1
|
Torigoe K. Axonal regrowth under release of myelin-associated glycoprotein: chemotaxis by pioneer Schwann cells and Cajal's gigantic clubs. Microscopy (Oxf) 2024; 73:251-261. [PMID: 37757473 DOI: 10.1093/jmicro/dfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Myelin-associated glycoprotein (MAG), released from pre-degenerated distal nerves following axotomy, blocks the regrowth of sprouts and naked axons. Ensheathed axons, however, continue to elongate and reach MAG-releasing distal nerves. To determine the regenerative mechanism of ensheathed axons without navigators of axonal growth cones by the film model method, we inserted a MAG-releasing distal nerve segment treated with liquid nitrogen (N2DS) between the two films, facing the proximal end of the common peroneal nerves in mice transected 4 days earlier for axons to become ensheathed. On the third postoperative day (Day 3), axon fascicles, subjected to silver staining, extended toward N2DS but with few branches, forming terminal swellings called Cajal's gigantic clubs (CGCs) that are filled with axonal growth cones. Filter paper wetted with either 250 pg/ml MAG or N2DS showed the same configurations when inserted between the two films. This effect was lost following anti-MAG treatment; fascicles strayed near the parent nerve with numerous branches, formed a net of axons and tapered toward thin tips at their ends, just like controls without N2DS. Schwann cell bundles on Day 3 detected with anti-S100, formed sheaths of CGCs at their ends and connected to pioneer Schwann cells (pSCs). To analyze the physiology of Schwann cells, independent of axons, the parent nerve transected 4 days prior was crushed. On Day 2, with pSCs ahead, Schwann cell bundles extended toward N2DS. On Day 4, main bundles regressed, leaving pSCs motionless. Thus, MAG is a candidate chemoattractant for both pSCs and CGCs.
Collapse
Affiliation(s)
- Kojun Torigoe
- Department of Rehabilitation, Fukui Health Science University, Egamicho 55-13-1, Fukui City, Fukui 910-3190, Japan
- Department of Anatomy, Tokai University School of Medicine, Boseidai, Isehara City, Kanagawa 259-1193, Japan
| |
Collapse
|
2
|
Martínez-Mármol R, Muhaisen A, Cotrufo T, Roselló-Busquets C, Ros O, Hernaiz-Llorens M, Pérez-Branguli F, Andrés RM, Parcerisas A, Pascual M, Ulloa F, Soriano E. Syntaxin-1 is necessary for UNC5A-C/Netrin-1-dependent macropinocytosis and chemorepulsion. Front Mol Neurosci 2023; 16:1253954. [PMID: 37829513 PMCID: PMC10565356 DOI: 10.3389/fnmol.2023.1253954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Brain connectivity requires correct axonal guidance to drive axons to their appropriate targets. This process is orchestrated by guidance cues that exert attraction or repulsion to developing axons. However, the intricacies of the cellular machinery responsible for the correct response of growth cones are just being unveiled. Netrin-1 is a bifunctional molecule involved in axon pathfinding and cell migration that induces repulsion during postnatal cerebellar development. This process is mediated by UNC5 homolog receptors located on external granule layer (EGL) tracts. Methods Biochemical, imaging and cell biology techniques, as well as syntaxin-1A/B (Stx1A/B) knock-out mice were used in primary cultures and brain explants. Results and discussion Here, we demonstrate that this response is characterized by enhanced membrane internalization through macropinocytosis, but not clathrin-mediated endocytosis. We show that UNC5A, UNC5B, and UNC5C receptors form a protein complex with the t-SNARE syntaxin-1. By combining botulinum neurotoxins, an shRNA knock-down strategy and Stx1 knock-out mice, we demonstrate that this SNARE protein is required for Netrin1-induced macropinocytosis and chemorepulsion, suggesting that Stx1 is crucial in regulating Netrin-1-mediated axonal guidance.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Cristina Roselló-Busquets
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marc Hernaiz-Llorens
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
| | - Francesc Pérez-Branguli
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Rosa Maria Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain
- Biosciences Department, Faculty of Sciences, Technology and Engineerings, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Pascual
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology and Institute of Neurosciences, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED-CIBER), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Yamashita M. Integrin-mediated electric axon guidance underlying optic nerve formation in the embryonic chick retina. Commun Biol 2023; 6:680. [PMID: 37391492 PMCID: PMC10313674 DOI: 10.1038/s42003-023-05056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Retinal ganglion cell (RGC) axons converge on the optic disc to form an optic nerve. However, the mechanism of RGC axon convergence remains elusive. In the embryonic retina, an electric field (EF) exists and this EF converges on the future optic disc. EFs have been demonstrated in vitro to orient axons toward the cathode. Here, I show that the EF directs RGC axons through integrin in an extracellular Ca2+-dependent manner. The cathodal growth of embryonic chick RGC axons, which express integrin α6β1, was enhanced by monoclonal anti-chicken integrin β1 antibodies. Mn2+ abolished these EF effects, as Mn2+ occupies the Ca2+-dependent negative regulatory site in the β1 subunit to eliminate Ca2+ inhibition. The present study proposes an integrin-mediated electric axon steering model, which involves directional Ca2+ movements and asymmetric microtubule stabilization. Since neuroepithelial cells generate EFs during neurogenesis, electric axon guidance may primarily be used in central nervous system development.
Collapse
|
5
|
Moreland T, Poulain FE. To Stick or Not to Stick: The Multiple Roles of Cell Adhesion Molecules in Neural Circuit Assembly. Front Neurosci 2022; 16:889155. [PMID: 35573298 PMCID: PMC9096351 DOI: 10.3389/fnins.2022.889155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.
Collapse
|
6
|
Ren Q, Rao Y. The exit of axons and glial membrane from the developing Drosophila retina requires integrins. Mol Brain 2022; 15:2. [PMID: 34980203 PMCID: PMC8722191 DOI: 10.1186/s13041-021-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/19/2021] [Indexed: 11/11/2022] Open
Abstract
Coordinated development of neurons and glia is essential for the establishment of neuronal circuits during embryonic development. In the developing Drosophila visual system, photoreceptor (R cell) axons and wrapping glial (WG) membrane extend from the eye disc through the optic stalk into the optic lobe. Extensive studies have identified a number of genes that control the establishment of R-cell axonal projection pattern in the optic lobe. The molecular mechanisms directing the exit of R-cell axons and WG membrane from the eye disc, however, remain unknown. In this study, we show that integrins are required in R cells for the extension of R-cell axons and WG membrane from the eye disc into the optic stalk. Knockdown of integrins in R cells but not WG caused the stalling of both R-cell axons and WG membrane in the eye disc. Interfering with the function of Rhea (i.e. the Drosophila ortholog of vertebrate talin and a key player of integrin-mediated adhesion), caused an identical stalling phenotype. These results support a key role for integrins on R-cell axons in directing R-cell axons and WG membrane to exit the eye disc.
Collapse
Affiliation(s)
- Qian Ren
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Yong Rao
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Department of Neurology and Neurosurgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Integrated Program in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada. .,Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, QC, Canada.
| |
Collapse
|
7
|
Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. PLoS Genet 2021; 17:e1009885. [PMID: 34735454 PMCID: PMC8594818 DOI: 10.1371/journal.pgen.1009885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/16/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Rody Kingston
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Sneha Misra
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
9
|
Richardson CE, Yee C, Shen K. A hormone receptor pathway cell-autonomously delays neuron morphological aging by suppressing endocytosis. PLoS Biol 2019; 17:e3000452. [PMID: 31589601 PMCID: PMC6797217 DOI: 10.1371/journal.pbio.3000452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/17/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Neurons have a lifespan that parallels that of the organism and are largely irreplaceable. Their unusually long lifespan predisposes neurons to neurodegenerative disease. We sought to identify physiological mechanisms that delay neuron aging in Caenorhabditis elegans by asking how neuron morphological aging is arrested in the long-lived, alternate organismal state, the dauer diapause. We find that a hormone signaling pathway, the abnormal DAuer Formation (DAF) 12 nuclear hormone receptor (NHR) pathway, functions cell-intrinsically in the dauer diapause to arrest neuron morphological aging, and that same pathway can be cell-autonomously manipulated during normal organismal aging to delay neuron morphological aging. This delayed aging is mediated by suppressing constitutive endocytosis, which alters the subcellular localization of the actin regulator T cell lymphoma Invasion And Metastasis 1 (TIAM-1), thereby decreasing age-dependent neurite growth. Intriguingly, we show that suppressed endocytosis appears to be a general feature of cells in diapause, suggestive that this may be a mechanism to halt the growth and other age-related programs supported by most endosome recycling.
Collapse
Affiliation(s)
- Claire E. Richardson
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Callista Yee
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
11
|
Padmanabhan P, Goodhill GJ. Axon growth regulation by a bistable molecular switch. Proc Biol Sci 2019; 285:rspb.2017.2618. [PMID: 29669897 DOI: 10.1098/rspb.2017.2618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia .,School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol 2019; 21:122-132. [PMID: 30602723 PMCID: PMC6597357 DOI: 10.1038/s41556-018-0223-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic-exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Vesicular movements in the growth cone. Neurochem Int 2018; 119:71-76. [DOI: 10.1016/j.neuint.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
|
14
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
15
|
Abstract
The formation of correct synaptic structures and neuronal connections is paramount for normal brain development and a functioning adult brain. The integrin family of cell adhesion receptors and their ligands play essential roles in the control of several processes regulating neuronal connectivity - including neurite outgrowth, the formation and maintenance of synapses, and synaptic plasticity - that are affected in neurodevelopmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia. Many ASD- and schizophrenia-associated genes are linked to alterations in the genetic code of integrins and associated signalling pathways. In non-neuronal cells, crosstalk between integrin-mediated adhesions and the actin cytoskeleton, and the regulation of integrin activity (affinity for extracellular ligands) are widely studied in healthy and pathological settings. In contrast, the roles of integrin-linked pathways in the central nervous system remains less well defined. In this Review, we will provide an overview of the known pathways that are regulated by integrin-ECM interaction in developing neurons and in adult brain. We will also describe recent advances in the identification of mechanisms that regulate integrin activity in neurons, and highlight the interesting emerging links between integrins and neurodevelopment.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, FIN-20520 Turku, Finland .,Department of Biochemistry, University of Turku, FIN-20500 Turku, Finland
| |
Collapse
|
16
|
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, Chilton JK, Foa L. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci 2017; 84:29-35. [PMID: 28765051 DOI: 10.1016/j.mcn.2017.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023] Open
Abstract
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system.
Collapse
Affiliation(s)
- Robert J Gasperini
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Macarena Pavez
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Adrian C Thompson
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Camilla B Mitchell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Holly Hardy
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - John K Chilton
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
17
|
A Key Regulator of Cell Adhesion: Identification and Characterization of Important N-Glycosylation Sites on Integrin α5 for Cell Migration. Mol Cell Biol 2017; 37:MCB.00558-16. [PMID: 28167607 DOI: 10.1128/mcb.00558-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 11/20/2022] Open
Abstract
The N-glycosylation of integrin α5β1 is thought to control many fundamental aspects of cell behavior, including cell adhesion and migration. However, the mechanism of how N-glycans function remains largely obscure. Here, we used a loss-of-function approach. Wild-type (WT) integrin α5 and N-glycosylation mutant S3-5 (sites 3 to 5) integrin α5, which contains fewer N-glycans, were stably reconstituted in α5 knockout cancer cells. We found that the migration ability of S3-5 cells was decreased in comparison with that of the WT. Interestingly, the levels of phosphorylated focal adhesion kinase and actin stress fiber formation were greatly enhanced in the S3-5 mutant. In a mechanistic manner, the internalization of active but not total integrin α5β1 was inhibited in S3-5 cells, which is a process that is related to the enhanced expression of active integrin α5β1 on the cell surface. Importantly, restoration of N-glycosylation on the β-propeller domain of α5 reinstated the cell migration ability, active α5β1 expression, and internalization. Moreover, these N-glycans are critical for α5-syndecan-4 complex formation. These findings indicate that N-glycosylation on the β-propeller domain functions as a molecular switch to control the dynamics of α5β1 on the cell surface that in turn is required for optimum adhesion for cell migration.
Collapse
|
18
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
19
|
Cell adhesion and invasion mechanisms that guide developing axons. Curr Opin Neurobiol 2016; 39:77-85. [PMID: 27135389 DOI: 10.1016/j.conb.2016.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023]
Abstract
Axon extension, guidance and tissue invasion share many similarities to normal cell migration and cancer cell metastasis. Proper cell and growth cone migration requires tightly regulated adhesion complex assembly and detachment from the extracellular matrix (ECM). In addition, many cell types actively remodel the ECM using matrix metalloproteases (MMPs) to control tissue invasion and cell dispersal. Targeting and activating MMPs is a tightly regulated process, that when dysregulated, can lead to cancer cell metastasis. Interestingly, new evidence suggests that growth cones express similar cellular and molecular machinery as migrating cells to clutch retrograde actin flow on ECM proteins and target matrix degradation, which may be used to facilitate axon pathfinding through the basal lamina and across tissues.
Collapse
|
20
|
Konopacki FA, Wong HHW, Dwivedy A, Bellon A, Blower MD, Holt CE. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol 2016; 6:150218. [PMID: 27248654 PMCID: PMC4852451 DOI: 10.1098/rsob.150218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.
Collapse
Affiliation(s)
- Filip A Konopacki
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Anaïs Bellon
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael D Blower
- Department of Molecular Biology, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA
| | - Christine E Holt
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
21
|
Wojnacki J, Galli T. Membrane traffic during axon development. Dev Neurobiol 2016; 76:1185-1200. [PMID: 26945675 DOI: 10.1002/dneu.22390] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Brain formation requires the establishment of complex neural circuits between a diverse array of neuronal subtypes in an intricate and ever changing microenvironment and yet with a large degree of specificity and reproducibility. In the last three decades, mounting evidence has established that neuronal development relies on the coordinated regulation of gene expression, cytoskeletal dynamics, and membrane trafficking. Membrane trafficking has been considered important in that it brings new membrane and proteins to the plasma membrane of developing neurons and because it also generates and maintains the polarized distribution of proteins into neuronal subdomains. More recently, accumulating evidence suggests that membrane trafficking may have an even more active role during development by regulating the distribution and degree of activation of a wide variety of proteins located in plasma membrane subdomains and endosomes. In this article the evidence supporting the different roles of membrane trafficking during axonal development, particularly focusing on the role of SNAREs and Rabs was reviewed. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1185-1200, 2016.
Collapse
Affiliation(s)
- José Wojnacki
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France
| | - Thierry Galli
- Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Membrane Traffic in Health & Disease, INSERM ERL U950, Paris, F-75013, France.
| |
Collapse
|
22
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
23
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
24
|
Chance RK, Bashaw GJ. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion. PLoS Genet 2015; 11:e1005402. [PMID: 26335920 PMCID: PMC4559387 DOI: 10.1371/journal.pgen.1005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.
Collapse
Affiliation(s)
- Rebecca K. Chance
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
25
|
Abstract
Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Robert H Nichol
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Timothy M Gomez
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
26
|
Thiede-Stan NK, Schwab ME. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. J Cell Sci 2015; 128:2403-14. [PMID: 26116576 DOI: 10.1242/jcs.165555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.
Collapse
Affiliation(s)
- Nina K Thiede-Stan
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
27
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
28
|
Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. J Neurosci 2015; 35:4332-49. [PMID: 25762679 DOI: 10.1523/jneurosci.4473-12.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI.
Collapse
|
29
|
Kuboyama T, Lee YA, Nishiko H, Tohda C. Inhibition of clathrin-mediated endocytosis prevents amyloid β-induced axonal damage. Neurobiol Aging 2015; 36:1808-19. [DOI: 10.1016/j.neurobiolaging.2015.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 01/15/2023]
|
30
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
31
|
Abstract
Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.
Collapse
|
32
|
The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth. J Neurosci 2014; 34:5342-54. [PMID: 24719112 DOI: 10.1523/jneurosci.2728-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis. Accordingly, Ndr2 associates with integrin-positive early and recycling endosomes in primary hippocampal neurons and the surface expression of activated β1-integrins is reduced on dendrites of Ndr2-deficient neurons. The role of Ndr2 in dendritic differentiation is also evident in vivo, because Ndr2-null mutant mice show arbor-specific alterations of dendritic complexity in the hippocampus. This indicates a role of Ndr2 in the fine regulation of dendritic growth; in fact, treatment of primary neurons with Semaphorin 3A rescues Ndr2 knock-down-induced dendritic growth deficits but fails to enhance growth beyond control level. Correspondingly, Ndr2-null mutant mice show a Semaphorin 3A(-/-)-like phenotype of premature dendritic branching in the hippocampus. The results of this study show that Ndr2-mediated integrin trafficking and activation are crucial for neurite growth and guidance signals during neuronal development.
Collapse
|
33
|
Abstract
During development extrinsic guidance cues modulate the peripheral actin network in growth cones to direct axons to their targets. We wanted to understand the role of the actin nucleator Arp2/3 in growth cone actin dynamics and guidance. Since growth cones migrate in association with diverse adhesive substrates during development, we probed the hypothesis that the functional significance of Arp2/3 is substrate dependent. We report that Arp2/3 inhibition led to a reduction in the number of filopodia and growth cone F-actin content on laminin and L1. However, we found substrate-dependent differences in growth cone motility, actin retrograde flow, and guidance after Arp2/3 inhibition, suggesting that its role, and perhaps that of other actin binding proteins, in growth cone motility is substrate dependent.
Collapse
|
34
|
Eva R, Fawcett J. Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol 2014; 27:179-85. [PMID: 24793179 DOI: 10.1016/j.conb.2014.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/25/2022]
Abstract
Adult corticospinal tract axons do not regenerate because they have low intrinsic growth ability, and are exposed to inhibitory molecules after injury. PNS axons have a better regenerative capacity, mediated in part by integrins (extracellular matrix receptors). These are subject to complex regulation by signalling and trafficking. Recent studies have found that integrin mediated axon growth relies on signalling via focal adhesion molecules, and that integrins are inactivated by inhibitory molecules in the CNS. Forced activation of integrins can overcome inhibition and increase axon regeneration, however integrins are not transported into some CNS axons. Studies of PNS integrin traffic have identified molecules that can be manipulated to increase axonal integrin expression, suggesting strategies for repairing the injured spinal cord.
Collapse
Affiliation(s)
- Richard Eva
- John van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, United Kingdom
| | - James Fawcett
- John van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 OPY, United Kingdom.
| |
Collapse
|
35
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
36
|
Awakening the stalled axon - surprises in CSPG gradients. Exp Neurol 2014; 254:12-7. [PMID: 24424282 DOI: 10.1016/j.expneurol.2013.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 01/11/2023]
Abstract
The remarkably poor regeneration of axons seen after injury of the brain and spinal cord can result in permanent loss of neural function. This failure of meaningful regeneration has been attributed to both a low intrinsic growth potential of CNS neurons and extrinsic factors that actively block axon growth in the adult CNS. Injury exacerbates this situation by increasing the expression of and exposure to proteins that actively block axonal growth in the CNS. Much experimental efforts have been aimed at overcoming the extrinsic growth inhibitory environment of the injured brain and spinal cord. A recent publication in Experimental Neurology from Kuboyama and colleagues shows that activation of protein kinase A signaling is responsible for the stalling of axon growth in gradients of CNS inhibitory molecules. This observation is unexpected given the role of cAMP signaling in supporting intrinsic growth mechanisms, emphasizing the need to consider spatial and temporal aspects of intracellular signaling in future strategies for neural repair.
Collapse
|
37
|
Akiyama H, Kamiguchi H. Second messenger networks for accurate growth cone guidance. Dev Neurobiol 2013; 75:411-22. [PMID: 24285606 DOI: 10.1002/dneu.22157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 02/02/2023]
Abstract
Growth cones are able to navigate over long distances to find their appropriate target by following guidance cues that are often presented to them in the form of an extracellular gradient. These external cues are converted into gradients of specific signaling molecules inside growth cones, while at the same time these internal signals are amplified. The amplified instruction is then used to generate asymmetric changes in the growth cone turning machinery so that one side of the growth cone migrates at a rate faster than the other side, and thus the growth cone turns toward or away from the external cue. This review examines how signal specification and amplification can be achieved inside the growth cone by multiple second messenger signaling pathways activated downstream of guidance cues. These include the calcium ion, cyclic nucleotide, and phosphatidylinositol signaling pathways.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
38
|
Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem 2013; 129:221-34. [PMID: 24164353 DOI: 10.1111/jnc.12506] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
39
|
Henle SJ, Carlstrom LP, Cheever TR, Henley JR. Differential role of PTEN phosphatase in chemotactic growth cone guidance. J Biol Chem 2013; 288:20837-20842. [PMID: 23775074 PMCID: PMC3774355 DOI: 10.1074/jbc.c113.487066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negatively targeting the tumor suppressor and phosphoinositide phosphatase PTEN (phosphatase and tensin homologue) promotes axon regrowth after injury. How PTEN functions in axon guidance has remained unknown. Here we report the differential role of PTEN in chemotactic guidance of axonal growth cones. Down-regulating PTEN expression in Xenopus laevis spinal neurons selectively abolished growth cone chemorepulsion but permitted chemoattraction. These findings persisted during cAMP-dependent switching of turning behaviors. Live cell imaging using a GFP biosensor revealed rapid PTEN-dependent depression of phosphatidylinositol 3,4,5-trisphosphate levels in the growth cone induced by the repellent myelin-associated glycoprotein. Moreover, down-regulating PTEN expression blocked negative remodeling of β1-integrin adhesions triggered by myelin-associated glycoprotein, yet permitted integrin clustering by a positive chemotropic treatment. Thus, PTEN negatively regulates growth cone phosphatidylinositol 3,4,5-trisphosphate levels and mediates chemorepulsion, whereas chemoattraction is PTEN-independent. Regenerative therapies targeting PTEN may therefore suppress growth cone repulsion to soluble cues while permitting attractive guidance, an essential feature for re-forming functional neural circuits.
Collapse
Affiliation(s)
| | | | | | - John R Henley
- From the Department of Neurologic Surgery,; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
40
|
van den Brink DM, Banerji O, Tear G. Commissureless regulation of axon outgrowth across the midline is independent of Rab function. PLoS One 2013; 8:e64427. [PMID: 23696892 PMCID: PMC3655966 DOI: 10.1371/journal.pone.0064427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Nervous system function requires that neurons within neural circuits are connected together precisely. These connections form during the process of axon guidance whereby each neuron extends an axon that migrates, often large distances, through a complex environment to reach its synaptic target. This task can be simplified by utilising intermediate targets to divide the route into smaller sections. This requires that axons adapt their behaviour as they migrate towards and away from intermediate targets. In the central nervous system the midline acts as an intermediate target for commissural axons. In Drosophila commissural axons switch from attraction towards to extension away from the midline by regulating the levels of the Roundabout receptor on their cell surface. This is achieved by Commissureless which directs Roundabout to an intracellular compartment in the soma prior to reaching the midline. Once across the midline Roundabout is allowed to reach the surface and acts as a receptor for the repellent ligand Slit that is secreted by cells at the midline. Here we investigated candidate intracellular mechanisms that may facilitate the intracellular targeting of Commissureless and Roundabout within the soma of commissural neurons. Using modified forms of Commissureless or Rabs we show that neither ubiquitination nor Rab activity are necessary for the intracellular targeting of Commissureless. In addition we reveal that axon outgrowth of many populations of neurons within the Drosophila central nervous system is also independent of Rab activity.
Collapse
Affiliation(s)
- Daan M. van den Brink
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Oishik Banerji
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Guy Tear
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci 2013; 125:3695-701. [PMID: 23027580 DOI: 10.1242/jcs.095810] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
42
|
Chen Z, Lee H, Henle SJ, Cheever TR, Ekker SC, Henley JR. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio). PLoS One 2013; 8:e57539. [PMID: 23469201 PMCID: PMC3587632 DOI: 10.1371/journal.pone.0057539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/25/2013] [Indexed: 12/21/2022] Open
Abstract
Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr−1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day−1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca2+-imaging revealed local elevation of cytoplasmic Ca2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon guidance, and mechanisms underlying inhibition of neural regeneration in vitro, and complement observations made in vivo.
Collapse
Affiliation(s)
- Zheyan Chen
- Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Han Lee
- Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Steven J. Henle
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas R. Cheever
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Henley
- Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
43
|
Santiago-Medina M, Gregus KA, Gomez TM. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 2013; 126:1122-33. [PMID: 23321640 DOI: 10.1242/jcs.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
44
|
Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res 2012; 73:269-74. [PMID: 22684022 DOI: 10.1016/j.neures.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The formation of precise neuronal networks is critically dependent on the motility of axonal growth cones. Extracellular gradients of guidance cues evoke localized Ca(2+) elevations to attract or repel the growth cone. Recent studies strongly suggest that the polarity of growth cone guidance, with respect to the localization of Ca(2+) signals, is determined by Ca(2+) release from the endoplasmic reticulum (ER) in the following manner: Ca(2+) signals containing ER Ca(2+) release cause growth cone attraction, while Ca(2+) signals without ER Ca(2+) release cause growth cone repulsion. Recent studies have also shown that exocytic and endocytic membrane trafficking can drive growth cone attraction and repulsion, respectively, downstream of Ca(2+) signals. Most likely, these two mechanisms underlie cue-induced axon guidance, in which a localized imbalance between exocytosis and endocytosis dictates bidirectional growth cone steering. In this Update Article, I summarize recent advances in growth cone research and propose that polarized membrane trafficking plays an instructive role to spatially localize steering machineries, such as cytoskeletal components and adhesion molecules.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
45
|
Guo D, Standley C, Bellve K, Fogarty K, Bao ZZ. Protein kinase Cα and integrin-linked kinase mediate the negative axon guidance effects of Sonic hedgehog. Mol Cell Neurosci 2012; 50:82-92. [PMID: 22521536 PMCID: PMC3383945 DOI: 10.1016/j.mcn.2012.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
In addition to its role as a morphogen, Sonic hedgehog (Shh) has also been shown to function as a guidance factor that directly acts on the growth cones of various types of axons. However, the noncanonical signaling pathways that mediate the guidance effects of Shh protein remain poorly understood. We demonstrate that a novel signaling pathway consisting of protein kinase Cα (PKCα) and integrin-linked kinase (ILK) mediates the negative guidance effects of high concentration of Shh on retinal ganglion cell (RGC) axons. Shh rapidly increased Ca(2+) level and activated PKCα and ILK in the growth cones of RGC axons. By in vitro kinase assay, PKCα was found to directly phosphorylate ILK on threonine-173 and -181. Inhibition of PKCα or expression of a mutant ILK with the PKCα phosphorylation sites mutated (ILK-DM), abolished the Shh-induced macropinocytosis, growth cone collapse and repulsive axon turning. In vivo, expression of a dominant negative PKCα or ILK-DM disrupted RGC axon pathfinding at the optic chiasm but not the projection toward the optic disk, supporting that this signaling pathway plays a specific role in Shh-mediated negative guidance effects.
Collapse
Affiliation(s)
- Daorong Guo
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | |
Collapse
|
46
|
Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012; 73:1068-81. [PMID: 22445336 DOI: 10.1016/j.neuron.2012.03.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Cell Biology and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
47
|
Chang IA, Oh MJ, Kim MH, Park SK, Kim BG, Namgung U. Vimentin phosphorylation by Cdc2 in Schwann cell controls axon growth via β1-integrin activation. FASEB J 2012; 26:2401-13. [PMID: 22371530 DOI: 10.1096/fj.11-199018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although preconditioning injury on the peripheral nerve induces axonal regenerative capacity in neurons, it is not known whether similar lesion effects occur in glial cells. Here we demonstrate that Schwann cells are activated by peripheral nerve preinjury and primed to mediate axon regeneration. Cdc2, which was induced from Schwann cells after sciatic nerve injury, phosphorylated vimentin almost exclusively in the distal nerve area. Phospho-vimentin-positive Schwann cells showed increased migration activity and were in close contact with process outgrowth of co-cultured neurons. Vimentin phosphorylation by Cdc2 was involved in β1-integrin activation leading to FAK phoshorylation and associated with Erk1/2 activation in Schwann cells. Neurite outgrowth of dorsal root ganglion neurons was increased by co-culture with activated Schwann cells, in which phospho-vimentin signaling was transmitted into β1-integrin activation. Then neurite outgrowth was suppressed by genetic depletion of phospho-vimentin and β1 integrin as well as inhibition of vimentin phosphorylation by Cdc2 inhibitor purvalanol A. The sciatic nerve graft harboring activated Schwann cells into the spinal cord induced Schwann cell migration beyond the graft-host barrier and facilitated regeneration of spinal axons, which was inhibited by purvalanol A pretreatment of the graft. This is the first report to our knowledge demonstrating that activation of phospho-vimentin linked to β1-integrin pathway may mediate transcellular signaling to promote axon growth.
Collapse
Affiliation(s)
- In Ae Chang
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Borgonovo J, Capella P, Seltzer A, Sosa MA. Expression of coat proteins changes during postnatal development in selected areas of the rat brain. Int J Dev Neurosci 2012; 30:333-41. [PMID: 22306374 DOI: 10.1016/j.ijdevneu.2012.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022] Open
Abstract
It is well known that clathrin-mediated endocytosis is crucial for the normal functioning and integrity of neurons in the central nervous system. In this study we attempted to correlate the expression of coat proteins with development in different areas of rat brain. By Western blot, we studied the expression of AP-2, GGA1 and GGA2 in striatum, cerebellum, brain stem, cerebral cortex and hippocampus of newborn rats and during post-natal development; 5, 15, 30, 60, 90 or 150 days after birth. We observed that the expression of the α2 subunit of AP-2 increased substantially between the 15th and 30th day after birth in all areas studied, excepting the cerebellum and cortex. On the other hand, the expression of the α1 subunit does not change significantly during the development in any of the areas under study. We also noted that the expression of the μ2 subunit did not follow the pattern of α2 during development. In general terms, the expression of GGA1 and GGA2 followed a similar pattern to that of AP-2, although these proteins increased significantly in the cerebral cortex from the 15th day after birth. Moreover, presenilin-1, a protein associated with aging and neurodegeneration, shows an expression pattern similar to coat proteins in the striatum and cortex. These results suggest that proteins that conform the intracellular transport machinery in the brain cells seems to accompany development, according to the maturation of the different brain areas.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratorio de Biología y Fisiología Celular "Dr. Francisco Bertini", Instituto de Histología y Embriología, FCM, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
49
|
Hines JH, Henle SJ, Carlstrom LP, Abu-Rub M, Henley JR. Single vesicle imaging indicates distinct modes of rapid membrane retrieval during nerve growth. BMC Biol 2012; 10:4. [PMID: 22289422 PMCID: PMC3337222 DOI: 10.1186/1741-7007-10-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/30/2012] [Indexed: 02/04/2023] Open
Abstract
Background During nerve growth, cytoplasmic vesicles add new membrane preferentially to the growth cone located at the distal tip of extending axons. Growth cone membrane is also retrieved locally, and asymmetric retrieval facilitates membrane remodeling during growth cone repulsion by a chemorepellent gradient. Moreover, growth inhibitory factors can stimulate bulk membrane retrieval and induce growth cone collapse. Despite these functional insights, the processes mediating local membrane remodeling during axon extension remain poorly defined. Results To investigate the spatial and temporal dynamics of membrane retrieval in actively extending growth cones, we have used a transient labeling and optical recording method that can resolve single vesicle events. Live-cell confocal imaging revealed rapid membrane retrieval by distinct endocytic modes based on spatial distribution in Xenopus spinal neuron growth cones. These modes include endocytic "hot-spots" triggered at the base of filopodia, at the lateral margins of lamellipodia, and along dorsal ridges of the growth cone. Additionally, waves of endocytosis were induced when individual filopodia detached from the substrate and fused with the growth cone dorsal surface or with other filopodia. Vesicle formation at sites of membrane remodeling by self-contact required F-actin polymerization. Moreover, bulk membrane retrieval by macroendocytosis correlated positively with the substrate-dependent rate of axon extension and required the function of Rho-family GTPases. Conclusions This study provides insight into the dynamic membrane remodeling processes essential for nerve growth by identifying several distinct modes of rapid membrane retrieval in the growth cone during axon extension. We found that endocytic membrane retrieval is intensified at specific subdomains and may drive the dynamic membrane ruffling and re-absorption of filopodia and lamellipodia in actively extending growth cones. The findings offer a platform for determining the molecular mechanisms of distinct endocytic processes that may remodel the surface distribution of receptors, ion channels and other membrane-associated proteins locally to drive growth cone extension and chemotactic guidance.
Collapse
Affiliation(s)
- Jacob H Hines
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
50
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|