1
|
Zhao J, Wang X, Wu Y, Zhao C. Krüppel-like factor 4 modulates the miR-101/COL10A1 axis to inhibit renal fibrosis after AKI by regulating epithelial-mesenchymal transition. Ren Fail 2024; 46:2316259. [PMID: 38345033 PMCID: PMC10863509 DOI: 10.1080/0886022x.2024.2316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiuli Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chengguang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Chen Q, Ishii K, Mori H, Nishijima A, Arai S, Miyazaki T, Rosenthal PB. Cryo-EM reveals structural basis for human AIM/CD5L recognition of polymeric immunoglobulin M. Nat Commun 2024; 15:9387. [PMID: 39477921 PMCID: PMC11525585 DOI: 10.1038/s41467-024-53615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cell surface scavenger receptors contribute to homoeostasis and the response to pathogens and products associated with damage by binding to common molecular features on a wide range of targets. Apoptosis inhibitor of macrophage (AIM/CD5L) is a soluble protein belonging to the scavenger receptor cysteine-rich (SRCR) superfamily that contributes to prevention of a wide range of diseases associated with infection, inflammation, and cancer. AIM forms complexes with IgM pentamers which helps maintain high-levels of circulating AIM in serum for subsequent activation on release from the complex. The structural basis for AIM recognition of IgM as well as other binding targets is unknown. Here we apply cryogenic electron microscopy imaging (cryo-EM) to show how interfaces on both of AIM's C-terminal SRCR domains interact with the Fcμ constant region and J chain components of the IgM core. Both SRCR interfaces are also shown to contribute interactions important for AIM binding to damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Kazuhiro Ishii
- The Institute for AIM Medicine, Tokyo, Japan
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan.
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
3
|
Chen C, Feng C, Luo Q, Zeng Y, Yuan W, Cui Y, Tang Z, Zhang H, Li T, Peng J, Peng L, Xie X, Guo Y, Peng F, Jiang X, Bai P, Qi Z, Dai H. CD5L up-regulates the TGF-β signaling pathway and promotes renal fibrosis. Life Sci 2024; 354:122945. [PMID: 39127319 DOI: 10.1016/j.lfs.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Renal fibrosis is the common final pathway of progressive renal diseases, in which the macrophages play an important role. ELISA was used to detect CD5 antigen-like (CD5L) in serum samples from end-stage renal disease (ESRD), as well as in mice serum with unilateral ureteral occlusion (UUO). Recombinant CD5L was injected into UUO mice to assess renal injury, fibrosis, and macrophage infiltration. The expression of CD5L was significantly upregulated in the serum of patients with ESRD and UUO mice. Histological analysis showed that rCD5L-treated UUO mice had more severe renal injury and fibrosis. Furthermore, rCD5L promoted the phenotypic transfer of monocytes from Ly6Chigh to LyC6low. RCD5L promoted TGF-β signaling pathway activation by promoting Smad2/3 phosphorylation. We used Co-IP to identify HSPA5 interact with CD5L on cell membrane could inhibit the formation of the Cripto/HSPA5 complex, and promote the activation of the TGF-β signaling pathway. The CD5L antibody could reduce the degree of renal fibrosis in UUO mice.
Collapse
Affiliation(s)
- Chao Chen
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qiulin Luo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yingqi Zeng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiawei Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Peiming Bai
- Medical College, Guangxi University, Nanning 530004, China; Department of Urology, Zhongshan Hospital Xiamen University, Xiamen 361000, China.
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Helong Dai
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Asaad S, Chillon TS, Filipowicz D, Wilms B, Strenge F, Szczepanek-Parulska E, Minich WB, Meyhöfer SM, Marquardt JU, Mittag J, Oster H, Ruchala M, Schomburg L. Serum CD5L as potential biomarker of thyroid hormone status during pregnancy. Biofactors 2024. [PMID: 39345206 DOI: 10.1002/biof.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The thyroid hormone (TH) status is routinely assessed by thyrotropin (TSH) and thyroxine (T4). Both biomarkers are mainly regulated by TH receptor beta, whereas many peripheral organs employ the alpha receptor. Serum cluster of differentiation 5-like molecule (CD5L) is a liver-derived protein under control of both TH receptor isoforms. However, clinical data on its relation to TH status are sparse. An additional biomarker of TH status is needed in particular during pregnancy, where the routine biomarkers become dynamically disturbed. This study aimed to determine possible covariates regulating serum CD5L and to test its potential suitability as additional TH biomarker during pregnancy. A sandwich ELISA for serum CD5L was established using newly raised antibodies. Circadian effects and the impact of liver disease on serum CD5L concentrations were assessed. Serum samples from pregnant women with well-characterized TH and trace element status were analyzed, and CD5L concentrations were correlated with other indicators of TH status including TSH, fT4, fT3, copper, and selenium concentrations. The new quantitative assay for CD5L showed high accuracy. Serum CD5L was stable in dilution and refreezing experiments and did not show strong circadian variance or dependency on liver disease. In serum of pregnant women, CD5L correlated positively to fT3, but not to fT4 or TSH. Significant positive correlations of CD5L were observed with serum levels of the TH-responsive trace elements selenium and copper. The data support the potential suitability of serum CD5L as an additional marker of TH status, with potential value for pregnancy and thyroid disease.
Collapse
Affiliation(s)
- Sabrina Asaad
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Thilo Samson Chillon
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Britta Wilms
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Frank Strenge
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University of Lübeck, Lübeck, Germany
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Waldemar B Minich
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck/Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Henrik Oster
- Lübeck Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Marek Ruchala
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Lutz Schomburg
- The Institute for Experimental Endocrinology, Charité Medical School, Berlin, Germany
| |
Collapse
|
5
|
Wang Y, Su C, Ji C, Xiao J. CD5L associates with IgM via the J chain. Nat Commun 2024; 15:8397. [PMID: 39333069 PMCID: PMC11437284 DOI: 10.1038/s41467-024-52175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
CD5 antigen-like (CD5L), also known as Spα or AIM (Apoptosis inhibitor of macrophage), emerges as an integral component of serum immunoglobulin M (IgM). However, the molecular mechanism underlying the interaction between IgM and CD5L has remained elusive. In this study, we present a cryo-electron microscopy structure of the human IgM pentamer core in complex with CD5L. Our findings reveal that CD5L binds to the joining chain (J chain) in a Ca2+-dependent manner and further links to IgM via a disulfide bond. We further corroborate recently published data that CD5L reduces IgM binding to the mucosal transport receptor pIgR, but does not impact the binding of the IgM-specific receptor FcμR. Additionally, CD5L does not interfere with IgM-mediated complement activation. These results offer a more comprehensive understanding of IgM and shed light on the function of the J chain in the immune system.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
6
|
Shirazi M, Cianfarini C, Ismail A, Wysocki J, Wang JJ, Ye M, Zhang ZJ, Batlle D. Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F412-F425. [PMID: 38961845 PMCID: PMC11460339 DOI: 10.1152/ajprenal.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, P = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, P = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, P = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.NEW & NOTEWORTHY This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.
Collapse
Affiliation(s)
- Mina Shirazi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Cianfarini
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Ismail
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jan Wysocki
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jiao-Jing Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Minghao Ye
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zheng Jenny Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Daniel Batlle
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
7
|
Li G, Yang H, Zhang D, Zhang Y, Liu B, Wang Y, Zhou H, Xu ZX, Wang Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed Pharmacother 2024; 177:117079. [PMID: 38968801 DOI: 10.1016/j.biopha.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-β1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.
Collapse
Affiliation(s)
- Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Zhang L, Kitzmiller CE, Richard AS, Popli S, Choe H. The ability of human TIM1 to bind phosphatidylethanolamine enhances viral uptake and efferocytosis compared to rhesus and mouse orthologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605603. [PMID: 39131348 PMCID: PMC11312472 DOI: 10.1101/2024.07.29.605603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Claire E. Kitzmiller
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Audrey S. Richard
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Sonam Popli
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Research, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Nomiyama K, Sato R, Sato F, Eguchi A. Accumulation of persistent organic pollutants in the kidneys of pet cats (Felis silvestris catus) and the potential implications for their health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173212. [PMID: 38759481 DOI: 10.1016/j.scitotenv.2024.173212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Persistent organic pollutants (POPs), such as polychlorinated diphenyls (PCBs) and brominated diphenyl ethers (PBDEs), are ubiquitous in the pet cat's living environment and are ingested through dietary intake and environmental exposure such as house dust. Cats are known to be susceptible to chronic kidney disease (CKD) and exposure to POPs may be associated with CKD. However, no studies have been conducted on the renal accumulation and health effects of POPs in cats. The objective of this study was to elucidate the accumulation of PCBs, PBDEs, and organochlorine pesticides (OCPs) in the kidneys of domestic cats and discuss their potential impact on feline health. We report here that cats specifically accumulate POPs in their kidneys. Tissue samples were collected from the kidneys, livers, and muscles of cats and the concentrations of POPs in these tissues were analyzed in this study. The results showed that these compounds accumulated significantly higher in the kidney compared to other tissues. In addition, the ability to accumulate in the kidney was higher in cats than in other animals, suggesting that cats have a unique pattern of POPs accumulation in their kidneys, which is thought to occur because cats store a significant number of lipid droplets in the proximal tubules of the kidneys. This unique feature suggests that lipophilic POPs may accumulate in these lipid droplets during the excretory process. Accumulation of certain POPs in the kidneys causes necrosis and sloughing of renal tubular epithelial cells, which may be associated with CKD, a common disease in cats. This study provides valuable insight into understanding the renal accumulation and risk of POPs in cats and provides essential knowledge for developing strategies to protect the health and welfare of domestic cats.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Rina Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Fuka Sato
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba-city 263-8522, Japan
| |
Collapse
|
10
|
Kira S, Namba T, Hiraishi M, Nakamura T, Otani Y, Kon Y, Ichii O. Species-specific histological characterizations of renal tubules and collecting ducts in the kidneys of cats and dogs. PLoS One 2024; 19:e0306479. [PMID: 38959226 PMCID: PMC11221681 DOI: 10.1371/journal.pone.0306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
The histomorphological features of normal kidneys in cats and dogs have been revealed despite the high susceptibility of cats to tubulointerstitial damage. Herein, the histological characteristics of the two species were compared. Cytoplasmic lipid droplets (LDs) were abundant in the proximal convoluted tubules (PCTs) of cats aged 23-27 months but scarce in dogs aged 24-27 months. LDs were rarely observed in the distal tubules (DTs) and collecting ducts (CDs) of either species, as visualized by the expression of Tamm-Horsfall protein 1, calbindin-D28K, and aquaporin 2. The occupational area ratio of proximal tubules (PTs) in the renal cortex was higher, but that of DTs or CDs was significantly lower in adult cats than in dogs. Single PT epithelial cells were larger, but PCT, DT, and CD lumens were significantly narrower in adult cats than in dogs. Unlike adults, young cats at 6 months exhibited significantly abundant cytoplasmic LDs in proximal straight tubules, indicating lipid metabolism-related development. Histochemistry of the 21 lectins also revealed variations in glycosylation across different renal tubules and CDs in both species. Sodium-glucose cotransporter 2 was expressed only in PTs, excluding the proximal straight tubules with few LDs in adult cats or the PCTs of young cats and adult dogs. These findings are crucial for understanding species-specific characteristics of renal histomorphology and pathogenesis.
Collapse
Affiliation(s)
- Shunnosuke Kira
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Teppei Nakamura
- Laboratory of Laboratory Animal Science and Medicine, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Yu P, Gu T, Rao Y, Liang W, Zhang X, Jiang H, Lu J, She J, Guo J, Yang W, Liu Y, Tu Y, Tang L, Zhou X. A novel marine-derived anti-acute kidney injury agent targeting peroxiredoxin 1 and its nanodelivery strategy based on ADME optimization. Acta Pharm Sin B 2024; 14:3232-3250. [PMID: 39027260 PMCID: PMC11252462 DOI: 10.1016/j.apsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0‒t , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.
Collapse
Affiliation(s)
- Ping Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueyang Rao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weimin Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xi Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jindi Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jianmin Guo
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Wei Yang
- Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
14
|
Ojo OA, Ogunlakin AD, Akintayo CO, Olukiran OS, Adetunji JB, Ajayi-Odoko OA, Ogwa TO, Molehin OR, Ojo OO, Mothana RA, Alanzi AR. Spilanthes filicaulis (Schumach. & Thonn.) C.D. Adams leaves protects against streptozotocin-induced diabetic nephropathy. PLoS One 2024; 19:e0301992. [PMID: 38640098 PMCID: PMC11029641 DOI: 10.1371/journal.pone.0301992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | | | | | - Theophilus Oghenenyoreme Ogwa
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi, Arabia
| |
Collapse
|
15
|
Wang P, Li C, Peng T, Ruan L, Wu A, Zhu J, Shi W, Chen M, Zhang T. Tolerogenic CD11c +dendritic cells regulate CD4 +Tregs in replacing delayed ischemic preconditioning to alleviate ischemia-reperfusion acute kidney injury. FASEB J 2024; 38:e23575. [PMID: 38530256 DOI: 10.1096/fj.202302299rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunyao Li
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Peng
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Longzhu Ruan
- Department of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Aijie Wu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiaojiao Zhu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenlu Shi
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Menghua Chen
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ting Zhang
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
16
|
Wang H, Zhu S, Zhou Z, Wang Z, Zhuang W, Xue D, Lu Z, Zheng Q, Ding L, Ren L, Luo W, Wang R, Ge G, Xia L, Li G, Wu H. TR4 worsen urosepsis by regulating GSDMD. Eur J Med Res 2024; 29:151. [PMID: 38429762 PMCID: PMC10908015 DOI: 10.1186/s40001-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Urosepsis is a life-threatening organ disease in which pathogenic microorganisms in the urine enter the blood through the vessels, causing an imbalance in the immune response to infection. The aim of this study was to elucidate the role of testicular orphan receptor 4 (TR4) in urosepsis. METHODS The role of TR4 in the progression and prognosis of urosepsis was confirmed by analyzing data from online databases and clinical human samples. To mimic urosepsis, we injected E. coli bacteria into the renal pelvis of mice to create a urosepsis model. Hematoxylin and eosin staining was used to observe histopathological changes in urosepsis. The effects of the upregulation or downregulation of TR4 on macrophage pyroptosis were verified in vitro. Chromatin immunoprecipitation assay was used to verify the effect of TR4 on Gasdermin D (GSDMD) transcription. RESULTS TR4 was more highly expressed in the nonsurviving group than in the surviving group. Furthermore, overexpressing TR4 promoted inflammatory cytokine expression, and knocking down TR4 attenuated inflammatory cytokine expression. Mechanistically, TR4 promoted pyroptosis by regulating the expression of GSDMD in urosepsis. Furthermore, we also found that TR4 knockdown protected mice from urosepsis induced by the E. coli. CONCLUSIONS TR4 functions as a key regulator of urosepsis by mediating pyroptosis, which regulates GSDMD expression. Targeting TR4 may be a potential strategy for urosepsis treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Shibin Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenghui Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liangliang Ren
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wenqing Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Guangju Ge
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Haiyang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
17
|
Sano M, Koseki Y, Shibata K, Fujisawa T, Nobe K. Therapeutic effects of the alkaline extract of leaves of Sasa sp. and elucidation of its mechanism in acute kidney injury. J Pharmacol Sci 2024; 154:148-156. [PMID: 38395515 DOI: 10.1016/j.jphs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute kidney injury (AKI), a common complication in hospitalized patients, is associated with high morbidity and mortality rates. However, there are currently no approved or effective therapeutics for AKI. AKI is primarily caused by ischemia/reperfusion (I/R) injury, with oxidative stress from reactive oxygen species (ROS) being a major contributor. This study aimed to evaluate the efficacy of an alkaline extract of the leaves of Sasa sp. (SE) using mouse renal I/R injury and hypoxia/reoxygenation (H/R) models in NRK-52E cells. Renal function parameters were measured, and histopathological evaluations were performed to assess the efficacy of SE. In addition, to determine the mechanisms underlying the effects of SE on renal I/R injury, its effects on malondialdehyde (MDA) of oxidative stress and interleukin (IL)-6 and IL-1β of inflammatory cytokines were evaluated. SE (0.03, 0.3, and 3 g/kg) improved renal function in a dose-dependent manner. In addition, SE ameliorated tubular injury and, reduced IL-6, IL-1β and MDA. Also, SE ameliorated cell death, ROS production, and inflammatory cytokine production in H/R-exposed NRK-52E cells. SE showed antioxidant and anti-inflammatory activities in the AKI. These results indicate the potential of SE as a medicinal compound for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Mizuki Sano
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Yutaro Koseki
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keita Shibata
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tomohiro Fujisawa
- Daiwa Biological Research Institute Co., Ltd., 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
18
|
Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, Billiar TR, Kellum JA, Deng M, Peng Z. Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int 2024; 105:508-523. [PMID: 38163633 DOI: 10.1016/j.kint.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Intensive Care Unit of the second affiliated Hospital of Hainan Medical College, Haikou, Hainan, China.
| |
Collapse
|
19
|
Yu Z, Pang H, Yang Y, Luo D, Zheng H, Huang Z, Zhang M, Ren K. Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury. CNS Neurosci Ther 2024; 30:e14363. [PMID: 37469216 PMCID: PMC10848109 DOI: 10.1111/cns.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI. METHODS Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples. RESULTS MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). CONCLUSIONS Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.
Collapse
Affiliation(s)
- Ziyang Yu
- School of MedicineXiamen UniversityXiamenChina
| | - Huize Pang
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yifan Yang
- School of MedicineXiamen UniversityXiamenChina
| | - Doudou Luo
- School of MedicineXiamen UniversityXiamenChina
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Zicheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Mingxia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Ke Ren
- School of MedicineXiamen UniversityXiamenChina
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
20
|
Cao Y, Hu B, Fan Y, Wang W, Chi M, Nasser MI, Ma K, Liu C. The effects of apoptosis inhibitor of macrophage in kidney diseases. Eur J Med Res 2024; 29:21. [PMID: 38178221 PMCID: PMC10765713 DOI: 10.1186/s40001-023-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yixia Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yunhe Fan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Renal Department and Nephrology Institute, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
| |
Collapse
|
21
|
Yasuda K, Shimodan S, Maehara N, Hirota A, Iijima R, Nishijima A, Mori H, Toyama R, Ito A, Yoshikawa Y, Arai S, Miyazaki T. AIM/CD5L ameliorates autoimmune arthritis by promoting removal of inflammatory DAMPs at the lesions. J Autoimmun 2024; 142:103149. [PMID: 38006711 DOI: 10.1016/j.jaut.2023.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The hallmark of autoimmune arthritis is the preceding autoantibody production and the following synovial inflammation with hyperplasia and tissue destruction of the joints. The joint inflammation is mediated not only by effector lymphocytes and auto-antibodies but also chronic activation of innate immunity, particularly promoted by the danger-associated molecular patterns (DAMPs). Here we show that apoptosis inhibitor of macrophage (AIM, also called CD5L) protein regulates arthritis by promoting removal of lesional DAMPs both physiologically and therapeutically. When the autoimmune arthritis was promoted by injecting a cocktail of anti-collagen antibodies without type-II collagen immunization, AIM-deficient (AIM-/-) mice exhibited more exacerbated and sustained swelling at multiple joints with greater synovial hyperplasia and bone erosion than wild-type mice. Administration of recombinant AIM (rAIM) reduced S100A8/9, a major DAMP known to be involved in arthritis progression, and decreased various inflammatory cytokines at the lesions in antibody-injected AIM-/- mice, leading to marked prevention of arthritis symptoms. In human rheumatoid arthritis (RA) patients, AIM was more activated via dissociating from IgM-pentamer in response to DAMPs-mediated inflammation both in serum and synovial fluid than in healthy individuals or non-autoimmune osteoarthritis patients, suggesting a disease-regulatory potency of AIM also in human RA patients. Thus, our study implied a therapeutic availability of rAIM to prevent arthritis symptoms targeting DAMPs.
Collapse
Affiliation(s)
- Keisuke Yasuda
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shieri Shimodan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Aika Hirota
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ruka Iijima
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Ran Toyama
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | - Atsumi Ito
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, 162-8666, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France; LEAP, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Awazu A, Takemoto D, Watanabe K, Sakamoto N. Possibilities of skin coat color-dependent risks and risk factors of squamous cell carcinoma and deafness of domestic cats inferred via RNA-seq data. Genes Cells 2023; 28:893-905. [PMID: 37864512 DOI: 10.1111/gtc.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
The transcriptome data of skin cells from domestic cats with brown, orange, and white coats were analyzed using a public database to investigate the possible relationship between coat color-related gene expression and squamous cell carcinoma risk, as well as the mechanism of deafness in white cats. We found that the ratio of the expression level of genes suppressing squamous cell carcinoma to that of genes promoting squamous cell carcinoma might be considerably lower than the theoretical estimation in skin cells with orange and white coats in white-spotted cat. We also found the possibility of the frequent production of KIT lacking the first exon (d1KIT) in skin cells with white coats, and d1KIT production exhibited a substantial negative correlation with the expression of SOX10, which is essential for melanocyte formation and adjustment of hearing function. Additionally, the production of d1KIT was expected to be due to the insulating activity of the feline endogenous retrovirus 1 (FERV1) LTR in the first intron of KIT by its CTCF binding sequence repeat. These results contribute to basic veterinary research to understand the relationship between cat skin coat and disease risk, as well as the underlying mechanism.
Collapse
Affiliation(s)
- Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, Japan
| | - Daigo Takemoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kaichi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Naoaki Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
23
|
Cai Z, Wu X, Song Z, Sun S, Su Y, Wang T, Cheng X, Yu Y, Yu C, Chen E, Chen W, Yu Y, Linkermann A, Min J, Wang F. Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis. Cell Discov 2023; 9:104. [PMID: 37848438 PMCID: PMC10582023 DOI: 10.1038/s41421-023-00595-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2023] [Indexed: 10/19/2023] Open
Abstract
Given the rapidly aging population, aging-related diseases are becoming an excessive burden on the global healthcare system. Metformin has been shown to be beneficial to many age-related disorders, as well as increase lifespan in preclinical animal models. During the aging process, kidney function progressively declines. Currently, whether and how metformin protects the kidney remains unclear. In this study, among longevity drugs, including metformin, nicotinamide, resveratrol, rapamycin, and senolytics, we unexpectedly found that metformin, even at low doses, exacerbated experimentally-induced acute kidney injury (AKI) and increased mortality in mice. By single-cell transcriptomics analysis, we found that death of renal parenchymal cells together with an expansion of neutrophils occurs upon metformin treatment after AKI. We identified programmed cell death by ferroptosis in renal parenchymal cells and blocking ferroptosis, or depleting neutrophils protects against metformin-induced nephrotoxicity. Mechanistically, upon induction of AKI, ferroptosis in renal parenchymal cells initiates the migration of neutrophils to the site of injury via the surface receptor CXCR4-bound to metformin-iron-NGAL complex, which results in NETosis aggravated AKI. Finally, we demonstrated that reducing iron showed protective effects on kidney injury, which supports the notion that iron plays an important role in metformin-triggered AKI. Taken together, these findings delineate a novel mechanism underlying metformin-aggravated nephropathy and highlight the mechanistic relationship between iron, ferroptosis, and NETosis in the resulting AKI.
Collapse
Affiliation(s)
- Zhaoxian Cai
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaotian Wu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zijun Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Sun
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxing Su
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyi Wang
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xihao Cheng
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingying Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - En Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongping Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
24
|
Pan M, Wang Z, Wang Y, Jiang X, Fan Y, Gong F, Sun Y, Wang D. Celastrol alleviated acute kidney injury by inhibition of ferroptosis through Nrf2/GPX4 pathway. Biomed Pharmacother 2023; 166:115333. [PMID: 37598476 DOI: 10.1016/j.biopha.2023.115333] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023] Open
Abstract
Ferroptosis is an important pathological process in acute kidney injury (AKI) which could lead to chronic kidney disease (CKD) and end-stage renal disease (ESRD). As an active ingredient of Chinese medicine Tripterygium wilfordii, celastrol has been reported to alleviate inflammation and preclinical studies have confirmed its anticancer effect. In the present study, we investigated the renal protective effects of celastrol against cisplatin induced AKI. Mice were administrated cisplatin by intraperitoneal injection and we found that celastrol reduced serum levels of BUN and creatinine, inhibited renal dysfunction, inflammation and oxidative stress. In addition, renal iron accumulation and ferroptosis were significantly reduced by celastrol treatment. Further mechanistic analyses suggested that Nrf2 is essential for celastrol upregulated GPX4 to alleviate ferroptosis and reduction of LDH release, intracellular iron accumulation and lipid peroxidation. These findings expand the potential uses of celastrol for treatment of various kinds of AKI associated with ferroptosis.
Collapse
Affiliation(s)
- Minling Pan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiyi Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xianqin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yali Fan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yunpeng Sun
- The First Affiliated Hospital of Wenzhou Medical University, China.
| | - Dezhong Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; The First Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
25
|
Nemoto H, Honjo M, Arai S, Miyazaki T, Aihara M. Apoptosis inhibitor of macrophages/CD5L enhances phagocytosis in the trabecular meshwork cells and regulates ocular hypertension. J Cell Physiol 2023; 238:2451-2467. [PMID: 37584382 DOI: 10.1002/jcp.31097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The trabecular meshwork (TM) cells of the eye are important for controlling intraocular pressure (IOP) and regulating outflow resistance in the aqueous humor. TM cells can remove particles and cellular debris by phagocytosis, decreasing both outflow resistance and IOP. However, the underlying mechanisms remain unclear. Here, we investigate whether apoptosis inhibitor of macrophages (AIM), which mediates the removal of dead cells and debris in renal tubular epithelial cells, regulates the phagocytic capacity of TM cells. In vitro experiments revealed that CD36, the main receptor for AIM, colocalized with AIM in human TM cells; additionally, phagocytosis was stimulated when AIM was provided. Furthermore, in a mouse model with transient IOP elevation induced by laser iridotomy (LI), removal of accumulated iris pigment epithelial cells or debris in the TM and recovery of IOP to baseline levels were delayed in AIM-/- mice, compared with control mice. However, treatment with AIM eyedrops rescued AIM-/- mice from the elevated IOP after LI. Since AIM is a protein known to inhibit macrophage apoptosis, we additionally verified its involvement in macrophage removal of cellular debris and IOP. There were no statistically significant differences in the number of macrophages between control mice and AIM-/- mice in the TM. Additionally, we confirmed the rescue effect of the rAIM eyedrops after macrophages had been removed by clodronate liposomes. Therefore, AIM plays an important role in regulating the phagocytic capacity of TM cells, thereby affecting outflow resistance. Our results suggest that drugs targeting the phagocytic capacity of TM cells via the AIM-CD36 pathway may be used to treat glaucoma.
Collapse
Affiliation(s)
- Hotaka Nemoto
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
27
|
Takimoto-Sato M, Suzuki M, Kimura H, Ge H, Matsumoto M, Makita H, Arai S, Miyazaki T, Nishimura M, Konno S. Apoptosis inhibitor of macrophage (AIM)/CD5L is involved in the pathogenesis of COPD. Respir Res 2023; 24:201. [PMID: 37592330 PMCID: PMC10433671 DOI: 10.1186/s12931-023-02508-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Alveolar macrophages (AMs) and AM-produced matrix metalloprotease (MMP)-12 are known to play critical roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). The apoptosis inhibitor of the macrophages (AIM)/CD5 molecule-like (CD5L) is a multifunctional protein secreted by the macrophages that mainly exists in the blood in a combined form with the immunoglobulin (Ig)M pentamer. Although AIM has both facilitative and suppressive roles in various diseases, its role in COPD remains unclear. METHODS We investigated the role of AIM in COPD pathogenesis using porcine pancreas elastase (PPE)-induced and cigarette smoke-induced emphysema mouse models and an in vitro model using AMs. We also analyzed the differences in the blood AIM/IgM ratio among nonsmokers, healthy smokers, and patients with COPD and investigated the association between the blood AIM/IgM ratio and COPD exacerbations and mortality in patients with COPD. RESULTS Emphysema formation, inflammation, and cell death in the lungs were attenuated in AIM-/- mice compared with wild-type (WT) mice in both PPE- and cigarette smoke-induced emphysema models. The PPE-induced increase in MMP-12 was attenuated in AIM-/- mice at both the mRNA and protein levels. According to in vitro experiments using AMs stimulated with cigarette smoke extract, the MMP-12 level was decreased in AIM-/- mice compared with WT mice. This decrease was reversed by the addition of recombinant AIM. Furthermore, an analysis of clinical samples showed that patients with COPD had a higher blood AIM/IgM ratio than healthy smokers. Additionally, the blood AIM/IgM ratio was positively associated with disease severity in patients with COPD. A higher AIM/IgM ratio was also associated with a shorter time to the first COPD exacerbation and higher all-cause and respiratory mortality. CONCLUSIONS AIM facilitates the development of COPD by upregulating MMP-12. Additionally, a higher blood AIM/IgM ratio was associated with poor prognosis in patients with COPD. TRIAL REGISTRATION This clinical study, which included nonsmokers, healthy smokers, and smokers with COPD, was approved by the Ethics Committee of the Hokkaido University Hospital (012-0075, date of registration: September 5, 2012). The Hokkaido COPD cohort study was approved by the Ethics Committee of the Hokkaido University School of Medicine (med02-001, date of registration: December 25, 2002).
Collapse
Affiliation(s)
- Michiko Takimoto-Sato
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Haiyan Ge
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Munehiro Matsumoto
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hironi Makita
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
- Hokkaido Medical Research Institute of Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
28
|
Yang H, Luo Y, Lai X. The comprehensive role of apoptosis inhibitor of macrophage (AIM) in pathological conditions. Clin Exp Immunol 2023; 212:184-198. [PMID: 36427004 PMCID: PMC10243866 DOI: 10.1093/cei/uxac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 08/19/2023] Open
Abstract
CD5L/AIM (apoptosis inhibitor of macrophage), as an important component in maintaining tissue homeostasis and inflammation, is mainly produced and secreted by macrophages but partially dissociated and released from blood AIM-IgM. AIM plays a regulatory role in intracellular physiological mechanisms, including lipid metabolism and apoptosis. AIM not only increases in autoimmune diseases, directly targets liver cells in liver cancer and promotes cell clearance in acute kidney injury, but also causes arteriosclerosis and cardiovascular events, and aggravates inflammatory reactions in lung diseases and sepsis. Obviously, AIM plays a pleiotropic role in the body. However, to date, studies have failed to decipher the mechanisms behind its different roles (beneficial or harmful) in inflammatory regulation. The inflammatory response is a "double-edged sword," and maintaining balance is critical for effective host defense while minimizing the adverse side effects of acute inflammation. Enhancing the understanding of AIM function could provide the theoretical basis for new therapies in these pathological settings. In this review, we discuss recent studies on the roles of AIM in lipid metabolism, autoimmune diseases and organic tissues, such as liver cancer, myocardial infarction, and kidney disease.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
29
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Chen J, Tang TT, Cao JY, Li ZL, Zhong X, Wen Y, Shen AR, Liu BC, Lv LL. KIM-1 augments hypoxia-induced tubulointerstitial inflammation through uptake of small extracellular vesicles by tubular epithelial cells. Mol Ther 2023; 31:1437-1450. [PMID: 35982620 PMCID: PMC10188645 DOI: 10.1016/j.ymthe.2022.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.
Collapse
Affiliation(s)
- Jun Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Xin Zhong
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - An-Ran Shen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, 87 Ding Jia Qiao Road, Nanjing 210009, China.
| |
Collapse
|
31
|
Kajiwara C, Shiozawa A, Urabe N, Yamaguchi T, Kimura S, Akasaka Y, Ishii Y, Tateda K. Apoptosis Inhibitor of Macrophages Contributes to the Chronicity of Mycobacterium avium Infection by Promoting Foamy Macrophage Formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:431-441. [PMID: 36602769 DOI: 10.4049/jimmunol.2200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
In Mycobacterium avium infections, macrophages play a critical role in the host defense response. Apoptosis inhibitor of macrophage (AIM), also known as CD5L, may represent a novel supportive therapy against various diseases, including metabolic syndrome and infectious diseases. The mechanisms of AIM include modulating lipid metabolism in macrophages and other host cells. We investigated the role of AIM in M. avium infections in vitro and in vivo. In a mouse model of M. avium pneumonia, foamy macrophages were induced 6 wk after infection. The bacteria localized in these macrophages. Flow cytometric analysis also confirmed that the percentage of CD11chighMHCclassIIhigh interstitial and alveolar macrophages, a cell surface marker defined as foamy macrophages, increased significantly after infection. AIM in alveolar lavage fluid and serum gradually increased after infection. Administration of recombinant AIM significantly increased the number of bacteria in the lungs of mice, accompanied by the induction of inflammatory cytokine and iNOS expression. In mouse bone marrow-derived macrophages, the mRNA expression of AIM after M. avium infection and the amount of AIM in the supernatant increased prior to the increase in intracellular bacteria. Infected cells treated with anti-AIM Abs had fewer bacteria and a higher percentage of apoptosis-positive cells than infected cells treated with isotype control Abs. Finally, AIM in the sera of patients with M. avium-pulmonary disease was measured and was significantly higher than in healthy volunteers. This suggests that AIM production is enhanced in M. avium-infected macrophages, increasing macrophage resistance to apoptosis and providing a possible site for bacterial growth.
Collapse
Affiliation(s)
- Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Ayako Shiozawa
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Naohisa Urabe
- Department of Respiratory Medicine, Toho University Omori Medical Center, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy, Shonan University of Medical Sciences, Kanagawa, Japan; and
| | - Yoshikiyo Akasaka
- Department of Diagnostic Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Ma Z, Mao C, Jia Y, Yu F, Xu P, Tan Y, Zou QH, Zhou XJ, Kong W, Fu Y. ADAMTS7-Mediated Complement Factor H Degradation Potentiates Complement Activation to Contributing to Renal Injuries. J Am Soc Nephrol 2023; 34:291-308. [PMID: 36735376 PMCID: PMC10103097 DOI: 10.1681/asn.0000000000000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
33
|
Wang Y, Pu M, Yan J, Zhang J, Wei H, Yu L, Yan X, He Z. 1,2-Bis(2-aminophenoxy)ethane- N, N, N', N'-tetraacetic Acid Acetoxymethyl Ester Loaded Reactive Oxygen Species Responsive Hyaluronic Acid-Bilirubin Nanoparticles for Acute Kidney Injury Therapy via Alleviating Calcium Overload Mediated Endoplasmic Reticulum Stress. ACS NANO 2023; 17:472-491. [PMID: 36574627 DOI: 10.1021/acsnano.2c08982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Calcium overload is one of the early determinants of the core cellular events that contribute to the pathogenesis of acute kidney injury (AKI), which include oxidative stress, ATP depletion, calcium overload, and inflammatory response with self-amplifying and interactive feedback loops that ultimately lead to cellular injury and renal failure. Excluding adjuvant therapy, there are currently no approved pharmacotherapies for the treatment of AKI. Using an adipic dihydride linker, we modified the hyaluronic acid polymer chain with a potent antioxidant, bilirubin, to produce an amphiphilic conjugate. Subsequently, we developed a kidney-targeted and reactive oxygen species (ROS)-responsive drug delivery system based on the flash nanocomplexation method to deliver a well-known intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, BA), with the goal of rescuing renal cell damage via rapidly scavenging of intracellularly overloaded Ca2+. In the ischemia-reperfusion (I/R) induced AKI rat model, a single dose of as-prepared formulation (BA 100 μg·kg-1) 6 h post-reperfusion significantly reduced renal function indicators by more than 60% within 12 h, significantly alleviated tissular pathological changes, ameliorated tissular oxidative damage, significantly inhibited apoptosis of renal tubular cells and the expression of renal tubular marker kidney injury molecule 1, etc., thus greatly reducing the risk of kidney failure. Mechanistically, the treatment with BA-loaded NPs significantly inhibited the activation of the ER stress cascade response (IRE1-TRAF2-JNK, ATF4-CHOP, and ATF6 axis) and regulated the downstream apoptosis-related pathway while also reducing the inflammatory response. The BA-loaded NPs hold great promise as a potential therapy for I/R injury-related diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Minju Pu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Jingwen Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Huichao Wei
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao266003, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266003, China
| |
Collapse
|
34
|
Wei M, Gao Y, Cheng D, Zhang H, Zhang W, Shen Y, Huang Q, An X, Wang B, Yu Z, Wang N, Chen H, Xu Y, Gui D. Notoginsenoside Fc ameliorates renal tubular injury and mitochondrial damage in acetaminophen-induced acute kidney injury partly by regulating SIRT3/SOD2 pathway. Front Med (Lausanne) 2023; 9:1055252. [PMID: 36714147 PMCID: PMC9875593 DOI: 10.3389/fmed.2022.1055252] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Mitochondria dysfunction is one of the primary causes of tubular injury in acute kidney injury (AKI). Notoginsenoside Fc (Fc), a new saponin isolated from Panax notoginseng, exhibited numerous pharmacological actions. However, the beneficial effects of Fc on renal tubular impairment and mitochondrial dysfunction in AKI have not been fully studied. Methods In this study, we established acetaminophen (APAP)-induced AKI model in mice to examine the therapeutic impacts of Fc on AKI. Results Our results showed that Fc could decrease the levels of the serum creatinine (Scr), blood urea nitrogen (BUN) and Cystatin C in mice with AKI. Fc also ameliorated renal histopathology, renal tubular cells apoptosis and restored expression of apoptosis-related proteins such as Bax, Bcl-2 and caspase3 (C-caspase3). Additionally, Fc increased the protein expression of SIRT3 and SOD2 in kidneys from mice with AKI. In vitro studies further showed Fc reduced the apoptosis of HK-2 cells exposure to APAP, attenuated the loss of mitochondrial membrane potential and decreased the formation of mitochondrial superoxide. Fc also partly restored the protein expression of Bax, Bcl-2, C-Caspase3, SIRT3, and SOD2 in HK-2 cells exposure to APAP. Conclusion In summary, Fc might reduce renal tubular injury and mitochondrial dysfunction in AKI partly through the regulation of SIRT3/SOD2 pathway.
Collapse
Affiliation(s)
- Miaomiao Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China,Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuancheng Gao
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongsheng Cheng
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiying Zhang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Nephrology, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qunwei Huang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoning An
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China,*Correspondence: Hongbo Chen
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China,Youhua Xu
| | - Dingkun Gui
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Central Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Dingkun Gui
| |
Collapse
|
35
|
Morioka S, Kajioka D, Yamaoka Y, Ellison RM, Tufan T, Werkman IL, Tanaka S, Barron B, Ito ST, Kucenas S, Okusa MD, Ravichandran KS. Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation. Cell 2022; 185:4887-4903.e17. [PMID: 36563662 PMCID: PMC9930200 DOI: 10.1016/j.cell.2022.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.
Collapse
Affiliation(s)
- Sho Morioka
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Daiki Kajioka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Yusuke Yamaoka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rochelle M Ellison
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Turan Tufan
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Shinji Tanaka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Brady Barron
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Satoshi T Ito
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Deng S, Zhang Y, Xin Y, Hu X. Vagus nerve stimulation attenuates acute kidney injury induced by hepatic ischemia/reperfusion injury in rats. Sci Rep 2022; 12:21662. [PMID: 36522408 PMCID: PMC9755310 DOI: 10.1038/s41598-022-26231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury, caused by limited blood supply and subsequent blood supply, is a causative factor resulting in morbidity and mortality during liver transplantation and liver resection. Hepatic I/R injury frequently contributes to remote organ injury, such as kidney, lung, and heart. It has been demonstrated that vagus nerve stimulation (VNS) is effective in remote organ injury after I/R injury. Here, our aim is to investigate the potential action of VNS on hepatic I/R injury-induced acute kidney injury (AKI) and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly assigned into three experimental groups: Sham group (sham operation, n = 6); I/R group (hepatic I/R with sham VNS, n = 6); and VNS group (hepatic I/R with VNS, n = 6). VNS was performed during the entire hepatic I/R process. Our results showed that throughout the hepatic I/R process, VNS significantly regulated the expression levels of various iconic factors and greatly enhanced the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in the kidneys. These findings suggested that VNS may ameliorate hepatic I/R injury-induced AKI by suppressing inflammation, oxidative stress, and apoptosis probably through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Simin Deng
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Yifeng Zhang
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Ying Xin
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Xinqun Hu
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
37
|
Okanoue T, Yamaguchi K, Shima T, Mitsumoto Y, Mizuno M, Katayama T, Seko Y, Moriguchi M, Umemura A, Itoh Y, Miyazaki T. Serum levels of immunoglobulin M-free inhibitors of macrophage/CD5L as a predictive and early diagnostic marker for nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatol Res 2022; 52:998-1008. [PMID: 35939571 DOI: 10.1111/hepr.13826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The apoptosis inhibitor of macrophage (AIM) is usually associated with the immunoglobulin M (IgM) pentamer in the blood and is dissociated from IgM in various diseases, including hepatocellular carcinoma (HCC) in nonalcoholic steatohepatitis (NASH). We aimed to elucidate whether IgM-free AIM (fAIM) is useful for detecting latent HCC in NASH. METHODS This research consisted of two cohort studies. The levels of serum fAIM, alpha-fetoprotein (AFP), and des-gamma carboxy prothrombin (DCP) of 18 NASH patients who developed HCC were measured during the follow-up period before HCC diagnosis (median, 4.7 years). In total, 199 patients with nonalcoholic fatty liver disease (NAFLD) were included in the HCC survey. The serum fAIM levels were analyzed using enzyme-linked immunosorbent assays. RESULTS In the cohort of 18 patients with HCC, 12 had high fAIM at the time of the initial blood sample, three had normal fAIM levels throughout the follow-up period, and three had fAIM elevated from normal to positive. The positive ratio of fAIM prior to HCC diagnosis remained significantly higher than that of AFP and DCP, and the fAIM ratio gradually increased. In a survey of 199 non-HCC NAFLD patients, a Cox regression analysis using independent variables, such as AFP, fAIM, age, albumin, bilirubin, and fibrosis stage, revealed that fAIM and AFP were significantly associated with the incidence of HCC. CONCLUSIONS During the development of NASH-HCC, AIM activation in blood appears to start even before HCC is diagnostically detectable. Thus, the serum IgM-free AIM levels could be a new, sensitive biomarker for latent NASH-HCC.
Collapse
Affiliation(s)
- Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Masayuki Mizuno
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Takayuki Katayama
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, TWINS, Tokyo, Japan.,LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Inoue T, Nakamura Y, Tanaka S, Kohro T, Li LX, Huang L, Yao J, Kawamura S, Inoue R, Nishi H, Fukaya D, Uni R, Hasegawa S, Inagi R, Umene R, Wu CH, Ye H, Bajwa A, Rosin DL, Ishihara K, Nangaku M, Wada Y, Okusa MD. Bone marrow stromal cell antigen-1 (CD157) regulated by sphingosine kinase 2 mediates kidney fibrosis. Front Med (Lausanne) 2022; 9:993698. [PMID: 36267620 PMCID: PMC9576863 DOI: 10.3389/fmed.2022.993698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease is a progressive disease that may lead to end-stage renal disease. Interstitial fibrosis develops as the disease progresses. Therapies that focus on fibrosis to delay or reverse progressive renal failure are limited. We and others showed that sphingosine kinase 2-deficient mice (Sphk2 -/-) develop less fibrosis in mouse models of kidney fibrosis. Sphingosine kinase2 (SphK2), one of two sphingosine kinases that produce sphingosine 1-phosphate (S1P), is primarily located in the nucleus. S1P produced by SphK2 inhibits histone deacetylase (HDAC) and changes histone acetylation status, which can lead to altered target gene expression. We hypothesized that Sphk2 epigenetically regulates downstream genes to induce fibrosis, and we performed a comprehensive analysis using the combination of RNA-seq and ChIP-seq. Bst1/CD157 was identified as a gene that is regulated by SphK2 through a change in histone acetylation level, and Bst1 -/- mice were found to develop less renal fibrosis after unilateral ischemia-reperfusion injury, a mouse model of kidney fibrosis. Although Bst1 is a cell-surface molecule that has a wide variety of functions through its varied enzymatic activities and downstream intracellular signaling pathways, no studies on the role of Bst1 in kidney diseases have been reported previously. In the current study, we demonstrated that Bst1 is a gene that is regulated by SphK2 through epigenetic change and is critical in kidney fibrosis.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Takahide Kohro
- Department of Clinical Informatics/Cardiology, Jichi Medical University, Tochigi, Japan
| | - Lisa X. Li
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suzuka Kawamura
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Reiko Inoue
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Fukaya
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Uni
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hong Ye
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Okayama, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Mark D. Okusa,
| |
Collapse
|
39
|
Zhu D, Zhang H, Li J, Qian X, Guo M, Jiang G, Gu Y. Liposome‐mediated biomimetic delivery of PLK3 inhibitor with NIR II‐triggered release prevents renal ischemia‐reperfusion injury. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongdong Zhu
- Department of Nephrology Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 PR China
| | - Hailing Zhang
- Department of Neurology Changhai Hospital Naval Medical University Shanghai 200433 PR China
| | - Junhui Li
- National Key Laboratory of Medical Immunology Institute of Immunology Naval Medical University Shanghai 200433 PR China
| | - Xiaoqian Qian
- Department of Nephrology Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 PR China
| | - Meng Guo
- National Key Laboratory of Medical Immunology Institute of Immunology Naval Medical University Shanghai 200433 PR China
| | - Gengru Jiang
- Department of Nephrology Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200092 PR China
| | - Yan Gu
- National Key Laboratory of Medical Immunology Institute of Immunology Naval Medical University Shanghai 200433 PR China
| |
Collapse
|
40
|
Chen J, Lu H, Wang X, Yang J, Luo J, Wang L, Yi X, He Y, Chen K. VNN1 contributes to the acute kidney injury-chronic kidney disease transition by promoting cellular senescence via affecting RB1 expression. FASEB J 2022; 36:e22472. [PMID: 35959877 DOI: 10.1096/fj.202200496rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
The mechanisms underlying acute kidney injury (AKI) and chronic kidney disease (CKD) progression include interstitial inflammation, cellular senescence, and oxidative stress (OS). Although vanin-1 (VNN1) plays an important role in OS, its contribution to the AKI-CKD transition remains unknown. Here, we explored the roles and mechanisms of VNN1 in the progression of the AKI-CKD transition. We observed that VNN1 expression was upregulated after ischemia/reperfusion (I/R) injury and high VNN1 expression levels were associated with poor renal repair after I/R injury. In VNN1 knockout (KO) mice, recovery of serum creatinine and blood urea nitrogen levels after I/R injury was accelerated and renal fibrosis was inhibited after severe I/R injury. Furthermore, in VNN1 KO mice, senescence of renal tubular cells was inhibited after severe I/R injury, as assessed by P16 expression and SA-β-Gal assays. However, our results also revealed that VNN1 KO renal tubular cells did not resist senescence when OS was blocked. To elucidate the mechanism underlying VNN1-mediated regulation of senescence during the AKI-CKD transition, retinoblastoma 1 (RB1) was identified as a potential target. Our results suggest that the reduced senescence in VNN1 KO renal tubular cells was caused by suppressed RB1 expression and phosphorylation. Collectively, our results unveil a novel molecular mechanism by which VNN1 promotes AKI-CKD transition via inducing senescence of renal tubular cells by activating RB1 expression and phosphorylation after severe renal injury. The present study proposes a new strategy for designing therapies wherein VNN1 can be targeted to obstruct the AKI-CKD transition.
Collapse
Affiliation(s)
- Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongxiang Lu
- Department of Traumatic Orthopaedics, General Hospital of Xinjiang Military Region, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Centre, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Yang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Luo
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Limin Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Centre, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Centre, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Deng S, Zhang Y, Xin Y, Hu X. Vagus Nerve Stimulation Attenuates Acute Kidney Injury Induced by Hepatic Ischemia/Reperfusion Injury by Suppressing Inflammation, Oxidative Stress, and Apoptosis in Rats.. [DOI: 10.21203/rs.3.rs-1937916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Hepatic ischemia reperfusion (I/R) injury, caused by limited blood supply and subsequent blood supply, is a causative factor resulting in morbidity and mortality during liver transplantation (LT) and liver resection. Hepatic I/R injury frequently contributes to remote organ injury, such as kidney, lung, and heart. It has been demonstrated that vagus nerve stimulation (VNS) is effective in remote organ injury after ischemia reperfusion injury. Here, our aim is to investigate the potential action of VNS on hepatic I/R injury-induced acute kidney injury (AKI) and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly assigned into three experimental groups: Sham group (sham operation, n=6); I/R group (hepatic I/R with sham VNS, n=6); and VNS group (hepatic I/R with VNS, n=6). VNS was performed during the entire hepatic I/R process. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, and greatly enhanced the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in the kidneys. These findings suggest that VNS may ameliorate hepatic I/R injury-induced AKI by suppressing inflammation, oxidative stress, and apoptosis probably through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Simin Deng
- Second Xiangya Hospital of Central South University
| | - Yifeng Zhang
- Second Xiangya Hospital of Central South University
| | - Ying Xin
- Second Xiangya Hospital of Central South University
| | - Xinqun Hu
- Second Xiangya Hospital of Central South University
| |
Collapse
|
42
|
Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 2022; 5:783. [PMID: 35922481 PMCID: PMC9349198 DOI: 10.1038/s42003-022-03750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence of kidney stones is increasing and its recurrence rate within the first 5 years is over 50%. No treatments that prevent the occurrence/recurrence of stones have reached the clinic. Here, we show that AIM (also called CD5L) suppresses stone development and improves stone-associated physical damages. The N-terminal domain of AIM associates with calcium oxalate crystals via charge-based interaction to impede the development of stones, whereas the 2nd and C-terminal domains capture the inflammatory DAMPs to promote their phagocytic removal. Accordingly, when stones were induced by glyoxylate in mice, recombinant AIM (rAIM) injection dramatically reduced stone development. Expression of injury molecules and inflammatory cytokines in the kidney and overall renal dysfunction were abrogated by rAIM. Among various negatively charged substances, rAIM was most effective in stone prevention due to its high binding affinity to crystals. Furthermore, only AIM was effective in improving the physical complaints including bodyweight-loss through its DAMPs removal effect. We also found that tubular KIM-1 may remove developed stones. Our results could be the basis for the development of a comprehensive therapy against kidney stone disease. The circulating protein apoptosis inhibitor of macrophage (AIM) reduces kidney stone development and prevents build up, providing the basis for kidney stone disease therapy.
Collapse
|
43
|
Abstract
Sepsis-associated AKI is a life-threatening complication that is associated with high morbidity and mortality in patients who are critically ill. Although it is clear early supportive interventions in sepsis reduce mortality, it is less clear that they prevent or ameliorate sepsis-associated AKI. This is likely because specific mechanisms underlying AKI attributable to sepsis are not fully understood. Understanding these mechanisms will form the foundation for the development of strategies for early diagnosis and treatment of sepsis-associated AKI. Here, we summarize recent laboratory and clinical studies, focusing on critical factors in the pathophysiology of sepsis-associated AKI: microcirculatory dysfunction, inflammation, NOD-like receptor protein 3 inflammasome, microRNAs, extracellular vesicles, autophagy and efferocytosis, inflammatory reflex pathway, vitamin D, and metabolic reprogramming. Lastly, identifying these molecular targets and defining clinical subphenotypes will permit precision approaches in the prevention and treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Shuhei Kuwabara
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
44
|
Chen JH, Wu CH, Jheng JR, Chao CT, Huang JW, Hung KY, Liu SH, Chiang CK. The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition. J Biomed Sci 2022; 29:46. [PMID: 35765067 PMCID: PMC9241279 DOI: 10.1186/s12929-022-00828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background The activation of the unfolded protein response (UPR) is closely linked to the pathogenesis of renal injuries. However, the role of XBP1, a crucial regulator of adaptive UPR, remains unclear during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD). Methods We characterized XBP1 expressions in different mouse models of kidney injuries, including unilateral ischemia–reperfusion injury (UIRI), unilateral ureteral obstruction, and adenine-induced CKD, followed by generating proximal tubular XBP1 conditional knockout (XBP1cKO) mice for examining the influences of XBP1. Human proximal tubular epithelial cells (HK-2) were silenced of XBP1 to conduct proteomic analysis and investigate the underlying mechanism. Results We showed a tripartite activation of UPR in injured kidneys. XBP1 expressions were attenuated after AKI and inversely correlated with the severity of post-AKI renal fibrosis. XBP1cKO mice exhibited more severe renal fibrosis in the UIRI model than wide-type littermates. Silencing XBP1 induced HK-2 cell cycle arrest in G2M phase, inhibited cell proliferation, and promoted TGF-β1 secretion. Proteomic analysis identified TNF receptor associated protein 1 (Trap1) as the potential downstream target transcriptionally regulated by XBP1s. Trap1 overexpression can alleviate silencing XBP1 induced profibrotic factor expressions and cell cycle arrest. Conclusion The loss of XBP1 in kidney injury was profibrotic, and the process was mediated by autocrine and paracrine regulations in combination. The present study identified the XBP1-Trap1 axis as an instrumental mechanism responsible for post-AKI fibrosis, which is a novel regulatory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00828-9.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Jia-Rong Jheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ter Chao
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jenq-Wen Huang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei, 100, Taiwan. .,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Suri RS, Lee JY, Ban MR, Shrum B, Tutunea-Fatan E, Ismail OZ, Leckie S, McIntyre A, Xu Q, Lee SH, de Chickera S, Hegele RA, Gunaratnam L. Defective KIM-1 phagocytosis does not predispose to acute graft dysfunction after kidney transplantation in humans. Kidney Int 2022; 102:435-439. [DOI: 10.1016/j.kint.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022]
|
46
|
Yuqiang C, Lisha Z, Jiejun W, Qin X, Niansong W. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Ren Fail 2022; 44:473-481. [PMID: 35285384 PMCID: PMC8928845 DOI: 10.1080/0886022x.2022.2048857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes of AKI are remarkably complex and diverse. Here, we aim to investigate whether pifithrin-α protected against rhabdomyolysis-induced AKI and to determine the involved mechanisms. Methods Intramuscular injection in the right thigh caudal muscle of C57BL/6J mice with 7.5 ml/kg saline (Group A) or of the same volume 50% glycerol was used to induce rhabdomyolysis and subsequent AKI (Group B). Pifithrin-α was injected intraperitoneally 4 h before (Group C) or 4 h after (Group D) the glycerol injection. Serum creatine kinase, blood urea nitrogen, and creatinine were determined, and the renal cortex was histologically analyzed. Renal expression levels of interested mRNAs and proteins were determined and compared, too. Results Intramuscular injection of glycerol induced rhabdomyolysis and subsequent AKI in mice (Groups B–D). Renal function reduction and histologic injury of renal tubular epithelial cells were associated with increased p53 activation, oxidative stress, and inflammation. Notably, compared with pifithrin-α rescue therapy (Group D), pretreatment of pifithrin-α (Group C) protected the mice from severe injury more effectively. Conclusions Our present study suggests that p53 may be a therapeutic target of AKI caused by glycerol, and the inhibition of p53 can block glycerol-mediated AKI by using pharmacological agents instead of genetic inhibitory approaches, which further supports that p53 played a pivotal role in renal tubular injury when challenged with glycerol.
Collapse
Affiliation(s)
- Chen Yuqiang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhang Lisha
- Department of Emergency, Shanghai Punan Hospital, Pudong New District, Shanghai, China
| | - Wen Jiejun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue Qin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wang Niansong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
47
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
48
|
Cheng L, Yang X, Jian Y, Liu J, Ke X, Chen S, Yang D, Yang D. SIRT3 deficiency exacerbates early-stage fibrosis after ischaemia-reperfusion-induced AKI. Cell Signal 2022; 93:110284. [PMID: 35182747 DOI: 10.1016/j.cellsig.2022.110284] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Sirtuin 3 (SIRT3) is a crucial regulator of mitochondrial function and is associated with injury and repair in acute kidney injury (AKI). To investigate whether mitochondrial damage and early renal fibrosis are associated with decreased renal SIRT3 levels, we established an in vivo model. METHODS In vivo, we established ischaemia-reperfusion-induced AKI (IR-AKI) models in wild-type (WT) and SIRT3-knockout (SIRT3-KO) mice. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured by an automatic biochemical analyser, and renal pathological changes were examined by haematoxylin and eosin (HE) staining. Renal fibrosis in mice was assessed by Masson's trichrome staining. The expression of SIRT3, renal fibrosis-related markers (FN and α-SMA), and mitochondrial markers (DRP1, FIS1, OPA1, and MFN1) was measured by Western blotting. Morphological changes in mitochondria in renal tubular epithelial cells were analysed by transmission electron microscopy (TEM). RESULTS The levels of Scr and BUN were elevated with severe renal pathological damage in the IR-AKI model, especially in SIRT3-KO mice. In the IR-AKI model, the obvious increases in FN and α-SMA protein levels suggested that there was severe fibrosis in the kidney tissue, OPA1 and MFN1 protein levels were reduced while DRP1 and FIS1 protein levels were greatly increased. TEM photomicrographs showed that mitochondrial fragmentation was increased in the renal tubular epithelial cells of mice with IR injury. SIRT3-KO mice exhibited exacerbated changes. CONCLUSION Our findings indicate that SIRT3 plays a significant role in early-stage fibrosis after IR-AKI by regulating mitochondrial dynamics and that SIRT3 deficiency exacerbates renal dysfunction and renal fibrosis.
Collapse
Affiliation(s)
- Lingli Cheng
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, No. 99 Zhangzhidong Road (formerly Ziyang Road), Wuchang District, Wuhan, Hubei 430060, China
| | - Xueyan Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, No. 99 Zhangzhidong Road (formerly Ziyang Road), Wuchang District, Wuhan, Hubei 430060, China
| | - Yonghong Jian
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, No. 99 Zhangzhidong Road (formerly Ziyang Road), Wuchang District, Wuhan, Hubei 430060, China
| | - Jie Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei 430022, China
| | - Xinyu Ke
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, No. 99 Zhangzhidong Road (formerly Ziyang Road), Wuchang District, Wuhan, Hubei 430060, China
| | - Sha Chen
- Department of Nephrology, Tianjin Hospital, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, No. 406 Jiefang South Road, Hexi District, Tianjin 300211, China.
| | - Dingping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, No. 99 Zhangzhidong Road (formerly Ziyang Road), Wuchang District, Wuhan, Hubei 430060, China.
| |
Collapse
|
49
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
50
|
Shimizu T, Sawada T, Asai T, Kanetsuki Y, Hirota J, Moriguchi M, Nakajima T, Miyazaki T, Okanoue T. Hepatocellular carcinoma diagnosis using a novel electrochemiluminescence immunoassay targeting serum IgM-free AIM. Clin J Gastroenterol 2022; 15:41-51. [PMID: 34981443 PMCID: PMC8858287 DOI: 10.1007/s12328-021-01567-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent increases in the number of patients with non-alcoholic steatohepatitis (NASH) warrant the identification of biomarkers for early detection of hepatocellular carcinoma (HCC) associated with NASH (NASH-HCC). IgM-free apoptosis inhibitor of macrophage (AIM), which generally associates with IgM in blood and exerts its biological function by dissociation from IgM, may serve as an effective biomarker for NASH-HCC. Here, we established a fully automatic and high-throughput electrochemiluminescence immunoassay (ECLIA) to measure IgM-free AIM and investigated its efficacy in diagnosing NASH-HCC and viral HCC. METHODS IgM-free AIM levels were measured in 212 serum samples from patients with, or without, HCC related to NASH, hepatitis B virus, and hepatitis C virus, using ECLIA. We also developed an ECLIA for measuring both IgM-free and IgM-bound AIM and investigated the existing form of AIM in blood by size-exclusion chromatography. RESULTS IgM-free AIM levels were significantly higher in the HCC group than in the non-HCC group, regardless of the associated pathogenesis. Moreover, the area under the receiver operating curve for IgM-free AIM was greater than that for conventional HCC biomarkers, alpha-fetoprotein or des-γ-carboxy prothrombin, regardless of the cancer stage. ECLIA counts of IgM-free AIM derived from samples fractionated by size-exclusion chromatography were significantly higher in patients with NASH-HCC than in healthy volunteers and in patients with non-alcoholic fatty liver and NASH. CONCLUSIONS Serum IgM-free AIM may represent a universal HCC diagnostic marker superior to alpha-fetoprotein or des-γ-carboxy prothrombin. Our newly established ECLIA could contribute to further clinical studies on AIM and in vitro HCC diagnosis.
Collapse
Affiliation(s)
- Tomo Shimizu
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan.
| | - Takashi Sawada
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Tomohide Asai
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Yuka Kanetsuki
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Jiro Hirota
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomoaki Nakajima
- Department of Hepatology, Sapporo Kosei General Hospital, Hokkaido, 060-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,LEAP, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,The Institute for AIM Medicine, Tokyo, 101-0047, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, 564-0013, Japan
| |
Collapse
|