1
|
Campos LJ, Drzewiecki CM, Fox AS. Insights into the Neurobiology of Behavioral Inhibition from Nonhuman Primate Models. Curr Top Behav Neurosci 2024. [PMID: 39739174 DOI: 10.1007/7854_2024_561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Children with extreme behavioral inhibition (BI) are at a significantly greater risk to develop anxiety disorders later in life. We and others have identified similar early-life temperamental BI in nonhuman primates (NHPs), including rhesus monkeys. NHP models of BI provide a unique opportunity to study the neurobiology of BI in a species that shares biological, developmental, and socioemotional similarities with humans. Rhesus monkey models have identified a distributed brain circuit that includes the central extended amygdala (EAc) as being critical for the genesis of BI. By leveraging multimodal neuroimaging, brain lesions, RNA-sequencing, and viral vector manipulations in rhesus monkeys, these studies have identified specific brain regions, genetic factors, and molecular mechanisms that causally contribute to BI. Here, we discuss these findings from NHPs and how they fit into a translational framework that can contribute to our understanding of the neural circuits that give rise to the risk to develop anxiety and depressive disorders.
Collapse
Affiliation(s)
- Lillian J Campos
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, USA.
- California National Primate Research Center, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Göktepe-Kavis P, Aellen FM, Cortese A, Castegnetti G, de Martino B, Tzovara A. Context changes retrieval of prospective outcomes during decision deliberation. Cereb Cortex 2024; 34:bhae483. [PMID: 39710609 DOI: 10.1093/cercor/bhae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
Foreseeing the future outcomes is the art of decision-making. Substantial evidence shows that, during choice deliberation, the brain can retrieve prospective decision outcomes. However, decisions are seldom made in a vacuum. Context carries information that can radically affect the outcomes of a choice. Nevertheless, most investigations of retrieval processes examined decisions in isolation, disregarding the context in which they occur. Here, we studied how context shapes prospective outcome retrieval during deliberation. We designed a decision-making task where participants were presented with object-context pairs and made decisions which led to a certain outcome. We show during deliberation, likely outcomes were retrieved in transient patterns of neural activity, as early as 3 s before participants decided. The strength of prospective outcome retrieval explains participants' behavioral efficiency, but only when context affects the decision outcome. Our results suggest context imparts strong constraints on retrieval processes and how neural representations are shaped during decision-making.
Collapse
Affiliation(s)
- Pinar Göktepe-Kavis
- Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Florence M Aellen
- Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Aurelio Cortese
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, 619-0288 Kyoto, Japan
| | - Giuseppe Castegnetti
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Benedetto de Martino
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center - NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
3
|
Panichello MF, Jonikaitis D, Oh YJ, Zhu S, Trepka EB, Moore T. Intermittent rate coding and cue-specific ensembles support working memory. Nature 2024; 636:422-429. [PMID: 39506106 PMCID: PMC11634780 DOI: 10.1038/s41586-024-08139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie working memory1,2. However, emerging evidence suggests a potential role for 'activity-silent' synaptic mechanisms3-5. This issue remains controversial because evidence for either view has largely relied either on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal spiking. We addressed this controversy by examining the dynamics of mnemonic information on single trials obtained from large, local populations of lateral prefrontal neurons recorded simultaneously in monkeys performing a working memory task. Here we show that mnemonic information does not persist in the spiking activity of neuronal populations during memory delays, but instead alternates between coordinated 'On' and 'Off' states. At the level of single neurons, Off states are driven by both a loss of selectivity for memoranda and a return of firing rates to spontaneous levels. Further exploiting the large-scale recordings used here, we show that mnemonic information is available in the patterns of functional connections among neuronal ensembles during Off states. Our results suggest that intermittent periods of memorandum-specific spiking coexist with synaptic mechanisms to support working memory.
Collapse
Affiliation(s)
- Matthew F Panichello
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Yu Jin Oh
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Shude Zhu
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Ethan B Trepka
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Dang S, Antono JE, Kagan I, Pooresmaeili A. Modality-specific and modality-general representations of subjective value in frontal cortex. Commun Biol 2024; 7:1550. [PMID: 39572709 PMCID: PMC11582727 DOI: 10.1038/s42003-024-07253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Neuroeconomics theories propose that the value associated with diverse rewards or reward-predicting stimuli is encoded along a common reference scale, irrespective of their sensory properties. However, in a dynamic environment with changing stimulus-reward pairings, the brain must also represent the sensory features of rewarding stimuli. The mechanism by which the brain balances these needs-deriving a common reference scale for valuation while maintaining sensitivity to sensory contexts-remains unclear. To investigate this, we conducted an fMRI study with human participants engaged in a dynamic foraging task, which required integrating the reward history of auditory or visual choice options and updating the subjective value for each sensory modality. Univariate fMRI analysis revealed modality-specific value representations in the orbitofrontal cortex (OFC) and modality-general value representations in the ventromedial prefrontal cortex (vmPFC), confirmed by an exploratory multivariate pattern classification approach. Crucially, modality-specific value representations were absent when the task involved instruction-based rather than value-based choices. Effective connectivity analysis showed that modality-specific value representations emerged from selective bidirectional interactions across the auditory and visual sensory cortices, the corresponding OFC clusters, and the vmPFC. These results illustrate how the brain enables a valuation process that is sensitive to the sensory context of rewarding stimuli.
Collapse
Affiliation(s)
- Shilpa Dang
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany
- School of Artificial Intelligence & Data Science, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Jessica Emily Antono
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz Science Campus Primate Cognition, Goettingen, Germany
| | - Arezoo Pooresmaeili
- Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany.
- School of Psychology, University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Tang H, Bartolo R, Averbeck BB. Ventral frontostriatal circuitry mediates the computation of reinforcement from symbolic gains and losses. Neuron 2024; 112:3782-3795.e5. [PMID: 39321792 PMCID: PMC11581918 DOI: 10.1016/j.neuron.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Reinforcement learning (RL), particularly in primates, is often driven by symbolic outcomes. However, it is usually studied with primary reinforcers. To examine the neural mechanisms underlying learning from symbolic outcomes, we trained monkeys on a task in which they learned to choose options that led to gains of tokens and avoid choosing options that led to losses of tokens. We then recorded simultaneously from the orbitofrontal cortex (OFC), ventral striatum (VS), amygdala (AMY), and mediodorsal thalamus (MDt). We found that the OFC played a dominant role in coding token outcomes and token prediction errors. The other areas contributed complementary functions, with the VS coding appetitive outcomes and the AMY coding the salience of outcomes. The MDt coded actions and relayed information about tokens between the OFC and VS. Thus, the OFC leads the processing of symbolic RL in the ventral frontostriatal circuitry.
Collapse
Affiliation(s)
- Hua Tang
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| | - Ramon Bartolo
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
6
|
Liu J, Younk R, M Drahos L, S Nagrale S, Yadav S, S Widge A, Shoaran M. Neural decoding and feature selection methods for closed-loop control of avoidance behavior. J Neural Eng 2024; 21:056041. [PMID: 39419091 PMCID: PMC11523571 DOI: 10.1088/1741-2552/ad8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
7
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The representation of decision variables in orbitofrontal cortex is longitudinally stable. Cell Rep 2024; 43:114772. [PMID: 39331504 PMCID: PMC11549877 DOI: 10.1016/j.celrep.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the choice input and the choice output, suggesting that the cell groups found in the OFC constitute the building blocks of a decision circuit. Here, we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we record from the OFC of mice engaged in a juice-choice task. Imaging of individual cells continues for up to 40 weeks. For each cell and each session pair, we compare activity profiles using cosine similarity, and we assess whether the neuron encodes the same variable in both sessions. We find a high degree of stability and a modest representational drift. Quantitative estimates indicate that this drift would not randomize the circuit within the animal's lifetime.
Collapse
Affiliation(s)
- Manning Zhang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Livi
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mary Carter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Heide Schoknecht
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Nassar MR. Toward a computational role for locus coeruleus/norepinephrine arousal systems. Curr Opin Behav Sci 2024; 59:101407. [PMID: 39070697 PMCID: PMC11280330 DOI: 10.1016/j.cobeha.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Brain and behavior undergo measurable changes in their underlying state and neuromodulators are thought to contribute to these fluctuations. Why do we undergo such changes, and what function could the underlying neuromodulatory systems perform? Here we examine theoretical answers to these questions with respect to the locus coeruleus/norepinephrine system focusing on peripheral markers for arousal, such as pupil diameter, that are thought to provide a window into brain wide noradrenergic signaling. We explore a computational role for arousal systems in facilitating internal state transitions that facilitate credit assignment and promote accurate perceptions in non-stationary environments. We summarize recent work that supports this idea and highlight open questions as well as alternative views of how arousal affects cognition.
Collapse
Affiliation(s)
- M R Nassar
- Brown University, Dept of Neuroscience and Carney Institute for Brain Science
| |
Collapse
|
9
|
Fine JM, Moreno-Bote R, Hayden BY. Rational inattention in neural coding for economic choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614193. [PMID: 39386501 PMCID: PMC11463532 DOI: 10.1101/2024.09.20.614193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mental operations like computing the value of an option are computationally expensive. Even before we evaluate options, we must decide how much attentional effort to invest in the evaluation process. More precise evaluation will improve choice accuracy, and thus reward yield, but the gain may not justify the cost. Rational Inattention theories provide an accounting of the internal economics of attentionally effortful economic decisions. To understand this process, we examined choices and neural activity in several brain regions in six macaques making risky choices. We extended the rational inattention framework to incorporate the foraging theoretic understanding of local environmental richness or reward rate, which we predict will promote attentional effort. Consistent with this idea, we found local reward rate positively predicted choice accuracy. Supporting the hypothesis that this effect reflects variations in attentional effort, richer contexts were associated with increased baseline and evoked pupil size. Neural populations likewise showed systematic baseline coding of reward rate context. During increased reward rate contexts, ventral striatum and orbitofrontal cortex showed both an increase in value decodability and a rotation in the population geometries for value. This confluence of these results suggests a mechanism of attentional effort that operates by controlling gain through using partially distinct population codes for value. Additionally, increased reward rate accelerated value code dynamics, which have been linked to improved signal-to-noise. These results extend the theory of rational inattention to static and stationary contexts and align theories of rational inattention with specific costly, neural processes.
Collapse
Affiliation(s)
- Justin M. Fine
- Department of Neurosurgery, Baylor College of Medicine Houston, Texas, United States of America
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Department of Engineeing, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| | - Benjamin Y. Hayden
- Department of Neurosurgery, Baylor College of Medicine Houston, Texas, United States of America
| |
Collapse
|
10
|
Tehrani-Saleh A, McAuley JD, Adami C. Mechanism of Duration Perception in Artificial Brains Suggests New Model of Attentional Entrainment. Neural Comput 2024; 36:2170-2200. [PMID: 39177952 DOI: 10.1162/neco_a_01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 08/24/2024]
Abstract
While cognitive theory has advanced several candidate frameworks to explain attentional entrainment, the neural basis for the temporal allocation of attention is unknown. Here we present a new model of attentional entrainment guided by empirical evidence obtained using a cohort of 50 artificial brains. These brains were evolved in silico to perform a duration judgment task similar to one where human subjects perform duration judgments in auditory oddball paradigms. We found that the artificial brains display psychometric characteristics remarkably similar to those of human listeners and exhibit similar patterns of distortions of perception when presented with out-of-rhythm oddballs. A detailed analysis of mechanisms behind the duration distortion suggests that attention peaks at the end of the tone, which is inconsistent with previous attentional entrainment models. Instead, the new model of entrainment emphasizes increased attention to those aspects of the stimulus that the brain expects to be highly informative.
Collapse
Affiliation(s)
- Ali Tehrani-Saleh
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, U.S.A.
| | - J Devin McAuley
- Department of Psychology, Michigan State University, East Lansing, MI 48824, U.S.A.
| | - Christoph Adami
- Department of Microbiology, Genetics, and Immunology
- Program in Ecology, Evolution, and Behavior
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, U.S.A.
| |
Collapse
|
11
|
Perkins AQ, Gillis ZS, Rich EL. Multiattribute Decision-making in Macaques Relies on Direct Attribute Comparisons. J Cogn Neurosci 2024; 36:1879-1897. [PMID: 38940740 PMCID: PMC11324248 DOI: 10.1162/jocn_a_02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In value-based decisions, there are frequently multiple attributes, such as cost, quality, or quantity, that contribute to the overall goodness of an option. Because one option may not be better in all attributes at once, the decision process should include a means of weighing relevant attributes. Most decision-making models solve this problem by computing an integrated value, or utility, for each option from a weighted combination of attributes. However, behavioral anomalies in decision-making, such as context effects, indicate that other attribute-specific computations might be taking place. Here, we tested whether rhesus macaques show evidence of attribute-specific processing in a value-based decision-making task. Monkeys made a series of decisions involving choice options comprising a sweetness and probability attribute. Each attribute was represented by a separate bar with one of two mappings between bar size and the magnitude of the attribute (i.e., bigger = better or bigger = worse). We found that translating across different mappings produced selective impairments in decision-making. Choices were less accurate and preferences were more variable when like attributes differed in mapping, suggesting that preventing monkeys from easily making direct attribute comparisons resulted in less accurate choice behavior. This was not the case when mappings of unalike attributes within the same option were different. Likewise, gaze patterns favored transitions between like attributes over transitions between unalike attributes of the same option, so that like attributes were sampled sequentially to support within-attribute comparisons. Together, these data demonstrate that value-based decisions rely, at least in part, on directly comparing like attributes of multiattribute options.
Collapse
Affiliation(s)
| | - Zachary S Gillis
- Icahn School of Medicine at Mount Sinai, NY
- Wake Forest University School of Medicine, NC
| | | |
Collapse
|
12
|
Jezzini A, Padoa-Schioppa C. Neuronal Activity in the Gustatory Cortex during Economic Choice. J Neurosci 2024; 44:e2150232024. [PMID: 38951037 PMCID: PMC11326864 DOI: 10.1523/jneurosci.2150-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
An economic choice entails computing and comparing the values of individual offers. Offer values are represented in the orbitofrontal cortex (OFC)-an area that participates in value comparison-but it is unknown where offer values are computed in the first place. One possibility is that this computation takes place in OFC. Alternatively, offer values might be computed upstream of OFC. For choices between edible goods, a primary candidate is the gustatory region of the anterior insula (gustatory cortex, GC). Here we recorded from the GC of male rhesus monkeys choosing between different juice types. As a population, neurons in GC represented the flavor, the quantity, and the subjective value of the juice chosen by the animal. These variables were represented by distinct groups of cells and with different time courses. Specifically, chosen value signals emerged shortly after offer presentation, while neurons encoding the chosen juice and the chosen quantity peaked after juice delivery. Surprisingly, neurons in GC did not represent individual offer values in a systematic way. In a computational sense, the variables encoded in GC follow the process of value comparison. Thus our results argue against the hypothesis that offer values are computed in GC. At the same time, signals representing the subjective value of the expected reward indicate that responses in GC are not purely sensory. Thus neuronal responses in GC appear consummatory in nature.
Collapse
Affiliation(s)
- Ahmad Jezzini
- Departments of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Camillo Padoa-Schioppa
- Departments of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63110
- Economics, Washington University in St. Louis, St. Louis, Missouri 63110
- Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
13
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. Neuron 2024; 112:2631-2644.e6. [PMID: 38823391 PMCID: PMC11309918 DOI: 10.1016/j.neuron.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA; The Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Nicholas A Fagan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Regalado JM, Corredera Asensio A, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. eLife 2024; 13:RP93983. [PMID: 39037775 PMCID: PMC11262795 DOI: 10.7554/elife.93983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Andrew C Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | |
Collapse
|
15
|
Ferro D, Cash-Padgett T, Wang MZ, Hayden BY, Moreno-Bote R. Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex. Nat Commun 2024; 15:6163. [PMID: 39039055 PMCID: PMC11263430 DOI: 10.1038/s41467-024-50214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
During economic choice, options are often considered in alternation, until commitment. Nonetheless, neuroeconomics typically ignores the dynamic aspects of deliberation. We trained two male macaques to perform a value-based decision-making task in which two risky offers were presented in sequence at the opposite sides of the visual field, each followed by a delay epoch where offers were invisible. Surprisingly, during the two delays, subjects tend to look at empty locations where the offers had previously appeared, with longer fixations increasing the probability of choosing the associated offer. Spiking activity in orbitofrontal cortex reflects the value of the gazed offer, or of the offer associated with the gazed empty spatial location, even if it is not the most recent. This reactivation reflects a reevaluation process, as fluctuations in neural spiking correlate with upcoming choice. Our results suggest that look-at-nothing gazing triggers the reactivation of a previously seen offer for further evaluation.
Collapse
Affiliation(s)
- Demetrio Ferro
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain.
| | - Tyler Cash-Padgett
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Maya Zhe Wang
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN55455, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Abdel-Ghaffar SA, Huth AG, Lescroart MD, Stansbury D, Gallant JL, Bishop SJ. Occipital-temporal cortical tuning to semantic and affective features of natural images predicts associated behavioral responses. Nat Commun 2024; 15:5531. [PMID: 38982092 PMCID: PMC11233618 DOI: 10.1038/s41467-024-49073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/22/2024] [Indexed: 07/11/2024] Open
Abstract
In everyday life, people need to respond appropriately to many types of emotional stimuli. Here, we investigate whether human occipital-temporal cortex (OTC) shows co-representation of the semantic category and affective content of visual stimuli. We also explore whether OTC transformation of semantic and affective features extracts information of value for guiding behavior. Participants viewed 1620 emotional natural images while functional magnetic resonance imaging data were acquired. Using voxel-wise modeling we show widespread tuning to semantic and affective image features across OTC. The top three principal components underlying OTC voxel-wise responses to image features encoded stimulus animacy, stimulus arousal and interactions of animacy with stimulus valence and arousal. At low to moderate dimensionality, OTC tuning patterns predicted behavioral responses linked to each image better than regressors directly based on image features. This is consistent with OTC representing stimulus semantic category and affective content in a manner suited to guiding behavior.
Collapse
Affiliation(s)
- Samy A Abdel-Ghaffar
- Department of Psychology, UC Berkeley, Berkeley, CA, 94720, USA
- Google LLC, San Francisco, CA, USA
| | - Alexander G Huth
- Centre for Theoretical and Computational Neuroscience, UT Austin, Austin, TX, 78712, USA
| | - Mark D Lescroart
- Department of Psychology University of Nevada Reno, Reno, NV, 89557, USA
| | - Dustin Stansbury
- Program in Vision Sciences, UC Berkeley, Berkeley, CA, 94720, USA
| | - Jack L Gallant
- Department of Psychology, UC Berkeley, Berkeley, CA, 94720, USA
- Program in Vision Sciences, UC Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, 94720, USA
| | - Sonia J Bishop
- Department of Psychology, UC Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, 94720, USA.
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PX31, Ireland.
| |
Collapse
|
17
|
Stoll FM, Rudebeck PH. Preferences reveal dissociable encoding across prefrontal-limbic circuits. Neuron 2024; 112:2241-2256.e8. [PMID: 38640933 PMCID: PMC11223984 DOI: 10.1016/j.neuron.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Lockwood PL, Cutler J, Drew D, Abdurahman A, Jeyaretna DS, Apps MAJ, Husain M, Manohar SG. Human ventromedial prefrontal cortex is necessary for prosocial motivation. Nat Hum Behav 2024; 8:1403-1416. [PMID: 38802539 PMCID: PMC11272586 DOI: 10.1038/s41562-024-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ventromedial prefrontal cortex (vmPFC) is vital for decision-making. Functional neuroimaging links vmPFC to processing rewards and effort, while parallel work suggests vmPFC involvement in prosocial behaviour. However, the necessity of vmPFC for these functions is unknown. Patients with rare focal vmPFC lesions (n = 25), patients with lesions elsewhere (n = 15) and healthy controls (n = 40) chose between rest and exerting effort to earn rewards for themselves or another person. vmPFC damage decreased prosociality across behavioural and computational measures. vmPFC patients earned less, discounted rewards by effort more, and exerted less force when another person benefited, compared to both control groups. Voxel-based lesion mapping revealed dissociations between vmPFC subregions. While medial damage led to antisocial behaviour, lateral damage increased prosocial behaviour relative to patients with damage elsewhere. vmPFC patients also showed reduced effort sensitivity overall, but reward sensitivity was limited to specific subregions. These results reveal multiple causal contributions of vmPFC to prosocial behaviour, effort and reward.
Collapse
Affiliation(s)
- Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ayat Abdurahman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Deva Sanjeeva Jeyaretna
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
19
|
Liu J, Younk R, Drahos LM, Nagrale SS, Yadav S, Widge AS, Shoaran M. Neural Decoding and Feature Selection Techniques for Closed-Loop Control of Defensive Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597165. [PMID: 38895388 PMCID: PMC11185693 DOI: 10.1101/2024.06.06.597165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Objective Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low time complexity, requiring <110 ms for training and <1 ms for inference. Significance Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- These authors jointly supervised this work
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
- These authors jointly supervised this work
| |
Collapse
|
20
|
Brockett AT, Kumar N, Sharalla P, Roesch MR. Optogenetic Inhibition of the Orbitofrontal Cortex Disrupts Inhibitory Control during Stop-Change Performance in Male Rats. eNeuro 2024; 11:ENEURO.0015-24.2024. [PMID: 38697842 PMCID: PMC11097625 DOI: 10.1523/eneuro.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Historically, the orbitofrontal cortex (OFC) has been implicated in a variety of behaviors ranging from reversal learning and inhibitory control to more complex representations of reward value and task space. While modern interpretations of the OFC's function have focused on a role in outcome evaluation, these cognitive processes often require an organism to inhibit a maladaptive response or strategy. Single-unit recordings from the OFC in rats performing a stop-change task show that the OFC responds strongly to STOP trials. To investigate the role that the OFC plays in stop-change performance, we expressed halorhodopsin (eNpHR3.0) in excitatory neurons in the OFC and tested rats on the stop-change task. Previous work suggests that the OFC differentiates between STOP trials based on trial sequence (i.e., gS trials: STOP trials preceded by a GO vs sS trials: STOP trials preceded by a STOP). We found that yellow light activation of the eNpHR3.0-expressing neurons significantly decreased accuracy only on STOP trials that followed GO trials (gS trials). Further, optogenetic inhibition of the OFC speeded reaction times on error trials. This suggests that the OFC plays a role in inhibitory control processes and that this role needs to be accounted for in modern interpretations of OFC function.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Neeraj Kumar
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Paul Sharalla
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
21
|
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562395. [PMID: 37905153 PMCID: PMC10614791 DOI: 10.1101/2023.10.15.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M. Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Andrew C. Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Lauren A. Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
- Lead contact
| |
Collapse
|
22
|
Gabriel DB, Havugimana F, Liley AE, Aguilar I, Yeasin M, Simon NW. Lateral Orbitofrontal Cortex Encodes Presence of Risk and Subjective Risk Preference During Decision-Making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588332. [PMID: 38645204 PMCID: PMC11030364 DOI: 10.1101/2024.04.08.588332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adaptive decision-making requires consideration of objective risks and rewards associated with each option, as well as subjective preference for risky/safe alternatives. Inaccurate risk/reward estimations can engender excessive risk-taking, a central trait in many psychiatric disorders. The lateral orbitofrontal cortex (lOFC) has been linked to many disorders associated with excessively risky behavior and is ideally situated to mediate risky decision-making. Here, we used single-unit electrophysiology to measure neuronal activity from lOFC of freely moving rats performing in a punishment-based risky decision-making task. Subjects chose between a small, safe reward and a large reward associated with either 0% or 50% risk of concurrent punishment. lOFC activity repeatedly encoded current risk in the environment throughout the decision-making sequence, signaling risk before, during, and after a choice. In addition, lOFC encoded reward magnitude, although this information was only evident during action selection. A Random Forest classifier successfully used neural data accurately to predict the risk of punishment in any given trial, and the ability to predict choice via lOFC activity differentiated between and risk-preferring and risk-averse rats. Finally, risk preferring subjects demonstrated reduced lOFC encoding of risk and increased encoding of reward magnitude. These findings suggest lOFC may serve as a central decision-making hub in which external, environmental information converges with internal, subjective information to guide decision-making in the face of punishment risk.
Collapse
Affiliation(s)
- Daniel B.K. Gabriel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Felix Havugimana
- Department of Computer Engineering, University of Memphis, Memphis, TN, 38152
| | - Anna E. Liley
- Institut du Cerveau/Paris Brain Institute, Paris, France, 75013
| | - Ivan Aguilar
- Department of Psychology, University of Memphis, Memphis, TN, 38152
| | - Mohammed Yeasin
- Department of Computer Engineering, University of Memphis, Memphis, TN, 38152
| | | |
Collapse
|
23
|
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal high-gamma reflects spike-dissociable value and decision mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587758. [PMID: 38617349 PMCID: PMC11014579 DOI: 10.1101/2024.04.02.587758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orbitofrontal cortex (OFC) plays a crucial role in value-based decision-making. While previous research has focused on spiking activity in OFC neurons, the role of OFC local field potentials (LFPs) in decision-making remains unclear. LFPs are important because they can reflect synaptic and subthreshold activity not directly coupled to spiking, and because they are potential targets for less invasive forms of brain-machine interface (BMI). We recorded LFPs and spiking activity using multi-channel vertical probes while monkeys performed a two-option value-based decision-making task. We compared the value- and decision-coding properties of high-gamma range LFPs (HG, 50-150 Hz) to the coding properties of spiking multi-unit activity (MUA) recorded concurrently on the same electrodes. Results show that HG and MUA both represent the values of decision targets, and that their representations have similar temporal profiles in a trial. However, we also identified value-coding properties of HG that were dissociable from the concurrently-measured MUA. On average across channels, HG amplitude increased monotonically with value, whereas the average value encoding in MUA was net neutral. HG also encoded a signal consistent with a comparison between the values of the two targets, a signal which was much weaker in MUA. In individual channels, HG was better able to predict choice outcomes than MUA; however, when simultaneously recorded channels were combined in population-based decoder, MUA provided more accurate predictions than HG. Interestingly, HG value representations were accentuated in channels in or near shallow cortical layers, suggesting a dissociation between neuronal sources of HG and MUA. In summary, we find that HG signals are dissociable from MUA with respect to cognitive variables encoded in prefrontal cortex, evident in the monotonic encoding of value, stronger encoding of value comparisons, and more accurate predictions about behavior. High-frequency LFPs may therefore be a viable - or even preferable - target for BMIs to assist cognitive function, opening the possibility for less invasive access to mental contents that would otherwise be observable only with spike-based measures.
Collapse
Affiliation(s)
- Dixit Sharma
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Shira M. Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Vincent B. McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
| |
Collapse
|
24
|
Iravani B, Kaboodvand N, Stieger JR, Liang EY, Lusk Z, Fransson P, Deutsch GK, Gotlib IH, Parvizi J. Intracranial Recordings of the Human Orbitofrontal Cortical Activity during Self-Referential Episodic and Valenced Self-Judgments. J Neurosci 2024; 44:e1634232024. [PMID: 38316564 PMCID: PMC10941238 DOI: 10.1523/jneurosci.1634-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in ∼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.
Collapse
Affiliation(s)
- Behzad Iravani
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Neda Kaboodvand
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - James R Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
| | - Eugene Y Liang
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Gayle K Deutsch
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Palo Alto, California 94305
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Palo Alto, California 94305
- Departments of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94305
| |
Collapse
|
25
|
Stoll FM, Rudebeck PH. Dissociable representations of decision variables within subdivisions of macaque orbitofrontal and ventrolateral frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584181. [PMID: 38559221 PMCID: PMC10979845 DOI: 10.1101/2024.03.10.584181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ventral frontal cortex (VFC) in macaques is involved in many affective and cognitive processes and has a key role in flexibly guiding reward-based decision-making. VFC is composed of a set of anatomically distinct subdivisions that are within the orbitofrontal cortex, ventrolateral prefrontal cortex, and anterior insula. In part, because prior studies have lacked the resolution to test for differences, it is unclear if neural representations related to decision-making are dissociable across these subdivisions. Here we recorded the activity of thousands of neurons within eight anatomically defined subregions of VFC in macaque monkeys performing a two-choice probabilistic task for different fruit juices outcomes. We found substantial variation in the encoding of decision variables across these eight subdivisions. Notably, ventrolateral subdivision 12l was unique relative to the other areas that we recorded from as the activity of single neurons integrated multiple attributes when monkeys evaluated the different choice options. Activity within 12o, by contrast, more closely represented reward probability and whether reward was received on a given trial. Orbitofrontal area 11m/l contained more specific representations of the quality of the outcome that could be earned later on. We also found that reward delivery encoding was highly distributed across all VFC subregions, while the properties of the reward, such as its flavor, were more strongly represented in areas 11m/l and 13m. Taken together, our work reveals the diversity of encoding within the various anatomically distinct subdivisions of VFC in primates.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
26
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The Representation of Decision Variables in Orbitofrontal Cortex is Longitudinally Stable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580715. [PMID: 38712111 PMCID: PMC11071317 DOI: 10.1101/2024.02.16.580715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the input and the output of the choice process, suggesting that the cell groups found in OFC constitute the building blocks of a decision circuit. Here we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we recorded from mice choosing between different juice flavors. Recordings of individual cells continued for up to 20 weeks. For each cell and each pair of sessions, we compared the activity profiles using cosine similarity, and we assessed whether the cell encoded the same variable in both sessions. These analyses revealed a high degree of stability and a modest representational drift. A quantitative estimate indicated this drift would not randomize the circuit within the animal's lifetime.
Collapse
|
27
|
Fan S, Dal Monte O, Nair AR, Fagan NA, Chang SWC. Closed-loop microstimulations of the orbitofrontal cortex during real-life gaze interaction enhance dynamic social attention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572176. [PMID: 38187638 PMCID: PMC10769221 DOI: 10.1101/2023.12.18.572176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prefrontal cortex is extensively involved in social exchange. During dyadic gaze interaction, multiple prefrontal areas exhibit neuronal encoding of social gaze events and context-specific mutual eye contact, supported by a widespread neural mechanism of social gaze monitoring. To explore causal manipulation of real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events to three prefrontal areas in monkeys. Microstimulations of orbitofrontal cortex (OFC), but not dorsomedial prefrontal or anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing distance of one's gaze fixations relative to partner monkey's eyes. In the temporal dimension, microstimulations of OFC reduced the inter-looking interval for attending to another agent and the latency to reciprocate other's directed gaze. These findings demonstrate that primate OFC serves as a functionally accessible node in controlling dynamic social attention and suggest its potential for a therapeutic brain interface.
Collapse
Affiliation(s)
- Siqi Fan
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- The Rockefeller University, New York, NY 10065, USA
| | - Olga Dal Monte
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Psychology, University of Turin, 10124 Torino, Italy
| | - Amrita R. Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
28
|
Grabenhorst F, Ponce-Alvarez A, Battaglia-Mayer A, Deco G, Schultz W. A view-based decision mechanism for rewards in the primate amygdala. Neuron 2023; 111:3871-3884.e14. [PMID: 37725980 PMCID: PMC10914681 DOI: 10.1016/j.neuron.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Primates make decisions visually by shifting their view from one object to the next, comparing values between objects, and choosing the best reward, even before acting. Here, we show that when monkeys make value-guided choices, amygdala neurons encode their decisions in an abstract, purely internal representation defined by the monkey's current view but not by specific object or reward properties. Across amygdala subdivisions, recorded activity patterns evolved gradually from an object-specific value code to a transient, object-independent code in which currently viewed and last-viewed objects competed to reflect the emerging view-based choice. Using neural-network modeling, we identified a sequence of computations by which amygdala neurons implemented view-based decision making and eventually recovered the chosen object's identity when the monkeys acted on their choice. These findings reveal a neural mechanism in the amygdala that derives object choices from abstract, view-based computations, suggesting an efficient solution for decision problems with many objects.
Collapse
Affiliation(s)
- Fabian Grabenhorst
- Department of Experimental Psychology, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | - Adrián Ponce-Alvarez
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Carrer Ramón Trias Fargas, 25-27, 08005 Barcelona, Spain; Departament de Matemàtiques, EPSEB, Universitat Politècnica de Catalunya, Barcelona, 08028 Barcelona, Spain
| | | | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Carrer Ramón Trias Fargas, 25-27, 08005 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Wolfram Schultz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
29
|
McGinty VB, Lupkin SM. Behavioral read-out from population value signals in primate orbitofrontal cortex. Nat Neurosci 2023; 26:2203-2212. [PMID: 37932464 PMCID: PMC11006434 DOI: 10.1038/s41593-023-01473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
The primate orbitofrontal cortex (OFC) has long been recognized for its role in value-based decisions; however, the exact mechanism linking value representations in the OFC to decision outcomes has remained elusive. Here, to address this question, we show, in non-human primates, that trial-wise variability in choices can be explained by variability in value signals decoded from many simultaneously recorded OFC neurons. Mechanistically, this relationship is consistent with the projection of activity within a low-dimensional value-encoding subspace onto a potentially higher-dimensional, behaviorally potent output subspace. Identifying this neural-behavioral link answers longstanding questions about the role of the OFC in economic decision-making and suggests population-level read-out mechanisms for the OFC similar to those recently identified in sensory and motor cortex.
Collapse
Affiliation(s)
- Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| | - Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
30
|
Perkins AQ, Gillis ZS, Rich EL. Multi-attribute decision-making in macaques relies on direct attribute comparisons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563329. [PMID: 37961522 PMCID: PMC10634707 DOI: 10.1101/2023.10.22.563329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In value-based decisions, there are frequently multiple attributes, such as cost, quality, or quantity, that contribute to the overall goodness of an option. Since one option may not be better in all attributes at once, the decision process should include a means of weighing relevant attributes. Most decision-making models solve this problem by computing an integrated value, or utility, for each option from a weighted combination of attributes. However, behavioral anomalies in decision-making, such as context effects, indicate that other attribute-specific computations might be taking place. Here, we tested whether rhesus macaques show evidence of attribute-specific processing in a value-based decision-making task. Monkeys made a series of decisions involving choice options comprising a sweetness and probability attribute. Each attribute was represented by a separate bar with one of two mappings between bar size and the magnitude of the attribute (i.e., bigger=better or bigger=worse). We found that translating across different mappings produced selective impairments in decision-making. When like attributes differed, monkeys were prevented from easily making direct attribute comparisons, and choices were less accurate and preferences were more variable. This was not the case when mappings of unalike attributes within the same option were different. Likewise, gaze patterns favored transitions between like attributes over transitions between unalike attributes of the same option, so that like attributes were sampled sequentially to support within-attribute comparisons. Together, these data demonstrate that value-based decisions rely, at least in part, on directly comparing like attributes of multi-attribute options. Significance Statement Value-based decision-making is a cognitive function impacted by a number of clinical conditions, including substance use disorder and mood disorders. Understanding the neural mechanisms, including online processing steps involved in decision formation, will provide critical insights into decision-making deficits characteristic of human psychiatric disorders. Using rhesus monkeys as a model species capable of complex decision-making, this study shows that decisions involve a process of comparing like features, or attributes, of multi-attribute options. This is contrary to popular models of decision-making in which attributes are first combined into an overall value, or utility, to make a choice. Therefore, these results serve as an important foundation for establishing a more complete understanding of the neural mechanisms involved in forming complex decisions.
Collapse
|
31
|
Otani Y, Katagiri Y, Imai E, Kowa H. Action-rule-based cognitive control enables efficient execution of stimulus-response conflict tasks: a model validation of Simon task performance. Front Hum Neurosci 2023; 17:1239207. [PMID: 38034070 PMCID: PMC10687480 DOI: 10.3389/fnhum.2023.1239207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The human brain can flexibly modify behavioral rules to optimize task performance (speed and accuracy) by minimizing cognitive load. To show this flexibility, we propose an action-rule-based cognitive control (ARC) model. The ARC model was based on a stochastic framework consistent with an active inference of the free energy principle, combined with schematic brain network systems regulated by the dorsal anterior cingulate cortex (dACC), to develop several hypotheses for demonstrating the validity of the ARC model. Methods A step-motion Simon task was developed involving congruence or incongruence between important symbolic information (illustration of a foot labeled "L" or "R," where "L" requests left and "R" requests right foot movement) and irrelevant spatial information (whether the illustration is actually of a left or right foot). We made predictions for behavioral and brain responses to testify to the theoretical predictions. Results Task responses combined with event-related deep-brain activity (ER-DBA) measures demonstrated a key contribution of the dACC in this process and provided evidence for the main prediction that the dACC could reduce the Shannon surprise term in the free energy formula by internally reversing the irrelevant rapid anticipatory postural adaptation. We also found sequential effects with modulated dip depths of ER-DBA waveforms that support the prediction that repeated stimuli with the same congruency can promote remodeling of the internal model through the information gain term while counterbalancing the surprise term. Discussion Overall, our results were consistent with experimental predictions, which may support the validity of the ARC model. The sequential effect accompanied by dip modulation of ER-DBA waveforms suggests that cognitive cost is saved while maintaining cognitive performance in accordance with the framework of the ARC based on 1-bit congruency-dependent selective control.
Collapse
Affiliation(s)
- Yoshitaka Otani
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Faculty of Rehabilitation, Kobe International University, Kobe, Japan
| | - Yoshitada Katagiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Emiko Imai
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hisatomo Kowa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
32
|
Wang S, Falcone R, Richmond B, Averbeck BB. Attractor dynamics reflect decision confidence in macaque prefrontal cortex. Nat Neurosci 2023; 26:1970-1980. [PMID: 37798412 DOI: 10.1038/s41593-023-01445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Decisions are made with different degrees of consistency, and this consistency can be linked to the confidence that the best choice has been made. Theoretical work suggests that attractor dynamics in networks can account for choice consistency, but how this is implemented in the brain remains unclear. Here we provide evidence that the energy landscape around attractor basins in population neural activity in the prefrontal cortex reflects choice consistency. We trained two rhesus monkeys to make accept/reject decisions based on pretrained visual cues that signaled reward offers with different magnitudes and delays to reward. Monkeys made consistent decisions for very good and very bad offers, but decisions were less consistent for intermediate offers. Analysis of neural data showed that the attractor basins around patterns of activity reflecting decisions had steeper landscapes for offers that led to consistent decisions. Therefore, we provide neural evidence that energy landscapes predict decision consistency, which reflects decision confidence.
Collapse
Affiliation(s)
- Siyu Wang
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rossella Falcone
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine Montefiore Medical Center, Bronx, NY, USA
| | - Barry Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Basu R, Ito HT. A goal pointer for a cognitive map in the orbitofrontal cortex. Curr Opin Neurobiol 2023; 83:102803. [PMID: 39491901 PMCID: PMC10711504 DOI: 10.1016/j.conb.2023.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/03/2023] [Indexed: 07/31/2024]
Abstract
Knowing where you are and where you go is a prerequisite for planning a goal-directed journey. The discovery of spatially tuned neurons in the hippocampus and parahippocampal cortices provides a mechanism by which the brain pinpoints an animal's own position in an environment. By contrast, how the brain encodes a remote navigational goal remained largely obscure until recently. In this review, we discuss algorithmic challenges and requirements for the brain to form a representation of a remote navigational goal at which an animal is not present. We then highlight a line of evidence that neurons in the orbitofrontal cortex (OFC) represent a goal location persistently while an animal navigates to this destination. Finally, we propose a new perspective of navigation research opened by this recently reported brain's goal map.
Collapse
Affiliation(s)
- Raunak Basu
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany.
| |
Collapse
|
34
|
Tegelbeckers J, Porter DB, Voss JL, Schoenbaum G, Kahnt T. Lateral orbitofrontal cortex integrates predictive information across multiple cues to guide behavior. Curr Biol 2023; 33:4496-4504.e5. [PMID: 37804827 PMCID: PMC10622115 DOI: 10.1016/j.cub.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023]
Abstract
Individuals are often faced with multiple cues that concurrently predict the same outcome, and combining these predictions may benefit behavior. Previous work has studied the neural basis of decision-making, predominantly using isolated sensory stimuli, and so the mechanisms that allow us to leverage multiple cues remain unclear. In two experiments, we used neuroimaging and network-targeted brain stimulation to probe how the brain integrates outcome predictions to guide adaptive behavior. We identified neural signatures of outcome integration in the lateral orbitofrontal cortex (OFC), where concurrently presented cues evoke stronger pattern-based representations of expected outcomes. Moreover, perturbing lateral OFC network activity impairs subjects' ability to leverage predictions from multiple cues to facilitate responding. Intriguingly, we found similar behavioral and brain mechanisms for reward-predicting cues and for cues predicting the absence of reward. These findings highlight a causal role for the lateral OFC in utilizing outcome predictions from multiple cues to guide behavior.
Collapse
Affiliation(s)
- Jana Tegelbeckers
- Northwestern University, Feinberg School of Medicine, 420 E Superior St, Chicago, IL 60611, USA; Otto von Guericke University, Universitaetsplatz 2, 39106 Magdeburg, Germany.
| | - Daria B Porter
- Northwestern University, Feinberg School of Medicine, 420 E Superior St, Chicago, IL 60611, USA
| | - Joel L Voss
- University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
35
|
Wang S, Falcone R, Richmond B, Averbeck BB. Attractor dynamics reflect decision confidence in macaque prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558139. [PMID: 37886489 PMCID: PMC10602028 DOI: 10.1101/2023.09.17.558139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Decisions are made with different degrees of consistency, and this consistency can be linked to the confidence that the best choice has been made. Theoretical work suggests that attractor dynamics in networks can account for choice consistency, but how this is implemented in the brain remains unclear. Here, we provide evidence that the energy landscape around attractor basins in population neural activity in prefrontal cortex reflects choice consistency. We trained two rhesus monkeys to make accept/reject decisions based on pretrained visual cues that signaled reward offers with different magnitudes and delays-to-reward. Monkeys made consistent decisions for very good and very bad offers, but decisions were less consistent for intermediate offers. Analysis of neural data showed that the attractor basins around patterns of activity reflecting decisions had steeper landscapes for offers that led to consistent decisions. Therefore, we provide neural evidence that energy landscapes predict decision consistency, which reflects decision confidence.
Collapse
|
36
|
Shi W, Meisner OC, Blackmore S, Jadi MP, Nandy AS, Chang SWC. The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors. Neurobiol Learn Mem 2023; 203:107793. [PMID: 37353191 PMCID: PMC10527225 DOI: 10.1016/j.nlm.2023.107793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The orbitofrontal cortex (OFC) is regarded as one of the core brain areas in a variety of value-based behaviors. Over the past two decades, tremendous knowledge about the OFC function was gained from studying the behaviors of single subjects. As a result, our previous understanding of the OFC's function of encoding decision variables, such as the value and identity of choices, has evolved to the idea that the OFC encodes a more complex representation of the task space as a cognitive map. Accumulating evidence also indicates that the OFC importantly contributes to behaviors in social contexts, especially those involved in cooperative interactions. However, it remains elusive how exactly OFC neurons contribute to social functions and how non-social and social behaviors are related to one another in the computations performed by OFC neurons. In this review, we aim to provide an integrated view of the OFC function across both social and non-social behavioral contexts. We propose that seemingly complex functions of the OFC may be explained by its role in providing a goal-directed cognitive map to guide a wide array of adaptive reward-based behaviors in both social and non-social domains.
Collapse
Affiliation(s)
- Weikang Shi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sylvia Blackmore
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA
| | - Monika P Jadi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Anirvan S Nandy
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steve W C Chang
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Balewski ZZ, Elston TW, Knudsen EB, Wallis JD. Value dynamics affect choice preparation during decision-making. Nat Neurosci 2023; 26:1575-1583. [PMID: 37563295 PMCID: PMC10576429 DOI: 10.1038/s41593-023-01407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
During decision-making, neurons in the orbitofrontal cortex (OFC) sequentially represent the value of each option in turn, but it is unclear how these dynamics are translated into a choice response. One brain region that may be implicated in this process is the anterior cingulate cortex (ACC), which strongly connects with OFC and contains many neurons that encode the choice response. We investigated how OFC value signals interacted with ACC neurons encoding the choice response by performing simultaneous high-channel count recordings from the two areas in nonhuman primates. ACC neurons encoding the choice response steadily increased their firing rate throughout the decision-making process, peaking shortly before the time of the choice response. Furthermore, the value dynamics in OFC affected ACC ramping-when OFC represented the more valuable option, ACC ramping accelerated. Because OFC tended to represent the more valuable option more frequently and for a longer duration, this interaction could explain how ACC selects the more valuable response.
Collapse
Affiliation(s)
- Zuzanna Z Balewski
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Thomas W Elston
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Eric B Knudsen
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Joni D Wallis
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Starski PA, De Oliveira Sergio T, Hopf FW. Using lickometry to infer differential contributions of salience network regions during compulsion-like alcohol drinking. ADDICTION NEUROSCIENCE 2023; 7:100102. [PMID: 38736902 PMCID: PMC11086682 DOI: 10.1016/j.addicn.2023.100102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.
Collapse
Affiliation(s)
- Phillip A. Starski
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
| | | | - Frederic W. Hopf
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis IN, USA
- Stark Neurosciences Research Institute, Indianapolis IN, USA
| |
Collapse
|
39
|
Marciano D, Staveland BR, Lin JJ, Saez I, Hsu M, Knight RT. Electrophysiological signatures of inequity-dependent reward encoding in the human OFC. Cell Rep 2023; 42:112865. [PMID: 37494185 DOI: 10.1016/j.celrep.2023.112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Social decision making requires the integration of reward valuation and social cognition systems, both dependent on the orbitofrontal cortex (OFC). How these two OFC functions interact is largely unknown. We recorded intracranial activity from the OFC of ten patients making choices in a social context where reward inequity with a social counterpart varied and could be either advantageous or disadvantageous. We find that OFC high-frequency activity (HFA; 70-150 Hz) encodes self-reward, consistent with previous reports. We also observe encoding of the social counterpart's reward, as well as the type of inequity being experienced. Additionally, we find evidence of inequity-dependent reward encoding: depending on the type of inequity, electrodes rapidly and reversibly switch between different reward-encoding profiles. These results provide direct evidence for encoding of self- and other rewards in the human OFC and highlight the dynamic nature of encoding in the OFC as a function of social context.
Collapse
Affiliation(s)
- Deborah Marciano
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Haas School of Business, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brooke R Staveland
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA 95616, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95616, USA
| | - Ignacio Saez
- Departments of Neuroscience, Neurosurgery and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ming Hsu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Haas School of Business, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
40
|
Lupkin SM, McGinty VB. Monkeys exhibit human-like gaze biases in economic decisions. eLife 2023; 12:e78205. [PMID: 37497784 PMCID: PMC10465126 DOI: 10.7554/elife.78205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In economic decision-making individuals choose between items based on their perceived value. For both humans and nonhuman primates, these decisions are often carried out while shifting gaze between the available options. Recent studies in humans suggest that these shifts in gaze actively influence choice, manifesting as a bias in favor of the items that are viewed first, viewed last, or viewed for the overall longest duration in a given trial. This suggests a mechanism that links gaze behavior to the neural computations underlying value-based choices. In order to identify this mechanism, it is first necessary to develop and validate a suitable animal model of this behavior. To this end, we have created a novel value-based choice task for macaque monkeys that captures the essential features of the human paradigms in which gaze biases have been observed. Using this task, we identified gaze biases in the monkeys that were both qualitatively and quantitatively similar to those in humans. In addition, the monkeys' gaze biases were well-explained using a sequential sampling model framework previously used to describe gaze biases in humans-the first time this framework has been used to assess value-based decision mechanisms in nonhuman primates. Together, these findings suggest a common mechanism that can explain gaze-related choice biases across species, and open the way for mechanistic studies to identify the neural origins of this behavior.
Collapse
Affiliation(s)
- Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
- Behavioral and Neural Sciences Graduate Program, Rutgers UniversityNewarkUnited States
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
| |
Collapse
|
41
|
Shirvalkar P, Prosky J, Chin G, Ahmadipour P, Sani OG, Desai M, Schmitgen A, Dawes H, Shanechi MM, Starr PA, Chang EF. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat Neurosci 2023; 26:1090-1099. [PMID: 37217725 PMCID: PMC10330878 DOI: 10.1038/s41593-023-01338-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.
Collapse
Affiliation(s)
- Prasad Shirvalkar
- UCSF Department of Anesthesiology and Perioperative Care, Division of Pain Medicine, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Jordan Prosky
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Gregory Chin
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Parima Ahmadipour
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Omid G Sani
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Maansi Desai
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Ashlyn Schmitgen
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Heather Dawes
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Maryam M Shanechi
- Departments of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Philip A Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Aquino TG, Cockburn J, Mamelak AN, Rutishauser U, O'Doherty JP. Neurons in human pre-supplementary motor area encode key computations for value-based choice. Nat Hum Behav 2023; 7:970-985. [PMID: 36959327 PMCID: PMC10330469 DOI: 10.1038/s41562-023-01548-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
Adaptive behaviour in real-world environments requires that choices integrate several variables, including the novelty of the options under consideration, their expected value and uncertainty in value estimation. Here, to probe how integration over decision variables occurs during decision-making, we recorded neurons from the human pre-supplementary motor area (preSMA), ventromedial prefrontal cortex and dorsal anterior cingulate. Unlike the other areas, preSMA neurons not only represented separate pre-decision variables for each choice option but also encoded an integrated utility signal for each choice option and, subsequently, the decision itself. Post-decision encoding of variables for the chosen option was more widely distributed and especially prominent in the ventromedial prefrontal cortex. Our findings position the human preSMA as central to the implementation of value-based decisions.
Collapse
Affiliation(s)
- Tomas G Aquino
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Jeffrey Cockburn
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ueli Rutishauser
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John P O'Doherty
- Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
43
|
Moneta N, Garvert MM, Heekeren HR, Schuck NW. Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence. Nat Commun 2023; 14:3156. [PMID: 37258534 PMCID: PMC10232498 DOI: 10.1038/s41467-023-38709-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
The ventromedial prefrontal-cortex (vmPFC) is known to contain expected value signals that inform our choices. But expected values even for the same stimulus can differ by task. In this study, we asked how the brain flexibly switches between such value representations in a task-dependent manner. Thirty-five participants alternated between tasks in which either stimulus color or motion predicted rewards. We show that multivariate vmPFC signals contain a rich representation that includes the current task state or context (motion/color), the associated expected value, and crucially, the irrelevant value of the alternative context. We also find that irrelevant value representations in vmPFC compete with relevant value signals, interact with task-state representations and relate to behavioral signs of value competition. Our results shed light on vmPFC's role in decision making, bridging between its role in mapping observations onto the task states of a mental map, and computing expected values for multiple states.
Collapse
Affiliation(s)
- Nir Moneta
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, 14195, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Mona M Garvert
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, 14195, Berlin, Germany
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Hauke R Heekeren
- Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, 14195, Berlin, Germany
- Institute of Psychology, Universität Hamburg, 20146, Hamburg, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, 14195, Berlin, Germany.
- Institute of Psychology, Universität Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
44
|
Stoll FM, Rudebeck PH. Preferences reveal separable valuation systems in prefrontal-limbic circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540239. [PMID: 37214895 PMCID: PMC10197711 DOI: 10.1101/2023.05.10.540239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to drive choice behavior. Here we report that instead of a single integrated valuation system in OFC, another separate one is centered in ventrolateral prefrontal cortex (vlPFC) in macaque monkeys. Specifically, we found that OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into these two aspects of subjective valuation. In addition, vlPFC, but not OFC, represented the outcome probability for the two options separately, with the difference between these representations reflecting the degree of preference. Thus, there are at least two separable valuation systems that work in concert to guide choices and that both are biased by preferences.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
45
|
Computational strategies for deliberative thought. Nat Neurosci 2023; 26:735-736. [PMID: 37106257 DOI: 10.1038/s41593-023-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
46
|
Hong T, Stauffer WR. Computational complexity drives sustained deliberation. Nat Neurosci 2023; 26:850-857. [PMID: 37095398 PMCID: PMC10166852 DOI: 10.1038/s41593-023-01307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Economic deliberations are slow, effortful and intentional searches for solutions to difficult economic problems. Although such deliberations are critical for making sound decisions, the underlying reasoning strategies and neurobiological substrates remain poorly understood. Here two nonhuman primates performed a combinatorial optimization task to identify valuable subsets and satisfy predefined constraints. Their behavior revealed evidence of combinatorial reasoning-when low-complexity algorithms that consider items one at a time provided optimal solutions, the animals adopted low-complexity reasoning strategies. When greater computational resources were required, the animals approximated high-complexity algorithms that search for optimal combinations. The deliberation times reflected the demands created by computational complexity-high-complexity algorithms require more operations and, concomitantly, the animals deliberated for longer durations. Recurrent neural networks that mimicked low- and high-complexity algorithms also reflected the behavioral deliberation times and were used to reveal algorithm-specific computations that support economic deliberation. These findings reveal evidence for algorithm-based reasoning and establish a paradigm for studying the neurophysiological basis for sustained deliberation.
Collapse
Affiliation(s)
- Tao Hong
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
McFadyen J, Dolan RJ. Spatiotemporal Precision of Neuroimaging in Psychiatry. Biol Psychiatry 2023; 93:671-680. [PMID: 36376110 DOI: 10.1016/j.biopsych.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/23/2022]
Abstract
Aberrant patterns of cognition, perception, and behavior seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between spatial and temporal resolutions inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography, often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illnesses such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications that seek to drive a mechanistic understanding of psychopathology and the realization of preclinical translation.
Collapse
Affiliation(s)
- Jessica McFadyen
- UCL Max Planck Centre for Computational Psychiatry and Ageing Research and Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
48
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
49
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
50
|
Kurth-Nelson Z, Behrens T, Wayne G, Miller K, Luettgau L, Dolan R, Liu Y, Schwartenbeck P. Replay and compositional computation. Neuron 2023; 111:454-469. [PMID: 36640765 DOI: 10.1016/j.neuron.2022.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 12/18/2022] [Indexed: 01/15/2023]
Abstract
Replay in the brain has been viewed as rehearsal or, more recently, as sampling from a transition model. Here, we propose a new hypothesis: that replay is able to implement a form of compositional computation where entities are assembled into relationally bound structures to derive qualitatively new knowledge. This idea builds on recent advances in neuroscience, which indicate that the hippocampus flexibly binds objects to generalizable roles and that replay strings these role-bound objects into compound statements. We suggest experiments to test our hypothesis, and we end by noting the implications for AI systems which lack the human ability to radically generalize past experience to solve new problems.
Collapse
Affiliation(s)
- Zeb Kurth-Nelson
- DeepMind, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK.
| | - Timothy Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - Kevin Miller
- DeepMind, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Lennart Luettgau
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Ray Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Philipp Schwartenbeck
- Max Planck Institute for Biological Cybernetics, Tubingen, Germany; University of Tubingen, Tubingen, Germany
| |
Collapse
|