1
|
Hornung V, Gaidt MM. Friendly fire: recognition of self by the innate immune system. Curr Opin Immunol 2024; 90:102457. [PMID: 39232338 DOI: 10.1016/j.coi.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to 'friendly fire' rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.
Collapse
Affiliation(s)
- Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| | - Moritz M Gaidt
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
Forden CA. Phagolysosomal resistance hypothesized to be a danger signal. Scand J Immunol 2024:e13400. [PMID: 39138895 DOI: 10.1111/sji.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Antigen presenting cells sometimes require T cell "help" to kill and decompose microbes they capture, especially when those microbes resist effector molecules including nitric oxide and reactive oxygen species. Pathogens are more likely to resist those effectors, shared by the innate and adaptive immune systems, than are commensals. Does such resistance alert the immune system to the danger posed by those pathogens? Several lines of evidence suggest this occurs. Mouse studies showed a surprising exacerbation, not alleviation of experimental autoimmune encephalomyelitis, by suppression of nitric oxide production, but only when the suppression was applied to animals undergoing vaccination with myelin. In contrast, animals receiving T cells activated by vaccination without suppression of nitric oxide benefitted from reduced autoimmune cytotoxicity when nitric oxide production was suppressed after adoptive transfer. Vaccinia and adenovirus suppress nitric oxide production and have been successful vaccine platforms, also consistent with the above phagolysosomal resistance hypothesis. The hypothesis solves a long-standing quandary-how can nitric oxide protect against both infection and autoimmunity, especially autoimmune diseases for which it seems a major effector? The importance of physical linkage between epitopes, first proposed in Bretscher's Two-Step, Two-Signal theory dependent on B cells, is extended to include phagolysosomal resistance in general, plus a corollary proposition that the immune system detects resistance to dissociation of high-affinity pathogenic ligands from host binding sites to make neutralizing antibodies.
Collapse
|
3
|
Shen C, Lu Q, Yang D, Zhang X, Huang X, Li R, Que Z, Chen N. Genome-wide identification analysis in wild-type Solanum pinnatisectum reveals some genes defending against Phytophthora infestans. Front Genet 2024; 15:1379784. [PMID: 38812971 PMCID: PMC11134371 DOI: 10.3389/fgene.2024.1379784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Solanum pinnatisectum exhibits strong resistance to late blight caused by Phytophthora infestans but only an incomplete genome assembly based on short Illumina reads has been published. In this study, we generated the first chromosome-level draft genome for the wild-type potato species S. pinnatisectum in China using Oxford Nanopore technology sequencing and Hi-C technology. The high-quality assembled genome size is 664 Mb with a scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive sequences, and predominant long terminal repeats (42.51% of the entire genome). The genome of S. pinnatisectum was predicted to contain 34,245 genes, of which 99.34% were functionally annotated. Moreover, 303 NBS-coding disease resistance (R) genes were predicted in the S. pinnatisectum genome to investigate the potential mechanisms of resistance to late blight disease. The high-quality chromosome-level reference genome of S. pinnatisectum is expected to provide potential valuable resources for intensively and effectively investigating molecular breeding and genetic research in the future.
Collapse
Affiliation(s)
- Chunxiu Shen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Qineng Lu
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Di Yang
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | | | | | - Rungen Li
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Zhiqun Que
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Na Chen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| |
Collapse
|
4
|
Kywe C, Lundquist EA, Ackley BD, Lansdon P. The MAB-5/Hox family transcription factor is important for Caenorhabditis elegans innate immune response to Staphylococcus epidermidis infection. G3 (BETHESDA, MD.) 2024; 14:jkae054. [PMID: 38478633 PMCID: PMC11075571 DOI: 10.1093/g3journal/jkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.
Collapse
Affiliation(s)
- Christopher Kywe
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
Ma M, Tang L, Sun R, Lyu X, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Chen W, Jiang D, Cheng J. An effector SsCVNH promotes the virulence of Sclerotinia sclerotiorum through targeting class III peroxidase AtPRX71. MOLECULAR PLANT PATHOLOGY 2024; 25:e13464. [PMID: 38695733 PMCID: PMC11064801 DOI: 10.1111/mpp.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.
Collapse
Affiliation(s)
- Ming Ma
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Liguang Tang
- Wuhan Vegetable Research InstituteWuhan Academy of Agricultural ScienceWuhanHubeiChina
| | - Rui Sun
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xueliang Lyu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research ServiceWashington State UniversityPullmanWashingtonUSA
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
6
|
Rahmani NR, Belluomo R, Kruyt MC, Gawlitta D, Joosten LAB, Weinans H, Croes M. Trained innate immunity modulates osteoblast and osteoclast differentiation. Stem Cell Rev Rep 2024; 20:1121-1134. [PMID: 38478316 PMCID: PMC11087362 DOI: 10.1007/s12015-024-10711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 05/12/2024]
Abstract
Macrophages are key regulators in bone repair and regeneration. Recent studies have shown that long-term epigenetic changes and metabolic shifts occur during specific immune training of macrophages that affect their functional state, resulting in heightened (trained) or reduced (tolerant) responses upon exposure to a second stimulus. This is known as innate immune memory. Here, we study the impact of macrophages' memory trait on osteoblast differentiation of human mesenchymal stromal cells (hMSCs) and osteoclast differentiation. An in vitro trained immunity protocol of monocyte-derived macrophages was employed using inactivated Candida albicans and Bacillus Calmette-Guérin (BCG) to induce a 'trained' state and Pam3CSK4 (PAM) and Lipopolysaccharides (LPS) to induce a 'tolerance' state. Macrophages were subsequently cocultured with hMSCs undergoing osteogenic differentiation during either resting (unstimulated) or inflammatory conditions (restimulated with LPS). Alkaline phosphatase activity, mineralization, and cytokine levels (TNF, IL-6, oncostatin M and SDF-1α) were measured. In addition, macrophages underwent osteoclast differentiation. Our findings show that trained and tolerized macrophages induced opposing results. Under resting conditions, BCG-trained macrophages enhanced ALP levels (threefold), while under inflammatory conditions this was found in the LPS-tolerized macrophages (fourfold). Coculture of hMSCs with trained macrophages showed mineralization while tolerized macrophages inhibited the process under both resting and inflammatory conditions. While osteoclast differentiation was not affected in trained-macrophages, this ability was significantly loss in tolerized ones. This study further confirms the intricate cross talk between immune cells and bone cells, highlighting the need to consider this interaction in the development of personalized approaches for bone regenerative medicine.
Collapse
Affiliation(s)
- N R Rahmani
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - R Belluomo
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Developmental Biomedical Engineering, Twente University, Enschede, the Netherlands
| | - D Gawlitta
- Regenerative Medicine Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - L A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - H Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomechanical Engineering, Technical University Delft, Delft, the Netherlands
| | - M Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Li X, Guo Z, Zhou Y, Zhang B, Ruan H, Chen W. Three new discovery effector proteins from Candidatus Liberibacter asiaticus psy62 inhibit plant defense through interaction with AtCAT3 and AtGAPA. PLANT CELL REPORTS 2024; 43:130. [PMID: 38652336 DOI: 10.1007/s00299-024-03220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yue Zhou
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huaqin Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
8
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
9
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
11
|
Wang R, Wang Y, He D, Shi T, Zhang Y, Liu S, Yan X, Huang L. Responses of plant immune system and rhizosphere soil microbiome to the elicitor BAR11 in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169920. [PMID: 38199343 DOI: 10.1016/j.scitotenv.2024.169920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Microbial elicitors have been shown to boost plant immunity by inducing defense responses to reduce plant disease. However, little is known about the changes in plant microbiome and metabolism in the process of enhancing plant immunity with elicitors. The protein elicitor BAR11, from Saccharothrix yanglingensis Hhs.015, induces defense responses in Arabidopsis thaliana that enhances resistance to pathogens. In this study, bar11 was inserted into Col-0 A. thaliana to obtain BAR11-Trans plant by Agrobacterium-mediated immersion transformation. BAR11-Trans exhibited an elevated defense level against Pseudomonas syringae pv. tomato DC3000 while experiencing a decline in biomass production of above-ground parts. In the process, BAR11-Trans increased the activity of phenylalanine ammonia lyase (PAL) and catalase (CAT), and up-regulated genes related to plant defense pathways. Furthermore, BAR11-Trans decreased root tip reactive oxygen species (ROS) levels while increasing ROS burst in the leaves. Soil transplantation experiments showed that soil planted with BAR11-Trans could enhance the resistance of Col-0 A. thaliana to DC3000. Analysis of A. thaliana rhizosphere soil through 16S rRNA amplified sequencing revealed that BAR11-Trans increased the relative abundance and diversity of the rhizosphere microbial community, leading to the recruitment of more plant probiotics. Additionally, the accumulation of kaempferitrin and robinin in BAR11-Trans influenced the physicochemical properties of rhizosphere soil and the composition of the bacterial community. In summary, BAR11-Trans exhibited heightened defense levels compared to Col-0, leading to increased secretion of secondary metabolites and the recruitment of a greater number of microorganisms to adapt to the environment. These findings offer novel insights for the potential application of elicitors in agricultural disease control.
Collapse
Affiliation(s)
- Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Yu Wang
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Dandan He
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Tiecheng Shi
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Yanan Zhang
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Shang Liu
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Science, Northwest A&F University, Yangling, China; National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China.
| | - Lili Huang
- National Key Laboratory of Crop improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, China; College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
12
|
Spel L, Hou C, Theodoropoulou K, Zaffalon L, Wang Z, Bertoni A, Volpi S, Hofer M, Gattorno M, Martinon F. HSP90β controls NLRP3 autoactivation. SCIENCE ADVANCES 2024; 10:eadj6289. [PMID: 38416826 PMCID: PMC10901362 DOI: 10.1126/sciadv.adj6289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Gain-of-function mutations in NLRP3 are linked to cryopyrin-associated periodic syndromes (CAPS). Although NLRP3 autoinflammasome assembly triggers inflammatory cytokine release, its activation mechanisms are not fully understood. Our study used a functional genetic approach to identify regulators of NLRP3 inflammasome formation. We identified the HSP90β-SGT1 chaperone complex as crucial for autoinflammasome activation in CAPS. A deficiency in HSP90β, but not in HSP90α, impaired the formation of ASC specks without affecting the priming and expression of inflammasome components. Conversely, activating NLRP3 with stimuli such as nigericin or alum bypassed the need for SGT1 and HSP90β, suggesting the existence of alternative inflammasome assembly pathways. The role of HSP90β was further demonstrated in PBMCs derived from CAPS patients. In these samples, the pathological constitutive secretion of IL-1β could be suppressed using a pharmacological inhibitor of HSP90β. This finding underscores the potential of SGT1-HSP90β modulation as a therapeutic strategy in CAPS while preserving NLRP3's physiological functions.
Collapse
Affiliation(s)
- Lotte Spel
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Cyrielle Hou
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Katerina Theodoropoulou
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
- Pediatric Unit of Immunology, Allergology, and Rheumatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Léa Zaffalon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Zhuo Wang
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| | - Arinna Bertoni
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- DINOGMI, Università degli Studi di Genova, Genoa, Italy
| | - Michaël Hofer
- Pediatric Unit of Immunology, Allergology, and Rheumatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Martinon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, Epalinges 1066, Switzerland
| |
Collapse
|
13
|
Chen L, Xiao J, Li Y, Song Y, Liu J, Zhou Q, Sun T, Wang HB, Liu B. The Raf-like MAPKKKs STY8, STY17, and STY46 negatively regulate Botrytis cinerea resistance by limiting MKK7 protein accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1503-1516. [PMID: 38059690 DOI: 10.1111/tpj.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Plant diseases, which seriously damage crop production, are in most cases caused by fungal pathogens. In this study, we found that the Raf-like MAPKKKs STY8 (SERINE/THREONINE/TYROSINE KINASE 8), STY17, and STY46 negatively regulate resistance to the fungal pathogen Botrytis cinerea through jasmonate response in Arabidopsis. Moreover, STY8/STY17/STY46 homologs negatively contribute to chitin signaling. We further identified MKK7 as the MAPKK component interacting with STY8/STY17/STY46 homologs. MKK7 positively contributes to resistance to B. cinerea and chitin signaling. Furthermore, we found that STY8/STY17/STY46 homologs negatively affect the accumulation of MKK7, in accordance with the opposite roles of MKK7 and STY8/STY17/STY46 homologs in defense against B. cinerea. These results provide new insights into the mechanisms precisely regulating plant immunity via Raf-like MAPKKKs.
Collapse
Affiliation(s)
- Lijuan Chen
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640, Guangzhou, People's Republic of China
| | - Jiahui Xiao
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - You Li
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuxiao Song
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qi Zhou
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Sun
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hong-Bin Wang
- School of Pharmaceutical Sciences, Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, 510006, Guangzhou, People's Republic of China
| | - Bing Liu
- School of Life Sciences, Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
14
|
Christian N, Perlin MH. Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes. Mycologia 2024; 116:227-250. [PMID: 38380970 DOI: 10.1080/00275514.2023.2299658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Michael H Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
15
|
Liang J, Lu L, Zhou H, Fang J, Zhao Y, Hou H, Chen L, Cao C, Yang D, Diao Z, Tang D, Li S. Receptor-like kinases OsRLK902-1 and OsRLK902-2 form immune complexes with OsRLCK185 to regulate rice blast resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1565-1579. [PMID: 37976240 DOI: 10.1093/jxb/erad460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.
Collapse
Affiliation(s)
- Jiahui Liang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Houli Zhou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Fang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaofei Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Hongna Hou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lizhe Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Cao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Song J, Chen F, Lv B, Guo C, Yang J, Guo J, Huang L, Ning G, Yang Y, Xiang F. Comparative transcriptome and metabolome analysis revealed diversity in the response of resistant and susceptible rose ( Rosa hybrida) varieties to Marssonina rosae. FRONTIERS IN PLANT SCIENCE 2024; 15:1362287. [PMID: 38455733 PMCID: PMC10917926 DOI: 10.3389/fpls.2024.1362287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Rose black spot disease caused by Marssonina rosae is among the most destructive diseases that affects the outdoor cultivation and production of roses; however, the molecular mechanisms underlying the defensive response of roses to M. rosae have not been clarified. To investigate the diversity of response to M. rosae in resistant and susceptible rose varieties, we performed transcriptome and metabolome analyses of resistant (KT) and susceptible (FG) rose varieties and identified differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in response to M. rosae at different time points. In response to M. rosae, DEGs and DAMs were mainly upregulated compared to the control and transcription factors were concentrated in the WRKY and AP2/ERF families. Gene Ontology analysis showed that the DEGs of FG were mainly enriched in biological processes, such as the abscisic acid-activated signaling pathway, cell wall, and defense response, whereas the DEGs of KT were mainly enriched in Golgi-mediated vesicle transport processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs of both varieties were concentrated in plant-pathogen interactions, plant hormone signal transduction, and mitogen-activated protein kinase signaling pathways, with the greatest number of DEGs associated with brassinosteroid (BR) in the plant hormone signal transduction pathway. The reliability of the transcriptome results was verified by qRT-PCR. DAMs of KT were significantly enriched in the butanoate metabolism pathway, whereas DAMs of FG were significantly enriched in BR biosynthesis, glucosinolate biosynthesis, and tryptophan metabolism. Moreover, the DAMs in these pathways were significantly positively correlated with the DEGs. Disease symptoms were aggravated when FG leaves were inoculated with M. rosae after 24-epibrassinolide treatment, indicating that the response of FG to M. rosae involves the BR signaling pathway. Our results provide new insights into the molecular mechanisms underlying rose response to M. rosae and lay a theoretical foundation for formulating rose black spot prevention and control strategies and cultivating resistant varieties.
Collapse
Affiliation(s)
- Jurong Song
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Chen
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bo Lv
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Cong Guo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jie Yang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiaqi Guo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Li Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Yang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fayun Xiang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Meißner R, Mokgokong P, Pretorius C, Winter S, Labuschagne K, Kotze A, Prost S, Horin P, Dalton D, Burger PA. Diversity of selected toll-like receptor genes in cheetahs (Acinonyx jubatus) and African leopards (Panthera pardus pardus). Sci Rep 2024; 14:3756. [PMID: 38355905 PMCID: PMC10866938 DOI: 10.1038/s41598-024-54076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The anthropogenic impact on wildlife is ever increasing. With shrinking habitats, wild populations are being pushed to co-exist in proximity to humans leading to an increased threat of infectious diseases. Therefore, understanding the immune system of a species is key to assess its resilience in a changing environment. The innate immune system (IIS) is the body's first line of defense against pathogens. High variability in IIS genes, like toll-like receptor (TLR) genes, appears to be associated with resistance to infectious diseases. However, few studies have investigated diversity in TLR genes in vulnerable species for conservation. Large predators are threatened globally including leopards and cheetahs, both listed as 'vulnerable' by IUCN. To examine IIS diversity in these sympatric species, we used next-generation-sequencing to compare selected TLR genes in African leopards and cheetahs. Despite differences, both species show some TLR haplotype similarity. Historic cheetahs from all subspecies exhibit greater genetic diversity than modern Southern African cheetahs. The diversity in investigated TLR genes is lower in modern Southern African cheetahs than in African leopards. Compared to historic cheetah data and other subspecies, a more recent population decline might explain the observed genetic impoverishment of TLR genes in modern Southern African cheetahs. However, this may not yet impact the health of this cheetah subspecies.
Collapse
Affiliation(s)
- René Meißner
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Prudent Mokgokong
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Chantelle Pretorius
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- WWF South African, Bridge House, Boundary Terraces, Mariendahl Ave, Newlands, 7725, Capetown, South Africa
| | - Sven Winter
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Kim Labuschagne
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Antoinette Kotze
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of the Free State, Bloemfontein Campus, Bloemfontein, 9300, South Africa
| | - Stefan Prost
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of Oulu, Pentti Kaiteran Katu 1, 90570, Oulu, Finland
| | - Petr Horin
- Department of Animal Genetics, University of Veterinary Sciences, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno (CEITEC Vetuni), Brno, Czech Republic
| | - Desire Dalton
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa.
- School of Health and Life Science, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
18
|
Zhang C, Xie Y, He P, Shan L. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:73-83. [PMID: 38416059 DOI: 10.1094/mpmi-10-23-0177-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
19
|
Kong L, Ma X, Zhang C, Kim SI, Li B, Xie Y, Yeo IC, Thapa H, Chen S, Devarenne TP, Munnik T, He P, Shan L. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell 2024; 187:609-623.e21. [PMID: 38244548 PMCID: PMC10872252 DOI: 10.1016/j.cell.2023.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
Collapse
Affiliation(s)
- Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - In-Cheol Yeo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hem Thapa
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Timothy P Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, the Netherlands
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
20
|
Borjabad A, Dong B, Chao W, Volsky DJ, Potash MJ. Innate immune responses reverse HIV cognitive disease in mice: Profile by RNAseq in the brain. Virology 2024; 589:109917. [PMID: 37951088 PMCID: PMC10841696 DOI: 10.1016/j.virol.2023.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Antiretroviral therapy controls immunodeficiency in people with HIV but many develop mild neurocognitive disorder. Here we investigated HIV brain disease by infecting mice with the chimeric HIV, EcoHIV, and probing changes in brain gene expression during infection and reversal with polyinosinic-polycytidylic acid (poly I:C). EcoHIV-infected C57BL/6 mice were treated with poly I:C and monitored by assay of learning in radial arm water maze, RNAseq of striatum, and QPCR of virus burden and brain transcripts. Poly I:C reversed EcoHIV-associated cognitive impairment and reduced virus burden. Major pathways downregulated by infection involved neuronal function, these transcriptional changes were normalized by poly I:C treatment. Innate immune responses were the major pathways induced in EcoHIV-infected, poly I:C treated mice. Our findings provide a framework to identify brain cell genes dysregulated by HIV infection and identify a set of innate immune response genes that can block systemic infection and its associated dysfunction in the brain.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David J Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
21
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
22
|
Boohar RT, Vandepas LE, Traylor-Knowles N, Browne WE. Phylogenetic and Protein Structure Analyses Provide Insight into the Evolution and Diversification of the CD36 Domain "Apex" among Scavenger Receptor Class B Proteins across Eukarya. Genome Biol Evol 2023; 15:evad218. [PMID: 38035778 PMCID: PMC10715195 DOI: 10.1093/gbe/evad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
The cluster of differentiation 36 (CD36) domain defines the characteristic ectodomain associated with class B scavenger receptor (SR-B) proteins. In bilaterians, SR-Bs play critical roles in diverse biological processes including innate immunity functions such as pathogen recognition and apoptotic cell clearance, as well as metabolic sensing associated with fatty acid uptake and cholesterol transport. Although previous studies suggest this protein family is ancient, SR-B diversity across Eukarya has not been robustly characterized. We analyzed SR-B homologs identified from the genomes and transcriptomes of 165 diverse eukaryotic species. The presence of highly conserved amino acid motifs across major eukaryotic supergroups supports the presence of a SR-B homolog in the last eukaryotic common ancestor. Our comparative analyses of SR-B protein structure identify the retention of a canonical asymmetric beta barrel tertiary structure within the CD36 ectodomain across Eukarya. We also identify multiple instances of independent lineage-specific sequence expansions in the apex region of the CD36 ectodomain-a region functionally associated with ligand-sensing. We hypothesize that a combination of both sequence expansion and structural variation in the CD36 apex region may reflect the evolution of SR-B ligand-sensing specificity between diverse eukaryotic clades.
Collapse
Affiliation(s)
- Reed T Boohar
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lauren E Vandepas
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
23
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Lantican DV, Nocum JDL, Manohar ANC, Mendoza JVS, Gardoce RR, Lachica GC, Gueco LS, Dela Cueva FM. Comparative RNA-seq analysis of resistant and susceptible banana genotypes reveals molecular mechanisms in response to banana bunchy top virus (BBTV) infection. Sci Rep 2023; 13:18719. [PMID: 37907581 PMCID: PMC10618458 DOI: 10.1038/s41598-023-45937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.
Collapse
Affiliation(s)
- Darlon V Lantican
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines.
| | - Jen Daine L Nocum
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Anand Noel C Manohar
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Jay-Vee S Mendoza
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Roanne R Gardoce
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Grace C Lachica
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries, Forestry, Office of the Vice Chancellor for Research and Extension, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Lavernee S Gueco
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| | - Fe M Dela Cueva
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, 4031, Laguna, Philippines
| |
Collapse
|
25
|
Yang L, Zhao M, Zhang X, Jiang J, Fei N, Ji W, Ye Y, Guan W, Yang Y, Zhao T. Acidovorax citrulli type III effector AopU interferes with plant immune responses and interacts with a watermelon E3 ubiquitin ligase. Front Microbiol 2023; 14:1275032. [PMID: 37876782 PMCID: PMC10590900 DOI: 10.3389/fmicb.2023.1275032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Acidovorax citrulli is a seed-borne bacterium that causes bacterial fruit blotch of watermelon and other cucurbit plants worldwide. It uses a type III secretion system to inject type III effectors (T3Es) into plant cells, which affect the host immune responses and facilitate pathogen colonization. However, the current understanding of the specific molecular mechanisms and targets of these effectors in A. citrulli is limited. In this study, we characterized a novel T3E called AopU in A. citrulli group II strain Aac5, which shares homology with XopU in Xanthomonas oryzae. The Agrobacterium-mediated gene transient expression system was used to study the effect of AopU on host immunity. The results showed that AopU localized on the cell membrane and nucleus of Nicotiana benthamiana, inhibited reactive oxygen species burst induced by flg22 and the expression of marker genes associated with pathogen-associated molecular pattern-triggered immunity, but activated salicylic acid and jasmonic acid signal pathways. Further investigations revealed that AopU interacts with E3 ubiquitin ligase ClE3R in watermelon, both in vitro and in vivo. Interestingly, the deletion of aopU did not affect the virulence of A. citrulli, suggesting that AopU may have functional redundancy with other effectors in terms of its role in virulence. Collectively, these findings provide new insights into the mechanism of plant immune responses regulated by A. citrulli T3Es.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuoya Fei
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
26
|
Aizpurua O, Blijleven K, Trivedi U, Gilbert MTP, Alberdi A. Unravelling animal-microbiota evolution on a chip. Trends Microbiol 2023; 31:995-1002. [PMID: 37217368 DOI: 10.1016/j.tim.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Whether and how microorganisms have shaped the evolution of their animal hosts is a major question in biology. Although many animal evolutionary processes appear to correlate with changes in their associated microbial communities, the mechanistic processes leading to these patterns and their causal relationships are still far from being resolved. Gut-on-a-chip models provide an innovative approach that expands beyond the potential of conventional microbiome profiling to study how different animals sense and react to microbes by comparing responses of animal intestinal tissue models to different microbial stimuli. This complementary knowledge can contribute to our understanding of how host genetic features facilitate or prevent different microbiomes from being assembled, and in doing so elucidate the role of host-microbiota interactions in animal evolution.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Kees Blijleven
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Galli M, Jacob S, Zheng Y, Ghezellou P, Gand M, Albuquerque W, Imani J, Allasia V, Coustau C, Spengler B, Keller H, Thines E, Kogel KH. MIF-like domain containing protein orchestrates cellular differentiation and virulence in the fungal pathogen Magnaporthe oryzae. iScience 2023; 26:107565. [PMID: 37664630 PMCID: PMC10474474 DOI: 10.1016/j.isci.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
29
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
30
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
31
|
Liu W, Yan C, Li R, Chen G, Wang X, Wen Y, Zhang C, Wang X, Xu Y, Wang Y. VqMAPK3/VqMAPK6, VqWRKY33, and VqNSTS3 constitute a regulatory node in enhancing resistance to powdery mildew in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad116. [PMID: 37786728 PMCID: PMC10541564 DOI: 10.1093/hr/uhad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/21/2023] [Indexed: 10/04/2023]
Abstract
Grapevine powdery mildew is caused by Erysiphe necator, which seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2. The novel VqNSTS3 was transferred into susceptible 'Thompson Seedless' by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the VqNSTS3 promoter. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen's haustoria and block invasion by Golovinomyces cichoracearum. These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
Collapse
Affiliation(s)
- Wandi Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohui Yan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ruimin Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Guanyu Chen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinqi Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yingqiang Wen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Guo L, Mu Y, Wang D, Ye C, Zhu S, Cai H, Zhu Y, Peng Y, Liu J, He X. Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1187372. [PMID: 37448867 PMCID: PMC10338059 DOI: 10.3389/fpls.2023.1187372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyu Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hong Cai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youliang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
33
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
34
|
Zhang H. Plant latent defense response against compatibility. THE ISME JOURNAL 2023; 17:787-791. [PMID: 36991179 PMCID: PMC10203107 DOI: 10.1038/s41396-023-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Managing the association with microbes is crucial for plants. Evidence is emerging for the plant latent defense response, which is conditionally elicited by certain microbial nonpathogenic factors and thereby guards against potential risks from beneficial or commensal microbes. Latent defense response is an exciting new research area with a number of key issues immediately awaiting exploration. A detailed understanding of latent defense response will underpin the applications of beneficial microbes.
Collapse
Affiliation(s)
- Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
35
|
Ji C, Liang Z, Cao H, Chen Z, Kong X, Xin Z, He M, Wang J, Wei Z, Xing J, Li C, Zhang Y, Zhang H, Sun F, Li J, Li K. Transcriptome-based analysis of the effects of compound microbial agents on gene expression in wheat roots and leaves under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1109077. [PMID: 37235031 PMCID: PMC10206238 DOI: 10.3389/fpls.2023.1109077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Salt stress inhibits the beneficial effects of most plant growth-promoting rhizobacteria. The synergistic relationship between beneficial rhizosphere microorganisms and plants helps achieve more stable growth-promoting effects. This study aimed 1) to elucidate changes in gene expression profiles in the roots and leaves of wheat after inoculation with compound microbial agents and 2) to determine the mechanisms by which plant growth-promoting rhizobacteria mediate plant responses to microorganisms. Methods Following inoculation with compound bacteria, transcriptome characteristics of gene expression profiles of wheat, roots, and leaves at the flowering stage were investigated using Illumina high-throughput sequencing technology. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the genes that were significantly differentially expressed. Results The expression of 231 genes in the roots of bacterial preparations (BIO) -inoculated wheat changed significantly (including 35 upregulated and 196 downregulated genes) compared with that of non-inoculated wheat. The expression of 16,321 genes in leaves changed significantly, including 9651 upregulated genes and 6670 downregulated genes. The differentially expressed genes were involved in the metabolism of carbohydrates, amino acids, and secondary compounds as well as signal transduction pathways. The ethylene receptor 1 gene in wheat leaves was significantly downregulated, and genes related to ethylene-responsive transcription factor were significantly upregulated. GO enrichment analysis showed that metabolic and cellular processes were the main functions affected in the roots and leaves. The main molecular functions altered were binding and catalytic activities, among which the cellular oxidant detoxification enrichment rate was highly expressed in the roots. The expression of peroxisome size regulation was the highest in the leaves. KEGG enrichment analysis showed that linoleic acid metabolism expression was highest in the roots, and the expression of photosynthesis-antenna proteins was the highest in leaves. After inoculation with a complex biosynthesis agent, the phenylalanine ammonia lyase (PAL) gene of the phenylpropanoid biosynthesis pathway was upregulated in wheat leaf cells while 4CL, CCR, and CYP73A were downregulated. Additionally, CYP98A and REF1 genes involved in the flavonoid biosynthesis pathway were upregulated, while F5H, HCT, CCR, E2.1.1.104, and TOGT1-related genes were downregulated. Discussion Differentially expressed genes may play key roles in improving salt tolerance in wheat. Compound microbial inoculants promoted the growth of wheat under salt stress and improved disease resistance by regulating the expression of metabolism-related genes in wheat roots and leaves and activating immune pathway-related genes.
Collapse
Affiliation(s)
- Chao Ji
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
| | - Zengwen Liang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
- Shandong Yongsheng Agricultural Development Co., Ltd., Yongsheng (Shouguang) Vegetable Technology Research Institute Co., Ltd, Weifang, China
| | - Hui Cao
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zhizhang Chen
- College of Foreign Languages, Weifang University, Weifang, Shandong, China
| | - Xuehua Kong
- Weifang Hanting Vestibule School, Weifang Education Bureau, Weifang, Shandong, China
| | - Zhiwen Xin
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Mingchao He
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jie Wang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Zichao Wei
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Jiahao Xing
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Chunyu Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Yingxiang Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Hua Zhang
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong Province, Weifang University, Weifang, Shandong, China
| | - Fujin Sun
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Runxin Fruit and Vegetable Cultivation Cooperative of Weifang Economic Development Zone, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Jianlin Li
- College of Seed and Facility Agricultural Engineering, Weifang University, Weifang, Shandong, China
- Weifang Nuode Biotechnology Co., LTD, Weifang Agricultural Bureau, Weifang, Shandong, China
| | - Kun Li
- Taishan Forest Ecosystem Research Station, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, Shandong, China
- College of Forestry, Shandong Agriculture University, Taian, Shandong, China
| |
Collapse
|
36
|
Fartash AH, Ben C, Mazurier M, Ebrahimi A, Ghalandar M, Gentzbittel L, Rickauer M. Medicago truncatula quantitative resistance to a new strain of Verticillium alfalfae from Iran revealed by a genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1125551. [PMID: 37123855 PMCID: PMC10140629 DOI: 10.3389/fpls.2023.1125551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Verticillium wilt is a major threat to many crops, among them alfalfa (Medicago sativa). The model plant Medicago truncatula, a close relative of alfalfa was used to study the genetic control of resistance towards a new Verticillium alfalfae isolate. The accidental introduction of pathogen strains through global trade is a threat to crop production and such new strains might also be better adapted to global warming. Isolates of V. alfalfae were obtained from alfalfa fields in Iran and characterized. The Iranian isolate AF1 was used in a genome-wide association study (GWAS) involving 242 accessions from the Mediterranean region. Root inoculations were performed with conidia at 25°C and symptoms were scored regularly. Maximum Symptom Score and Area under Disease Progess Curve were computed as phenotypic traits to be used in GWAS and for comparison to a previous study with French isolate V31.2 at 20°C. This comparison showed high correlation with a shift to higher susceptibility, and similar geographical distribution of resistant and susceptible accessions to AF1 at 25°C, with resistant accessions mainly in the western part. GWAS revealed 30 significant SNPs linked to resistance towards isolate AF1. None of them were common to the previous study with isolate V31.2 at 20°C. To confirm these loci, the expression of nine underlying genes was studied. All genes were induced in roots following inoculation, in susceptible and resistant plants. However, in resistant plants induction was higher and lasted longer. Taken together, the use of a new pathogen strain and a shift in temperature revealed a completely different genetic control compared to a previous study that demonstrated the existence of two major QTLs. These results can be useful for Medicago breeding programs to obtain varieties better adapted to future conditions.
Collapse
Affiliation(s)
- Amir Hossein Fartash
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Cécile Ben
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mélanie Mazurier
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Asa Ebrahimi
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Ghalandar
- Plant Protection Department, Markazi Agricultural and Natural Resources Research and Education Center, Arak, Iran
| | - Laurent Gentzbittel
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
- Project Center for Agro Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Martina Rickauer
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, Centre National de Recherche Scientifique, Toulouse Institut National Polytechnique, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
37
|
Peterson ND, Tse SY, Huang QJ, Wani KA, Schiffer CA, Pukkila-Worley R. Non-canonical pattern recognition of a pathogen-derived metabolite by a nuclear hormone receptor identifies virulent bacteria in C. elegans. Immunity 2023; 56:768-782.e9. [PMID: 36804958 PMCID: PMC10101930 DOI: 10.1016/j.immuni.2023.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/27/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.
Collapse
Affiliation(s)
- Nicholas D Peterson
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samantha Y Tse
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qiuyu Judy Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
39
|
Kvitko BH, Collmer A. Discovery of the Hrp Type III Secretion System in Phytopathogenic Bacteria: How Investigation of Hypersensitive Cell Death in Plants Led to a Novel Protein Injector System and a World of Inter-Organismal Molecular Interactions Within Plant Cells. PHYTOPATHOLOGY 2023; 113:626-636. [PMID: 37099273 DOI: 10.1094/phyto-08-22-0292-kd] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602
| | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853
| |
Collapse
|
40
|
Clavijo-Buriticá DC, Sosa CC, Heredia RC, Mosquera AJ, Álvarez A, Medina J, Quimbaya M. Use of Arabidopsis thaliana as a model to understand specific carcinogenic events: Comparison of the molecular machinery associated with cancer-hallmarks in plants and humans. Heliyon 2023; 9:e15367. [PMID: 37101642 PMCID: PMC10123165 DOI: 10.1016/j.heliyon.2023.e15367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Model organisms are fundamental in cancer research given that they rise the possibility to characterize in a quantitative-objective fashion the organisms as a whole in ways that are infeasible in humans. From this perspective, model organisms with short generation times and established protocols for genetic manipulation allow the understanding of basic biology principles that might guide carcinogenic onset. The cancer-hallmarks (CHs) approach, a modular perspective for cancer understanding, stands that underlying the variability among different cancer types, critical events support the carcinogenic origin and progression. Thus, CHs as interconnected genetic circuitry, have a causal effect over cancer biogenesis and might represent a comparison scaffold among model organisms to identify and characterize evolutionarily conserved modules to understand cancer. Nevertheless, the identification of novel cancer regulators by comparative genomics approaches relies on selecting specific biological processes or related signaling cascades that limit the type of detected regulators, even more, holistic analysis from a systemic perspective is absent. Similarly, although the plant Arabidopsis thaliana has been used as a model organism to dissect specific disease-associated mechanisms, given the evolutionary distance between plants and humans, a general concern about the utility of using A. thaliana as a cancer model persists. In the present research, we take advantage of the CHs paradigm as a framework to establish a functional systemic comparison between plants and humans, that allowed the identification not only of specific novel key genetic regulators, but also, biological processes, metabolic systems, and genetic modules that might contribute to the neoplastic transformation. We propose five cancer-hallmarks that overlapped in conserved mechanisms and processes between Arabidopsis and human and thus, represent mechanisms which study can be prioritized in A. thaliana as an alternative model for cancer research. Additionally, derived from network analyses and machine learning strategies, a new set of potential candidate genes that might contribute to neoplastic transformation is described. These findings postulate A. thaliana as a suitable model to dissect, not all, but specific cancer properties, highlighting the importance of using alternative complementary models to understand carcinogenesis.
Collapse
Affiliation(s)
| | - Chrystian C. Sosa
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Grupo de Investigación en Evolución, Ecología y Conservación EECO, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Rafael Cárdenas Heredia
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Arlen James Mosquera
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Andrés Álvarez
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Jan Medina
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Mauricio Quimbaya
- Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
- Corresponding author.
| |
Collapse
|
41
|
Yang F, Li G, Felix G, Albert M, Guo M. Engineered Agrobacterium improves transformation by mitigating plant immunity detection. THE NEW PHYTOLOGIST 2023; 237:2493-2504. [PMID: 36564969 DOI: 10.1111/nph.18694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Agrobacterium tumefaciens microbe-associated molecular pattern elongation factor Tu (EF-Tu) is perceived by orthologs of the Arabidopsis immune receptor EFR activating pattern-triggered immunity (PTI) that causes reduced T-DNA-mediated transient expression. We altered EF-Tu in A. tumefaciens to reduce PTI and improved transformation efficiency. A robust computational pipeline was established to detect EF-Tu protein variation in a large set of plant bacterial species and identified EF-Tu variants from bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that allow the pathogen to escape EFR perception. Agrobacterium tumefaciens strains were engineered to substitute EF-Tu with DC3000 variants and examined their transformation efficiency in plants. Elongation factor Tu variants with rarely occurred amino acid residues were identified within DC3000 EF-Tu that mitigates recognition by EFR. Agrobacterium tumefaciens strains were engineered by expressing DC3000 EF-Tu instead of native agrobacterial EF-Tu and resulted in decreased plant immunity detection. These engineered A. tumefaciens strains displayed an increased efficiency in transient expression in both Arabidopsis thaliana and Camelina sativa. The results support the potential application of these strains as improved vehicles to introduce transgenic alleles into members of the Brassicaceae family.
Collapse
Affiliation(s)
- Fan Yang
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0722, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0660, USA
| | - Guangyong Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68588-0722, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588-0660, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, 72074, Germany
| | - Markus Albert
- Department of Biology, Molecular Plant Physiology, University of Erlangen, Erlangen, 91054, Germany
| | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| |
Collapse
|
42
|
Sun L, Wu X, Diao J, Zhang J. Pathogenesis mechanisms of phytopathogen effectors. WIREs Mech Dis 2023; 15:e1592. [PMID: 36593734 DOI: 10.1002/wsbm.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 01/04/2023]
Abstract
Plants commonly face the threat of invasion by a wide variety of pathogens and have developed sophisticated immune mechanisms to defend against infectious diseases. However, successful pathogens have evolved diverse mechanisms to overcome host immunity and cause diseases. Different cell structures and unique cellular organelles carried by plant cells endow plant-specific defense mechanisms, in addition to the common framework of innate immune system shared by both plants and animals. Effectors serve as crucial virulence weapons employed by phytopathogens to disarm the plant immune system and promote infection. Here we summarized the many diverse strategies by which phytopathogen effectors overcome plant defense and prospected future perspectives. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Diao
- Northeast Forestry University, College of Forestry, Harbin, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
44
|
Decsi K, Kutasy B, Hegedűs G, Alföldi ZP, Kálmán N, Nagy Á, Virág E. Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon 2023; 9:e12907. [PMID: 36691550 PMCID: PMC9860300 DOI: 10.1016/j.heliyon.2023.e12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Recently, climate change has had an increasing impact on the world. Innate defense mechanisms operating in plants - such as PAMP-triggered Immunity (PTI) - help to reduce the adverse effects caused by various abiotic and biotic stressors. In this study, the effects of ELICE16INDURES® plant conditioner for organic farming, developed by the Research Institute for Medicinal Plants and Herbs Ltd. Budakalász Hungary, were studied in a soybean population in Northern Hungary. The active compounds and ingredients of this product were selected in such a way as to facilitate the triggering of general plant immunity without the presence and harmful effects of pathogens, thereby strengthening the healthy plant population and preparing it for possible stress effects. In practice, treatments of this agent were applied at two different time points and two concentrations. The conditioning effect was well demonstrated by using agro-drone and ENDVI determination in the soybean field. The genetic background of healthier plants was investigated by NGS sequencing, and by the expression levels of genes encoding enzymes involved in the catalysis of metabolic pathways regulating PTI. The genome-wide transcriptional profiling resulted in 13 contigs related to PAMP-triggered immunity and activated as a result of the treatments. Further analyses showed 16 additional PTI-related contigs whose gene expression changed positively as a result of the treatments. The gene expression values of genes encoded in these contigs were determined by in silico mRNA quantification and validated by RT-qPCR. Both - relatively low and high treatments - showed an increase in gene expression of key genes involving AOC, IFS, MAPK4, MEKK, and GST. Transcriptomic results indicated that the biosyntheses of jasmonic acid (JA), salicylic acid (SA), phenylpropanoid, flavonoid, phytoalexin, and cellular detoxification processes were triggered in the appropriate molecular steps and suggested that plant immune reactions may be activated also artificially, and innate immunity can be enhanced with proper plant biostimulants.
Collapse
Affiliation(s)
- Kincső Decsi
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Barbara Kutasy
- Department of Plant Physiology and Plant Ecology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Géza Hegedűs
- EduCoMat Ltd., Keszthely, Hungary
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, Zalaegerszeg, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Zoltán Péter Alföldi
- Department of Environmental Biology, Campus Keszthely, Hungarian University of Agriculture and Life Sciences Georgikon, Keszthely, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Ágnes Nagy
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
| | - Eszter Virág
- EduCoMat Ltd., Keszthely, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
- Research Institute for Medicinal Plants and Herbs Ltd., Budakalász, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
45
|
Xu L, Wang J, Xiao Y, Han Z, Chai J. Structural insight into chitin perception by chitin elicitor receptor kinase 1 of Oryza sativa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:235-248. [PMID: 35568972 DOI: 10.1111/jipb.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed innate immune systems to fight against pathogenic fungi by monitoring pathogenic signals known as pathogen-associated molecular patterns (PAMP) and have established endo symbiosis with arbuscular mycorrhizal (AM) fungi through recognition of mycorrhizal (Myc) factors. Chitin elicitor receptor kinase 1 of Oryza sativa subsp. Japonica (OsCERK1) plays a bifunctional role in mediating both chitin-triggered immunity and symbiotic relationships with AM fungi. However, it remains unclear whether OsCERK1 can directly recognize chitin molecules. In this study, we show that OsCERK1 binds to the chitin hexamer ((NAG)6 ) and tetramer ((NAG)4 ) directly and determine the crystal structure of the OsCERK1-(NAG)6 complex at 2 Å. The structure shows that one OsCERK1 is associated with one (NAG)6 . Upon recognition, chitin hexamer binds OsCERK1 by interacting with the shallow groove on the surface of LysM2. These structural findings, complemented by mutational analyses, demonstrate that LysM2 is crucial for recognition of both (NAG)6 and (NAG)4 . Altogether, these findings provide structural insights into the ability of OsCERK1 in chitin perception, which will lead to a better understanding of the role of OsCERK1 in mediating both immunity and symbiosis in rice.
Collapse
Affiliation(s)
- Li Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jizong Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Xiao
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifu Han
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, 40225, Germany
| |
Collapse
|
46
|
Jin T, Karthikeyan A, Wang L, Zong T, Wang T, Yin J, Hu T, Yang Y, Liu H, Cui Y, Zhao T, Zhi H. Digs out and characterization of the resistance gene accountable to soybean mosaic virus in soybean (Glycine max (L.) Merrill). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4217-4232. [PMID: 36114309 DOI: 10.1007/s00122-022-04213-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A putative candidate gene conferring resistance to SMV strain SC1 was identified on chromosome 2, and the linked marker was validated in soybean cultivars Soybean mosaic, caused by the soybean mosaic virus, is the most common disease in soybean and a significant impediment to soybean production in the Huanghuai and Yangtze River regions of China. Kefeng No.1, a soybean cultivar, showed high resistance to soybean mosaic virus strain (SC1) collected from Huanghuai and Yangtze River regions. Genetic analysis based on the Mendelian genic population derived from the cross Kefeng No.1 × Nannong 1138-2 revealed that Kefeng No.1 possesses a single dominant gene. Furthermore, genetic fine-mapping using an F2 population containing 281 individuals delimited resistant gene to a genomic region of 186 kb flanked by SSR markers BS020610 and BS020620 on chromosome 2. Within this region, there were 14 genes based on the Williams 82 reference genome. According to sequence analysis, six of the 14 genes have amino acid differences, and one of these genes is the Rsv4 allele designated as Rsc1-DR. The functional analysis of candidate genes using the bean pod mottle virus (BPMV)-induced gene silencing (VIGS) system revealed that Rsc1-DR was accountable for Kefeng No.1's resistance to SMV-SC1. Based on the genome sequence of Rsc1-DR, an Insertion/Deletion (InDel) molecular marker, JT0212, was developed and genotyped using 100 soybean cultivars, and the coincidence rate was 89%. The study enriched our understanding of the SMV resistance mechanism. The marker developed in this study could be directly used by the soybean breeders to select the genotypes with favorable alleles for making crosses, and also it will facilitate marker-assisted selection of SMV resistance in soybean breeding.
Collapse
Affiliation(s)
- Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingxuan Zong
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Hu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongchun Cui
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Yoon M, Middleditch MJ, Rikkerink EHA. A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the Pseudomonas effector AvrRpm2 to activate RPM1-mediated plant resistance. THE PLANT CELL 2022; 34:4950-4972. [PMID: 36130293 PMCID: PMC9710000 DOI: 10.1093/plcell/koac286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.
Collapse
Affiliation(s)
- Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Martin J Middleditch
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
48
|
Freire de Melo F, Marques HS, Fellipe Bueno Lemos F, Silva Luz M, Rocha Pinheiro SL, de Carvalho LS, Souza CL, Oliveira MV. Role of nickel-regulated small RNA in modulation of Helicobacter pylori virulence factors. World J Clin Cases 2022; 10:11283-11291. [PMID: 36387830 PMCID: PMC9649571 DOI: 10.12998/wjcc.v10.i31.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that infects about half of the world's population. H. pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A (CagA). CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H. pylori infection. In this sense, small regulatory RNAs (sRNAs) are important macromolecules capable of inhibiting and activating gene expression. This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections. Recent discoveries have shown that nickel-regulated small RNA (NikS) is a post-transcriptional regulator of virulence properties of H. pylori, including the oncoprotein CagA. Notably, high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA. In addition, NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without. With that in mind, this minireview approaches, in an accessible way, the most important and current aspects about the role of NikS in the control of virulence factors of H. pylori and the potential clinical repercussions of this modulation.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Brazil
| | - Fabian Fellipe Bueno Lemos
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Lorena Sousa de Carvalho
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Cláudio Lima Souza
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Márcio Vasconcelos Oliveira
- Institution Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| |
Collapse
|
49
|
Lee S, Jo SH, Hong CE, Lee J, Cha B, Park JM. Plastid methylerythritol phosphate pathway participates in the hypersensitive response-related cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1032682. [PMID: 36388595 PMCID: PMC9645581 DOI: 10.3389/fpls.2022.1032682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Programmed cell death (PCD), a characteristic feature of hypersensitive response (HR) in plants, is an important cellular process often associated with the defense response against pathogens. Here, the involvement of LytB, a gene encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase that participates in the final step of the plastid methylerythritol phosphate (MEP) pathway, in plant HR cell death was studied. In Nicotiana benthmiana plants, silencing of the NbLytB gene using virus-induced gene silencing (VIGS) caused plant growth retardation and albino leaves with severely malformed chloroplasts. In NbLytB-silenced plants, HR-related cell death mediated by the expression of either the human proapoptotic protein gene Bax or an R gene with its cognate Avr effector gene was inhibited, whereas that induced by the nonhost pathogen Pseudomonas syringae pv. syringae 61 was enhanced. To dissect the isoprenoid pathway and avoid the pleiotropic effects of VIGS, chemical inhibitors that specifically inhibit isoprenoid biosynthesis in plants were employed. Treatment of N. benthamiana plants with fosmidomycin, a specific inhibitor of the plastid MEP pathway, effectively inhibited HR-related PCD, whereas treatment with mevinolin (a cytoplasmic mevalonate pathway inhibitor) and fluridone (a carotenoid biosynthesis inhibitor) did not. Together, these results suggest that the MEP pathway as well as reactive oxygen species (ROS) generation in the chloroplast play an important role in HR-related PCD, which is not displaced by the cytosolic isoprenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Sanghun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Chi Eun Hong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byeongjin Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
50
|
Yadav V, Wang Z, Guo Y, Zhang X. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1016822. [PMID: 36340394 PMCID: PMC9632293 DOI: 10.3389/fpls.2022.1016822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Yield and fruit quality loss by powdery mildew (PM) fungus is a major concern in cucurbits, but early-stage resistance mechanisms remain elusive in the majority of cucurbits. Here, we explored the comparative transcriptomic dynamics profiling of resistant line ZXG1755 (R) and susceptible line ZXG1996 (S) 48 h post-inoculation in watermelon seedlings to check precise expression changes induced by Podosphaera. xanthii race '2F'. Phenotypic responses were confirmed by microscopy and endogenous levels of defense and signaling related phytochromes were detected higher in resistant lines. In total, 7642 differently expressed genes (DEGs) were detected, and 57.27% of genes were upregulated in four combinations. DEGs were predominantly abundant in the KEGG pathway linked with phenylpropanoid biosynthesis, plant hormone and transduction, and phenylalanine metabolism, whereas GO terms of defense response, response to fungus, and chitin response were predominant in resistant lines, evidencing significant defense mechanisms and differences in the basal gene expression levels between these contrasting lines. The expression of selected DEGs from major pathways (hormonal, lignin, peroxidase, sugar) were validated via qRT-PCR. Detailed analysis of DEGs evidenced that along with other DEGs, genes including PR1 (Cla97C02G034020) and PRX (Cla97C11G207220/30, Cla97C02G045100 and Cla97C02G049950) should be studied for their potential role. In short, our study portrayed strong evidence indicating the important role of a complex network associated with lignin biosynthesis and phytohormone related downstream mechanisms that are responsible for incompatible interaction between PM and watermelon resistance line.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Yanliang Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| |
Collapse
|