1
|
Yao TF, Wang ZY, Sun L, Yu SX, Yu HD, Yang ZZ, Li WZ, Niu L, Sun D, Shi YH, Li JQ, Liu WQ, Liu XZ, Zuo ZF. DNMT3b-mediated CpA methylation facilitates REST binding and gene silencing and exacerbates hippocampal demyelination in diabetic mice. J Biol Chem 2024:108137. [PMID: 39730060 DOI: 10.1016/j.jbc.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
The remyelination process within the diabetes mellitus (DM) brain is inhibited, and dynamic interactions between DNA methylation and transcription factors are critical for this process. Repressor element-1 silencing transcription factor (REST) is a major regulator of oligodendrocyte differentiation, and the role of REST on DM remyelination remains to be investigated. Here, we investigated the effects of REST and DNA methylation on DM remyelination and explored the underlying mechanisms. In this study, using a diabetic mouse model, we found that myelin damage preceded neuronal damage and caused cognitive impairment in DM mice. Inhibition of REST by X5050 and DNMT3b by Naomycin A promoted myelin regeneration in the hippocampus and ameliorated cognitive deficits in DM mice. In addition, CpA methylation of the RE-1 locus of the CNTN1 gene was able to increase the binding capacity of REST. We also observed that CNTN1 promotes oligodendrocyte maturation, facilitates the ratio of microglia to pro-regenerative phenotype as well as enhances the ability of microglia to remove myelin debris. Our findings suggest that that REST and DNMT3b expression inhibit CNTN1 expression and exacerbate myelin damage. This mechanism of gene silencing may be associated with DNMT3b-mediated CpA methylation of the REST binding site in the promoter region of the CNTN1 gene. We also identified a role for CNTN1 in promoting oligodendrocyte precursor cell maturation and myelin debris removal during remyelination.
Collapse
Affiliation(s)
- Tie-Feng Yao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Zhi-Yun Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lu Sun
- Department of Pathology, Jinzhou Medical University, Jinzhou, China
| | - Sheng-Xue Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Hong Dan Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Zheng-Zhong Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wan-Ze Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Lin Niu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Die Sun
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Ya-Hui Shi
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Jun-Qi Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China; Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Sokolowski DJ, Hou H, Yuki KE, Roy A, Chan C, Choi W, Faykoo-Martinez M, Hudson M, Corre C, Uusküla-Reimand L, Goldenberg A, Palmert MR, Wilson MD. Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice. Biol Sex Differ 2024; 15:83. [PMID: 39449090 PMCID: PMC11515584 DOI: 10.1186/s13293-024-00661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition. METHODS We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects. RESULTS Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation. CONCLUSION Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.
Collapse
Affiliation(s)
- Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Wendy Choi
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | | | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- CIFAR, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
5
|
Williams RM, Taylor G, Ling ITC, Candido-Ferreira I, Fountain DM, Mayes S, Ateş-Kalkan PS, Haug JO, Price AJ, McKinney SA, Bozhilovh YK, Tyser RCV, Srinivas S, Hughes JR, Sauka-Spengler T. Chromatin remodeller Chd7 is developmentally regulated in the neural crest by tissue-specific transcription factors. PLoS Biol 2024; 22:e3002786. [PMID: 39418292 PMCID: PMC11521297 DOI: 10.1371/journal.pbio.3002786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/29/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Neurocristopathies such as CHARGE syndrome result from aberrant neural crest development. A large proportion of CHARGE cases are attributed to pathogenic variants in the gene encoding CHD7, chromodomain helicase DNA binding protein 7, which remodels chromatin. While the role for CHD7 in neural crest development is well documented, how this factor is specifically up-regulated in neural crest cells is not understood. Here, we use epigenomic profiling of chick and human neural crest to identify a cohort of enhancers regulating Chd7 expression in neural crest cells and other tissues. We functionally validate upstream transcription factor binding at candidate enhancers, revealing novel epistatic relationships between neural crest master regulators and Chd7, showing tissue-specific regulation of a globally acting chromatin remodeller. Furthermore, we find conserved enhancer features in human embryonic epigenomic data and validate the activity of the human equivalent CHD7 enhancers in the chick embryo. Our findings embed Chd7 in the neural crest gene regulatory network and offer potentially clinically relevant elements for interpreting CHARGE syndrome cases without causative allocation.
Collapse
Affiliation(s)
- Ruth M. Williams
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Guneş Taylor
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Irving T. C. Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, Department of Paediatric Surgery, Children’s Hospital Oxford, Oxford, United Kingdom
| | - Ivan Candido-Ferreira
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Daniel M. Fountain
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Sarah Mayes
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | | | - Julianna O. Haug
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew J. Price
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean A. McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Yavor K. Bozhilovh
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Richard C. V. Tyser
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, United Kingdom
| | - Jim R. Hughes
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
- University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
- University of Oxford, MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| |
Collapse
|
6
|
Jörg LM, Schlötzer-Schrehardt U, Lefebvre V, Sock E, Wegner M. Transcription Factors Sox8 and Sox10 Contribute with Different Importance to the Maintenance of Mature Oligodendrocytes. Int J Mol Sci 2024; 25:8754. [PMID: 39201442 PMCID: PMC11354551 DOI: 10.3390/ijms25168754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Myelin-forming oligodendrocytes in the vertebrate nervous system co-express the transcription factor Sox10 and its paralog Sox8. While Sox10 plays crucial roles throughout all stages of oligodendrocyte development, including terminal differentiation, the loss of Sox8 results in only mild and transient perturbations. Here, we aimed to elucidate the roles and interrelationships of these transcription factors in fully differentiated oligodendrocytes and myelin maintenance in adults. For that purpose, we conducted targeted deletions of Sox10, Sox8, or both in the brains of two-month-old mice. Three weeks post-deletion, none of the resulting mouse mutants exhibited significant alterations in oligodendrocyte numbers, myelin sheath counts, myelin ultrastructure, or myelin protein levels in the corpus callosum, despite efficient gene inactivation. However, differences were observed in the myelin gene expression in mice with Sox10 or combined Sox8/Sox10 deletion. RNA-sequencing analysis on dissected corpus callosum confirmed substantial alterations in the oligodendrocyte expression profile in mice with combined deletion and more subtle changes in mice with Sox10 deletion alone. Notably, Sox8 deletion did not affect any aspects of the expression profile related to the differentiated state of oligodendrocytes or myelin integrity. These findings extend our understanding of the roles of Sox8 and Sox10 in oligodendrocytes into adulthood and have important implications for the functional relationship between the paralogs and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lisa Mirja Jörg
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | | | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| |
Collapse
|
7
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT Regulates SOX10 Stability and Function in Human Melanoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1894-1907. [PMID: 38994683 PMCID: PMC11293458 DOI: 10.1158/2767-9764.crc-24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth; on the other hand, SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation while preventing a concomitant increase in tumor cell invasion. In this study, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor A-485 downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors. SIGNIFICANCE The p300 KAT inhibitor A-485 blocks SOX10-dependent proliferation and SOX10-independent invasion in hard-to-treat melanoma cells.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - William Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| |
Collapse
|
8
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
9
|
Driesen J, Van Hoecke H, Maes L, Janssens S, Acke F, De Leenheer E. CHD7 Disorder-Not CHARGE Syndrome-Presenting as Isolated Cochleovestibular Dysfunction. Genes (Basel) 2024; 15:643. [PMID: 38790272 PMCID: PMC11120670 DOI: 10.3390/genes15050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
CHARGE syndrome, characterized by a distinct set of clinical features, has been linked primarily to mutations in the CHD7 gene. Initially defined by specific clinical criteria, including coloboma, heart defects, choanal atresia, delayed growth, and ear anomalies, CHARGE syndrome's diagnostic spectrum has broadened since the identification of CHD7. Variants in this gene exhibit considerable phenotypic variability, leading to the adoption of the term "CHD7 disorder" to encompass a wider range of associated symptoms. Recent research has identified CHD7 variants in individuals with isolated features such as autism spectrum disorder or gonadotropin-releasing hormone deficiency. In this study, we present three cases from two different families exhibiting audiovestibular impairment as the primary manifestation of a CHD7 variant. We discuss the expanding phenotypic variability observed in CHD7-related disorders, highlighting the importance of considering CHD7 in nonsyndromic hearing loss cases, especially when accompanied by inner ear malformations on MRI. Additionally, we underscore the necessity of genetic counseling and comprehensive clinical evaluation for individuals with CHD7 variants to ensure appropriate management of associated health concerns.
Collapse
Affiliation(s)
- Jef Driesen
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Helen Van Hoecke
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sandra Janssens
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Frederic Acke
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Els De Leenheer
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
11
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
12
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT regulates SOX10 stability and function in human melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581224. [PMID: 38469149 PMCID: PMC10926666 DOI: 10.1101/2024.02.20.581224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth, while SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation, while preventing a concomitant increase in tumor cell invasion. Here, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on Chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor, A-485, downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion, and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - W. Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Philip A. Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| |
Collapse
|
13
|
Han Z, Wang Z, Huang Z, Feng W. Generation and characterization of Chd7-iCreERT2-tdTomato mice. Genesis 2024; 62:e23575. [PMID: 37991218 DOI: 10.1002/dvg.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Heterozygous mutation of CHD7 gene causes a severe developmental disorder called CHARGE syndrome. In order to further explore the expression and function of Chd7 in vivo, we generated a Chd7-P2A-iCreERT2-P2A-tdTomato (in short, Chd7-CT-tdT) knockin mouse line using the CRISPR/Cas9 technology. The specificity and efficiency of two knockin genetic elements were validated. The Chd7-CT-tdT reporter gene could accurately reflect both the dynamic expression pattern of endogenous Chd7 during neurodevelopment and cell-type specific expression in the brain and eye. The recombination efficiency of Chd7-CT-tdT in postnatal cerebellum is very high. Moreover, lineage tracing experiment showed that Chd7 is expressed in intestinal stem cells. In summary, the newly constructed Chd7-CT-tdT mouse line provide a useful tool to study the function of Chd7.
Collapse
Affiliation(s)
- Zi'ang Han
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuxi Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China
| |
Collapse
|
14
|
Elbaz B, Darwish A, Vardy M, Isaac S, Tokars HM, Dzhashiashvili Y, Korshunov K, Prakriya M, Eden A, Popko B. The bone transcription factor Osterix controls extracellular matrix- and node of Ranvier-related gene expression in oligodendrocytes. Neuron 2024; 112:247-263.e6. [PMID: 37924811 PMCID: PMC10843489 DOI: 10.1016/j.neuron.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Oligodendrocytes are the primary producers of many extracellular matrix (ECM)-related proteins found in the CNS. Therefore, oligodendrocytes play a critical role in the determination of brain stiffness, node of Ranvier formation, perinodal ECM deposition, and perineuronal net formation, all of which depend on the ECM. Nevertheless, the transcription factors that control ECM-related gene expression in oligodendrocytes remain unknown. Here, we found that the transcription factor Osterix (also known as Sp7) binds in proximity to genes important for CNS ECM and node of Ranvier formation and mediates their expression. Oligodendrocyte-specific ablation of Sp7 changes ECM composition and brain stiffness and results in aberrant node of Ranvier formation. Sp7 is known to control osteoblast maturation and bone formation. Our comparative analyses suggest that Sp7 plays a conserved biological role in oligodendrocytes and in bone-forming cells, where it mediates brain and bone tissue stiffness by controlling expression of ECM components.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Alaa Darwish
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maia Vardy
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sara Isaac
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haley Margaret Tokars
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yulia Dzhashiashvili
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirill Korshunov
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amir Eden
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Roudbari F, Dallal Amandi AR, Bonyadi M, Sadeghi L, Jabbarpour N. Identification of a de novo, Novel Pathogenic Variant in the Splice Region of the SOX10 Gene in an Iranian Azeri Turkish Family with Waardenburg Syndrome. Mol Syndromol 2023; 14:516-522. [PMID: 38058752 PMCID: PMC10697760 DOI: 10.1159/000531566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 12/08/2023] Open
Abstract
Background Waardenburg syndrome (WS) is an inherited heterogeneous auditory pigmentary syndrome, divided into at least four types and characterized by iris heterochromia, white forelock, prominent nasal root, dystopia canthorum, middle eyebrow hypertrichosis, and deafness. Pathogenic variants in the SOX10 gene have been reported to be involved in WS disease. Methods Whole exome sequencing (WES) was conducted on a 24-year-old male, who originated from Iranian Azeri Turkish ethnic group, with symptoms of deafness and blue eyes from brown-eyed parents. Web-based tools including Mutation Taster, VarSome, SIFT, Human Splicing Finder (HSF), and I-TASSER, were used for bioinformatics analysis. To verify the WES findings, DNAs taken from the blood samples of all family members were subjected to PCR-Sanger sequencing. Results A novel heterozygous pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, located in the second intron of the SOX10 gene and disrupting the splicing site, was identified in the proband. Sanger sequencing was applied on the proband and his parents. The results showed that the variant was a de novo pathogenic variant with an autosomal dominant inheritance pattern. Conclusions Identification of a novel de novo pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, in the second intron of the SOX10 gene with autosomal dominant inheritance pattern.
Collapse
Affiliation(s)
- Faranak Roudbari
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mortaza Bonyadi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Leyla Sadeghi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Neda Jabbarpour
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Fan C, An H, Kim D, Park Y. Uncovering oligodendrocyte enhancers that control Cnp expression. Hum Mol Genet 2023; 32:3225-3236. [PMID: 37642363 PMCID: PMC10656706 DOI: 10.1093/hmg/ddad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Oligodendrocytes (OLs) produce myelin sheaths around axons in the central nervous system (CNS). Myelin accelerates the propagation of action potentials along axons and supports the integrity of axons. Impaired myelination has been linked to neurological and neuropsychiatric disorders. As a major component of CNS myelin, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) plays an indispensable role in the axon-supportive function of myelin. Notably, this function requires a high-level expression of CNP in OLs, as evidenced by downregulated expression of CNP in mental disorders and animal models. Little is known about how CNP expression is regulated in OLs. Especially, OL enhancers that govern CNP remain elusive. We have recently developed a powerful method that links OL enhancers to target genes in a principled manner. Here, we applied it to Cnp, uncovering two OL enhancers for it (termed Cnp-E1 and Cnp-E2). Epigenome editing analysis revealed that Cnp-E1 and Cnp-E2 are dedicated to Cnp. ATAC-seq and ChIP-seq data show that Cnp-E1 and Cnp-E2 are conserved OL-specific enhancers. Single cell multi-omics data that jointly profile gene expression and chromatin accessibility suggest that Cnp-E2 plays an important role in Cnp expression in the early stage of OL differentiation while Cnp-E1 sustains it in mature OLs.
Collapse
Affiliation(s)
- Chuandong Fan
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Hongjoo An
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Dongkyeong Kim
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY 14203, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Institute for Myelin and Glia Exploration, State University of New York at Buffalo, Buffalo, NY 14203, United States
| |
Collapse
|
17
|
Rowland ME, Jiang Y, Shafiq S, Ghahramani A, Pena-Ortiz MA, Dumeaux V, Bérubé NG. Systemic and intrinsic functions of ATRX in glial cell fate and CNS myelination in male mice. Nat Commun 2023; 14:7090. [PMID: 37925436 PMCID: PMC10625541 DOI: 10.1038/s41467-023-42752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Myelin, an extension of the oligodendrocyte plasma membrane, wraps around axons to facilitate nerve conduction. Myelination is compromised in ATR-X intellectual disability syndrome patients, but the causes are unknown. We show that loss of ATRX leads to myelination deficits in male mice that are partially rectified upon systemic thyroxine administration. Targeted ATRX inactivation in either neurons or oligodendrocyte progenitor cells (OPCs) reveals OPC-intrinsic effects on myelination. OPCs lacking ATRX fail to differentiate along the oligodendrocyte lineage and acquire a more plastic state that favors astrocytic differentiation in vitro and in vivo. ATRX chromatin occupancy in OPCs greatly overlaps with that of the chromatin remodelers CHD7 and CHD8 as well as H3K27Ac, a mark of active enhancers. Overall, our data indicate that ATRX regulates the onset of myelination systemically via thyroxine, and by promoting OPC differentiation and suppressing astrogliogenesis. These functions of ATRX identified in mice could explain white matter pathogenesis observed in ATR-X syndrome patients.
Collapse
Affiliation(s)
- Megan E Rowland
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
| | - Yan Jiang
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarfraz Shafiq
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alireza Ghahramani
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Miguel A Pena-Ortiz
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathalie G Bérubé
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada.
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Graduate Program in Neuroscience, Western University, London, ON, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
18
|
Zhang Z, Shu X, Cao Q, Xu L, Wang Z, Li C, Xia S, Shao P, Bao X, Sun L, Xu Y, Xu Y. Compound from Magnolia officinalis Ameliorates White Matter Injury by Promoting Oligodendrocyte Maturation in Chronic Cerebral Ischemia Models. Neurosci Bull 2023; 39:1497-1511. [PMID: 37291477 PMCID: PMC10533772 DOI: 10.1007/s12264-023-01068-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/20/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which subsequently causes neurodegeneration and even cognitive impairment. However, due to the lack of treatment specifically for WMI, novel recognized and effective therapeutic strategies are urgently needed. In this study, we found that honokiol and magnolol, two compounds derived from Magnolia officinalis, significantly facilitated the differentiation of primary oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes, with a more prominent effect of the former compound. Moreover, our results demonstrated that honokiol treatment improved myelin injury, induced mature oligodendrocyte protein expression, attenuated cognitive decline, promoted oligodendrocyte regeneration, and inhibited astrocytic activation in the bilateral carotid artery stenosis model. Mechanistically, honokiol increased the phosphorylation of serine/threonine kinase (Akt) and mammalian target of rapamycin (mTOR) by activating cannabinoid receptor 1 during OPC differentiation. Collectively, our study indicates that honokiol might serve as a potential treatment for WMI in chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Qian Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lushan Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zibu Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Chenggang Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yuhao Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
19
|
Yuxiong W, Faping L, Bin L, Yanghe Z, Yao L, Yunkuo L, Yishu W, Honglan Z. Regulatory mechanisms of the cAMP-responsive element binding protein 3 (CREB3) family in cancers. Biomed Pharmacother 2023; 166:115335. [PMID: 37595431 DOI: 10.1016/j.biopha.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
The CREB3 family of proteins, encompassing CREB3 and its four homologs (CREB3L1, CREB3L2, CREB3L3, and CREB3L4), exerts pivotal control over cellular protein metabolism in response to unfolded protein reactions. Under conditions of endoplasmic reticulum stress, activation of the CREB3 family occurs through regulated intramembrane proteolysis within the endoplasmic reticulum membrane. Perturbations in the function and expression of the CREB3 family have been closely associated with the development of diverse diseases, with a particular emphasis on cancer. Recent investigations have shed light on the indispensable role played by CREB3 family members in modulating the onset and progression of various human cancers. This comprehensive review endeavors to provide an in-depth examination of the involvement of CREB3 family members in distinct human cancer types, accentuating their significance in the pathogenesis of cancer and the manifestation of malignant phenotypes.
Collapse
Affiliation(s)
- Wang Yuxiong
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Li Faping
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Liu Bin
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Zhang Yanghe
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China
| | - Li Yunkuo
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China
| | - Wang Yishu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130011, China.
| | - Zhou Honglan
- Department of Urology II, The First Hospital of Jilin University, Changchun 130011, China,.
| |
Collapse
|
20
|
Shi L, Wang Z, Li Y, Song Z, Yin W, Hu B. Deletion of the chd7 Hinders Oligodendrocyte Progenitor Cell Development and Myelination in Zebrafish. Int J Mol Sci 2023; 24:13535. [PMID: 37686337 PMCID: PMC10488005 DOI: 10.3390/ijms241713535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
CHD7, an encoding ATP-dependent chromodomain helicase DNA-binding protein 7, has been identified as the causative gene involved in CHARGE syndrome (Coloboma of the eye, Heart defects, Atresia choanae, Retardation of growth and/or development, Genital abnormalities and Ear abnormalities). Although studies in rodent models have expanded our understanding of CHD7, its role in oligodendrocyte (OL) differentiation and myelination in zebrafish is still unclear. In this study, we generated a chd7-knockout strain with CRISPR/Cas9 in zebrafish. We observed that knockout (KO) of chd7 intensely impeded the oligodendrocyte progenitor cells' (OPCs) migration and myelin formation due to massive expression of chd7 in oilg2+ cells, which might provoke upregulation of the MAPK signal pathway. Thus, our study demonstrates that chd7 is critical to oligodendrocyte migration and myelination during early development in zebrafish and describes a mechanism potentially associated with CHARGE syndrome.
Collapse
Affiliation(s)
- Lingyu Shi
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Zongyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Yujiao Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Zheng Song
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
| | - Wu Yin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (L.S.)
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
21
|
Rengifo AC, Rivera J, Álvarez-Díaz DA, Naizaque J, Santamaria G, Corchuelo S, Gómez CY, Torres-Fernández O. Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses 2023; 15:1632. [PMID: 37631975 PMCID: PMC10458311 DOI: 10.3390/v15081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) disease continues to be a threat to public health, and it is estimated that millions of people have been infected and that there have been more cases of serious complications than those already reported. Despite many studies on the pathogenesis of ZIKV, several of the genes involved in the malformations associated with viral infection are still unknown. In this work, the morphological and molecular changes in the cortex and cerebellum of mice infected with ZIKV were evaluated. Neonatal BALB/c mice were inoculated with ZIKV intraperitoneally, and the respective controls were inoculated with a solution devoid of the virus. At day 10 postinoculation, the mice were euthanized to measure the expression of the markers involved in cortical and cerebellar neurodevelopment. The infected mice presented morphological changes accompanied by calcifications, as well as a decrease in most of the markers evaluated in the cortex and cerebellum. The modifications found could be predictive of astrocytosis, dendritic pathology, alterations in the regulation systems of neuronal excitation and inhibition, and premature maturation, conditions previously described in other models of ZIKV infection and microcephaly.
Collapse
Affiliation(s)
- Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Jorge Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
- Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia
| | - Julián Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Claudia Yadira Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| |
Collapse
|
22
|
Donovan APA, Rosko L, Ellegood J, Redhead Y, Green JBA, Lerch JP, Huang JK, Basson MA. Pervasive cortical and white matter anomalies in a mouse model for CHARGE syndrome. J Anat 2023; 243:51-65. [PMID: 36914558 PMCID: PMC10273342 DOI: 10.1111/joa.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects. Here, we present a comprehensive neuroanatomical survey of a Chd7 haploinsufficient mouse model of CHARGE syndrome. Our study uncovered widespread brain hypoplasia and reductions in white matter volume across the brain. The severity of hypoplasia appeared more pronounced in posterior areas of the neocortex compared to anterior regions. We also perform the first assessment of white matter tract integrity in this model through diffusion tensor imaging (DTI) to assess the potential functional consequences of widespread reductions in myelin, which suggested the presence of white matter integrity defects. To determine if white matter alterations correspond to cellular changes, we quantified oligodendrocyte lineage cells in the postnatal corpus callosum, uncovering reduced numbers of mature oligodendrocytes. Together, these results present a range of promising avenues of focus for future cranial imaging studies in CHARGE syndrome patients.
Collapse
Affiliation(s)
- Alex P. A. Donovan
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Lauren Rosko
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
| | - Jacob Ellegood
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Yushi Redhead
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jeremy B. A. Green
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsThe University of TorontoTorontoOntarioCanada
- Department of Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Preclinical Imaging, Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Jeffrey K. Huang
- Department of BiologyGeorgetown UniversityWashingtonDCUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDCUSA
- Centre for Cell ReprogrammingGeorgetown UniversityWashingtonDCUSA
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
23
|
Waldhauser V, Baroti T, Fröb F, Wegner M. PBAF Subunit Pbrm1 Selectively Influences the Transition from Progenitors to Pre-Myelinating Cells during Oligodendrocyte Development. Cells 2023; 12:1556. [PMID: 37371026 DOI: 10.3390/cells12121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Oligodendrocyte development is accompanied by defined changes in the state of chromatin that are brought about by chromatin remodeling complexes. Many such remodeling complexes exist, but only a few have been studied for their impact on oligodendrocytes as the myelin-forming cells of the central nervous system. To define the role of the PBAF remodeling complex, we focused on Pbrm1 as an essential subunit of the PBAF complex and specifically deleted it in the oligodendrocyte lineage at different times of development in the mouse. Deletion in late oligodendrocyte progenitor cells did not lead to substantial changes in the ensuing differentiation and myelination processes. However, when Pbrm1 loss had already occurred in oligodendrocyte progenitor cells shortly after their specification, fewer cells entered the pre-myelinating state. The reduction in pre-myelinating cells later translated into a comparable reduction in myelinating oligodendrocytes. We conclude that Pbrm1 and, by inference, the activity of the PBAF complex is specifically required at the transition from oligodendrocyte progenitor to pre-myelinating oligodendrocyte and ensures the generation of normal numbers of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Vanessa Waldhauser
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
24
|
Hodorovich DR, Lindsley PM, Berry AA, Burton DF, Marsden KC. Morphological and sensorimotor phenotypes in a zebrafish CHARGE syndrome model are domain-dependent. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12839. [PMID: 36717082 PMCID: PMC10242184 DOI: 10.1111/gbb.12839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
CHARGE syndrome is a heterogeneous disorder characterized by a spectrum of defects affecting multiple tissues and behavioral difficulties such as autism, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, anxiety, and sensory deficits. Most CHARGE cases arise from de novo, loss-of-function mutations in chromodomain-helicase-DNA-binding-protein-7 (CHD7). CHD7 is required for processes such as neuronal differentiation and neural crest cell migration, but how CHD7 affects neural circuit function to regulate behavior is unclear. To investigate the pathophysiology of behavioral symptoms in CHARGE, we established a mutant chd7 zebrafish line that recapitulates multiple CHARGE phenotypes including ear, cardiac, and craniofacial defects. Using a panel of behavioral assays, we found that chd7 mutants have specific auditory and visual behavior deficits that are independent of defects in sensory structures. Mauthner cell-dependent short-latency acoustic startle responses are normal in chd7 mutants, while Mauthner-independent long-latency responses are reduced. Responses to sudden decreases in light are also reduced in mutants, while responses to sudden increases in light are normal, suggesting that the retinal OFF pathway may be affected. Furthermore, by analyzing multiple chd7 alleles we observed that the penetrance of morphological and behavioral phenotypes is influenced by genetic background but that it also depends on the mutation location, with a chromodomain mutation causing the highest penetrance. This pattern is consistent with analysis of a CHARGE patient dataset in which symptom penetrance was highest in subjects with mutations in the CHD7 chromodomains. These results provide new insight into the heterogeneity of CHARGE and will inform future work to define CHD7-dependent neurobehavioral mechanisms.
Collapse
Affiliation(s)
- Dana R. Hodorovich
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Patrick M. Lindsley
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- University of Virginia School of Medicine, University of VirginiaCharlottesvilleVAUSA
| | - Austen A. Berry
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- BiogenDurhamNCUSA
| | - Derek F. Burton
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Washington UniversitySt. LouisMOUSA
| | - Kurt C. Marsden
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Washington UniversitySt. LouisMOUSA
| |
Collapse
|
25
|
Tommasini D, Fox R, Ngo KJ, Hinman JD, Fogel BL. Alterations in oligodendrocyte transcriptional networks reveal region-specific vulnerabilities to neurological disease. iScience 2023; 26:106358. [PMID: 36994077 PMCID: PMC10040735 DOI: 10.1016/j.isci.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Neurological disease is characterized the by dysfunction of specific neuroanatomical regions. To determine whether region-specific vulnerabilities have a transcriptional basis at cell-type-specific resolution, we analyzed gene expression in mouse oligodendrocytes across various brain regions. Oligodendrocyte transcriptomes cluster in an anatomical arrangement along the rostrocaudal axis. Moreover, regional oligodendrocyte populations preferentially regulate genes implicated in diseases that target their region of origin. Systems-level analyses identify five region-specific co-expression networks representing distinct molecular pathways in oligodendrocytes. The cortical network exhibits alterations in mouse models of intellectual disability and epilepsy, the cerebellar network in ataxia, and the spinal network in multiple sclerosis. Bioinformatic analyses reveal potential molecular regulators of these networks, which were confirmed to modulate network expression in vitro in human oligodendroglioma cells, including reversal of the disease-associated transcriptional effects of a pathogenic Spinocerebellar ataxia type 1 allele. These findings identify targetable region-specific vulnerabilities to neurological disease mediated by oligodendrocytes.
Collapse
Affiliation(s)
- Dario Tommasini
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Fox
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathie J. Ngo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason D. Hinman
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brent L. Fogel
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Chen L, Yu Z, Xie L, He X, Mu X, Chen C, Yang W, Tong X, Liu J, Gao Z, Sun S, Xu N, Lu Z, Zheng J, Zhang Y. ANGPTL2 binds MAG to efficiently enhance oligodendrocyte differentiation. Cell Biosci 2023; 13:42. [PMID: 36855057 PMCID: PMC9976406 DOI: 10.1186/s13578-023-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Oligodendrocytes have robust regenerative ability and are key players in remyelination during physiological and pathophysiological states. However, the mechanisms of brain microenvironmental cue in regulation of the differentiation of oligodendrocytes still needs to be further investigated. RESULTS We demonstrated that myelin-associated glycoprotein (MAG) was a novel receptor for angiopoietin-like protein 2 (ANGPTL2). The binding of ANGPTL2 to MAG efficiently promoted the differentiation of oligodendrocytes in vitro, as evaluated in an HCN cell line. Angptl2-null mice had a markedly impaired myelination capacity in the early stage of oligodendrocyte development. These mice had notably decreased remyelination capacities and enhanced motor disability in a cuprizone-induced demyelinating mouse model, which was similar to the Mag-null mice. The loss of remyelination ability in Angptl2-null/Mag-null mice was similar to the Angptl2-WT/Mag-null mice, which indicated that the ANGPTL2-mediated oligodendrocyte differentiation effect depended on the MAG receptor. ANGPTL2 bound MAG to enhance its phosphorylation level and recruit Fyn kinase, which increased Fyn phosphorylation levels, followed by the transactivation of myelin regulatory factor (MYRF). CONCLUSION Our study demonstrated an unexpected cross-talk between the environmental protein (ANGPTL2) and its surface receptor (MAG) in the regulation of oligodendrocyte differentiation, which may benefit the treatment of many demyelination disorders, including multiple sclerosis.
Collapse
Affiliation(s)
- Lu Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xingmei Mu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wenqian Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji Univeirsity School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - NanJie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Lu
- The Fifth People's Hospital of Shanghai, the Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
27
|
Fan C, Kim D, An H, Park Y. Identifying an oligodendrocyte enhancer that regulates Olig2 expression. Hum Mol Genet 2023; 32:835-846. [PMID: 36193754 PMCID: PMC9941837 DOI: 10.1093/hmg/ddac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Olig2 is a basic helix-loop-helix transcription factor that plays a critical role in the central nervous system. It directs the specification of motor neurons and oligodendrocyte precursor cells (OPCs) from neural progenitors and the subsequent maturation of OPCs into myelin-forming oligodendrocytes (OLs). It is also required for the development of astrocytes. Despite a decade-long search, enhancers that regulate the expression of Olig2 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Olig2 in the context of OL lineage cells, uncovering an OL enhancer for it (termed Olig2-E1). Silencing Olig2-E1 by CRISPRi epigenome editing significantly downregulated Olig2 expression. Luciferase assay and ATAC-seq and ChIP-seq data show that Olig2-E1 is an OL-specific enhancer that is conserved across human, mouse and rat. Hi-C data reveal that Olig2-E1 physically interacts with OLIG2 and suggest that this interaction is specific to OL lineage cells. In sum, Olig2-E1 is an evolutionarily conserved OL-specific enhancer that drives the expression of Olig2.
Collapse
Affiliation(s)
- Chuandong Fan
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
28
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
29
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
30
|
Chromatin remodeler CHD7 targets active enhancer region to regulate cell type-specific gene expression in human neural crest cells. Sci Rep 2022; 12:22648. [PMID: 36587182 PMCID: PMC9805427 DOI: 10.1038/s41598-022-27293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
A mutation in the chromatin remodeler chromodomain helicase DNA-binding 7 (CHD7) gene causes the multiple congenital anomaly CHARGE syndrome. The craniofacial anomalies observed in CHARGE syndrome are caused by dysfunctions of neural crest cells (NCCs), which originate from the neural tube. However, the mechanism by which CHD7 regulates the function of human NCCs (hNCCs) remains unclear. We aimed to characterize the cis-regulatory elements governed by CHD7 in hNCCs by analyzing genome-wide ChIP-Seq data and identifying hNCC-specific CHD7-binding profiles. We compared CHD7-binding regions among cell types, including human induced pluripotent stem cells and human neuroepithelial cells, to determine the comprehensive properties of CHD7-binding in hNCCs. Importantly, analysis of the hNCC-specific CHD7-bound region revealed transcription factor AP-2α as a potential co-factor facilitating the cell type-specific transcriptional program in hNCCs. CHD7 was strongly associated with active enhancer regions, permitting the expression of hNCC-specific genes to sustain the function of hNCCs. Our findings reveal the regulatory mechanisms of CHD7 in hNCCs, thus providing additional information regarding the transcriptional programs in hNCCs.
Collapse
|
31
|
Sun Y, Kumar SR, Wong CED, Tian Z, Bai H, Crump JG, Bajpai R, Lien CL. Craniofacial and cardiac defects in chd7 zebrafish mutants mimic CHARGE syndrome. Front Cell Dev Biol 2022; 10:1030587. [PMID: 36568983 PMCID: PMC9768498 DOI: 10.3389/fcell.2022.1030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects occur in almost 80% of patients with CHARGE syndrome, a sporadically occurring disease causing craniofacial and other abnormalities due to mutations in the CHD7 gene. Animal models have been generated to mimic CHARGE syndrome; however, heart defects are not extensively described in zebrafish disease models of CHARGE using morpholino injections or genetic mutants. Here, we describe the co-occurrence of craniofacial abnormalities and heart defects in zebrafish chd7 mutants. These mutant phenotypes are enhanced in the maternal zygotic mutant background. In the chd7 mutant fish, we found shortened craniofacial cartilages and extra cartilage formation. Furthermore, the length of the ventral aorta is altered in chd7 mutants. Many CHARGE patients have aortic arch anomalies. It should be noted that the aberrant branching of the first branchial arch artery is observed for the first time in chd7 fish mutants. To understand the cellular mechanism of CHARGE syndrome, neural crest cells (NCCs), that contribute to craniofacial and cardiovascular tissues, are examined using sox10:Cre lineage tracing. In contrast to its function in cranial NCCs, we found that the cardiac NCC-derived mural cells along the ventral aorta and aortic arch arteries are not affected in chd7 mutant fish. The chd7 fish mutants we generated recapitulate some of the craniofacial and cardiovascular phenotypes found in CHARGE patients and can be used to further determine the roles of CHD7.
Collapse
Affiliation(s)
- Yuhan Sun
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - S. Ram Kumar
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chee Ern David Wong
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Zhiyu Tian
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Haipeng Bai
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - J. Gage Crump
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ching Ling Lien
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,*Correspondence: Ching Ling Lien,
| |
Collapse
|
32
|
Ritter KE, Lynch SM, Gorris AM, Beyer LA, Kabara L, Dolan DF, Raphael Y, Martin DM. Loss of the chromatin remodeler CHD7 impacts glial cells and myelination in the mouse cochlear spiral ganglion. Hear Res 2022; 426:108633. [PMID: 36288662 PMCID: PMC10184650 DOI: 10.1016/j.heares.2022.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
CHARGE syndrome is a multiple anomaly developmental disorder characterized by a variety of sensory deficits, including sensorineural hearing loss of unknown etiology. Most cases of CHARGE are caused by heterozygous pathogenic variants in CHD7, the gene encoding Chromodomain DNA-binding Protein 7 (CHD7), a chromatin remodeler important for the development of neurons and glial cells. Previous studies in the Chd7Gt/+ mouse model of CHARGE syndrome showed substantial neuron loss in the early stages of the developing inner ear that are compensated for by mid-gestation. In this study, we sought to determine if early developmental delays caused by Chd7 haploinsufficiency affect neurons, glial cells, and inner hair cell innervation in the mature cochlea. Analysis of auditory brainstem response recordings in Chd7Gt/+ adult animals showed elevated thresholds at 4 kHz and 16 kHz, but no differences in ABR Wave I peak latency or amplitude compared to wild type controls. Proportions of neurons in the Chd7Gt/+ adult spiral ganglion and densities of nerve projections from the spiral ganglion to the organ of Corti were not significantly different from wild type controls. Inner hair cell synapse formation also appeared unaffected in mature Chd7Gt/+ cochleae. However, histological analysis of adult Chd7Gt/+ cochleae revealed diminished satellite glial cells and hypermyelinated Type I spiral ganglion axons. We characterized the expression of CHD7 in developing inner ear glia and found CHD7 to be expressed during a tight window of inner ear development at the Schwann cell precursor stage at E9.5. While cochlear neurons appear to differentiate normally in the setting of Chd7 haploinsufficiency, our results suggest an important role for CHD7 in glial cells in the inner ear. This study highlights the dynamic nature of CHD7 activity during inner ear development in mice and contributes to understanding CHARGE syndrome pathology.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sloane M Lynch
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Ashley M Gorris
- College of Literature, Science and Art, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Lisa Kabara
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - David F Dolan
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology - Head and Neck Surgery, University of Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Nie J, Ueda Y, Solivais AJ, Hashino E. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat Commun 2022; 13:7053. [PMID: 36396635 PMCID: PMC9672366 DOI: 10.1038/s41467-022-34759-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mutations in CHD7 cause CHARGE syndrome, affecting multiple organs including the inner ear in humans. We investigate how CHD7 mutations affect inner ear development using human pluripotent stem cell-derived organoids as a model system. We find that loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggests that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells reveal disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescues mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage specification and hair cell differentiation.
Collapse
Affiliation(s)
- Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander J Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
35
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
36
|
Moon S, Zhao YT. Convergent biological pathways underlying the Kallmann syndrome-linked genes Hs6st1 and Fgfr1. Hum Mol Genet 2022; 31:4207-4216. [PMID: 35899427 PMCID: PMC9759331 DOI: 10.1093/hmg/ddac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/24/2022] [Indexed: 01/21/2023] Open
Abstract
Kallmann syndrome (KS) is a congenital disorder characterized by idiopathic hypogonadotropic hypogonadism and olfactory dysfunction. KS is linked to variants in >34 genes, which are scattered across the human genome and show disparate biological functions. Although the genetic basis of KS is well studied, the mechanisms by which disruptions of these diverse genes cause the same outcome of KS are not fully understood. Here we show that disruptions of KS-linked genes affect the same biological processes, indicating convergent molecular mechanisms underlying KS. We carried out machine learning-based predictions and found that KS-linked mutations in heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) are likely loss-of-function mutations. We next disrupted Hs6st1 and another KS-linked gene, fibroblast growth factor receptor 1 (Fgfr1), in mouse neuronal cells and measured transcriptome changes using RNA sequencing. We found that disruptions of Hs6st1 and Fgfr1 altered genes in the same biological processes, including the upregulation of genes in extracellular pathways and the downregulation of genes in chromatin pathways. Moreover, we performed genomics and bioinformatics analyses and found that Hs6st1 and Fgfr1 regulate gene transcription likely via the transcription factor Sox9/Sox10 and the chromatin regulator Chd7, which are also associated with KS. Together, our results demonstrate how different KS-linked genes work coordinately in a convergent signaling pathway to regulate the same biological processes, thus providing new insights into KS.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Ying-Tao Zhao
- To whom correspondence should be addressed: Tel: 516-686-3764; Fax: 516-686-3832;
| |
Collapse
|
37
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
38
|
Gong L, Gu Y, Han X, Luan C, Liu C, Wang X, Sun Y, Zheng M, Fang M, Yang S, Xu L, Sun H, Yu B, Gu X, Zhou S. Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury. Neurosci Bull 2022; 39:213-244. [PMID: 35788904 PMCID: PMC9905408 DOI: 10.1007/s12264-022-00897-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaoxiao Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chengcheng Luan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yufeng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Mengya Fang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shuhai Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
39
|
Suo N, He B, Cui S, Yang Y, Wang M, Yuan Q, Xie X. The orphan G protein-coupled receptor GPR149 is a negative regulator of myelination and remyelination. Glia 2022; 70:1992-2008. [PMID: 35758525 DOI: 10.1002/glia.24233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Myelin sheath, formed by oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells in periphery, plays a critical role in supporting neuronal functions. OLs, differentiated from oligodendrocyte precursor cells (OPCs), are important for myelination during development and myelin repair in CNS demyelinating disease. To identify mechanisms of myelin development and remyelination after myelin damage is of great clinical interest. Here we show that the orphan G protein-coupled receptor GPR149, enriched in OPCs, negatively regulate OPC to OL differentiation, myelination, as well as remyelination. The expression of GPR149 is downregulated during OPCs differentiation into OLs. GPR149 deficiency does not affect the number of OPCs, but promotes OPC to OL differentiation which results in earlier development of myelin. In cuprizone-induced demyelination model, GPR149 deficiency significantly enhances myelin regeneration. Further study indicates that GPR149 may regulate OL differentiation and myelin formation via MAPK/ERK pathway. Our study suggests that deleting or blocking GPR149 might be an intriguing way to promote myelin repair in demyelinating diseases.
Collapse
Affiliation(s)
- Na Suo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingqing He
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shihao Cui
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
40
|
Liu C, Xiong Q, Li Q, Lin W, Jiang S, Zhang D, Wang Y, Duan X, Gong P, Kang N. CHD7 regulates bone-fat balance by suppressing PPAR-γ signaling. Nat Commun 2022; 13:1989. [PMID: 35418650 PMCID: PMC9007978 DOI: 10.1038/s41467-022-29633-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 7 (CHD7), an ATP-dependent eukaryotic chromatin remodeling enzyme, is essential for the development of organs. The mutation of CHD7 is the main cause of CHARGE syndrome, but its function and mechanism in skeletal system remain unclear. Here, we show conditional knockout of Chd7 in bone marrow mesenchymal stem cells (MSCs) and preosteoblasts leads to a pathological phenotype manifested as low bone mass and severely high marrow adiposity. Mechanistically, we identify enhancement of the peroxisome proliferator-activated receptor (PPAR) signaling in Chd7-deficient MSCs. Loss of Chd7 reduces the restriction of PPAR-γ and then PPAR-γ associates with trimethylated histone H3 at lysine 4 (H3K4me3), which subsequently activates the transcription of downstream adipogenic genes and disrupts the balance between osteogenic and adipogenic differentiation. Our data illustrate the pathological manifestations of Chd7 mutation in MSCs and reveal an epigenetic mechanism in skeletal health and diseases. CHD7 is chromatin remodeler and mutations of CHD7 are the main cause of CHARGE syndrome. Here the authors show that conditional knockout of Chd7 in bone marrow mesenchymal stem cells (MSCs) and pre-osteoblasts leads to a skeletal system development disorder in mice and upregulated PPAR signaling, disrupting the balance between osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Caojie Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xiaobo Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| | - Ning Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
41
|
Jofré DM, Hoffman DK, Cervino AS, Hahn GM, Grundy M, Yun S, Amrit FRG, Stolz DB, Godoy LF, Salvatore E, Rossi FA, Ghazi A, Cirio MC, Yanowitz JL, Hochbaum D. The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2109508119. [PMID: 35394881 PMCID: PMC9169646 DOI: 10.1073/pnas.2109508119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-β (TGF-β) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-β signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-β signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.
Collapse
Affiliation(s)
- Diego M. Jofré
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ailen S. Cervino
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Gabriella M. Hahn
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Francis R. G. Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Luciana F. Godoy
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Esteban Salvatore
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Fabiana A. Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Austral, B1630 Pilar, Argentina
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - M. Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel Hochbaum
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| |
Collapse
|
42
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
43
|
The Oligodendrocyte Transcription Factor 2 OLIG2 regulates transcriptional repression during myelinogenesis in rodents. Nat Commun 2022; 13:1423. [PMID: 35301318 PMCID: PMC8931116 DOI: 10.1038/s41467-022-29068-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
OLIG2 is a transcription factor that activates the expression of myelin-associated genes in the oligodendrocyte-lineage cells. However, the mechanisms of myelin gene inactivation are unclear. Here, we uncover a non-canonical function of OLIG2 in transcriptional repression to modulate myelinogenesis by functionally interacting with tri-methyltransferase SETDB1. Immunoprecipitation and chromatin-immunoprecipitation assays show that OLIG2 recruits SETDB1 for H3K9me3 modification on the Sox11 gene, which leads to the inhibition of Sox11 expression during the differentiation of oligodendrocytes progenitor cells (OPCs) into immature oligodendrocytes (iOLs). Tissue-specific depletion of Setdb1 in mice results in the hypomyelination during development and remyelination defects in the injured rodents. Knockdown of Sox11 by siRNA in rat primary OPCs or depletion of Sox11 in the oligodendrocyte lineage in mice could rescue the hypomyelination phenotype caused by the loss of OLIG2. In summary, our work demonstrates that the OLIG2-SETDB1 complex can mediate transcriptional repression in OPCs, affecting myelination. Transcription factors regulate gene programs during myelination. Here, the authors show that the Oligodendrocyte Transcription Factor 2 (OLIG2) regulates the differentiation of oligodendrocyte progenitor cells into immature oligodendrocytes via SETDB1 during myelination and remyelination in rodents.
Collapse
|
44
|
Liu X, Dong C, Liu K, Chen H, Liu B, Dong X, Qian Y, Wu B, Lin Y, Wang H, Yang L, Zhou W. mTOR pathway repressing expression of FoxO3 is a potential mechanism involved in neonatal white matter dysplasia. Hum Mol Genet 2022; 31:2508-2520. [PMID: 35220433 DOI: 10.1093/hmg/ddac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Neonatal white matter dysplasia (NWMD) is characterized by developmental abnormity of CNS white matter, including abnormal myelination. Besides environmental factors such as suffocation at birth, genetic factors are also main causes. Signaling pathway is an important part of gene function and several signaling pathways play important roles in myelination. Here, we performed genetic analysis on a corhort of 138 patients with NWMD and found that 20% (5/25) cause genes which refered to 28.57% (8/28) patients enriched in mTOR signaling pathway. Depletion of mTOR reduced genesis and proliferation of oligodendrocyte progenitor cells (OPC) during embryonic stage and reduced myelination in corpus callosum besides cerebellum and spinal cord during early postnatal stages which is related to not only differentiation but also proliferation of oligodendrocyte (OL). Transcriptomic analyses indicated that depletion of mTOR in OLs upregulated expression of FoxO3, which is a repressor of expression of myelin basic protein (MBP), and downregulating expresion of FoxO3 by siRNA promoted OPCs develop into MBP+ OLs. Thus, our findings suggested that mTOR signaling pathway is NWMD-related pathway and mTOR is important for myelination of the entire CNS during early developmental stages through regulating expression of FoxO3 at least partially.
Collapse
Affiliation(s)
- Xiuyun Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chen Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kaiyi Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yifeng Lin
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Teng X, Hu P, Chen Y, Zang Y, Ye X, Ou J, Chen G, Shi YS. A novel
Lgi1
mutation causes white matter abnormalities and impairs motor coordination in mice. FASEB J 2022; 36:e22212. [DOI: 10.1096/fj.202101652r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Yu Teng
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Ping Hu
- Department of Prenatal Diagnosis State Key Laboratory of Reproductive Medicine Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing China
| | - Yangyang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yanyu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Xiaolian Ye
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Jingmin Ou
- Department of General Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guiquan Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology Department of Neurology Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing University Nanjing China
- Institute for Brain Sciences Nanjing University Nanjing China
- Chemistry and Biomedicine Innovation Center Nanjing University Nanjing China
| |
Collapse
|
46
|
Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y. Dysmyelination by Oligodendrocyte-Specific Ablation of Ninj2 Contributes to Depressive-Like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103065. [PMID: 34787377 PMCID: PMC8787401 DOI: 10.1002/advs.202103065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Indexed: 05/04/2023]
Abstract
Depression is a mental disorder affecting more than 300 million people in the world. Abnormalities in white matter are associated with the development of depression. Here, the authors show that mice with oligodendrocyte-specific deletion of Nerve injury-induced protein 2 (Ninj2) exhibit depressive-like behaviors. Loss of Ninj2 in oligodendrocytes inhibits oligodendrocyte development and myelination, and impairs neuronal structure and activities. Ninj2 competitively inhibits TNFα/TNFR1 signaling pathway by directly binding to TNFR1 in oligodendrocytes. Loss of Ninj2 activates TNFα-induced necroptosis, and increases C-C Motif Chemokine Ligand 2 (Ccl2) production, which might mediate the signal transduction from oligodendrocyte to neurons. Inhibition of necroptosis by Nec-1s administration synchronously restores oligodendrocyte development, improves neuronal excitability, and alleviates depressive-like behaviors. This study thus illustrates the role of Ninj2 in the development of depression and myelination, reveals the relationship between oligodendrocytes and neurons, and provides a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Yuxia Sun
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Xiang Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Yue Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Wenjing Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyZhongshan HospitalFudan UniversityShanghai200438China
| | - Changqin Liu
- Department of Endocrinology and DiabetesThe First Affiliated Hospital of Xiamen UniversityFujian Province Key Laboratory of Diabetes Translational MedicineXiamenFujian361101China
| | - Ying Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361005China
| |
Collapse
|
47
|
Lyso-Lipid-Induced Oligodendrocyte Maturation Underlies Restoration of Optic Nerve Function. eNeuro 2022; 9:ENEURO.0429-21.2022. [PMID: 35027445 PMCID: PMC8805197 DOI: 10.1523/eneuro.0429-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Protein hyperdeimination and deficiency of lyso-phospholipids (LPC 18:1) has been associated with the pathology of demyelinating disease in both humans and mice. We uncovered interesting biology of LPC 18:1, in which LPC 18:1 induced optic nerve function restoration through oligodendrocyte maturation and remyelination in mouse model systems. Our in vitro studies show LPC 18:1 protection against neuron-ectopic hyperdeimination and stimulation of oligodendrocyte maturation, while in vivo investigations recorded optic nerve function improvement following optic nerve injections of LPC 18:1, in contrast with LPC 18:0. Thus, just a change in a single bond renders a dramatic alternation in biological function. The incorporation of isobaric C13-histidine in newly synthesized myelin proteins and quantitative proteome shifts are consistent with remyelination underlying restoration in optic nerve function. These results suggest that exogenous LPC 18:1 may provide a therapeutic avenue for stemming vision loss in demyelinating diseases.
Collapse
|
48
|
Motavaf M, Piao X. Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Front Cell Neurosci 2021; 15:764486. [PMID: 34803612 PMCID: PMC8599582 DOI: 10.3389/fncel.2021.764486] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Perinatal white matter injury (WMI) is the most common brain injury in premature infants and can lead to life-long neurological deficits such as cerebral palsy. Preterm birth is typically accompanied by inflammation and hypoxic-ischemic events. Such perinatal insults negatively impact maturation of oligodendrocytes (OLs) and cause myelination failure. At present, no treatment options are clinically available to prevent or cure WMI. Given that arrested OL maturation plays a central role in the etiology of perinatal WMI, an increased interest has emerged regarding the functional restoration of these cells as potential therapeutic strategy. Cell transplantation and promoting endogenous oligodendrocyte function are two potential options to address this major unmet need. In this review, we highlight the underlying pathophysiology of WMI with a specific focus on OL biology and their implication for the development of new therapeutic targets.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
49
|
Kim D, An H, Fan C, Park Y. Identifying oligodendrocyte enhancers governing Plp1 expression. Hum Mol Genet 2021; 30:2225-2239. [PMID: 34230963 PMCID: PMC8600034 DOI: 10.1093/hmg/ddab184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) produce myelin in the central nervous system (CNS), which accelerates the propagation of action potentials and supports axonal integrity. As a major component of CNS myelin, proteolipid protein 1 (Plp1) is indispensable for the axon-supportive function of myelin. Notably, this function requires the continuous high-level expression of Plp1 in OLs. Equally important is the controlled expression of Plp1, as illustrated by Pelizaeus-Merzbacher disease for which the most common cause is PLP1 overexpression. Despite a decade-long search, promoter-distal OL enhancers that govern Plp1 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Plp1, uncovering two OL enhancers for it (termed Plp1-E1 and Plp1-E2). Remarkably, clustered regularly interspaced short palindromic repeats (CRISPR) interference epigenome editing showed that Plp1-E1 and Plp1-E2 do not regulate two genes in their vicinity, highlighting their exquisite specificity to Plp1. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) data show that Plp1-E1 and Plp1-E2 are OL-specific enhancers that are conserved among human, mouse and rat. Hi-C data reveal that the physical interactions between Plp1-E1/2 and PLP1 are among the strongest in OLs and specific to OLs. We also show that Myrf, a master regulator of OL development, acts on Plp1-E1 and Plp1-E2 to promote Plp1 expression.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Hongjoo An
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Chuandong Fan
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
50
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|