1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
3
|
Tchernychev B, Nitschke Y, Chu D, Sullivan C, Flaman L, O’Brien K, Howe J, Cheng Z, Thompson D, Ortiz D, Rutsch F, Sabbagh Y. Inhibition of Vascular Smooth Muscle Cell Proliferation by ENPP1: The Role of CD73 and the Adenosine Signaling Axis. Cells 2024; 13:1128. [PMID: 38994980 PMCID: PMC11240470 DOI: 10.3390/cells13131128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) ectoenzyme regulates vascular intimal proliferation and mineralization of bone and soft tissues. ENPP1 variants cause Generalized Arterial Calcification of Infancy (GACI), a rare genetic disorder characterized by ectopic calcification, intimal proliferation, and stenosis of large- and medium-sized arteries. ENPP1 hydrolyzes extracellular ATP to pyrophosphate (PPi) and AMP. AMP is the precursor of adenosine, which has been implicated in the control of neointimal formation. Herein, we demonstrate that an ENPP1-Fc recombinant therapeutic inhibits proliferation of vascular smooth muscle cells (VSMCs) in vitro and in vivo. Addition of ENPP1 and ATP to cultured VSMCs generated AMP, which was metabolized to adenosine. It also significantly decreased cell proliferation. AMP or adenosine alone inhibited VSMC growth. Inhibition of ecto-5'-nucleotidase CD73 decreased adenosine accumulation and suppressed the anti-proliferative effects of ENPP1/ATP. Addition of AMP increased cAMP synthesis and phosphorylation of VASP at Ser157. This AMP-mediated cAMP increase was abrogated by CD73 inhibitors or by A2aR and A2bR antagonists. Ligation of the carotid artery promoted neointimal hyperplasia in wild-type mice, which was exacerbated in ENPP1-deficient ttw/ttw mice. Prophylactic or therapeutic treatments with ENPP1 significantly reduced intimal hyperplasia not only in ttw/ttw but also in wild-type mice. These findings provide the first insight into the mechanism of the anti-proliferative effect of ENPP1 and broaden its potential therapeutic applications beyond enzyme replacement therapy.
Collapse
Affiliation(s)
- Boris Tchernychev
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Yvonne Nitschke
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany;
- INTEC Network of Ectopic Calcification, Center for Medical Genetics Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Di Chu
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Caitlin Sullivan
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Lisa Flaman
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Kevin O’Brien
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Jennifer Howe
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Zhiliang Cheng
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - David Thompson
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Daniel Ortiz
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children’s Hospital, 48149 Münster, Germany;
- INTEC Network of Ectopic Calcification, Center for Medical Genetics Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Yves Sabbagh
- Research and Development, Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, USA; (B.T.); (D.C.); (C.S.); (L.F.); (K.O.); (J.H.); (Z.C.); (D.T.); (D.O.); (Y.S.)
| |
Collapse
|
4
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
5
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
6
|
Luo L, Cai Y, Zhang Y, Hsu CG, Korshunov VA, Long X, Knight PA, Berk BC, Yan C. Role of PDE10A in vascular smooth muscle cell hyperplasia and pathological vascular remodelling. Cardiovasc Res 2022; 118:2703-2717. [PMID: 34550322 PMCID: PMC9890476 DOI: 10.1093/cvr/cvab304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
AIMS Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.
Collapse
Affiliation(s)
- Lingfeng Luo
- Department of Biochemistry and Biophysics, University of Rochester School
of Medicine and Dentistry, Rochester, NY,
USA
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yujun Cai
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Yishuai Zhang
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chia G Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Vyacheslav A Korshunov
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Xiaochun Long
- Department of Vascular Biology Center and Medicine, Medical College of
Georgia, Augusta, GA, USA
| | - Peter A Knight
- Department of Surgery, University of Rochester School of Medicine and
Dentistry, Rochester, NY, USA
| | - Bradford C Berk
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Chen Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| |
Collapse
|
7
|
Mi Z, Song Y, Wang J, Liu Z, Cao X, Dang L, Lu Y, Sun Y, Xiong H, Zhang L, Chen Y. cAMP-Induced Nuclear Condensation of CRTC2 Promotes Transcription Elongation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104578. [PMID: 35037420 PMCID: PMC8981427 DOI: 10.1002/advs.202104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Formation of biomolecular condensates by phase separation has recently emerged as a new principle for regulating gene expression in response to extracellular signaling. However, the molecular mechanisms underlying the coupling of signal transduction and gene activation through condensate formation, and how dysregulation of these mechanisms contributes to disease progression, remain elusive. Here, the authors report that CREB-regulated transcription coactivator 2 (CRTC2) translocates to the nucleus and forms phase-separated condensates upon activation of cAMP signaling. They show that intranuclear CRTC2 interacts with positive transcription elongation factor b (P-TEFb) and activates P-TEFb by disrupting the inhibitory 7SK snRNP complex. Aberrantly elevated cAMP signaling plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD). They find that CRTC2 localizes to the nucleus and forms condensates in cystic epithelial cells of both mouse and human ADPKD kidneys. Genetic depletion of CRTC2 suppresses cyst growth in an orthologous ADPKD mouse model. Using integrative transcriptomic and cistromic analyses, they identify CRTC2-regulated cystogenesis-associated genes, whose activation depends on CRTC2 condensate-facilitated P-TEFb recruitment and the release of paused RNA polymerase II. Together, their findings elucidate a mechanism by which CRTC2 nuclear condensation conveys cAMP signaling to transcription elongation activation and thereby promotes cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Zeyun Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yandong Song
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Jiuchen Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Xinyi Cao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yongzhan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Hui Xiong
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250001China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| |
Collapse
|
8
|
An Autocrine Negative Feedback Loop Inhibits Dictyostelium discoideum Proliferation through Pathways Including IP3/Ca 2. mBio 2021; 12:e0134721. [PMID: 34154396 PMCID: PMC8262924 DOI: 10.1128/mbio.01347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how eukaryotic cells can sense their number or spatial density and stop proliferating when the local density reaches a set value. We previously found that Dictyostelium discoideum accumulates extracellular polyphosphate to inhibit its proliferation, and this requires the G protein-coupled receptor GrlD and the small GTPase RasC. Here, we show that cells lacking the G protein component Gβ, the Ras guanine nucleotide exchange factor GefA, phosphatase and tensin homolog (PTEN), phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor-like protein A (IplA), polyphosphate kinase 1 (Ppk1), or the TOR complex 2 component PiaA have significantly reduced sensitivity to polyphosphate-induced proliferation inhibition. Polyphosphate upregulates IP3, and this requires GrlD, GefA, PTEN, PLC, and PiaA. Polyphosphate also upregulates cytosolic Ca2+, and this requires GrlD, Gβ, GefA, RasC, PLC, IplA, Ppk1, and PiaA. Together, these data suggest that polyphosphate uses signal transduction pathways including IP3/Ca2+ to inhibit the proliferation of D. discoideum. IMPORTANCE Many mammalian tissues such as the liver have the remarkable ability to regulate their size and have their cells stop proliferating when the tissue reaches the correct size. One possible mechanism involves the cells secreting a signal that they all sense, and a high level of the signal tells the cells that there are enough of them and to stop proliferating. Although regulating such mechanisms could be useful to regulate tissue size to control cancer or birth defects, little is known about such systems. Here, we use a microbial system to study such a mechanism, and we find that key elements of the mechanism have similarities to human proteins. This then suggests the possibility that we may eventually be able to regulate the proliferation of selected cell types in humans and animals.
Collapse
|
9
|
Kalash L, Winfield I, Safitri D, Bermudez M, Carvalho S, Glen R, Ladds G, Bender A. Structure-based identification of dual ligands at the A 2AR and PDE10A with anti-proliferative effects in lung cancer cell-lines. J Cheminform 2021; 13:17. [PMID: 33658076 PMCID: PMC7927403 DOI: 10.1186/s13321-021-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Enhanced/prolonged cAMP signalling has been suggested as a suppressor of cancer proliferation. Interestingly, two key modulators that elevate cAMP, the A2A receptor (A2AR) and phosphodiesterase 10A (PDE10A), are differentially co-expressed in various types of non-small lung cancer (NSCLC) cell-lines. Thus, finding dual-target compounds, which are simultaneously agonists at the A2AR whilst also inhibiting PDE10A, could be a novel anti-proliferative approach. Using ligand- and structure-based modelling combined with MD simulations (which identified Val84 displacement as a novel conformational descriptor of A2AR activation), a series of known PDE10A inhibitors were shown to dock to the orthosteric site of the A2AR. Subsequent in-vitro analysis confirmed that these compounds bind to the A2AR and exhibit dual-activity at both the A2AR and PDE10A. Furthermore, many of the compounds exhibited promising anti-proliferative effects upon NSCLC cell-lines, which directly correlated with the expression of both PDE10A and the A2AR. Thus, we propose a structure-based methodology, which has been validated in in-vitro binding and functional assays, and demonstrated a promising therapeutic value.
Collapse
Affiliation(s)
- Leen Kalash
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- GlaxoSmithKline, Gunnels Wood Road, Hertfordshire, SG1 2NY, Stevenage, UK
| | - Ian Winfield
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - Dewi Safitri
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
- Pharmacology and Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, 40132, Bandung, Indonesia
| | - Marcel Bermudez
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 und 4, 14195, Berlin, Germany
| | - Sabrina Carvalho
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK
| | - Robert Glen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW, Cambridge, UK.
| |
Collapse
|
10
|
Jones C, Bisserier M, Bueno-Beti C, Bonnet G, Neves-Zaph S, Lee SY, Milara J, Dorfmüller P, Humbert M, Leopold JA, Hadri L, Hajjar RJ, Sassi Y. A novel secreted-cAMP pathway inhibits pulmonary hypertension via a feed-forward mechanism. Cardiovasc Res 2021; 116:1500-1513. [PMID: 31529026 DOI: 10.1093/cvr/cvz244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS Cyclic adenosine monophosphate (cAMP) is the predominant intracellular second messenger that transduces signals from Gs-coupled receptors. Intriguingly, there is evidence from various cell types that an extracellular cAMP pathway is active in the extracellular space. Herein, we investigated the role of extracellular cAMP in the lung and examined whether it may act on pulmonary vascular cell proliferation and pulmonary vasculature remodelling in the pathogenesis of pulmonary hypertension (PH). METHODS AND RESULTS The expression of cyclic AMP-metabolizing enzymes was increased in lungs from patients with PH as well as in rats treated with monocrotaline and mice exposed to Sugen/hypoxia. We report that inhibition of the endogenous extracellular cAMP pathway exacerbated Sugen/hypoxia-induced lung remodelling. We found that application of extracellular cAMP induced an increase in intracellular cAMP levels and inhibited proliferation and migration of pulmonary vascular cells in vitro. Extracellular cAMP infusion in two in vivo PH models prevented and reversed pulmonary and cardiac remodelling associated with PH. Using protein expression analysis along with luciferase assays, we found that extracellular cAMP acts via the A2R/PKA/CREB/p53/Cyclin D1 pathway. CONCLUSIONS Taken together, our data reveal the presence of an extracellular cAMP pathway in pulmonary arteries that attempts to protect the lung during PH, and suggest targeting of the extracellular cAMP signalling pathway to limit pulmonary vascular remodelling and PH.
Collapse
Affiliation(s)
- Carly Jones
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Carlos Bueno-Beti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Guillaume Bonnet
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Susana Neves-Zaph
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA.,Systems Biology Center, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029 NY; USA
| | - Sang-Yong Lee
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, Universität Bonn, Bonn, Germany
| | - Javier Milara
- Health Research Institute INCLIVA, Valencia, Spain.,Pharmacy Unit, University Clinic Hospital, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Peter Dorfmüller
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | | | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| |
Collapse
|
11
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
12
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
13
|
McNeill MC, Wray J, Sala-Newby GB, Hindmarch CCT, Smith SA, Ebrahimighaei R, Newby AC, Bond M. Nuclear actin regulates cell proliferation and migration via inhibition of SRF and TEAD. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118691. [PMID: 32119877 PMCID: PMC7262588 DOI: 10.1016/j.bbamcr.2020.118691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Actin dynamics regulate cell behaviour in response to physiological signals. Here we demonstrate a novel role for nuclear actin in inhibiting cell proliferation and migration. We demonstrate that physiological signals that elevate cAMP, which is anti-mitogenic in vascular smooth muscle cells, increases nuclear actin monomer levels. Expression of a nuclear-targeted polymerisation-defective actin mutant (NLS-ActinR62D) inhibited proliferation and migration. Preventing nuclear actin monomer accumulation by enhancing its nuclear export or polymerisation reversed the anti-mitogenic and anti-migratory effects of cAMP. Transcriptomic analysis identified repression of proliferation and migration associated genes regulated by serum response factor (SRF) and TEA Domain (TEAD) transcription factors. Accordingly, NLS-ActinR62D inhibited SRF and TEAD activity and target gene expression, and these effects were reversed by constitutively-active mutants of the TEAD and SRF co-factors YAP, TAZ and MKL1. In summary, intranuclear actin inhibits proliferation and migration by inhibiting YAP-TEAD and MKL-SRF activity. This mechanism explains the anti-mitogenic and anti-migratory properties of physiological signals that elevate cAMP. SUMMARY: McNeill et al show that increased levels of intranuclear actin monomer inhibit cell proliferation and migration by inhibiting MKL1-SRF and YAP/TAZ-TEAD-dependent gene expression. This mechanism mediates the anti-mitogenic and anti-migratory effects of physiological signals that elevate cyclic-AMP.
Collapse
Affiliation(s)
- Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Jason Wray
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON K7L3N6, Canada
| | - Sarah A Smith
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
14
|
Scheck M, Velten M, Klaschik S, Soehle M, Frede S, Gehlen J, Hoch J, Mustea A, Hoeft A, Hilbert T. Differential modulation of endothelial cell function by fresh frozen plasma. Life Sci 2020; 254:117780. [PMID: 32407844 DOI: 10.1016/j.lfs.2020.117780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022]
Abstract
AIMS In vivo studies suggest a positive influence of fresh frozen plasma (FFP) on endothelial properties and vascular barrier function, leading to improved outcomes in animal sepsis models as well as in major abdominal surgery. However, those effects are incompletely described. It was our aim to evaluate in vitro effects of FFP on endothelial key functions and to identify underlying mechanisms. MATERIALS AND METHODS Human pulmonary microvascular endothelial cells (HPMECs) were prestimulated with LPS, followed by incubation with FFP. Permeability for FITC-dextran was assessed, and intercellular gap formation was visualized. NF-κB nuclear translocation and expression of pro-inflammatory, pro-adhesion, and leakage-related genes were evaluated, and monocyte adhesion to ECs was assessed. Intracellular cAMP levels as well as phosphorylation of functional proteins were analyzed. In patients undergoing major abdominal surgery, Syndecan-1 serum levels were assessed prior to and following FFP transfusion. KEY FINDINGS Post-incubation of HPMVECs with FFP increased intracellular cAMP levels that had been decreased by preceding LPS stimulation. On one hand, this reduced endotoxin-mediated upregulation of IL-8, ICAM-1, VCAM-1, VEGF, and ANG-2. Impaired phosphorylation of functional proteins was restored, and intercellular cohesion and barrier function were rescued. On the other hand, NF-κB nuclear translocation as well as monocyte adhesion was markedly increased by the combination of LPS and FFP. Syndecan-1 serum levels were lower in surgery patients that were transfused with FFP compared to those that were not. SIGNIFICANCE Our data provide evidence for a differential modulation of crucial endothelial properties by FFP, potentially mediated by elevation of intracellular cAMP levels.
Collapse
Affiliation(s)
- Marcel Scheck
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Soehle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jennifer Gehlen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Hoch
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Obstetrics, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Kant S, Kesarwani P, Prabhu A, Graham SF, Buelow KL, Nakano I, Chinnaiyan P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis 2020; 11:253. [PMID: 32312953 PMCID: PMC7170895 DOI: 10.1038/s41419-020-2449-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Despite advances in molecularly characterizing glioblastoma (GBM), metabolic alterations driving its aggressive phenotype are only beginning to be recognized. Integrative cross-platform analysis coupling global metabolomic and gene expression profiling on patient-derived glioma identified fatty acid β-oxidation (FAO) as a metabolic node in GBM. We determined that the biologic consequence of enhanced FAO is directly dependent upon tumor microenvironment. FAO serves as a metabolic cue to drive proliferation in a β-HB/GPR109A dependent autocrine manner in nutrient favorable conditions, while providing an efficient, alternate source of ATP only in nutrient unfavorable conditions. Rational combinatorial strategies designed to target these dynamic roles FAO plays in gliomagenesis resulted in necroptosis-mediated metabolic synthetic lethality in GBM. In summary, we identified FAO as a dominant metabolic node in GBM that provides metabolic plasticity, allowing these cells to adapt to their dynamic microenvironment. Combinatorial strategies designed to target these diverse roles FAO plays in gliomagenesis offers therapeutic potential in GBM.
Collapse
Affiliation(s)
- Shiva Kant
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Pravin Kesarwani
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Antony Prabhu
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Stewart F Graham
- Department of Metabolomics and Obstetrics/Gynecology, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, USA
| | - Katie L Buelow
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA. .,Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| |
Collapse
|
16
|
T-cell death-associated gene 8 accelerates atherosclerosis by promoting vascular smooth muscle cell proliferation and migration. Atherosclerosis 2020; 297:64-73. [PMID: 32078831 DOI: 10.1016/j.atherosclerosis.2020.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 01/04/2020] [Accepted: 01/16/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a serious cardiovascular disease, featuring inflammation, abnormal proliferation and migration of vascular smooth muscle cells (VSMCs). During atherosclerosis, inflammation may cause low pH. T-cell death-associated gene 8 (Tdag8) is a proton-sensing receptor, however, the role of Tdag8 in VSMCs remains unknown. This study aimed to investigate the potential effects of Tdag8 in VSMCs during atherosclerosis. METHODS We examined the expression of Tdag8 in an atherosclerotic model of high-fat-diet-fed ApoE-/- mice, while the role and mechanism of Tdag8 in phenotype transformation, proliferation and migration of VSMCs were investigated in a series of in vivo and in vitro experiments. RESULTS We first found that Tdag8 expression at the mRNA and protein level was significantly increased in atherosclerotic ApoE-/- mice. Immunofluorescence staining showed that Tdag8 was primarily distributed in PCNA-positive VSMCs and the phenotype of VSMCs switching from contractile phenotype to synthetic phenotype. Additionally, the protein level of Tdag8 was upregulated in FBS-treated VSMCs. VSMCs proliferation and migration were inhibited by Tdag8 silencing and increased by Tdag8 overexpression. Further mechanistic studies showed that cAMP level was increased in Tdag8-overexpressing VSMCs and ApoE-/- mice. However, the PKA inhibitor H-89 reversed Tdag8-induced VSMC proliferation and migration. CONCLUSIONS The results demonstrate that Tdag8 mediated phenotype transformation, proliferation and migration of VSMCs via the cAMP/PKA signaling pathway, thus partially contributing to atherosclerosis.
Collapse
|
17
|
Dubey RK, Baruscotti I, Stiller R, Fingerle J, Gillespie DG, Mi Z, Leeners B, Imthurn B, Rosselli M, Jackson EK. Adenosine, Via A 2B Receptors, Inhibits Human (P-SMC) Progenitor Smooth Muscle Cell Growth. Hypertension 2019; 75:109-118. [PMID: 31786976 DOI: 10.1161/hypertensionaha.119.13698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.).,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.).,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Isabella Baruscotti
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Ruth Stiller
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Juergen Fingerle
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen, Germany (J.F.)
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| | - Brigitte Leeners
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Bruno Imthurn
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Marinella Rosselli
- From the Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich (R.K.D., I.B., R.S., B.L., B.I., M.R.)
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (R.K.D., D.G.G., Z.M., E.K.J.)
| |
Collapse
|
18
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
19
|
Yun S, Hu R, Schwaemmle ME, Scherer AN, Zhuang Z, Koleske AJ, Pallas DC, Schwartz MA. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest 2019; 129:4863-4874. [PMID: 31408443 PMCID: PMC6819111 DOI: 10.1172/jci127692] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Rui Hu
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | | | - Alexander N. Scherer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Zhenwu Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David C. Pallas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Martin A. Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
- Department of Biomedical Engineering, and
- Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
20
|
BAY 41-2272 inhibits human neutrophil functions. Int Immunopharmacol 2019; 75:105767. [PMID: 31376626 DOI: 10.1016/j.intimp.2019.105767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023]
Abstract
BAY 41-2272 is a guanylyl cyclase (GC) stimulator derived from YC-1 (3-[(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole]). Previous studies by our group showed that BAY 41-2272 activates human monocytes via soluble guanylyl cyclase (sGC) and cGMP. In this study, we investigated the effect of BAY 41-2272 on human neutrophil function and found that 30 μM BAY 41-2272 inhibits neutrophil migration (1.82-fold lower than FMLP, P < 0.05 by one-way ANOVA followed by Tukey's test), oxidative burst (1.70-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test), and IL-8 cytokine production (1.80-fold lower than PMA, P < 0.05 by one-way ANOVA followed by Tukey's test). Our results suggest that these effects are independent of the sGC pathway but dependent instead on cGMP production, as the response induced by 30 μM BAY 41-2272 was 6.40-fold greater than that observed in our negative control (P < 0.05 by parametric t-test). 1H-[1, 2, 4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), which is an irreversible inhibitor of sGC, was unable to reverse the effects of BAY 41-2272 on human neutrophils, indicating that this drug acts independently of sGC. Our results confirm the immunomodulatory effect of BAY 41-2272 on human neutrophils.
Collapse
|
21
|
Guo SZ, Liu WJ. Constructing differential co-expression network to predict key pathways for myocardial infarction. Exp Ther Med 2019; 17:3029-3034. [PMID: 30936974 PMCID: PMC6434241 DOI: 10.3892/etm.2019.7321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/05/2019] [Indexed: 12/27/2022] Open
Abstract
New thoughts are warranted to develop efficient diagnosis and optimal therapeutics to combat unstable angina (UA)/myocardial infarction (MI). Therefore, the gene data of patients with UA or MI were used in this study to identify the optimal pathways which can provide comprehensive information for UA/MI development. Differentially expressed genes (DEGs) between UA and MI were detected using LIMMA package, and pathway enrichment analysis was conducted for the DEGs, based on the DAVID tool, to detect the significant pathways. Then, differential co-expression network (DCN) and sub-DCN for the DEGs were constructed. Subsequently, informative pathways were extracted using guilt-by-association (GBA) principle relying on the area under the curve (AUC), and the pathway categories with AUC >0.8 were defined as the informative pathways. Finally, we selected the optimal pathways based on the traditional pathway analysis and the sub-DCN-based-GBA pathway prediction method. A total of 203 and 266 DEGs were identified from the expression profile of blood of MI samples comparing with UAs in the time-point 1 and time-point 2 groups. Moreover, 7 and 10 informative pathway terms were identified based on AUC>0.8. Significantly, cytokine-cytokine receptor interaction, as well as MAPK signaling pathway were the common optimal pathways in the two groups. Calcium signaling pathway was unique to the whole blood of patients with acute coronary syndrome (ACS) taken at 30 days post-ACS. In conclusion, the optimal pathways (MAPK signaling pathway, cytokine-cytokine receptor interaction, and calcium signaling pathway) might play important roles in the progression of UA/MI.
Collapse
Affiliation(s)
- Su-Zhen Guo
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Wen-Jie Liu
- Department of Geriatrics, Chendong Hospital, Quanzhou First Hospital, Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
22
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
23
|
Zhu Y, Zhang H, Zhang Y, Wu H, Wei L, Zhou G, Zhang Y, Deng L, Cheng Y, Li M, Santos HA, Cui W. Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805452. [PMID: 30589125 DOI: 10.1002/adma.201805452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in-depth understanding of the mechanical and material performance of these metal-based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.
Collapse
Affiliation(s)
- Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Huayin Wu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Liming Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Gen Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Yuezhou Zhang
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Minghua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
24
|
Hooks JS, Clement CC, Nguyen HD, Santambrogio L, Dixon JB. In vitro model reveals a role for mechanical stretch in the remodeling response of lymphatic muscle cells. Microcirculation 2019; 26:e12512. [PMID: 30383330 PMCID: PMC6335159 DOI: 10.1111/micc.12512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Using primary LMCs in vitro, we sought to characterize the impact of LMC remodeling on their functional and molecular response to mechanical loading and culture conditions. METHODS Primary "wounded leg" LMCs were derived from the hindlimb of three sheep who underwent lymphatic injury 6 weeks prior, while "control leg" LMCs were derived from the contralateral, unwounded, limb. Function of the LMCs was characterized in response to media of variable levels of serum (10% vs 0.2%) and glucose (4.5 vs 1 g/L). Functional and proteomic data were evaluated in LMCs exposed to cyclic stretch (0.1 Hz, 7.5% elongation) for 1 week. RESULTS LMCs were sensitive to changes in serum levels, significantly reducing overall activity and collagen synthesis under low serum conditions. LMCs from the remodeled vessel had higher baseline levels of metabolic activity but not collagen synthesis. Cyclic loading induced cellular alignment perpendicular to the axis of stretch and alterations in signaling pathways associated with metabolism. Remodeled LMCs had consistently higher levels of metabolic activity and were more resistant to strain-induced apoptosis. CONCLUSIONS LMCs exist on a functional spectrum, becoming more active in response to stretching and maintaining phenotypic remodeling in response to local lymphatic/tissue damage.
Collapse
Affiliation(s)
- Joshua S.T. Hooks
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA 30313
| | - Cristina C. Clement
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Hoang-Dung Nguyen
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - J. Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 315 Ferst Dr. Atlanta, GA 30332
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr. Atlanta, GA 30313
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332
| |
Collapse
|
25
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
26
|
Hudson C, Kimura TE, Duggirala A, Sala-Newby GB, Newby AC, Bond M. Dual Role of CREB in The Regulation of VSMC Proliferation: Mode of Activation Determines Pro- or Anti-Mitogenic Function. Sci Rep 2018; 8:4904. [PMID: 29559698 PMCID: PMC5861041 DOI: 10.1038/s41598-018-23199-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation has been implicated in the development of restenosis after angioplasty, vein graft intimal thickening and atherogenesis. We investigated the mechanisms underlying positive and negative regulation of VSMC proliferation by the transcription factor cyclic AMP response element binding protein (CREB). Incubation with the cAMP elevating stimuli, adenosine, prostacyclin mimetics or low levels of forksolin activated CREB without changing CREB phosphorylation on serine-133 but induced nuclear translocation of the CREB co-factors CRTC-2 and CRTC-3. Overexpression of CRTC-2 or -3 significantly increased CREB activity and inhibited VSMC proliferation, whereas CRTC-2/3 silencing inhibited CREB activity and reversed the anti-mitogenic effects of adenosine A2B receptor agonists. By contrast, stimulation with serum or PDGFBB significantly increased CREB activity, dependent on increased CREB phosphorylation at serine-133 but not on CRTC-2/3 activation. CREB silencing significantly inhibited basal and PDGF induced proliferation. These data demonstrate that cAMP activation of CREB, which is CRTC2/3 dependent and serine-133 independent, is anti-mitogenic. Growth factor activation of CREB, which is serine-133-dependent and CRTC2/3 independent, is pro-mitogenic. Hence, CREB plays a dual role in the regulation of VSMC proliferation with the mode of activation determining its pro- or anti-mitogenic function.
Collapse
Affiliation(s)
- Claire Hudson
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Tomomi E Kimura
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Aparna Duggirala
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Mark Bond
- Translational Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.
| |
Collapse
|
27
|
Schiattarella GG, Cattaneo F, Carrizzo A, Paolillo R, Boccella N, Ambrosio M, Damato A, Pironti G, Franzone A, Russo G, Magliulo F, Pirozzi M, Storto M, Madonna M, Gargiulo G, Trimarco V, Rinaldi L, De Lucia M, Garbi C, Feliciello A, Esposito G, Vecchione C, Perrino C. Akap1
Regulates Vascular Function and Endothelial Cells Behavior. Hypertension 2018; 71:507-517. [DOI: 10.1161/hypertensionaha.117.10185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Gabriele Giacomo Schiattarella
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Fabio Cattaneo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Albino Carrizzo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Roberta Paolillo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Nicola Boccella
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Mariateresa Ambrosio
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Antonio Damato
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Gianluigi Pironti
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Anna Franzone
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giusi Russo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Fabio Magliulo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Marinella Pirozzi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Marianna Storto
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Michele Madonna
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giuseppe Gargiulo
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Valentina Trimarco
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Laura Rinaldi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Massimiliano De Lucia
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Corrado Garbi
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Antonio Feliciello
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Giovanni Esposito
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Carmine Vecchione
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| | - Cinzia Perrino
- From the Department of Advanced Biomedical Sciences (G.G.S., F.C., R.P., N.B., A.F., F.M., G.G., G.E., C.P.), Department of Molecular Medicine and Medical Biotechnologies (G.R., L.R., C.G., A.F.), and Department of Neuroscience, Reproductive Science and Odontostomatology (V.T.), University of Naples “Federico II”, Italy; IRCCS Neuromed, Pozzilli, Italy (A.C., M.A., A.D., M.S., M.M., M.D.L., C.V.); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (G.P.); Department
| |
Collapse
|
28
|
Sorrentino S, Iaconetti C, De Rosa S, Polimeni A, Sabatino J, Gareri C, Passafaro F, Mancuso T, Tammè L, Mignogna C, Camastra C, Esposito G, Curcio A, Torella D, Indolfi C. Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery. Sci Rep 2018; 8:761. [PMID: 29335599 PMCID: PMC5768880 DOI: 10.1038/s41598-017-19136-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
Peripheral ischemia is associated with higher degree of endothelial dysfunction and a worse prognosis after percutaneous coronary interventions (PCI). However, the role of peripheral ischemia on vascular remodeling in remote districts remains poorly understood. Here we show that the presence of hindlimb ischemia significantly enhances neointima formation and impairs endothelial recovery in balloon-injured carotid arteries. Endothelial-derived microRNAs are involved in the modulation of these processes. Indeed, endothelial miR-16 is remarkably upregulated after vascular injury in the presences of hindlimb ischemia and exerts a negative effect on endothelial repair through the inhibition of RhoGDIα and nitric oxide (NO) production. We showed that the repression of RhoGDIα by means of miR-16 induces RhoA, with consequent reduction of NO bioavailability. Thus, hindlimb ischemia affects negative carotid remodeling increasing neointima formation after injury, while systemic antagonizzation of miR-16 is able to prevent these negative effects.
Collapse
Affiliation(s)
- Sabato Sorrentino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Claudio Iaconetti
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jolanda Sabatino
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Clarice Gareri
- Department of Medicine, Duke University, Durham, 27710, NC, USA
| | - Francesco Passafaro
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Laura Tammè
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Caterina Camastra
- Department of Health Science, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. .,URT-CNR of IFC, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
29
|
Divergent Regulation of Actin Dynamics and Megakaryoblastic Leukemia-1 and -2 (Mkl1/2) by cAMP in Endothelial and Smooth Muscle Cells. Sci Rep 2017. [PMID: 28623279 PMCID: PMC5473867 DOI: 10.1038/s41598-017-03337-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) or endothelial cell (ECs) promote or inhibit, respectively, restenosis after angioplasty, vein graft intimal thickening and atherogenesis. Here we investigated the effects of cAMP-induced cytoskeletal remodelling on the serum response factor (SRF) co-factors Megakaryoblastic Leukemia-1 and -2 (MKL1 and MKL2) and their role in controlling VSMC and EC proliferation and migration. Elevation of cAMP using forskolin, dibutyryl-cAMP (db-cAMP), BAY60-6583 or Cicaprost induced rapid cytoskeleton remodelling and inhibited proliferation and migration in VSMCs but not EC. Furthermore, elevated cAMP inhibited mitogen-induced nuclear-translocation of MKL1 and MKL2 in VSMCs but not ECs. Forskolin also significantly inhibited serum response factor (SRF)-dependent reporter gene (SRE-LUC) activity and mRNA expression of pro-proliferative and pro-migratory MKL1/2 target genes in VSMCs but not in ECs. In ECs, MKL1 was constitutively nuclear and MKL2 cytoplasmic, irrespective of mitogens or cAMP. Pharmacological or siRNA inhibition of MKL1 significantly inhibited the proliferation and migration of VSMC and EC. Our new data identifies and important contribution of MKL1/2 to explaining the strikingly different response of VSMCs and ECs to cAMP elevation. Elucidation of these pathways promises to identify targets for specific inhibition of VSMC migration and proliferation.
Collapse
|
30
|
Gareri C, Iaconetti C, Sorrentino S, Covello C, De Rosa S, Indolfi C. miR-125a-5p Modulates Phenotypic Switch of Vascular Smooth Muscle Cells by Targeting ETS-1. J Mol Biol 2017; 429:1817-1828. [PMID: 28502794 DOI: 10.1016/j.jmb.2017.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/06/2017] [Accepted: 05/07/2017] [Indexed: 12/29/2022]
Abstract
MicroRNAs are key regulators of vascular smooth muscle cells (VSMCs) phenotypic switch, one of the main events responsible for bare metal in-stent restenosis after percutaneous coronary intervention. miR-125a-5p is an important modulator of differentiation, proliferation, and migration in different cell types; however, its role in VSMCs is still unknown. The aim of this study was to evaluate the role of miR-125a-5p in VSMCs phenotypic switch. Our results suggest that miR-125a-5p is highly expressed in VSMCs, but it is down-regulated after vascular injury in vivo. Its overexpression is sufficient to reduce VSMCs proliferation and migration, and it is able to promote the expression of selective VSMCs markers such as alpha smooth muscle actin, myosin heavy chain 11, and smooth muscle 22 alpha. Interestingly, miR-125a-5p directly targets ETS-1, a transcription factor implicated in cell proliferation and migration and is crucial in PDGF-BB pathway in VSMCs. Thus, miR-125a-5p in this context inhibits PDGF-BB pathway and is therefore a potential regulator of VSMCs phenotypic switch.
Collapse
Affiliation(s)
- C Gareri
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy; Department of Medicine, Duke University, Durham, 27710, NC, USA
| | - C Iaconetti
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - S Sorrentino
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - C Covello
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - S De Rosa
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy
| | - C Indolfi
- Division of Cardiology, Department of Medical and Surgical Science, "Magna Graecia" University, Viale Europa, Catanzaro 88100, Italy; URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC.
| |
Collapse
|
31
|
Simo-Cheyou ER, Youreva V, Srivastava AK. cAMP attenuates angiotensin-II-induced Egr-1 expression via PKA-dependent signaling pathway in vascular smooth muscle cells. Can J Physiol Pharmacol 2017; 95:928-937. [PMID: 28460186 DOI: 10.1139/cjpp-2017-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
cAMP has been shown to inhibit vascular smooth muscle cell proliferation and exerts a vasculoprotective effect. An upregulation of the early growth response protein-1 (Egr-1) expression has been linked with the development of atherosclerosis and intimal hyperplasia. We have recently demonstrated that angiotensin-II (Ang-II) stimulates Egr-1 expression via Ca2+/ERK-mediated cAMP-response element binding protein (CREB) activation. However, whether Ang-II-induced signaling leading to Egr-1 expression is modulated by cAMP remains unexplored. Therefore, in the present studies, we have examined the effect of cAMP on Ang-II-induced expression of Egr-1 and associated signaling pathways. Isoproterenol (ISO) and forskolin (FSK) attenuated Ang-II-induced Egr-1 expression in a dose-dependent fashion. In addition, dibutyryl-cAMP and benzoyl-cAMP, as well as isobutylmethylxanthine, attenuated Ang-II-induced Egr-1 expression. Moreover, inhibition of Ang-II-induced Egr-1 expression was accompanied by an increase in the phosphorylation of the vasodilator-activated phosphoprotein (VASP), and this was associated with a concomitant decrease in ERK phosphorylation. Blockade of PKA using H89 decreased VASP phosphorylation, restored Ang-II-induced ERK phosphorylation, and abolished ISO- and FSK-mediated inhibition of Ang-II-induced Egr-1 expression. In summary, these results suggest that PKA-mediated suppression of Ang-II-induced Egr-1 expression and phosphorylation of ERK may be among the mechanisms by which cAMP exerts its vasculoprotective effects.
Collapse
Affiliation(s)
- Estelle R Simo-Cheyou
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada.,b Department of Nutrition, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada
| | - Viktoria Youreva
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada
| | - Ashok K Srivastava
- a Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue St-Denis, Montreal, QC H2X 0A9, Canada.,b Department of Nutrition, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada.,c Department of Medicine, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
32
|
Mottola G, Chatterjee A, Wu B, Chen M, Conte MS. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. PLoS One 2017; 12:e0174936. [PMID: 28362840 PMCID: PMC5376330 DOI: 10.1371/journal.pone.0174936] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been previously shown to attenuate vascular smooth muscle cell (VSMC) migration, a key process in the development of intimal hyperplasia. We sought to investigate the role of the cAMP/PKA pathway in mediating the effects of the aspirin-triggered epimer 17R-RvD1 (AT-RvD1) on VSMC migration. METHODS VSMCs were harvested from human saphenous veins. VSMCs were analyzed for intracellular cAMP levels and PKA activity after exposure to AT-RvD1. Platelet-derived growth factor (PDGF)-induced migration and cytoskeletal changes in VSMCs were observed through scratch, Transwell, and cell shape assays in the presence or absence of a PKA inhibitor (Rp-8-Br-cAMP). Further investigation of the pathways involved in AT-RvD1 signaling was performed by measuring Rac1 activity, vasodilator stimulated phosphoprotein (VASP) phosphorylation and paxillin translocation. Finally, we examined the role of RvD1 receptors (GPR32 and ALX/FPR2) in AT-RvD1 induced effects on VSMC migration and PKA activity. RESULTS Treatment with AT-RvD1 induced a significant increase in cAMP levels and PKA activity in VSMCs at 5 minutes and 30 minutes, respectively. AT-RvD1 attenuated PDGF-induced VSMC migration and cytoskeletal rearrangements. These effects were attenuated by the PKA inhibitor Rp-8-Br-cAMP, suggesting cAMP/PKA involvement. Treatment of VSMC with AT-RvD1 inhibited PDGF-stimulated Rac1 activity, increased VASP phosphorylation, and attenuated paxillin localization to focal adhesions; these effects were negated by the addition of Rp-8-Br-cAMP. The effects of AT-RvD1 on VSMC migration and PKA activity were attenuated by blocking ALX/FPR2, suggesting an important role of this G-protein coupled receptor. CONCLUSIONS Our results suggest that AT-RvD1 attenuates PDGF-induced VSMC migration via ALX/FPR2 and cAMP/PKA. Interference with Rac1, VASP and paxillin function appear to mediate the downstream effects of AT-RvD1 on VSMC migration.
Collapse
Affiliation(s)
- Giorgio Mottola
- Department of Surgery, Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Anuran Chatterjee
- Department of Surgery, Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Bian Wu
- Department of Surgery, Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Mian Chen
- Department of Surgery, Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. Conte
- Department of Surgery, Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
33
|
Feridooni T, Hotchkiss A, Baguma-Nibasheka M, Zhang F, Allen B, Chinni S, Pasumarthi KBS. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. Am J Physiol Heart Circ Physiol 2017; 312:H919-H931. [PMID: 28283550 DOI: 10.1152/ajpheart.00425.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brittney Allen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
34
|
Kanemura N, Shibata R, Ohashi K, Ogawa H, Hiramatsu-Ito M, Enomoto T, Yuasa D, Ito M, Hayakawa S, Otaka N, Murohara T, Ouchi N. C1q/TNF-related protein 1 prevents neointimal formation after arterial injury. Atherosclerosis 2017; 257:138-145. [PMID: 28131048 DOI: 10.1016/j.atherosclerosis.2017.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 12/08/2016] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Obesity contributes to the progression of vascular disorders. C1q/TNF-related protein (CTRP) 1 is a circulating adipokine, which is upregulated in obese complications including coronary artery disease. Here, we investigated the role of CTRP1 in regulation of vascular remodeling after mechanical injury and evaluated its potential mechanism. METHODS Mice were subjected to wire-induced injury of left femoral arteries. An adenoviral vector encoding CTRP1 (Ad-CTRP1) or β-galactosidase as a control was injected into the jugular vein of mice 3 days prior to surgery. RESULTS Systemic administration of Ad-CTRP1 to wild-type mice led to reduction of the neointimal thickening after wire-induced arterial injury and the number of bromodeoxyuridine-positive cells in injured vessels as compared with treatment with control vectors. Treatment of vascular smooth muscle cells (VSMCs) with CTRP1 protein attenuated proliferative activity and ERK phosphorylation in response to PDGF-BB. CTRP1 treatment increased cyclic AMP (cAMP) levels in VSMCs, and inhibition of adenylyl cyclase reversed the inhibitory effect of CTRP1 on VSMC growth and ERK phosphorylation. Antagonization of sphingosine-1-phosphaterote (S1P) receptor 2 blocked the effects of CTRP1 on cAMP production and VSMC growth. Furthermore, CTRP1-knockout mice had enhanced neointimal thickening following injury and increased numbers of proliferating cells in neointima compared to control WT mice. CONCLUSIONS These findings indicate that CTRP1 functions to prevent the development of pathological vascular remodeling by reducing VSMC growth through the cAMP-dependent pathway.
Collapse
MESH Headings
- Adipokines/deficiency
- Adipokines/genetics
- Adipokines/metabolism
- Animals
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP/metabolism
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Genetic Predisposition to Disease
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Phosphorylation
- Proteins/metabolism
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Noriyoshi Kanemura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Koji Ohashi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuho Hiramatsu-Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Enomoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Yuasa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Hayakawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
35
|
The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine Growth Factor Rev 2016; 31:37-48. [PMID: 27079372 DOI: 10.1016/j.cytogfr.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Adipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast. In this review, the potential link between obesity and female-specific malignancies is comprehensively presented by discussing significant features of the intriguing and complex molecule, adiponectin, with a focus on recent findings highlighting its molecular mechanism of action in female-specific carcinogenesis.
Collapse
|
36
|
Dubey RK, Fingerle J, Gillespie DG, Mi Z, Rosselli M, Imthurn B, Jackson EK. Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D. Hypertension 2015; 66:1207-19. [PMID: 26416848 PMCID: PMC4644125 DOI: 10.1161/hypertensionaha.115.05912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023]
Abstract
The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin that controls cell-cycle progression.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.).
| | - Jürgen Fingerle
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Delbert G Gillespie
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Zaichuan Mi
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Marinella Rosselli
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Bruno Imthurn
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Edwin K Jackson
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| |
Collapse
|
37
|
Sardana M, Moll M, Farber HW. Novel investigational therapies for treating pulmonary arterial hypertension. Expert Opin Investig Drugs 2015; 24:1571-96. [DOI: 10.1517/13543784.2015.1098616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Kato Y, Yokoyama U, Yanai C, Ishige R, Kurotaki D, Umemura M, Fujita T, Kubota T, Okumura S, Sata M, Tamura T, Ishikawa Y. Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation. Arterioscler Thromb Vasc Biol 2015; 35:2617-25. [PMID: 26427796 DOI: 10.1161/atvbaha.115.306534] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration causes neointima, which is related to vascular remodeling after mechanical injury and atherosclerosis development. We previously reported that an exchange protein activated by cAMP (Epac) 1 was upregulated in mouse arterial neointima and promoted SMC migration. In this study, we examined the molecular mechanisms of Epac1-induced SMC migration and the effect of Epac1 deficiency on vascular remodeling in vivo. APPROACH AND RESULTS Platelet-derived growth factor-BB promoted a 2-fold increase in SMC migration in a primary culture of aortic SMCs obtained from Epac1(+/+) mice (Epac1(+/+)-ASMCs), whereas there was only a 1.2-fold increase in Epac1(-/-)-ASMCs. The degree of platelet-derived growth factor-BB-induced increase in intracellular Ca(2+) was smaller in Fura2-labeled Epac1(-/-)-ASMCs than in Epac1(+/+)-ASMCs. In Epac1(+/+)-ASMCs, an Epac-selective cAMP analog or platelet-derived growth factor-BB increased lamellipodia accompanied by cofilin dephosphorylation, which is induced by Ca(2+) signaling, whereas these effects were rarely observed in Epac1(-/-)-ASMCs. Furthermore, 4 weeks after femoral artery injury, prominent neointima were formed in Epac1(+/+) mice, whereas neointima formation was significantly attenuated in Epac1(-/-) mice in which dephosphorylation of cofilin was inhibited. The chimeric mice generated by bone marrow cell transplantation from Epac1(+/+) into Epac1(-/-) mice and vice versa demonstrated that the genetic background of vascular tissues, including SMCs rather than of bone marrow-derived cells affected Epac1-mediated neointima formation. CONCLUSIONS These data suggest that Epac1 deficiency attenuates neointima formation through, at least in part, inhibition of SMC migration, in which a decrease in Ca(2+) influx and a suppression of cofilin-mediated lamellipodia formation occur.
Collapse
Affiliation(s)
- Yuko Kato
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Utako Yokoyama
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| | - Chiharu Yanai
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Rina Ishige
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Daisuke Kurotaki
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masanari Umemura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Takayuki Fujita
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tetsuo Kubota
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Satoshi Okumura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Masataka Sata
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Tomohiko Tamura
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.)
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute (Y.K., U.Y., C.Y., M.U., T.F., Y.I.) and Department of Immunology (D.K., T.T.), Yokohama City University, Graduate School of Medicine, Yokohama, Japan; Department of Microbiology and Immunology, Tokyo Medical and Dental University Graduate School of Health Care Sciences, Tokyo, Japan (Y.K., R.I., T.K.); Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan (S.O.); and Department of Cardiovascular Medicine, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan (M.S.).
| |
Collapse
|
39
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-75. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
40
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
41
|
Iaconetti C, De Rosa S, Polimeni A, Sorrentino S, Gareri C, Carino A, Sabatino J, Colangelo M, Curcio A, Indolfi C. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cellsin vitroandin vivo. Cardiovasc Res 2015; 107:522-33. [DOI: 10.1093/cvr/cvv141] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
|
42
|
PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner. J Mol Cell Cardiol 2015; 81:23-33. [PMID: 25640159 DOI: 10.1016/j.yjmcc.2015.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis.
Collapse
|
43
|
cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP). Biochem Soc Trans 2014; 42:89-97. [PMID: 24450633 DOI: 10.1042/bst20130253] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.
Collapse
|
44
|
Santulli G, Wronska A, Uryu K, Diacovo TG, Gao M, Marx SO, Kitajewski J, Chilton JM, Akat KM, Tuschl T, Marks AR, Totary-Jain H. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 2014; 124:4102-14. [PMID: 25133430 DOI: 10.1172/jci76069] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27(Kip1) (p27) with target sequences for EC-specific miR-126-3p at the 3' end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS-treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.
Collapse
|
45
|
Association between phosphodiesterase 4D polymorphism SNP83 and ischemic stroke. J Neurol Sci 2014; 338:3-11. [DOI: 10.1016/j.jns.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/17/2022]
|
46
|
Affiliation(s)
- Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University
- URT-CNR, Magna Graecia University
| |
Collapse
|
47
|
Lipskaia L, Bobe R, Chen J, Turnbull IC, Lopez JJ, Merlet E, Jeong D, Karakikes I, Ross AS, Liang L, Mougenot N, Atassi F, Lompré AM, Tarzami ST, Kovacic JC, Kranias E, Hajjar RJ, Hadri L. Synergistic role of protein phosphatase inhibitor 1 and sarco/endoplasmic reticulum Ca2+ -ATPase in the acquisition of the contractile phenotype of arterial smooth muscle cells. Circulation 2013; 129:773-85. [PMID: 24249716 DOI: 10.1161/circulationaha.113.002565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phenotypic modulation or switching of vascular smooth muscle cells from a contractile/quiescent to a proliferative/synthetic phenotype plays a key role in vascular proliferative disorders such as atherosclerosis and restenosis. Although several calcium handling proteins that control differentiation of smooth muscle cells have been identified, the role of protein phosphatase inhibitor 1 (I-1) in the acquisition or maintenance of the contractile phenotype modulation remains unknown. METHODS AND RESULTS In human coronary arteries, I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase expression is specific to contractile vascular smooth muscle cells. In synthetic cultured human coronary artery smooth muscle cells, protein phosphatase inhibitor 1 (I-1 target) is highly expressed, leading to a decrease in phospholamban phosphorylation, sarco/endoplasmic reticulum Ca2+ -ATPase, and cAMP-responsive element binding activity. I-1 knockout mice lack phospholamban phosphorylation and exhibit vascular smooth muscle cell arrest in the synthetic state with excessive neointimal proliferation after carotid injury, as well as significant modifications of contractile properties and relaxant response to acetylcholine of femoral artery in vivo. Constitutively active I-1 gene transfer decreased neointimal formation in an angioplasty rat model by preventing vascular smooth muscle cell contractile to synthetic phenotype change. CONCLUSIONS I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase synergistically induce the vascular smooth muscle cell contractile phenotype. Gene transfer of constitutively active I-1 is a promising therapeutic strategy for preventing vascular proliferative disorders.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Cardiovascular Research Center. Mount Sinai School of Medicine, New York, NY (L. Lipskaia, J.C., I.C.T., D.J., I.K., A.S.R., L. Liang, S.T.T., J.C.K., R.J.H.., L.H.); INSERM UMRS 956, Université Pierre et Marie Curie-Paris 6, Paris, France (L. Lipskaia, E.M., F.A., A.-M.L.); LIA/Transatlantic Cardiovascular Research Center, Université Pierre et Marie Curie/Mount Sinai School of Medicine, New York, NY (L. Lipskaia, J.C., I.C.T., E.M., D.J., I.K., L. Liang, F.A., A.-M.L., S.T.T., J.C.K., R.J.H., L.H.); INSERM U770, University Paris Sud, Le Kremlin-Bicêtre, France (R.B., J.J.L.); PECMV-Université Pierre et Marie Curie-Paris, Paris, France (N.M.); and University of Cincinnati, Cincinnati, OH (E.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Vascular miRNAs After Balloon Angioplasty. Trends Cardiovasc Med 2013; 23:9-14. [DOI: 10.1016/j.tcm.2012.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
|
50
|
Mu X, He K, Sun H, Zhou X, Chang L, Li X, Chu W, Qiao G, Lu Y. Hydrogen peroxide induces overexpression of angiotensin-converting enzyme in human umbilical vein endothelial cells. Free Radic Res 2012; 47:116-22. [PMID: 23153326 DOI: 10.3109/10715762.2012.749987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress has been linked to endothelial dysfunction in atherosclerosis and hypertension. The present study was designed to investigate the effect of hydrogen peroxide (H2O2) on angiotensin-converting enzyme (ACE), a key regulator of the renin-angiotensin system, and the mechanisms underlying ACE regulation in human umbilical vein endothelial cells (HUVECs). We used Tetrazolium bromide (MTT) assay for cell viability, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, enzyme-linked immunosorbent assay (ELISA) for cAMP measurement, real-time PCR for mRNA detection, and Western blot for protein analysis in the study. Our results demonstrated that H2O2 (50-1000 μM) decreased HUVECs viability by inducing apoptosis. Notably, H2O2 upregulated ACE expression in a concentration-dependent manner. H2O2 100 μM significantly enhanced cyclic adenosine monophosphate (cAMP) expression by 1.48-fold (P<0.05). Additionally, forskolin 10 μM, a cAMP agonist, was also found to enhance ACE expression by 1.78-fold (P<0.05); in contrast, H-89 10 μM, a protein kinase A (PKA) inhibitor, abolished H2O2-induced ACE expression and prevented the enhancing effect of forskolin-induced ACE expression. Similar effects on ACE mRNA were also observed. cAMP-response element-specific decoy oligodeoxynucleotides (CRE-dODN) containing binding sites for cAMP-response element-binding protein (CREB) inhibited ACE expression at both the mRNA and protein levels. Negative control CRE-dODN had no effect on ACE expression. We conclude that H2O2 upregulates the expression of ACE through the activation of cAMP/PKA/CREB signal pathway in HUVECs, indicating a role of oxidative stress in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Xiaoqin Mu
- Department of Pharmacology, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|