillin-susceptible S. aureus (MSSA) strains isolated from unrelated outpatients. In order to determine the diversity of analyzed strains, the phylogenetic relatedness was also determined. All strains were examined for the presence of IE genes using polymerase chain reaction assay. To analyze the clonal relatedness of S. aureus, pulsed-field gel electrophoresis (PFGE) was performed. All analyzed strains harbored the scn gene, followed by sbi (95.4%), ecb (91.7%), spin (89.5%), sak (83.7%), chp (67.4%), sep (67.4%) and sea (5.8%). Seventy-three (84.9%) S. aureus strains were classified into IEC types, of which, IEC type F was most commonly observed. IEC type A was not detected. PFGE results showed no association between clonal relatedness and the presence of IE genes/IEC types. In conclusion, the abundant and so diverse repertoire of genes determining invasion in analyzed strains may prove the fact that these strains are highly advanced and adapted to evade the host immune response.
Collapse
Affiliation(s)
- Gabriela Jura
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Laboratory of Pharmacodynamics, Pomeranian Medical University in Szczecin, 71-899 Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, 90-151 Lodz, Poland
| | | | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Goodrich AC, LeClair NP, Shillova N, Morton WD, Wittwer AJ, Loyet KM, Hannoush RN. Reconstitution of the alternative pathway of the complement system enables rapid delineation of the mechanism of action of novel inhibitors. J Biol Chem 2024; 300:107467. [PMID: 38876307 PMCID: PMC11283208 DOI: 10.1016/j.jbc.2024.107467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 05/20/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024] Open
Abstract
The complement system plays a critical role in the innate immune response, acting as a first line of defense against invading pathogens. However, dysregulation of the complement system is implicated in the pathogenesis of numerous diseases, ranging from Alzheimer's to age-related macular degeneration and rare blood disorders. As such, complement inhibitors have enormous potential to alleviate disease burden. While a few complement inhibitors are in clinical use, there is still a significant unmet medical need for the discovery and development of novel inhibitors to treat patients suffering from disorders of the complement system. A key hurdle in the development of complement inhibitors has been the determination of their mechanism of action. Progression along the complement cascade involves the formation of numerous multimeric protein complexes, creating the potential for inhibitors to act at multiple nodes in the pathway. This is especially true for molecules that target the central component C3 and its fragment C3b, which serve a dual role as a substrate for the C3 convertases and as a scaffolding protein in both the C3 and C5 convertases. Here, we report a step-by-step in vitro reconstitution of the complement alternative pathway using bio-layer interferometry. By physically uncoupling each step in the pathway, we were able to determine the kinetic signature of inhibitors that act at single steps in the pathway and delineate the full mechanism of action of known and novel C3 inhibitors. The method could have utility in drug discovery and further elucidating the biochemistry of the complement system.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA.
| | - Norbert P LeClair
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California, USA
| | - Nita Shillova
- Department of Biochemistry, Confluence Discovery Technologies Inc, St Louis, Missouri, USA
| | - William D Morton
- Department of Biochemistry, Confluence Discovery Technologies Inc, St Louis, Missouri, USA
| | - Arthur J Wittwer
- Department of Biochemistry, Confluence Discovery Technologies Inc, St Louis, Missouri, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, California, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA.
| |
Collapse
|
9
|
Jackson M, Vineberg S, Theis KR. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms 2024; 12:1272. [PMID: 39065041 PMCID: PMC11278562 DOI: 10.3390/microorganisms12071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The field of microbial pathogenesis seeks to identify the agents and mechanisms responsible for disease causation. Since Robert Koch introduced postulates that were used to guide the characterization of microbial pathogens, technological advances have substantially increased the capacity to rapidly identify a causative infectious agent. Research efforts currently focus on causation at the molecular level with a search for virulence factors (VFs) that contribute to different stages of the infectious process. We note that the quest to identify and characterize VFs sometimes lacks scientific rigor, and this suggests a need to examine the epistemology of VF characterization. We took this premise as an opportunity to explore the epistemology of VF characterization. In this perspective, we discuss how the characterization of various gene products that evolved to facilitate bacterial survival in the broader environment have potentially been prematurely mischaracterized as VFs that contribute to pathogenesis in the context of human biology. Examples of the reasoning that can affect misinterpretation, or at least a premature assignment of mechanistic causation, are provided. Our aim is to refine the categorization of VFs by emphasizing a broader biological view of their origin.
Collapse
Affiliation(s)
- Matthew Jackson
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Susan Vineberg
- Department of Philosophy, Wayne State University, Detroit, MI 48201, USA;
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
11
|
Sun J, Chen C, Pan P, Zhang K, Xu J, Chen C. The potential of bacterial anti-phagocytic proteins in suppressing the clearance of extracellular vesicles mediated by host phagocytosis. Front Immunol 2024; 15:1418061. [PMID: 38903499 PMCID: PMC11186983 DOI: 10.3389/fimmu.2024.1418061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVβ3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.
Collapse
Affiliation(s)
- Jiacong Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Congcong Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Pengpeng Pan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
13
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Xu X, Herdendorf TJ, Duan H, Rohlik DL, Roy S, Zhou H, Alkhateeb H, Khandelwal S, Zhou Q, Li P, Arepally GM, Walker JK, Garcia BL, Geisbrecht BV. Inhibition of the C1s Protease and the Classical Complement Pathway by 6-(4-Phenylpiperazin-1-yl)Pyridine-3-Carboximidamide and Chemical Analogs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:689-701. [PMID: 38149922 PMCID: PMC10872613 DOI: 10.4049/jimmunol.2300630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 μM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 μM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Timothy J. Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Huiquan Duan
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Denise L. Rohlik
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Sourav Roy
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Hinman Zhou
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
| | - Haya Alkhateeb
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
| | - Sanjay Khandelwal
- Division of Hematology, Duke University Medical Center; Durham, NC 27710 U.S.A
| | - Qilong Zhou
- Department of Chemistry, Kansas State University; Manhattan, KS 66506 U.S.A
| | - Ping Li
- Department of Chemistry, Kansas State University; Manhattan, KS 66506 U.S.A
| | | | - John K. Walker
- Department of Pharmacology, School of Medicine, St. Louis University; St. Louis, MO 63104 U.S.A
- Department of Chemistry, St. Louis University; St. Louis, MO 63103 U.S.A
| | - Brandon L. Garcia
- Department of Microbiology & Immunology, Brody School of Medicine East Carolina University; Greenville, NC 27834 U.S.A
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS 66506 U.S.A
| |
Collapse
|
15
|
Bertrand BP, Shinde D, Thomas VC, Whiteley M, Ibberson CB, Kielian T. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infect Immun 2024; 92:e0047423. [PMID: 38179975 PMCID: PMC10863412 DOI: 10.1128/iai.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.
Collapse
Affiliation(s)
- Blake P. Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dhananjay Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vinai C. Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carolyn B. Ibberson
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
16
|
Jin T. Exploring the role of bacterial virulence factors and host elements in septic arthritis: insights from animal models for innovative therapies. Front Microbiol 2024; 15:1356982. [PMID: 38410388 PMCID: PMC10895065 DOI: 10.3389/fmicb.2024.1356982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Septic arthritis, characterized as one of the most aggressive joint diseases, is primarily attributed to Staphylococcus aureus (S. aureus) and often results from hematogenous dissemination. Even with prompt treatment, septic arthritis frequently inflicts irreversible joint damage, leading to sustained joint dysfunction in a significant proportion of patients. Despite the unsatisfactory outcomes, current therapeutic approaches for septic arthritis have remained stagnant for decades. In the clinical context, devising innovative strategies to mitigate joint damage necessitates a profound comprehension of the pivotal disease mechanisms. This entails unraveling how bacterial virulence factors interact with host elements to facilitate bacterial invasion into the joint and identifying the principal drivers of joint damage. Leveraging animal models of septic arthritis emerges as a potent tool to achieve these objectives. This review provides a comprehensive overview of the historical evolution and recent advancements in septic arthritis models. Additionally, we address practical considerations regarding experimental protocols. Furthermore, we delve into the utility of these animal models, such as their contribution to the discovery of novel bacterial virulence factors and host elements that play pivotal roles in the initiation and progression of septic arthritis. Finally, we summarize the latest developments in novel therapeutic strategies against septic arthritis, leveraging insights gained from these unique animal models.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
17
|
Saei HD, McClure JA, Kashif A, Chen S, Conly JM, Zhang K. The Role of Prophage ϕSa3 in the Adaption of Staphylococcus aureus ST398 Sublineages from Human to Animal Hosts. Antibiotics (Basel) 2024; 13:112. [PMID: 38391498 PMCID: PMC10886223 DOI: 10.3390/antibiotics13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Staphylococcus aureus sequence type (ST) 398 is a lineage affecting both humans and livestock worldwide. However, the mechanisms underlying its clonal evolution are still not clearly elucidated. We applied whole-genome sequencing (WGS) typing to 45 S. aureus strains from China and Canada between 2005 and 2014, in order to gain insight into their evolutionary pathway. Based on WGS phylogenetic analysis, 42 isolates were assigned to the human-associated clade (I/II-GOI) and 3 isolates to livestock-associated clade (IIa). Phylogeny of ϕSa3 sequences revealed five phage groups (Groups 1-5), with Group 1 carrying ϕSa3-Group 1 (ϕSa3-G1), Group 2 carrying ϕSa3-G2, Group 3 carrying ϕSa3-G3, Group 4 carrying ϕSa3-G4 and Group 5 lacking ϕSa3. ϕSa3-G1 was only found in strains that accounted for the most ancestral human clade I, while ϕSa3-G2, ϕSa3-G3 and ϕSa3-G4 were found restricted to sublineages within clade II-GOI. Some isolates of clade II-GOI were also found to be ϕSa3-negative or resistant to methicillin which are unusual characteristics for human-adapted isolates. This study demonstrated a strong association between phylogenetic grouping and phage type, suggesting an important role of ϕSa3 prophage in the evolution of human-adapted ST398 subclones. In addition, our results suggest that this subclone slowly began to adapt to animal hosts by losing ϕSa3 and acquiring methicillin resistance, which was observed in some strains of human-associated clade II-GOI, an intermediate human to livestock transmission clade.
Collapse
Affiliation(s)
- Habib Dastmalchi Saei
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Jo-Ann McClure
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ayesha Kashif
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Sidong Chen
- Department of Epidemiology, Public Health College, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - John M Conly
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Precision Laboratories/University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Piuzzi NS, Klika AK, Lu Q, Higuera-Rueda CA, Stappenbeck T, Visperas A. Periprosthetic joint infection and immunity: Current understanding of host-microbe interplay. J Orthop Res 2024; 42:7-20. [PMID: 37874328 DOI: 10.1002/jor.25723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty. Even with current treatments, failure rates are unacceptably high with a 5-year mortality rate of 26%. Majority of the literature in the field has focused on development of better biomarkers for diagnostics and treatment strategies including innovate antibiotic delivery systems, antibiofilm agents, and bacteriophages. Nevertheless, the role of the immune system, our first line of defense during PJI, is not well understood. Evidence of infection in PJI patients is found within circulation, synovial fluid, and tissue and include numerous cytokines, metabolites, antimicrobial peptides, and soluble receptors that are part of the PJI diagnosis workup. Macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs) are initially recruited into the joint by chemokines and cytokines produced by immune cells and bacteria and are activated by pathogen-associated molecular patterns. While these cells are efficient killers of planktonic bacteria by phagocytosis, opsonization, degranulation, and recruitment of adaptive immune cells, biofilm-associated bacteria are troublesome. Biofilm is not only a physical barrier for the immune system but also elicits effector functions. Additionally, bacteria have developed mechanisms to evade the immune system by inactivating effector molecules, promoting killing or anti-inflammatory effector cell phenotypes, and intracellular persistence and dissemination. Understanding these shortcomings and the mechanisms by which bacteria can subvert the immune system may open new approaches to better prepare our own immune system to combat PJI. Furthermore, preoperative immune system assessment and screening for dysregulation may aid in developing preventative interventions to decrease PJI incidence.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alison K Klika
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Anabelle Visperas
- Department of Orthopaedic Surgery, Cleveland Clinic Adult Reconstruction Research (CCARR), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
21
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Loh JM, Aghababa H, Proft T. Eluding the immune system's frontline defense: Secreted complement evasion factors of pathogenic Gram-positive cocci. Microbiol Res 2023; 277:127512. [PMID: 37826985 DOI: 10.1016/j.micres.2023.127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Jacelyn Ms Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Haniyeh Aghababa
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
23
|
Chen Y, Liu Z, Lin Z, Lu M, Fu Y, Liu G, Yu B. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol 2023; 14:1219895. [PMID: 37744377 PMCID: PMC10517662 DOI: 10.3389/fimmu.2023.1219895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Osteomyelitis is a chronic inflammatory bone disease caused by infection of open fractures or post-operative implants. Particularly in patients with open fractures, the risk of osteomyelitis is greatly increased as the soft tissue damage and bacterial infection are often more severe. Staphylococcus aureus, one of the most common pathogens of osteomyelitis, disrupts the immune response through multiple mechanisms, such as biofilm formation, virulence factor secretion, and metabolic pattern alteration, which attenuates the effectiveness of antibiotics and surgical debridement toward osteomyelitis. In osteomyelitis, immune cells such as neutrophils, macrophages and T cells are activated in response to pathogenic bacteria invasion with excessive inflammatory factor secretion, immune checkpoint overexpression, and downregulation of immune pathway transcription factors, which enhances osteoclastogenesis and results in bone destruction. Therefore, the study of the mechanisms of abnormal immunity will be a new breakthrough in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zixian Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zexin Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Mincheng Lu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| |
Collapse
|
24
|
Pineda APA, Cueva CLR, Chacón RD, Ramírez M, de Almeida OGG, de Oliveira DP, Franco BDGM, Lacorte G, Landgraf M, Silva NCC, Pinto UM. Genomic characterization of Staphylococcus aureus from Canastra Minas Artisanal Cheeses. Braz J Microbiol 2023; 54:2103-2116. [PMID: 37594655 PMCID: PMC10485191 DOI: 10.1007/s42770-023-01099-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
Canastra Minas Artisanal Cheese is produced in the Brazilian State of Minas Gerais using raw milk, rennet, and pingo, a natural endogenous starter culture (fermented whey) collected from the previous day's production. Due to the use of raw milk, the product can carry microorganisms that may cause foodborne diseases (FBD), including Staphylococcus aureus. Genomic characterization of S. aureus is an important tool to assess diversity, virulence, antimicrobial resistance, and the potential for causing food poisoning due to enterotoxin production. This study is aimed at exploring the genomic features of S. aureus strains isolated from Canastra Minas Artisanal Cheeses. Multilocus sequence typing (MLST) classified these strains as ST1, ST5, and a new profile ST7849 (assigned to the clonal complex CC97). These strains belonged to four spa types: t008, t127, t359, and t992. We identified antimicrobial resistance genes with phenotypic correlation against methicillin (MRSA) and tetracycline. Virulome analysis revealed genes associated with iron uptake, immune evasion, and potential capacity for adherence and biofilm formation. The toxigenic potential included cyto- and exotoxins genes, and all strains presented the genes that encode for Panton-Valentine toxin and hemolysin, and two strains encoded 4 and 8 Staphylococcal enterotoxin (SE) genes. The results revealed the pathogenic potential of the evaluated S. aureus strains circulating in the Canastra region, representing a potential risk to public health. This study also provides useful information to monitor and guide the application of control measures to the artisanal dairy food production chain.
Collapse
Affiliation(s)
- Ana P Arellano Pineda
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carmen L Rodríguez Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, 15021, Peru
| | - Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando M. Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Manuel Ramírez
- Faculty of Science and Health, Peruvian University of Applied Sciences-UPC, Prolongación Primavera 2390, Santiago de Surco, Lima, 15023, Peru
| | - Otávio G G de Almeida
- Department of Clinical Analysis, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café, S/N, Ribeirão Preto, SP, 14040-903, Brazil
| | - Débora P de Oliveira
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Bernadette D G M Franco
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Gustavo Lacorte
- Federal Institute of Minas Gerais - Campus Bambuí, Bambuí, MG, 30575-180, Brazil
| | - Mariza Landgraf
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Nathalia Cristina Cirone Silva
- Department of Food Sciences and Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
25
|
Ferro Desideri L, Artemiev D, Bernardi E, Paschon K, Zandi S, Zinkernagel M, Anguita R. Investigational drugs inhibiting complement for the treatment of geographic atrophy. Expert Opin Investig Drugs 2023; 32:1009-1016. [PMID: 37902056 DOI: 10.1080/13543784.2023.2276759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Geographic atrophy (GA) is a progressive form of age-related macular degeneration (AMD) that leads to severe visual impairment and central vision loss. Traditional treatment options for GA are limited, highlighting the need for new therapeutic approaches. In recent years, targeting the complement system has emerged as a promising strategy for the treatment of GA. AREAS COVERED This expert opinion article reviews the investigational drugs inhibiting the complement cascade for the treatment of GA. Specifically, it focuses on the recent FDA approved pegcetacoplan, a C3 complement inhibitor, and avacincaptad pegol, a C5 complement inhibitor, highlighting their potential efficacy and safety profiles based on clinical trial data. EXPERT OPINION FDA approval of intravitreal pegcetacoplan and avacincaptad pegol marks significant progress in the landscape of GA treatment. However, variable results from trials underscore the complex nature of GA and the importance of patient selection. Complement inhibition holds promise, but ongoing research is vital to refine treatment strategies and offer improved outcomes for GA patients.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dmitri Artemiev
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Enrico Bernardi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karin Paschon
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
27
|
Tao Z, Wang H, Ke K, Shi D, Zhu L. Flavone inhibits Staphylococcus aureus virulence via inhibiting the sae two component system. Microb Pathog 2023; 180:106128. [PMID: 37148922 DOI: 10.1016/j.micpath.2023.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The rising prevalence of antibiotic resistance in Staphylococcus aureus calls for the development of innovative antimicrobial agents targeting novel pathways. S. aureus generates various virulence factors that compromise host defense mechanisms. Flavone, a core structure of flavonoids, has been shown to diminish the production of staphyloxanthin and alpha-hemolysin. Nonetheless, the influence of flavone on the majority of other virulence factors in S. aureus and its underlying molecular mechanism remain elusive. In this study, we examined the impact of flavone on the transcriptional profile of S. aureus using transcriptome sequencing. Our findings revealed that flavone substantially downregulated the expression of over 30 virulence factors implicated in immune evasion by the pathogen. Gene set enrichment analysis of the fold change-ranked gene list in relation to the Sae regulon indicated a robust association between flavone-induced downregulation and membership in the Sae regulon. Through the analysis of Sae target promoter-gfp fusion expression patterns, we observed a dose-dependent inhibition of Sae target promoter activity by flavone. Moreover, we discovered that flavone protected human neutrophils from S. aureus-mediated killing. Flavone also decreased the expression of alpha-hemolysin and other hemolytic toxins, resulting in a reduction in S. aureus' hemolytic capacity. Additionally, our data suggested that the inhibitory effect of flavone on the Sae system operates independently of its capacity to lower staphyloxanthin levels. In conclusion, our study proposes that flavone exhibits a broad inhibitory action on multiple virulence factors of S. aureus by targeting the Sae system, consequently diminishing the bacterium's pathogenicity.
Collapse
Affiliation(s)
- Zhanhua Tao
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning, 530003, Guangxi, China.
| | - Haoren Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, Heilongjiang, China.
| | - Ke Ke
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Deqiang Shi
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| | - Libo Zhu
- Guangxi Academy of Sciences, Nanning, 530003, Guangxi, China.
| |
Collapse
|
28
|
Nandhini P, Gupta PK, Mahapatra AK, Das AP, Agarwal SM, Mickymaray S, Alothaim AS, Rajan M. In-Silico molecular screening of natural compounds as a potential therapeutic inhibitor for Methicillin-resistant Staphylococcus aureus inhibition. Chem Biol Interact 2023; 374:110383. [PMID: 36754228 DOI: 10.1016/j.cbi.2023.110383] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening superbug causing infectious diseases such as pneumonia, endocarditis, osteomyelitis, etc. Conventional antibiotics are ineffective against MRSA infections due to their resistance mechanism against the antibiotics. The Penicillin Binding Protein (PBP2a) inhibits the activity of antibiotics by hydrolyzing the β-lactam ring. Thus, alternate treatment methods are needed for the treatment of MRSA infections. Natural bioactive compounds exhibit good inhibition efficiency against MRSA infections by hindering its enzymatic mechanism, efflux pump system, etc. The present work deals with identifying potential and non-toxic natural bioactive compounds (ligands) through molecular docking studies through StarDrop software. Various natural bioactive compounds which are effective against MRSA infections were docked with the protein (6VVA). The ligands having good binding energy values and pharmacokinetic and drug-likeness properties have been illustrated as potential ligands for treating MRSA infections. From this exploration, Luteolin, Kaempferol, Chlorogenic acid, Sinigrin, Zingiberene, 1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-1-ene, and Curcumin have found with good binding energies of -8.6 kcal/mol, -8.4 kcal/mol, -8.2 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, -7.3 kcal/mol, and -7.2 kcal/mol, respectively.
Collapse
Affiliation(s)
- Palanichamy Nandhini
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India
| | - Prashant Kr Gupta
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, India
| | - Agneesh Pratim Das
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida-201301, India
| | - Subhash Mohan Agarwal
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida-201301, India
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| |
Collapse
|
29
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
30
|
Abstract
Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
31
|
Tabassum H, Gull M, Rasheed A, Bano A, Ejaz H, Javed N. Molecular analysis of Panton-Valentine Leucocidin (pvl) gene among MRSA and MSSA isolates. BRAZ J BIOL 2023; 83:e250351. [PMID: 36753148 DOI: 10.1590/1519-6984.250351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 01/08/2022] [Indexed: 02/09/2023] Open
Abstract
The present study was conducted in order to determine the frequency of pvl gene among the pathogenic and healthy population isolates of Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Sensitive Staphylococcus aureus (MSSA). For this purpose, nasal swab samples were collected from the healthy individuals (to be used as controls, all the samples were collected irrespective of the sex and age factors), the pathogenic samples were collected from different patients suffering from skin &soft tissue infections caused by S. aureus (to be used as test samples).Both of these population samples were analyzed for the presence of pvl gene. S.aureus were identified through conventional microbiological identification procedures. In the case of normal samples, 70 nasal swabs were collected and only 33 (47%) proved to be S. aureus while 20 pathogenic samples were collected and all (100%) were cleared as S. aureus. For further distribution of samples into MRSA and MSSA, antibiotic susceptibility pattern was checked by using the standard protocols of Kirby-Bauer disc diffusion method. Two antibiotic discs Oxacillin (OX: 1ug) and cefoxitin (FOX: 30ug) were used. Among healthy population, MRSA was found to be 79% (n=26) and MSSA were present as 21% (n= 7). Among pathogenic strains 100% MRSA was detected where n= 20. Detection of pvl gene among the MRSA and MSSA isolates was done by using the uniplex PCR followed by gel electrophoresis. MRSA and MSSA of normal healthy population carried 49% and 7% pvl gene respectively. While, pathogenic MRSA samples carried 46% pvl gene among them. Potentially alarming percentage of pvl gene is present among the normal healthy individuals which indicates a future threat and a major health concern.
Collapse
Affiliation(s)
- H Tabassum
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - M Gull
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - A Rasheed
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - A Bano
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - H Ejaz
- Jouf University, College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Sakaka, Saudi Arabia
| | - N Javed
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| |
Collapse
|
32
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
34
|
Chaguza C, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Prophage-encoded immune evasion factors are critical for Staphylococcus aureus host infection, switching, and adaptation. CELL GENOMICS 2022; 2:100194. [PMID: 36465278 PMCID: PMC9718559 DOI: 10.1016/j.xgen.2022.100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Staphylococcus aureus is a multi-host pathogen that causes infections in animals and humans globally. The specific genetic loci-and the extent to which they drive cross-species switching, transmissibility, and adaptation-are not well understood. Here, we conducted a population genomic study of 437 S. aureus isolates to identify bacterial genetic variation that determines infection of human and animal hosts through a genome-wide association study (GWAS) using linear mixed models. We found genetic variants tagging φSa3 prophage-encoded immune evasion genes associated with human hosts, which contributed ~99.9% of the overall heritability (~88%), highlighting their key role in S. aureus human infection. Furthermore, GWAS of pairs of phylogenetically matched human and animal isolates confirmed and uncovered additional loci not implicated in GWAS of unmatched isolates. Our findings reveal the loci that are critical for S. aureus host transmissibility, infection, switching, and adaptation and how their spread alters the specificity of host-adapted clones.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W. Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| |
Collapse
|
35
|
Ries JI, Heß M, Nouri N, Wichelhaus TA, Göttig S, Falcone FH, Kraiczy P. CipA mediates complement resistance of Acinetobacter baumannii by formation of a factor I-dependent quadripartite assemblage. Front Immunol 2022; 13:942482. [PMID: 35958553 PMCID: PMC9361855 DOI: 10.3389/fimmu.2022.942482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is known to be one of the leading pathogens that cause severe nosocomial infections. To overcome eradication by the innate immune system during infection, A. baumannii developed a number of immune evasion strategies. Previously, we identified CipA as a plasminogen-binding and complement-inhibitory protein. Here we show that CipA inhibits all three complement activation pathways and interacts with key complement components C3, C3b, C4b, C5, Factor B, Factor D, and in particular Factor I. CipA also targets function of the C5 convertase as cleavage of C5 was impaired. Systematic screening of CipA variants identified two separate binding sites for C3b and a Factor I-interacting domain located at the C-terminus. Structure predictions using AlphaFold2 and binding analyses employing CipA variants lacking Factor I-binding capability confirmed that the orientation of the C-terminal domain is essential for the interaction with Factor I. Hence, our analyses point to a novel Factor I-dependent mechanisms of complement inactivation mediated by CipA of A. baumannii. Recruitment of Factor I by CipA initiates the assembly of a quadripartite complex following binding of either Factor H or C4b-binding protein to degrade C3b and C4b, respectively. Loss of Factor I binding in a CipA-deficient strain, or a strain producing a CipA variant lacking Factor I-binding capability, correlated with a higher susceptibility to human serum, indicating that recruitment of Factor I enables A. baumannii to resist complement-mediated killing.
Collapse
Affiliation(s)
- Julia I Ries
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marie Heß
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Noura Nouri
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Stephan Göttig
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Franco H Falcone
- Institute for Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
36
|
Laceb ZM, Diene SM, Lalaoui R, Kihal M, Chergui FH, Rolain JM, Hadjadj L. Genetic Diversity and Virulence Profile of Methicillin and Inducible Clindamycin-Resistant Staphylococcus aureus Isolates in Western Algeria. Antibiotics (Basel) 2022; 11:antibiotics11070971. [PMID: 35884225 PMCID: PMC9312111 DOI: 10.3390/antibiotics11070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcusaureus causes a wide range of life-threatening infections. In this study, we determined its prevalence in the hospital environment and investigated nasal carriage among healthcare workers and patients admitted to a hospital in western Algeria. A total of 550 specimens were collected. An antibiogram was performed and the genes encoding resistance to methicillin, inducible clindamycin and toxins were sought among the 92 S. aureus isolates. The spread of clones with a methicillin- and/or clindamycin-resistance phenotype between these ecosystems was studied using genomic analysis. A prevalence of 27%, 30% and 13% of S. aureus (including 2.7%, 5% and 1.25% of MRSA) in patients, healthcare workers and the hospital environment were observed, respectively. The presence of the mecA, erm, pvl and tsst-1 genes was detected in 10.9%, 17.4%, 7.6% and 18.5% of samples, respectively. Sequencing allowed us to identify seven sequence types, including three MRSA-IV-ST6, two MRSA-IV-ST80-PVL+, two MRSA-IV-ST22-TSST-1, two MRSA-V-ST5, and one MRSA-IV-ST398, as well as many virulence genes. Here, we reported that both the hospital environment and nasal carriage may be reservoirs contributing to the spread of the same pathogenic clone persisting over time. The circulation of different pathogenic clones of MRSA, MSSA, and iMLSB, as well as the emergence of at-risk ST398 clones should be monitored.
Collapse
Affiliation(s)
- Zahoua Mentfakh Laceb
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Seydina M. Diene
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Rym Lalaoui
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Mabrouk Kihal
- Laboratoire de Microbiologie Appliquée, Université Ahmed Ben Bella Oran1, BP1524 El M’naouer, Oran 31000, Algeria;
| | - Fella Hamaidi Chergui
- Laboratoire de Biotechnologies, Environnement et Santé, Faculté des Sciences de la Nature et de la Vie, Université de Blida 01, BP270 Route Soumaa, Blida 09000, Algeria; (Z.M.L.); (F.H.C.)
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Linda Hadjadj
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (S.M.D.); (R.L.); (J.-M.R.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-8613-6930
| |
Collapse
|
37
|
Effect of New 2-Thioxoimidazolidin-4-one Compounds against Staphylococcus aureus Clinical Strains and Immunological Markers’ Combinations. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:6720241. [PMID: 35873361 PMCID: PMC9300335 DOI: 10.1155/2022/6720241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022]
Abstract
Although the structure-activity relationship indicates that the 4-thioxoimidazolidin ring is essential for antibacterial activities and pharmaceutical applications, there were no enough studies on the derivatives of this compound. Evaluating the new hydantoin compounds C5 (3-((2-bromobenzylidene) amino)-2- thioxoimidazolidin-4-one) and C6 (3-((4- methoxybenzylidene) amino)-2-thioxoimidazolidin-4-one) that were prepared against clinical Staphylococcus aureus isolates for antibacterial, antibiofilm, and antihemagglutination activities is the aim of this study. Therefore, the potential clinical resistance of the strains was evaluated by their ability to form biofilms, antibiotic resistance, and agglutinate erythrocytes macroscopically and microscopically; besides, the bacterial biofilm was screened for any association with the patient's serum immunoglobulin levels and complements. Despite the effective concentration for C5 and C6 compounds, which is ≤ 31.25 μg/ml, the reduction rate is not concentration-dependent; it depends on the molecular docking of the hydantoin compounds. Hence, the effect of the minimal inhibitory concentrations (MICs) is variable. In this study, the results for the compounds (with the concentration of 31.25–62.5 μg/mL for C5 and 62.5–125 μg/mL for C6) significantly manifest the antibacteria, antibiofilm, and antihemagglutination effects against the virulent strains of S. aureus due to the high percentage of biofilm inhibition that was caused by the new hydantoin compounds. Besides, time-kill kinetics studies showed that these compounds pose bactericidal action. Overall, this study revealed that the new hydantoin derivatives have an interesting potential as new antibacterial drugs through the inhibition of bacterial adhesion. The infections of these isolates activate the complement system through the lectin pathway. Nevertheless, these compounds can be improved in order to be used at even lower concentrations.
Collapse
|
38
|
Matuszewska M, Murray GGR, Ba X, Wood R, Holmes MA, Weinert LA. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. eLife 2022; 11:e74819. [PMID: 35762208 PMCID: PMC9239682 DOI: 10.7554/elife.74819] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/23/2022] [Indexed: 01/11/2023] Open
Abstract
Mobile genetic elements (MGEs) are agents of horizontal gene transfer in bacteria, but can also be vertically inherited by daughter cells. Establishing the dynamics that led to contemporary patterns of MGEs in bacterial genomes is central to predicting the emergence and evolution of novel and resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex (CC) 398 is the dominant MRSA in European livestock and a growing cause of human infections. Previous studies have identified three categories of MGEs whose presence or absence distinguishes livestock-associated CC398 from a closely related and less antibiotic-resistant human-associated population. Here, we fully characterise the evolutionary dynamics of these MGEs using a collection of 1180 CC398 genomes, sampled from livestock and humans, over 27 years. We find that the emergence of livestock-associated CC398 coincided with the acquisition of a Tn916 transposon carrying a tetracycline resistance gene, which has been stably inherited for 57 years. This was followed by the acquisition of a type V SCCmec that carries methicillin, tetracycline, and heavy metal resistance genes, which has been maintained for 35 years, with occasional truncations and replacements with type IV SCCmec. In contrast, a class of prophages that carry a human immune evasion gene cluster and that are largely absent from livestock-associated CC398 have been repeatedly gained and lost in both human- and livestock-associated CC398. These contrasting dynamics mean that when livestock-associated MRSA is transmitted to humans, adaptation to the human host outpaces loss of antibiotic resistance. In addition, the stable inheritance of resistance-associated MGEs suggests that the impact of ongoing reductions in antibiotic and zinc oxide use in European farms on livestock-associated MRSA will be slow to be realised.
Collapse
Affiliation(s)
- Marta Matuszewska
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Gemma GR Murray
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Rhiannon Wood
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Mark A Holmes
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
39
|
Molecular Evolution and Genomic Insights into Community-Acquired Methicillin-Resistant Staphylococcus aureus Sequence Type 88. Microbiol Spectr 2022; 10:e0034222. [PMID: 35730953 PMCID: PMC9430171 DOI: 10.1128/spectrum.00342-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence type 88 (ST88) methicillin-resistant Staphylococcus aureus (MRSA) has been recognized as an important pathogen that causes infections in humans, especially when it has strong biofilm production and multidrug resistance (MDR). However, knowledge of the determinants of resistance or virulence and genomic characteristics of ST88 MRSA from China is still limited. In this study, we employed the antimicrobial resistance (AMR), biofilm formation, and genomic characteristics of ST88 MRSA collected from various foods in China and estimated the worldwide divergence of ST88 MRSA with publicly available ST88 genomes. All ST88 isolates studied were identified as having resistance genes, while 50% (41/82) harbored MDR genes. All isolates carried core virulence genes related to immune modulation, adherence, secreted enzymes, and hemolysin. In addition, all 20 Chinese ST88 isolates showed biofilm production capacity, three strongly so. Bayesian phylogenetic analysis showed that Chinese ST88 clones formed an independent MRSA lineage, with two subclades associated with acquisition of type IVc staphylococcal cassette chromosome mec (SCCmec) elements. In contrast, all African ST88 strains were subtyped as SCCmecIVa, where the African clades were mixed with a few European and American isolates, suggesting potential transmission from Africa to these regions. In summary, our results revealed the evolution of ST88 MRSA in humans, animals, and foods in Africa and Asia. The food-associated ST88 genomes in this study will remedy the lack of food-associated ST88 isolates, and the study in general will extend the discussion of the potential exchanges of ST88 between humans and foods or food animals. IMPORTANCE ST88 MRSA has frequently been detected in humans, animals, and foods mainly in Africa and Asia. It can colonize and cause mild to severe infections in humans, especially children. Several studies from African countries have described its genotypic characteristics but, limited information is available on the evolution and characterization of ST88 MRSA in Asia, especially China. Meanwhile, the molecular history of its global spread remains largely unclear. In this study, we analyzed the genomic evolution of global ST88 MRSA strains in detail and identified key genetic changes associated with specific hosts or regions. Our results suggested geographical differentiation between ST88 MRSA’s evolution in Africa and its evolution in Asia, with a more recent clonal evolution in China. The introduction of ST88 MRSA in China was aligned with the acquisition of SCCmecIVc elements, specific virulent prophages, and AMR genes.
Collapse
|
40
|
A Factor H-Fc fusion protein increases complement-mediated opsonophagocytosis and killing of community associated methicillin-resistant Staphylococcus aureus. PLoS One 2022; 17:e0265774. [PMID: 35324969 PMCID: PMC8946749 DOI: 10.1371/journal.pone.0265774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus employs a multitude of immune-evasive tactics to circumvent host defenses including the complement system, a component of innate immunity central to controlling bacterial infections. With antibiotic resistance becoming increasingly common, there is a dire need for novel therapies. Previously, we have shown that S. aureus binds the complement regulator factor H (FH) via surface protein SdrE to inhibit complement. To address the need for novel therapeutics and take advantage of the FH:SdrE interaction, we examined the effect of a fusion protein comprised of the SdrE-interacting domain of FH coupled with IgG Fc on complement-mediated opsonophagocytosis and bacterial killing of community associated methicillin-resistant S. aureus. S. aureus bound significantly more FH-Fc compared to Fc-control proteins and FH-Fc competed with serum FH for S. aureus binding. FH-Fc treatment increased C3-fragment opsonization of S. aureus for both C3b and iC3b, and boosted generation of the anaphylatoxin C5a. In 5 and 10% serum, FH-Fc treatment significantly increased S. aureus killing by polymorphonuclear cells. This anti-staphylococcal effect was evident in 75% (3/4) of clinical isolates tested. This study demonstrates that FH-Fc fusion proteins have the potential to mitigate the protective effects of bound serum FH rendering S. aureus more vulnerable to the host immune system. Thus, we report the promise of virulence-factor-targeted fusion-proteins as an avenue for prospective anti-staphylococcal therapeutic development.
Collapse
|
41
|
Addis MF, Pisanu S, Monistero V, Gazzola A, Penati M, Filipe J, Di Mauro S, Cremonesi P, Castiglioni B, Moroni P, Pagnozzi D, Tola S, Piccinini R. Comparative secretome analysis of Staphylococcus aureus strains with different within-herd intramammary infection prevalence. Virulence 2022; 13:174-190. [PMID: 35030987 PMCID: PMC8765078 DOI: 10.1080/21505594.2021.2024014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen causing intramammary infection and mastitis in dairy cows. S. aureus genotypes (GT) can differ significantly in their ability to diffuse and persist in the herd; while the association of virulence gene carriage with epidemiological behavior remains unclear, a role for secreted proteins has been postulated. We characterized the secretome of six S. aureus strains belonging to two genotypes with opposite within-herd prevalence, GTB (high) and GTS (low), corresponding to sequence types (ST) 8 and 398, by high-resolution tandem mass spectrometry and differential analysis with Proteome Discoverer. Data are available via ProteomeXchange with identifier PXD029571. Out of 720 identified proteins, 98 were unique or more abundant in GTB/ST8 and 68 in GTS/ST398. GTB/ST8 released more immunoglobulin-binding proteins, complement and antimicrobial peptide inhibitors, enterotoxins, and metabolic enzymes, while GTS/ST398 released more leukocidins, hemolysins, lipases, and peptidases. Furthermore, GTB/ST8 released the von Willebrand factor protein, staphylokinase, and clumping factor B, while GTS released the staphylococcal coagulase and clumping factor A. Hence, GTB/ST8 secretomes indicated a higher propensity for immune evasion and chronicity and GTS/ST398 secretomes for cellular damage and inflammation, consistent with their epidemiological characteristics. Accordingly, GTS/ST398 secretions were significantly more cytotoxic against bovine PBMCs in vitro. Our findings confirm the crucial role of extracellular virulence factors in S. aureus pathogenesis and highlight the need to investigate their differential release adding to gene carriage for a better understanding of the relationship of S. aureus genotypes with epidemiological behavior and, possibly, disease severity.
Collapse
Affiliation(s)
- M Filippa Addis
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | | | - Valentina Monistero
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Alessandra Gazzola
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Martina Penati
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Joel Filipe
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Susanna Di Mauro
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Paolo Moroni
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy.,Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Renata Piccinini
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| |
Collapse
|
42
|
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win? Int J Mol Sci 2022; 23:ijms23020948. [PMID: 35055134 PMCID: PMC8781139 DOI: 10.3390/ijms23020948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.
Collapse
|
43
|
Complement component C3: A structural perspective and potential therapeutic implications. Semin Immunol 2022; 59:101627. [PMID: 35760703 PMCID: PMC9842190 DOI: 10.1016/j.smim.2022.101627] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
As the most abundant component of the complement system, C3 and its proteolytic derivatives serve essential roles in the function of all three complement pathways. Central to this is a network of protein-protein interactions made possible by the sequential proteolysis and far-reaching structural changes that accompany C3 activation. Beginning with the crystal structures of C3, C3b, and C3c nearly twenty years ago, the physical transformations underlying C3 function that had long been suspected were finally revealed. In the years that followed, a compendium of crystallographic information on C3 derivatives bound to various enzymes, regulators, receptors, and inhibitors generated new levels of insight into the structure and function of the C3 molecule. This Review provides a concise classification, summary, and interpretation of the more than 50 unique crystal structure determinations for human C3. It also highlights other salient features of C3 structure that were made possible through solution-based methods, including Hydrogen/Deuterium Exchange and Small Angle X-ray Scattering. At this pivotal time when the first C3-targeted therapeutics begin to see use in the clinic, some perspectives are also offered on how this continually growing body of structural information might be leveraged for future development of next-generation C3 inhibitors.
Collapse
|
44
|
Siggins MK, Sriskandan S. Bacterial Lymphatic Metastasis in Infection and Immunity. Cells 2021; 11:33. [PMID: 35011595 PMCID: PMC8750085 DOI: 10.3390/cells11010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Collapse
Affiliation(s)
- Matthew K. Siggins
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
45
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 502] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
The protease SplB of Staphylococcus aureus targets host complement components and inhibits complement-mediated bacterial opsonophagocytosis. J Bacteriol 2021; 204:e0018421. [PMID: 34633872 PMCID: PMC8765433 DOI: 10.1128/jb.00184-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host’s immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.
Collapse
|
47
|
Schwarz C, Töre Y, Hoesker V, Ameling S, Grün K, Völker U, Schulze PC, Franz M, Faber C, Schaumburg F, Niemann S, Hoerr V. Host-pathogen interactions of clinical S. aureus isolates to induce infective endocarditis. Virulence 2021; 12:2073-2087. [PMID: 34490828 PMCID: PMC8425731 DOI: 10.1080/21505594.2021.1960107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To evaluate potential pathomechanisms in the induction of infective endocarditis (IE), 34 Staphylococcus aureus (S. aureus) isolates, collected from patients with S. aureus endocarditis and from healthy individuals were investigated both in vitro and in vivo. S. aureus isolates were tested in vitro for their cytotoxicity, invasion and the association with platelets. Virulence factor expression profiles and cellular response were additionally investigated and tested for correlation with the ability of S. aureus to induce vegetations on the aortic valves in vivo. In an animal model of IE valvular conspicuity was assessed by in vivo magnetic resonance imaging at 9.4 T, histology and enrichment gene expression analysis. All S. aureus isolates tested in vivo caused a reliable infection and inflammation of the aortic valves, but could not be differentiated and categorized according to the measured in vitro virulence profiles and cytotoxicity. Results from in vitro assays did not correlate with the severity of IE. However, the isolates differed substantially in the activation and inhibition of pathways connected to the extracellular matrix and inflammatory response. Thus, comprehensive approaches of host-pathogen interactions and corresponding immune pathways are needed for the evaluation of the pathogenic capacity of bacteria. An improved understanding of the interaction between virulence factors and immune response in S. aureus infective endocarditis would offer novel possibilities for the development of therapeutic strategies and specific diagnostic imaging markers.
Collapse
Affiliation(s)
- Christian Schwarz
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Yasemin Töre
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Hoesker
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Katja Grün
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | | | - Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Jena, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic for Radiology, University Hospital Muenster, Muenster, Germany.,Institute of Medical Microbiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.,Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
48
|
Kwiecinski JM, Kratofil RM, Parlet CP, Surewaard BGJ, Kubes P, Horswill AR. Staphylococcus aureus uses the ArlRS and MgrA cascade to regulate immune evasion during skin infection. Cell Rep 2021; 36:109462. [PMID: 34320352 PMCID: PMC8450000 DOI: 10.1016/j.celrep.2021.109462] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/01/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Skin is one of the most common sites of host immune response against Staphylococcus aureus infection. Here, through a combination of in vitro assays, mouse models, and intravital imaging, we find that S. aureus immune evasion in skin is controlled by a cascade composed of the ArlRS two-component regulatory system and its downstream effector, MgrA. S. aureus lacking either ArlRS or MgrA is less virulent and unable to form correct abscess structure due to de-repression of a giant surface protein, Ebh. These S. aureus mutants also have decreased expression of immune evasion factors (leukocidins, chemotaxis-inhibitory protein of S. aureus [CHIPS], staphylococcal complement inhibitor [SCIN], and nuclease) and are unable to kill neutrophils, block their chemotaxis, degrade neutrophil extracellular traps, and survive direct neutrophil attack. The combination of disrupted abscess structure and reduced immune evasion factors makes S. aureus susceptible to host defenses. ArlRS and MgrA are therefore the main regulators of S. aureus immune evasion and promising treatment targets.
Collapse
Affiliation(s)
- Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30387, Poland
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Corey P Parlet
- Department of Veterans Affairs, Iowa City VA Medical Center, Iowa City, IA 52246, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Bas G J Surewaard
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4Z6, Canada; Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Rocha LS, Silva BPD, Correia TML, Silva RPD, Meireles DDA, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biol 2021; 46:102075. [PMID: 34315109 PMCID: PMC8327333 DOI: 10.1016/j.redox.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 μM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 μM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.
Collapse
Affiliation(s)
- Leonardo Silva Rocha
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Thiago M L Correia
- Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil
| | | | - Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rafael Pereira
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil; Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
50
|
Jin Y, Yu X, Chen Y, Chen W, Shen P, Luo Q, Zhang S, Kong X, Zheng B, Xiao Y. Characterization of highly virulent community-associated methicillin-resistant Staphylococcus aureus ST9-SCC mec XII causing bloodstream infection in China. Emerg Microbes Infect 2021; 9:2526-2535. [PMID: 33174510 PMCID: PMC7717876 DOI: 10.1080/22221751.2020.1848354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that livestock (LA)-MRSA ST398 evolved from a human-adapted methicillin-susceptible S. aureus (MSSA) clone. However, detailed information regarding ST9 is still unclear. Here, we characterized a community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) ST9-SCCmec XII isolate that has not been previously reported to cause serious disease in China. We obtained whole-genome sequences of one ST9-t899-XII isolate—ZY462471—from a patient with bloodstream infection without livestock contact. The antibiotic susceptibilities of ZY462471 were determined and the clinical information was extracted from medical notes and compared with twenty-seven previously sequenced genomes. Phylogenetic reconstruction was performed to investigate the probable host evolutionary origins of ZY462471, and the difference in resistome and virulence factors were investigated. Virulence assay was performed to evaluate the high virulence potential of ZY462471 and compare the virulence between the closest ST9 MSSA neighbours. Clinical data suggested that ZY462471 is a CA-MRSA. Phylogenetic analysis showed a much closer relationship of ZY462471 with human-associated MSSA ST9 isolates than other LA-MRSA ST9 isolates, suggesting that ZY462471 probably evolved from ST9 MSSA predecessors by acquiring an SCCmec cassette. Importantly, virulence assays indicated that ZY462471 was highly virulent and compared with the MSSA ST9 predecessors, ZY462471 did not show attenuated virulence. Finally, we found that ZY462471 harboured an immune evasion cluster (IEC)-carrying βC-Φ, which is typically found in human clinical S. aureus rather than LA-MRSA isolates, suggesting that ZY4762471 obtained the IEC-carrying βC-Φs from human clinical S. aureus strains. Considering its high virulence potential, this strain should be monitored to prevent more widespread dissemination.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yu
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Laboratory Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pin Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|