1
|
Kong MS, Ancell E, Witten DM, Zweifel LS. Valence and Salience Encoding in the Central Amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602310. [PMID: 39005417 PMCID: PMC11245111 DOI: 10.1101/2024.07.05.602310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195-1525, USA
| | - Ethan Ancell
- Department of Statistics, University of Washington, Seattle, WA 98195-1525, USA
| | - Daniela M. Witten
- Department of Statistics, University of Washington, Seattle, WA 98195-1525, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1525, USA
| | - Larry S. Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195-1525, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195-1525, USA
| |
Collapse
|
2
|
Kuralay A, McDonough MC, Resch JM. Control of sodium appetite by hindbrain aldosterone-sensitive neurons. Mol Cell Endocrinol 2024; 592:112323. [PMID: 38936597 PMCID: PMC11381173 DOI: 10.1016/j.mce.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11β-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.
Collapse
Affiliation(s)
- Ahmet Kuralay
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Miriam C McDonough
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Jon M Resch
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA; Molecular Medicine Graduate Program, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Liu H, Bean JC, Li Y, Yu M, Ginnard OZ, Conde KM, Wang M, Fang X, Liu H, Tu L, Yin N, Han J, Yang Y, Tong Q, Arenkiel BR, Wang C, He Y, Xu Y. Distinct basal forebrain-originated neural circuits promote homoeostatic feeding and suppress hedonic feeding in male mice. Nat Metab 2024; 6:1775-1790. [PMID: 39112722 DOI: 10.1038/s42255-024-01099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Feeding behaviour is influenced by two primary factors: homoeostatic needs driven by hunger and hedonic desires for pleasure even in the absence of hunger. While efficient homoeostatic feeding is vital for survival, excessive hedonic feeding can lead to adverse consequences such as obesity and metabolic dysregulations. However, the neurobiological mechanisms that orchestrate homoeostatic versus hedonic food consumption remain largely unknown. Here we show that GABAergic proenkephalin (Penk) neurons in the diagonal band of Broca (DBB) of male mice respond to food presentation. We further demonstrate that a subset of DBBPenk neurons that project to the paraventricular nucleus of the hypothalamus are preferentially activated upon food presentation during fasting periods and transmit a positive valence to facilitate feeding. On the other hand, a separate subset of DBBPenk neurons that project to the lateral hypothalamus are preferentially activated when detecting a high-fat high-sugar (HFHS) diet and transmit a negative valence to inhibit food consumption. Notably, when given free choice of chow and HFHS diets, mice with the whole DBBPenk population ablated exhibit reduced consumption of chow but increased intake of the HFHS diet, resulting in accelerated development of obesity and metabolic disturbances. Together, we identify a molecularly defined neural population in male mice that is crucial for the maintenance of energy balance by facilitating homoeostatic feeding while suppressing hedonic overeating.
Collapse
Affiliation(s)
- Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Cai H, Schnapp WI, Mann S, Miscevic M, Shcmit MB, Conteras M, Fang C. Neural circuits regulation of satiation. Appetite 2024; 200:107512. [PMID: 38801994 PMCID: PMC11227400 DOI: 10.1016/j.appet.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Terminating a meal after achieving satiation is a critical step in maintaining a healthy energy balance. Despite the extensive collection of information over the last few decades regarding the neural mechanisms controlling overall eating, the mechanism underlying different temporal phases of eating behaviors, especially satiation, remains incompletely understood and is typically embedded in studies that measure the total amount of food intake. In this review, we summarize the neural circuits that detect and integrate satiation signals to suppress appetite, from interoceptive sensory inputs to the final motor outputs. Due to the well-established role of cholecystokinin (CCK) in regulating the satiation, we focus on the neural circuits that are involved in regulating the satiation effect caused by CCK. We also discuss several general principles of how these neural circuits control satiation, as well as the limitations of our current understanding of the circuits function. With the application of new techniques involving sophisticated cell-type-specific manipulation and mapping, as well as real-time recordings, it is now possible to gain a better understanding of the mechanisms specifically underlying satiation.
Collapse
Affiliation(s)
- Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Bio 5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Wesley I Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Shivani Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Masa Miscevic
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew B Shcmit
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Marco Conteras
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Lim H, Zhang Y, Peters C, Straub T, Mayer JL, Klein R. Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction. Nat Commun 2024; 15:6868. [PMID: 39127719 PMCID: PMC11316773 DOI: 10.1038/s41467-024-50889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited. Here, we classified 11 glutamatergic cell clusters in mouse BLA and found that several of them were anatomically segregated in lateral versus basal amygdala, and anterior versus posterior regions of the BLA. Two of these BLA subpopulations innately responded to valence-specific, whereas one responded to mixed - aversive and social - cues. Positive-valence BLA neurons promoted normal feeding, while mixed selectivity neurons promoted fear learning and social interactions. These findings enhance our understanding of cell type diversity and spatial organization of the BLA and the role of distinct BLA populations in representing valence-specific and mixed stimuli.
Collapse
Affiliation(s)
- Hansol Lim
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Yue Zhang
- Department Synapses - Circuits - Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Christian Peters
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Straub
- Biomedical Center Core Facility Bioinformatics, LMU, Munich, Germany
| | - Johanna Luise Mayer
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Rüdiger Klein
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
7
|
Toivainen S, Petrella M, Xu L, Visser E, Weiss T, Vellere S, Zeier Z, Wahlestedt C, Barbier E, Domi E, Heilig M. Generation and Characterization of a Novel Prkcd-Cre Rat Model. J Neurosci 2024; 44:e0528242024. [PMID: 38977300 PMCID: PMC11308323 DOI: 10.1523/jneurosci.0528-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.
Collapse
Affiliation(s)
- Sanne Toivainen
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Michele Petrella
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Li Xu
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esther Visser
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Tamina Weiss
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Sofia Vellere
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| |
Collapse
|
8
|
Wang J, O'Reilly M, Cooper IA, Chehrehasa F, Moody H, Beecher K. Mapping GABAergic projections that mediate feeding. Neurosci Biobehav Rev 2024; 163:105743. [PMID: 38821151 DOI: 10.1016/j.neubiorev.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neuroscience offers important insights into the pathogenesis and treatment of obesity by investigating neural circuits underpinning appetite and feeding. Gamma-aminobutyric acid (GABA), one of the most abundant neurotransmitters in the brain, and its associated receptors represent an array of pharmacologically targetable mediators of appetite signalling. Targeting the GABAergic system is therefore an increasingly investigated approach to obesity treatment. However, the many GABAergic projections that control feeding have yet to be collectively analysed. This review provides a comprehensive analysis of the relationship between GABAergic signalling and appetite by examining both foundational studies and the results of newly emerging chemogenetic/optogenetic experiments. A current snapshot of these efforts to map GABAergic projections influencing appetite is provided, and potential avenues for further investigation are provided.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Max O'Reilly
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | | | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| |
Collapse
|
9
|
Dou YN, Liu Y, Ding WQ, Li Q, Zhou H, Li L, Zhao MT, Li ZYQ, Yuan J, Wang XF, Zou WY, Li A, Sun YG. Single-neuron projectome-guided analysis reveals the neural circuit mechanism underlying endogenous opioid antinociception. Natl Sci Rev 2024; 11:nwae195. [PMID: 39045468 PMCID: PMC11264302 DOI: 10.1093/nsr/nwae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 07/25/2024] Open
Abstract
Endogenous opioid antinociception is a self-regulatory mechanism that reduces chronic pain, but its underlying circuit mechanism remains largely unknown. Here, we showed that endogenous opioid antinociception required the activation of mu-opioid receptors (MORs) in GABAergic neurons of the central amygdala nucleus (CEA) in a persistent-hyperalgesia mouse model. Pharmacogenetic suppression of these CEAMOR neurons, which mimics the effect of MOR activation, alleviated the persistent hyperalgesia. Furthermore, single-neuron projection analysis revealed multiple projectome-based subtypes of CEAMOR neurons, each innervating distinct target brain regions. We found that the suppression of axon branches projecting to the parabrachial nucleus (PB) of one subtype of CEAMOR neurons alleviated persistent hyperalgesia, indicating a subtype- and axonal-branch-specific mechanism of action. Further electrophysiological analysis revealed that suppression of a distinct CEA-PB disinhibitory circuit controlled endogenous opioid antinociception. Thus, this study identified the central neural circuit that underlies endogenous opioid antinociception, providing new insight into the endogenous pain modulatory mechanisms.
Collapse
Affiliation(s)
- Yan-Nong Dou
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Biology, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Wen-Qun Ding
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhou
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Li
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Ting Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng-Yi-Qi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiao-Fei Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang-Yuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Yan-Gang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
11
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. iScience 2024; 27:109652. [PMID: 38650988 PMCID: PMC11033178 DOI: 10.1016/j.isci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Dysregulation of the central amygdala is thought to underlie aberrant choice in alcohol use disorder, but the role of central amygdala neural activity during reward choice and consumption is unclear. We recorded central amygdala neurons in male rats as they consumed alcohol or sucrose. We observed activity changes at the time of reward approach, as well as lick-entrained activity during ongoing consumption of both rewards. In choice scenarios where rats could drink sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala optogenetic stimulation, rats drank more of stimulation-paired options when the two bottles contained identical options. Given a choice among different options, central amygdala stimulation usually enhanced consumption of stimulation-paired rewards. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance alcohol intake while sucrose was available. These findings indicate that the central amygdala contributes to refining motivated pursuit toward the preferred available option.
Collapse
Affiliation(s)
- Kurt M. Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Tabitha H. Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Matilde Castro
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Yasmin Padovan-Hernandez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
| | - David J. Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| | - Patricia H. Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore 21218, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
- Johns Hopkins University Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
12
|
Senol E, Mohammad H. Current perspectives on brain circuits involved in food addiction-like behaviors. J Neural Transm (Vienna) 2024; 131:475-485. [PMID: 38216705 DOI: 10.1007/s00702-023-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
There is an emerging view that the increased availability of energy-dense foods in our society is contributing to excessive food consumption which could lead to food addiction-like behavior. Particularly, compulsive eating patterns are predominant in people suffering from eating disorders (binge-eating disorder, bulimia and anorexia nervosa) and obesity. Phenotypically, the behavioral pattern exhibits a close resemblance to individuals suffering from other forms of addiction (drug, sex, gambling). Growing body of evidence in neuroscience research is showing that excessive consumption of energy-dense foods alters the brain circuits implicated in reward, decision-making, control, habit formation, and emotions that are central to drug addiction. Here, we review the current understanding of the circuits of food addiction-like behaviors and highlight the future possibility of exploring those circuits to combat obesity and eating disorders.
Collapse
Affiliation(s)
- Esra Senol
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hasan Mohammad
- Centre de Recherche en Biomédicine de Strasbourg (CRBS), L'Institut National de La Santé Et de La Recherche Médicale (Inserm) U1114, University of Strasbourg, Strasbourg, France.
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India.
| |
Collapse
|
13
|
Ding W, Weltzien H, Peters C, Klein R. Nausea-induced suppression of feeding is mediated by central amygdala Dlk1-expressing neurons. Cell Rep 2024; 43:113990. [PMID: 38551964 DOI: 10.1016/j.celrep.2024.113990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
The motivation to eat is suppressed by satiety and aversive stimuli such as nausea. The neural circuit mechanisms of appetite suppression by nausea are not well understood. Pkcδ neurons in the lateral subdivision of the central amygdala (CeA) suppress feeding in response to satiety signals and nausea. Here, we characterized neurons enriched in the medial subdivision (CeM) of the CeA marked by expression of Dlk1. CeADlk1 neurons are activated by nausea, but not satiety, and specifically suppress feeding induced by nausea. Artificial activation of CeADlk1 neurons suppresses drinking and social interactions, suggesting a broader function in attenuating motivational behavior. CeADlk1 neurons form projections to many brain regions and exert their anorexigenic activity by inhibition of neurons of the parabrachial nucleus. CeADlk1 neurons are inhibited by appetitive CeA neurons, but also receive long-range monosynaptic inputs from multiple brain regions. Our results illustrate a CeA circuit that regulates nausea-induced feeding suppression.
Collapse
Affiliation(s)
- Wenyu Ding
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Helena Weltzien
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Peters
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
14
|
Schnapp WI, Kim J, Wang Y, Timilsena S, Fang C, Cai H. Development of activity-based anorexia requires PKC-δ neurons in two central extended amygdala nuclei. Cell Rep 2024; 43:113933. [PMID: 38460131 PMCID: PMC11003439 DOI: 10.1016/j.celrep.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.
Collapse
Affiliation(s)
- Wesley Ilana Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - JungMin Kim
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Yong Wang
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, PR China
| | - Sayujya Timilsena
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Ortiz-Guzman J, Swanson JL, Tantry EK, Kochukov M, Ung K, Addison AP, Srivastava S, Belfort BD, Ji E, Dooling SW, Chen SA, Tong Q, Arenkiel BR. Cholinergic Basal Forebrain Connectivity to the Basolateral Amygdala Modulates Food Intake. eNeuro 2024; 11:ENEURO.0369-23.2024. [PMID: 38383587 PMCID: PMC10915460 DOI: 10.1523/eneuro.0369-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Obesity results from excessive caloric input associated with overeating and presents a major public health challenge. The hypothalamus has received significant attention for its role in governing feeding behavior and body weight homeostasis. However, extrahypothalamic brain circuits also regulate appetite and consumption by altering sensory perception, motivation, and reward. We recently discovered a population of basal forebrain cholinergic (BFc) neurons that regulate appetite suppression. Through viral tracing methods in the mouse model, we found that BFc neurons densely innervate the basolateral amygdala (BLA), a limbic structure involved in motivated behaviors. Using channelrhodopsin-assisted circuit mapping, we identified cholinergic responses in BLA neurons following BFc circuit manipulations. Furthermore, in vivo acetylcholine sensor and genetically encoded calcium indicator imaging within the BLA (using GACh3 and GCaMP, respectively) revealed selective response patterns of activity during feeding. Finally, through optogenetic manipulations in vivo, we found that increased cholinergic signaling from the BFc to the BLA suppresses appetite and food intake. Together, these data support a model in which cholinergic signaling from the BFc to the BLA directly influences appetite and feeding behavior.
Collapse
Affiliation(s)
- Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Jessica L Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Mikhail Kochukov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Ung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Angela P Addison
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Benjamin D Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Emily Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Sean W Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Sarah A Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Qingchun Tong
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
16
|
Yeh LF, Zuo S, Liu PW. Molecular diversity and functional dynamics in the central amygdala. Front Mol Neurosci 2024; 17:1364268. [PMID: 38419794 PMCID: PMC10899328 DOI: 10.3389/fnmol.2024.1364268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The central amygdala (CeA) is crucial in integrating sensory and associative information to mediate adaptive responses to emotional stimuli. Recent advances in genetic techniques like optogenetics and chemogenetics have deepened our understanding of distinct neuronal populations within the CeA, particularly those involved in fear learning and memory consolidation. However, challenges remain due to overlapping genetic markers complicating neuron identification. Furthermore, a comprehensive understanding of molecularly defined cell types and their projection patterns, which are essential for elucidating functional roles, is still developing. Recent advancements in transcriptomics are starting to bridge these gaps, offering new insights into the functional dynamics of CeA neurons. In this review, we provide an overview of the expanding genetic markers for amygdala research, encompassing recent developments and current trends. We also discuss how novel transcriptomic approaches are redefining cell types in the CeA and setting the stage for comprehensive functional studies.
Collapse
Affiliation(s)
- Li-Feng Yeh
- RIKEN Center for Brain Science, Saitama, Japan
| | - Shuzhen Zuo
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Pin-Wu Liu
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Albrechet‐Souza L, Kasten CR, Bertagna NB, Wills TA. Sex-specific negative affect-like behaviour and parabrachial nucleus activation induced by BNST stimulation in adult mice with adolescent alcohol history. Addict Biol 2024; 29:e13366. [PMID: 38380710 PMCID: PMC10883599 DOI: 10.1111/adb.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024]
Abstract
Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.
Collapse
Affiliation(s)
- Lucas Albrechet‐Souza
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Chelsea R. Kasten
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Natalia B. Bertagna
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Department of PharmacologyFederal University of São PauloSão PauloSPBrazil
| | - Tiffany A. Wills
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Neuroscience Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| |
Collapse
|
18
|
Sherman BE, Turk-Browne NB, Goldfarb EV. Multiple Memory Subsystems: Reconsidering Memory in the Mind and Brain. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:103-125. [PMID: 37390333 PMCID: PMC10756937 DOI: 10.1177/17456916231179146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The multiple-memory-systems framework-that distinct types of memory are supported by distinct brain systems-has guided learning and memory research for decades. However, recent work challenges the one-to-one mapping between brain structures and memory types central to this taxonomy, with key memory-related structures supporting multiple functions across substructures. Here we integrate cross-species findings in the hippocampus, striatum, and amygdala to propose an updated framework of multiple memory subsystems (MMSS). We provide evidence for two organizational principles of the MMSS theory: First, opposing memory representations are colocated in the same brain structures; second, parallel memory representations are supported by distinct structures. We discuss why this burgeoning framework has the potential to provide a useful revision of classic theories of long-term memory, what evidence is needed to further validate the framework, and how this novel perspective on memory organization may guide future research.
Collapse
Affiliation(s)
| | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
- National Center for PTSD, West Haven, USA
| |
Collapse
|
19
|
Rayatpour A, Radahmadi M, Izadi MS, Ghasemi M. Effects of sub-chronic CRH administration into the hypothalamic paraventricular and central amygdala nuclei in male rats with a focus on food intake biomarkers. AN ACAD BRAS CIENC 2023; 95:e20200221. [PMID: 38088701 DOI: 10.1590/0001-3765202320200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2023] Open
Abstract
CRH neurons are found in the paraventricular nucleus(PVN) and central amygdala(CeA) nuclei. This study investigated the effects of sub-chronic CRH administration into the PVN and CeA nuclei on food intake biomarkers in rats divided into five groups: control, two shams, and two CRH-PVN and CRH-CeA groups(receiving CRH in nuclei for seven days). The CRH-PVN group had significantly higher cumulative food intake and food intake trends than the CRH-CeA group. The CRH-CeA and CRH-PVN groups exhibited significant increases in food intake during hours 1 and 2, respectively. Moreover, to be time-dependent, food intake is modulated by different brain nuclei. The CRH signaling pathway appeared to be activated later in the PVN than CeA. Both groups exhibited significantly higher leptin levels, the CRH-PVN group exhibited higher ghrelin levels and lower glucose levels. Repetitive administration of CRH into the PVN and CeA significantly reduced body weight differences. CRH administration into the PVN affected both leptin and ghrelin levels, but ghrelin had a greater impact on glucose variations and cumulative food intake than leptin. Finally, CRH administration into the PVN and CeA likely activated the HPA axis, and the CeA had a greater impact on the stress circuit than on food intake behavior.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Maryam Radahmadi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Mina S Izadi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| | - Maedeh Ghasemi
- Isfahan University of Medical Sciences, Department of Physiology, School of Medicine, Hezar Jerib street, Isfahan, Iran
| |
Collapse
|
20
|
Hayashi D, Edwards C, Emond JA, Gilbert-Diamond D, Butt M, Rigby A, Masterson TD. What Is Food Noise? A Conceptual Model of Food Cue Reactivity. Nutrients 2023; 15:4809. [PMID: 38004203 PMCID: PMC10674813 DOI: 10.3390/nu15224809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
As GLP-1 receptor agonists, like semaglutide, emerge as effective treatments for weight management, anecdotal reports from patients and clinicians alike point to a reduction in what has been colloquially termed "food noise", as patients report experiencing less rumination and obsessive preoccupation about food. In this narrative review, we discuss concepts used in studies to investigate human eating behavior that can help elucidate and define food noise, particularly food cue reactivity. We propose a conceptual model that summarizes the main factors that have been shown to determine the magnitude of the reactivity elicited by external and internal food cues and how these factors can affect short- and long-term behavioral and clinical outcomes. By integrating key research conducted in this field, the Cue-Influencer-Reactivity-Outcome (CIRO) model of food cue reactivity provides a framework that can be used in future research to design studies and interpret findings related to food noise and food cue reactivity.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| | - Caitlyn Edwards
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Diane Gilbert-Diamond
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Melissa Butt
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrea Rigby
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Health, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Travis D. Masterson
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| |
Collapse
|
21
|
Ye Q, Nunez J, Zhang X. Zona incerta dopamine neurons encode motivational vigor in food seeking. SCIENCE ADVANCES 2023; 9:eadi5326. [PMID: 37976360 PMCID: PMC10656063 DOI: 10.1126/sciadv.adi5326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Energy deprivation triggers food seeking to ensure homeostatic consumption, but the neural coding of motivational vigor in food seeking during physical hunger remains unknown. Here, we report that ablation of dopamine (DA) neurons in zona incerta (ZI) but not ventral tegmental area potently impaired food seeking after fasting. ZI DA neurons and their projections to paraventricular thalamus (PVT) were quickly activated for food approach but inhibited during food consumption. Chemogenetic manipulation of ZI DA neurons bidirectionally regulated feeding motivation to control meal frequency but not meal size for food intake. Activation of ZI DA neurons promoted, but silencing of these neurons blocked, contextual memory associate with food reward. In addition, selective activation of ZI DA projections to PVT promoted food seeking for food consumption and transited positive-valence signals. Together, these findings reveal that ZI DA neurons encode motivational vigor in food seeking for food consumption through their projections to PVT.
Collapse
|
22
|
Rojek-Sito K, Meyza K, Ziegart-Sadowska K, Nazaruk K, Puścian A, Hamed A, Kiełbiński M, Solecki W, Knapska E. Optogenetic and chemogenetic approaches reveal differences in neuronal circuits that mediate initiation and maintenance of social interaction. PLoS Biol 2023; 21:e3002343. [PMID: 38029342 PMCID: PMC10686636 DOI: 10.1371/journal.pbio.3002343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
For social interaction to be successful, two conditions must be met: the motivation to initiate it and the ability to maintain it. This study uses both optogenetic and chemogenetic approaches to reveal the specific neural pathways that selectively influence those two social interaction components.
Collapse
Affiliation(s)
- Karolina Rojek-Sito
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ziegart-Sadowska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kinga Nazaruk
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kiełbiński
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
You IJ, Bae Y, Beck AR, Shin S. Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state. Nat Commun 2023; 14:6875. [PMID: 37898655 PMCID: PMC10613253 DOI: 10.1038/s41467-023-42623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Psychological stressors, like the nearby presence of a predator, can be strong enough to induce physiological/hormonal alterations, leading to appetite changes. However, little is known about how threats can alter feeding-related hypothalamic circuit functions. Here, we found that proenkephalin (Penk)-expressing lateral hypothalamic (LHPenk) neurons of mice exposed to predator scent stimulus (PSS) show sensitized responses to high-fat diet (HFD) eating, whereas silencing of the same neurons normalizes PSS-induced HFD overconsumption associated with a negative emotional state. Downregulation of endogenous enkephalin peptides in the LH is crucial for inhibiting the neuronal and behavioral changes developed after PSS exposure. Furthermore, elevated corticosterone after PSS contributes to enhance the reactivity of glucocorticoid receptor (GR)-containing LHPenk neurons to HFD, whereas pharmacological inhibition of GR in the LH suppresses PSS-induced maladaptive behavioral responses. We have thus identified the LHPenk neurons as a critical component in the threat-induced neuronal adaptation that leads to emotional overconsumption.
Collapse
Affiliation(s)
- In-Jee You
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Yeeun Bae
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alec R Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Sora Shin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
- FBRI Center for Neurobiology Research, Roanoke, VA, USA.
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
24
|
Décarie-Spain L, Gu C, Lauer LT, Subramanian KS, Chehimi SN, Kao AE, Deng I, Bashaw AG, Klug ME, Galbokke AH, Donohue KN, Yang M, de Lartigue G, Myers KP, Crist RC, Reiner BC, Hayes MR, Kanoski SE. Ventral hippocampus neurons encode meal-related memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561731. [PMID: 37873229 PMCID: PMC10592790 DOI: 10.1101/2023.10.10.561731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Cindy Gu
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Logan Tierno Lauer
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Keshav S. Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| | - Samar N. Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alicia E. Kao
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Iris Deng
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Alexander G. Bashaw
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| | - Molly E. Klug
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Ashyah Hewage Galbokke
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Kristen N. Donohue
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Mingxin Yang
- Monell Chemical Sense Center, Philadelphia, Pennsylvania, United States
| | | | - Kevin P. Myers
- Bucknell University, Lewisburg, Philadelphia, Pennsylvania, United States
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Benjamin C. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
25
|
Wronski ML, Geisler D, Bernardoni F, Seidel M, Bahnsen K, Doose A, Steinhäuser JL, Gronow F, Böldt LV, Plessow F, Lawson EA, King JA, Roessner V, Ehrlich S. Differential alterations of amygdala nuclei volumes in acutely ill patients with anorexia nervosa and their associations with leptin levels. Psychol Med 2023; 53:6288-6303. [PMID: 36464660 PMCID: PMC10358440 DOI: 10.1017/s0033291722003609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The amygdala is a subcortical limbic structure consisting of histologically and functionally distinct subregions. New automated structural magnetic resonance imaging (MRI) segmentation tools facilitate the in vivo study of individual amygdala nuclei in clinical populations such as patients with anorexia nervosa (AN) who show symptoms indicative of limbic dysregulation. This study is the first to investigate amygdala nuclei volumes in AN, their relationships with leptin, a key indicator of AN-related neuroendocrine alterations, and further clinical measures. METHODS T1-weighted MRI scans were subsegmented and multi-stage quality controlled using FreeSurfer. Left/right hemispheric amygdala nuclei volumes were cross-sectionally compared between females with AN (n = 168, 12-29 years) and age-matched healthy females (n = 168) applying general linear models. Associations with plasma leptin, body mass index (BMI), illness duration, and psychiatric symptoms were analyzed via robust linear regression. RESULTS Globally, most amygdala nuclei volumes in both hemispheres were reduced in AN v. healthy control participants. Importantly, four specific nuclei (accessory basal, cortical, medial nuclei, corticoamygdaloid transition in the rostral-medial amygdala) showed greater volumetric reduction even relative to reductions of whole amygdala and total subcortical gray matter volumes, whereas basal, lateral, and paralaminar nuclei were less reduced. All rostral-medially clustered nuclei were positively associated with leptin in AN independent of BMI. Amygdala nuclei volumes were not associated with illness duration or psychiatric symptom severity in AN. CONCLUSIONS In AN, amygdala nuclei are altered to different degrees. Severe volume loss in rostral-medially clustered nuclei, collectively involved in olfactory/food-related reward processing, may represent a structural correlate of AN-related symptoms. Hypoleptinemia might be linked to rostral-medial amygdala alterations.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas L. Steinhäuser
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Gronow
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - Luisa V. Böldt
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Bijoch Ł, Klos J, Pękała M, Fiołna K, Kaczmarek L, Beroun A. Diverse processing of pharmacological and natural rewards by the central amygdala. Cell Rep 2023; 42:113036. [PMID: 37616162 DOI: 10.1016/j.celrep.2023.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The central amygdala (CeA) with its medial (CeM) and lateral (CeL) nuclei is the brain hub for processing stimuli with emotional context. CeL nucleus gives a strong inhibitory input to the CeM, and this local circuitry assigns values (positive or negative) to incoming stimuli, guiding appropriate behavior (approach or avoid). However, the particular involvement of CeA in processing such emotionally relevant information and adaptations of the CeA circuitry are not yet well understood. In this study, we examined synaptic plasticity in the CeA after exposure to two types of rewards, pharmacological (cocaine) and natural (sugar). We found that both rewards engage CeM, where they generate silent synapses resulting in the strengthening of the network. However, only cocaine triggers plasticity in the CeL, which leads to the weakening of its excitatory inputs. Finally, chemogenetic inhibition of CeM attenuates animal preference for sugar, while activation delays cocaine-induced increase in locomotor activity.
Collapse
Affiliation(s)
- Łukasz Bijoch
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Joanna Klos
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Martyna Pękała
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Kristina Fiołna
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland; Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Beroun
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
27
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The Role of Genetically Distinct Central Amygdala Neurons in Appetitive and Aversive Responding Assayed with a Novel Dual Valence Operant Conditioning Paradigm. eNeuro 2023; 10:ENEURO.0319-22.2023. [PMID: 37640541 PMCID: PMC10488222 DOI: 10.1523/eneuro.0319-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Jikomes et al., 2016; Heinz et al., 2017), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nose poke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within-subject and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Wilensky et al., 2006; Haubensak et al., 2010) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Sinha, 2008; Bolton et al., 2009). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - Claire E Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| | - David M Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118
| | - Jeffrey G Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
28
|
Dorofeikova M, Stelly CE, Duong A, Basavanhalli S, Bean E, Weissmuller K, Sifnugel N, Resendez A, Corey DM, Tasker JG, Fadok JP. The role of genetically distinct central amygdala neurons in appetitive and aversive responding assayed with a novel dual valence operant conditioning paradigm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547979. [PMID: 37461627 PMCID: PMC10350072 DOI: 10.1101/2023.07.07.547979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Heinz et al., 2017; Jikomes et al., 2016), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nosepoke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within- and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Haubensak et al., 2010; Wilensky et al., 2006) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Bolton et al., 2009; Sinha, 2008). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences. Significance Statement It is unclear how different neuronal populations contribute to reward- and aversion-driven behaviors within a subject. To address this question, we developed a novel behavioral paradigm in which mice obtain food and avoid footshocks via the same operant response. We then use this paradigm to test how the central amygdala coordinates appetitive and aversive behavioral responses. By testing somatostatin-IRES-Cre and CRF-IRES-Cre transgenic lines, we found significant differences between strains on task acquisition and performance. Using chemogenetics, we demonstrate that CeA SOM+ neurons regulate motivation for reward, while manipulation of CeA CRF+ neurons had no effect on task performance. Future studies investigating the interaction between positive and negative motivation circuits should benefit from the use of this dual valence paradigm.
Collapse
Affiliation(s)
- Mariia Dorofeikova
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Claire E. Stelly
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Anh Duong
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Erin Bean
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | - Natalia Sifnugel
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - David M. Corey
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
- Department of Cellular and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jonathan P. Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
29
|
Fraser KM, Kim TH, Castro M, Drieu C, Padovan-Hernandez Y, Chen B, Pat F, Ottenheimer DJ, Janak PH. Encoding and context-dependent control of reward consumption within the central nucleus of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546936. [PMID: 37425773 PMCID: PMC10327036 DOI: 10.1101/2023.06.28.546936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to evaluate and select a preferred option among a variety of available offers is an essential aspect of goal-directed behavior. Dysregulation of this valuation process is characteristic of alcohol use disorder, with the central amygdala being implicated in persistent alcohol pursuit. However, the mechanism by which the central amygdala encodes and promotes the motivation to seek and consume alcohol remains unclear. We recorded single-unit activity in male Long-Evans rats as they consumed 10% ethanol or 14.2% sucrose. We observed significant activity at the time of approach to alcohol or sucrose, as well as lick-entrained activity during the ongoing consumption of both alcohol and sucrose. We then evaluated the ability of central amygdala optogenetic manipulation time-locked to consumption to alter ongoing intake of alcohol or sucrose, a preferred non-drug reward. In closed two-choice scenarios where rats could drink only sucrose, alcohol, or quinine-adulterated alcohol with or without central amygdala stimulation, rats drank more of stimulation-paired options. Microstructural analysis of licking patterns suggests these effects were mediated by changes in motivation, not palatability. Given a choice among different options, central amygdala stimulation enhanced consumption if the stimulation was associated with the preferred reward while closed-loop inhibition only decreased consumption if the options were equally valued. However, optogenetic stimulation during consumption of the less-preferred option, alcohol, was unable to enhance overall alcohol intake while sucrose was available. Collectively, these findings indicate that the central amygdala processes the motivational value of available offers to promote pursuit of the most preferred available option.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tabitha H Kim
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matilde Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Céline Drieu
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yasmin Padovan-Hernandez
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bridget Chen
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fiona Pat
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David J Ottenheimer
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patricia H Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Takemoto M, Kato S, Kobayashi K, Song WJ. Dissection of insular cortex layer 5 reveals two sublayers with opposing modulatory roles in appetitive drinking behavior. iScience 2023; 26:106985. [PMID: 37378339 PMCID: PMC10291511 DOI: 10.1016/j.isci.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The insular cortex (insula) is known to play a modulatory role in feeding and drinking. Previous studies have revealed anterior-posterior differences of subcortical projections and roles for the insula, yet the anatomical and functional heterogeneity among the cortical layers remains poorly understood. Here, we show that layer 5 of the mouse dysgranular insula has two distinct neuronal subpopulations along the entire anterior-posterior axis: The L5a population, expressing NECAB1, projects bilaterally to the lateral and capsular divisions of the central amygdala, and the L5b population, expressing CTIP2, projects ipsilaterally to the parasubthalamic nucleus and the medial division of the central amygdala. Optogenetically activating L5a and L5b neuronal populations in thirsty male mice led to suppressed and facilitated water spout licking, respectively, without avoidance against or preference for the spout paired with the opto-stimulation. Our results suggest sublayer-specific bidirectional modulatory roles of insula layer 5 in the motivational aspect of appetitive behavior.
Collapse
Affiliation(s)
- Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
31
|
Huerta C, Meza E, Caba-Flores MD, Morales T, Paredes RG, Caba M. Activation of the central but not the medial and cortical amygdala during anticipation for daily nursing in the rabbit. Brain Res 2023; 1809:148341. [PMID: 37001722 DOI: 10.1016/j.brainres.2023.148341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Rabbits have remarkable nursing behavior: after parturition, does visit daily their pups for nursing only once with circadian periodicity. Before the nursing events, they present increased activity and arousal, which shift according to the timing of scheduled nursing, either during the day or night. Brain areas related to maternal behavior and neuroendocrine cells for milk secretion are also entrained. The daily return of the doe for nursing at approximately the same hour suggests a motivational drive with circadian periodicity. Previously, we reported the activation of the mesolimbic system at the time of nursing, but not 12 h before that. Aiming at a better understanding of the mechanism of this anticipatory behavior, we explored the participation of the limbic regions of the amygdala and the bed nucleus of the stria terminalis, as well as the possible activation of the hypothalamic-pituitaryadrenal axis, specifically the corticotropin-releasing factor cells in the hypothalamic paraventricular nucleus of does at different times before and after nursing. The medial and cortical amygdala, the bed nucleus of the stria terminalis, and corticotropin cells showed activation only after nursing. However, the central amygdala was also activated before nursing. We conclude that the medial and the cortical amygdala form part of the afferent olfactory pathway for entrainment, and the central amygdala participates in the anticipatory motivational circuit of the control of periodic nursing. The lack of activation of corticotropin cells before nursing is consistent with the possible harmful effects of the doe's high glucocorticoid levels on the developing pups.
Collapse
Affiliation(s)
- César Huerta
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico
| | - Mario Daniel Caba-Flores
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, UNAM, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología and Escuela Nacional de Estudios Superiores, Unidad, Juriquilla, UNAM, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas (CIB), Universidad Veracruzana, Mexico.
| |
Collapse
|
32
|
Peters C, He S, Fermani F, Lim H, Ding W, Mayer C, Klein R. Transcriptomics reveals amygdala neuron regulation by fasting and ghrelin thereby promoting feeding. SCIENCE ADVANCES 2023; 9:eadf6521. [PMID: 37224253 DOI: 10.1126/sciadv.adf6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The central amygdala (CeA) consists of numerous genetically defined inhibitory neurons that control defensive and appetitive behaviors including feeding. Transcriptomic signatures of cell types and their links to function remain poorly understood. Using single-nucleus RNA sequencing, we describe nine CeA cell clusters, of which four are mostly associated with appetitive and two with aversive behaviors. To analyze the activation mechanism of appetitive CeA neurons, we characterized serotonin receptor 2a (Htr2a)-expressing neurons (CeAHtr2a) that comprise three appetitive clusters and were previously shown to promote feeding. In vivo calcium imaging revealed that CeAHtr2a neurons are activated by fasting, the hormone ghrelin, and the presence of food. Moreover, these neurons are required for the orexigenic effects of ghrelin. Appetitive CeA neurons responsive to fasting and ghrelin project to the parabrachial nucleus (PBN) causing inhibition of target PBN neurons. These results illustrate how the transcriptomic diversification of CeA neurons relates to fasting and hormone-regulated feeding behavior.
Collapse
Affiliation(s)
- Christian Peters
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Songwei He
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Federica Fermani
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Hansol Lim
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Wenyu Ding
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
33
|
Mou Y, Blok E, Barroso M, Jansen PW, White T, Voortman T. Dietary patterns, brain morphology and cognitive performance in children: Results from a prospective population-based study. Eur J Epidemiol 2023:10.1007/s10654-023-01012-5. [PMID: 37155025 DOI: 10.1007/s10654-023-01012-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Dietary patterns in childhood have been associated with child neurodevelopment and cognitive performance, while the underlying neurobiological pathway is unclear. We aimed to examine associations of dietary patterns in infancy and mid-childhood with pre-adolescent brain morphology, and whether diet-related differences in brain morphology mediate the relation with cognition. We included 1888 and 2326 children with dietary data at age one or eight years, respectively, and structural neuroimaging at age 10 years in the Generation R Study. Measures of brain morphology were obtained using magnetic resonance imaging. Dietary intake was assessed using food-frequency questionnaires, from which we derived diet quality scores based on dietary guidelines and dietary patterns using principal component analyses. Full scale IQ was estimated using the Wechsler Intelligence Scale for Children-Fifth Edition at age 13 years. Children with higher adherence to a dietary pattern labeled as 'Snack, processed foods and sugar' at age one year had smaller cerebral white matter volume at age 10 (B = -4.3, 95%CI -6.9, -1.7). At age eight years, higher adherence to a 'Whole grains, soft fats and dairy' pattern was associated with a larger total brain (B = 8.9, 95%CI 4.5, 13.3), and larger cerebral gray matter volumes at age 10 (B = 5.2, 95%CI 2.9, 7.5). Children with higher diet quality and better adherence to a 'Whole grains, soft fats and dairy' dietary pattern at age eight showed greater brain gyrification and larger surface area, clustered primarily in the dorsolateral prefrontal cortex. These observed differences in brain morphology mediated associations between dietary patterns and IQ. In conclusion, dietary patterns in early- and mid-childhood are associated with differences in brain morphology which may explain the relation between dietary patterns and neurodevelopment in children.
Collapse
Affiliation(s)
- Yuchan Mou
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Elisabet Blok
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Monica Barroso
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Section on Social and Cognitive Developmental Neuroscience, National Institutes of Mental Health, Bethesda, MD, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Cały A, Ziółkowska M, Pagano R, Salamian A, Śliwińska MA, Sotoudeh N, Bernaś T, Radwanska K. Autophosphorylation of αCaMKII regulates alcohol consumption by controlling sedative effects of alcohol and alcohol-induced loss of excitatory synapses. Addict Biol 2023; 28:e13276. [PMID: 37186439 DOI: 10.1111/adb.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.
Collapse
Affiliation(s)
- Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata A Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Narges Sotoudeh
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Zhao ZD, Zhang L, Xiang X, Kim D, Li H, Cao P, Shen WL. Neurocircuitry of Predatory Hunting. Neurosci Bull 2023; 39:817-831. [PMID: 36705845 PMCID: PMC10170020 DOI: 10.1007/s12264-022-01018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023] Open
Abstract
Predatory hunting is an important type of innate behavior evolutionarily conserved across the animal kingdom. It is typically composed of a set of sequential actions, including prey search, pursuit, attack, and consumption. This behavior is subject to control by the nervous system. Early studies used toads as a model to probe the neuroethology of hunting, which led to the proposal of a sensory-triggered release mechanism for hunting actions. More recent studies have used genetically-trackable zebrafish and rodents and have made breakthrough discoveries in the neuroethology and neurocircuits underlying this behavior. Here, we review the sophisticated neurocircuitry involved in hunting and summarize the detailed mechanism for the circuitry to encode various aspects of hunting neuroethology, including sensory processing, sensorimotor transformation, motivation, and sequential encoding of hunting actions. We also discuss the overlapping brain circuits for hunting and feeding and point out the limitations of current studies. We propose that hunting is an ideal behavioral paradigm in which to study the neuroethology of motivated behaviors, which may shed new light on epidemic disorders, including binge-eating, obesity, and obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Zheng-Dong Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Daesoo Kim
- Department of Cognitive Brain Science, Korea Advanced Institute of Science & Technology, Daejeon, 34141, South Korea.
| | - Haohong Li
- MOE Frontier Research Center of Brain & Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Mental Health Centre and Hangzhou Seventh People`s Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
36
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
37
|
Yang T, Yu K, Zhang X, Xiao X, Chen X, Fu Y, Li B. Plastic and stimulus-specific coding of salient events in the central amygdala. Nature 2023; 616:510-519. [PMID: 37020025 PMCID: PMC10665639 DOI: 10.1038/s41586-023-05910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
The central amygdala (CeA) is implicated in a range of mental processes including attention, motivation, memory formation and extinction and in behaviours driven by either aversive or appetitive stimuli1-7. How it participates in these divergent functions remains elusive. Here we show that somatostatin-expressing (Sst+) CeA neurons, which mediate much of CeA functions3,6,8-10, generate experience-dependent and stimulus-specific evaluative signals essential for learning. The population responses of these neurons in mice encode the identities of a wide range of salient stimuli, with the responses of separate subpopulations selectively representing the stimuli that have contrasting valences, sensory modalities or physical properties (for example, shock and water reward). These signals scale with stimulus intensity, undergo pronounced amplification and transformation during learning, and are required for both reward and aversive learning. Notably, these signals contribute to the responses of dopamine neurons to reward and reward prediction error, but not to their responses to aversive stimuli. In line with this, Sst+ CeA neuron outputs to dopamine areas are required for reward learning, but are dispensable for aversive learning. Our results suggest that Sst+ CeA neurons selectively process information about differing salient events for evaluation during learning, supporting the diverse roles of the CeA. In particular, the information for dopamine neurons facilitates reward evaluation.
Collapse
Affiliation(s)
- Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Kai Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yu Fu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
38
|
Arthurs JW, Pauli JL, Palmiter RD. Activation of Parabrachial Tachykinin 1 Neurons Counteracts Some Behaviors Mediated by Parabrachial Calcitonin Gene-related Peptide Neurons. Neuroscience 2023; 517:105-116. [PMID: 36898496 PMCID: PMC10103625 DOI: 10.1016/j.neuroscience.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Many threats activate parabrachial neurons expressing calcitonin gene-related peptide (CGRPPBN) which transmit alarm signals to forebrain regions. Most CGRPPBN neurons also express tachykinin 1 (Tac1), but there are also Tac1-expressing neurons in the PBN that do not express CGRP (Tac1+;CGRP- neurons). Chemogenetic or optogenetic activation of all Tac1PBN neurons in mice elicited many physiological/behavioral responses resembling the activation of CGRPPBN neurons, e.g., anorexia, jumping on a hot plate, avoidance of photostimulation; however, two key responses opposed activation of CGRPPBN neurons. Activating Tac1PBN neurons did not produce conditioned taste aversion and it elicited dynamic escape behaviors rather than freezing. Activating Tac1+;CGRP- neurons, using an intersectional genetic targeting approach, resembles activating all Tac1PBN neurons. These results reveal that activation of Tac1+;CGRP- neurons can suppress some functions attributed to the CGRPPBN neurons, which provides a mechanism to bias behavioral responses to threats.
Collapse
Affiliation(s)
- Joe W Arthurs
- Department of Biochemistry, University of Washington, Seattle 98195, United States; Howard Hughes Medical Institute, University of Washington, Seattle 98195, United States
| | - Jordan L Pauli
- Department of Biochemistry, University of Washington, Seattle 98195, United States; Howard Hughes Medical Institute, University of Washington, Seattle 98195, United States
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle 98195, United States; Howard Hughes Medical Institute, University of Washington, Seattle 98195, United States.
| |
Collapse
|
39
|
Kusunoki S, Fukuda T, Maeda S, Yao C, Hasegawa T, Akamatsu T, Yoshimura H. Relationships between feeding behaviors and emotions: an electroencephalogram (EEG) frequency analysis study. J Physiol Sci 2023; 73:2. [PMID: 36869303 DOI: 10.1186/s12576-022-00858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023]
Abstract
Feeding behaviors may be easily affected by emotions, both being based on brain activity; however, the relationships between them have not been explicitly defined. In this study, we investigated how emotional environments modulate subjective feelings, brain activity, and feeding behaviors. Electroencephalogram (EEG) recordings were obtained from healthy participants in conditions of virtual comfortable space (CS) and uncomfortable space (UCS) while eating chocolate, and the times required for eating it were measured. We found that the more participants tended to feel comfortable under the CS, the more it took time to eat in the UCS. However, the EEG emergence patterns in the two virtual spaces varied across the individuals. Upon focusing on the theta and low-beta bands, the strength of the mental condition and eating times were found to be guided by these frequency bands. The results determined that the theta and low-beta bands are likely important and relevant waves for feeding behaviors under emotional circumstances, following alterations in mental conditions.
Collapse
Affiliation(s)
- Shintaro Kusunoki
- Field of Food Science & Technology, Graduate School of Technology, Industrial & Social Sciences, Tokushima University Graduate School, 2-1, Minami-josanjima-cho, Tokushima, 770-8513, Japan.,Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Takako Fukuda
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Saori Maeda
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Takahiro Hasegawa
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Tetsuya Akamatsu
- Field of Food Science & Technology, Graduate School of Technology, Industrial & Social Sciences, Tokushima University Graduate School, 2-1, Minami-josanjima-cho, Tokushima, 770-8513, Japan
| | - Hiroshi Yoshimura
- Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| |
Collapse
|
40
|
Bodas DS, Maduskar A, Kaniganti T, Wakhloo D, Balasubramanian A, Subhedar N, Ghose A. Convergent Energy State-Dependent Antagonistic Signaling by Cocaine- and Amphetamine-Regulated Transcript (CART) and Neuropeptide Y (NPY) Modulates the Plasticity of Forebrain Neurons to Regulate Feeding in Zebrafish. J Neurosci 2023; 43:1089-1110. [PMID: 36599680 PMCID: PMC9962846 DOI: 10.1523/jneurosci.2426-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Dynamic reconfiguration of circuit function subserves the flexibility of innate behaviors tuned to physiological states. Internal energy stores adaptively regulate feeding-associated behaviors and integrate opposing hunger and satiety signals at the level of neural circuits. Across vertebrate lineages, the neuropeptides cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) have potent anorexic and orexic functions, respectively, and show energy-state-dependent expression in interoceptive neurons. However, how the antagonistic activities of these peptides modulate circuit plasticity remains unclear. Using behavioral, neuroanatomical, and activity analysis in adult zebrafish of both sexes, along with pharmacological interventions, we show that CART and NPY activities converge on a population of neurons in the dorsomedial telencephalon (Dm). Although CART facilitates glutamatergic neurotransmission at the Dm, NPY dampens the response to glutamate. In energy-rich states, CART enhances NMDA receptor (NMDAR) function by protein kinase A/protein kinase C (PKA/PKC)-mediated phosphorylation of the NR1 subunit of the NMDAR complex. Conversely, starvation triggers NPY-mediated reduction in phosphorylated NR1 via calcineurin activation and inhibition of cAMP production leading to reduced responsiveness to glutamate. Our data identify convergent integration of CART and NPY inputs by the Dm neurons to generate nutritional state-dependent circuit plasticity that is correlated with the behavioral switch induced by the opposing actions of satiety and hunger signals.SIGNIFICANCE STATEMENT Internal energy needs reconfigure neuronal circuits to adaptively regulate feeding behavior. Energy-state-dependent neuropeptide release can signal energy status to feeding-associated circuits and modulate circuit function. CART and NPY are major anorexic and orexic factors, respectively, but the intracellular signaling pathways used by these peptides to alter circuit function remain uncharacterized. We show that CART and NPY-expressing neurons from energy-state interoceptive areas project to a novel telencephalic region, Dm, in adult zebrafish. CART increases the excitability of Dm neurons, whereas NPY opposes CART activity. Antagonistic signaling by CART and NPY converge onto NMDA-receptor function to modulate glutamatergic neurotransmission. Thus, opposing activities of anorexic CART and orexic NPY reconfigure circuit function to generate flexibility in feeding behavior.
Collapse
Affiliation(s)
- Devika S Bodas
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aditi Maduskar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Tarun Kaniganti
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Debia Wakhloo
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Aurnab Ghose
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| |
Collapse
|
41
|
Pagano R, Salamian A, Zielinski J, Beroun A, Nalberczak-Skóra M, Skonieczna E, Cały A, Tay N, Banaschewski T, Desrivières S, Grigis A, Garavan H, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Kalita K, Bito H, Müller CP, Schumann G, Okuno H, Radwanska K. Arc controls alcohol cue relapse by a central amygdala mechanism. Mol Psychiatry 2023; 28:733-745. [PMID: 36357670 DOI: 10.1038/s41380-022-01849-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic and fatal disease. The main impediment of the AUD therapy is a high probability of relapse to alcohol abuse even after prolonged abstinence. The molecular mechanisms of cue-induced relapse are not well established, despite the fact that they may offer new targets for the treatment of AUD. Using a comprehensive animal model of AUD, virally-mediated and amygdala-targeted genetic manipulations by CRISPR/Cas9 technology and ex vivo electrophysiology, we identify a mechanism that selectively controls cue-induced alcohol relapse and AUD symptom severity. This mechanism is based on activity-regulated cytoskeleton-associated protein (Arc)/ARG3.1-dependent plasticity of the amygdala synapses. In humans, we identified single nucleotide polymorphisms in the ARC gene and their methylation predicting not only amygdala size, but also frequency of alcohol use, even at the onset of regular consumption. Targeting Arc during alcohol cue exposure may thus be a selective new mechanism for relapse prevention.
Collapse
Affiliation(s)
- Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Zielinski
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Nicole Tay
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Braunschweig and Berlin, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Eric Artiges
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian P Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
42
|
Yeum D, Jimenez CA, Emond JA, Meyer ML, Lansigan RK, Carlson DD, Ballarino GA, Gilbert-Diamond D, Masterson TD. Differential neural reward reactivity in response to food advertising medium in children. Front Neurosci 2023; 17:1052384. [PMID: 36816130 PMCID: PMC9933514 DOI: 10.3389/fnins.2023.1052384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Food cues including food advertisements (ads) activate brain regions related to motivation and reward. These responses are known to correlate with eating behaviors and future weight gain. The objective of this study was to compare brain responses to food ads by different types of ad mediums, dynamic (video) and static (images), to better understand how medium type impacts food cue response. Methods Children aged 9-12 years old were recruited to complete a functional magnetic resonance imaging (fMRI) paradigm that included both food and non-food dynamic and static ads. Anatomical and functional images were preprocessed using the fMRIPrep pipeline. A whole-brain analysis and a targeted region-of-interest (ROI) analysis for reward regions (nucleus accumbens, orbitofrontal cortex, amygdala, insula, hypothalamus, ventral tegmental area, substantia nigra) were conducted. Individual neural responses to dynamic and static conditions were compared using a paired t-test. Linear mixed-effects models were then constructed to test the differential response by ad condition after controlling for age, sex, BMI-z, physical activity, and % of kcal consumed of a participant's estimated energy expenditure in the pre-load prior to the MRI scan. Results A total of 115 children (mean=10.9 years) completed the fMRI paradigm. From the ROI analyses, the right and left hemispheres of the amygdala and insula, and the right hemisphere of the ventral tegmental area and substantia nigra showed significantly higher responses for the dynamic food ad medium after controlling for covariates and a false discovery rate correction. From the whole-brain analysis, 21 clusters showed significant differential responses between food ad medium including the precuneus, middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus, and all regions remained significant after controlling for covariates. Discussion Advertising medium has unique effects on neural response to food cues. Further research is needed to understand how this differential activation by ad medium ultimately affects eating behaviors and weight outcomes.
Collapse
Affiliation(s)
- Dabin Yeum
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Courtney A. Jimenez
- Department of Psychological and Brain Science at Dartmouth College, Hanover, NH, United States
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| | - Reina K. Lansigan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Delaina D. Carlson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Grace A. Ballarino
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Travis D. Masterson
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
43
|
Bowen AJ, Huang YW, Chen JY, Pauli JL, Campos CA, Palmiter RD. Topographic representation of current and future threats in the mouse nociceptive amygdala. Nat Commun 2023; 14:196. [PMID: 36639374 PMCID: PMC9839702 DOI: 10.1038/s41467-023-35826-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Adaptive behaviors arise from an integration of current sensory context and internal representations of past experiences. The central amygdala (CeA) is positioned as a key integrator of cognitive and affective signals, yet it remains unknown whether individual populations simultaneously carry current- and future-state representations. We find that a primary nociceptive population within the CeA of mice, defined by CGRP-receptor (Calcrl) expression, receives topographic sensory information, with spatially defined representations of internal and external stimuli. While Calcrl+ neurons in both the rostral and caudal CeA respond to noxious stimuli, rostral neurons promote locomotor responses to externally sourced threats, while caudal CeA Calcrl+ neurons are activated by internal threats and promote passive coping behaviors and associative valence coding. During associative fear learning, rostral CeA Calcrl+ neurons stably encode noxious stimulus occurrence, while caudal CeA Calcrl+ neurons acquire predictive responses. This arrangement supports valence-aligned representations of current and future threats for the generation of adaptive behaviors.
Collapse
Affiliation(s)
- Anna J Bowen
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
| | - Y Waterlily Huang
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jane Y Chen
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jordan L Pauli
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Carlos A Campos
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
44
|
Yin TC, Mittal A, Buscaglia P, Li W, Sebag JA. Activation of amygdala prokineticin receptor 2 neurons drives the anorexigenic activity of the neuropeptide PK2. J Biol Chem 2022; 299:102814. [PMID: 36539034 PMCID: PMC9860486 DOI: 10.1016/j.jbc.2022.102814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Energy homeostasis is a complex system involving multiple hormones, neuropeptides, and receptors. Prokineticins (PK1 and PK2) are agonists to two G protein-coupled receptors, prokineticin receptor 1 and 2 (PKR1 and PKR2), which decrease food intake when injected in rodents. The relative contribution of PKR1 and PKR2 to the anorexigenic effect of PK2 and their site of action in the brain have not yet been elucidated. While PKR1 and PKR2 are both expressed in the hypothalamus, a central region involved in the control of energy homeostasis, PKR2 is also present in the amygdala, which has recently been shown to regulate food intake in response to several anorexigenic signals. PKR trafficking and signaling are inhibited by the melanocortin receptor accessory protein 2 (MRAP2), thus suggesting that MRAP2 has the potential to alter the anorexigenic activity of PK2 in vivo. In this study, we investigated the importance of PKR1 and PKR2 for PK2-mediated inhibition of food intake, the brain region involved in this function, and the effect of MRAP2 on PK2 action in vivo. Using targeted silencing of PKR2 and chemogenetic manipulation of PKR2 neurons, we show that the anorexigenic effect of PK2 is mediated by PKR2 in the amygdala and that altering MRAP2 expression in PKR2 neurons modulates the activity of PK2. Collectively, our results provide evidence that inhibition of food intake by PKs is not mediated through activation of hypothalamic neurons but rather amygdala PKR2 neurons and further establishes the importance of MRAP2 in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Terry C. Yin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ayushi Mittal
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Paul Buscaglia
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Wenxian Li
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Julien A. Sebag
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA,For correspondence: Julien A. Sebag
| |
Collapse
|
45
|
Parsons W, Greiner E, Buczek L, Migliaccio J, Corbett E, Madden AMK, Petrovich GD. Sex differences in activation of extra-hypothalamic forebrain areas during hedonic eating. Brain Struct Funct 2022; 227:2857-2878. [PMID: 36258044 PMCID: PMC9724631 DOI: 10.1007/s00429-022-02580-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
Palatable foods can stimulate appetite without hunger, and unconstrained overeating underlies obesity and binge eating disorder. Women are more prone to obesity and binge eating than men but the neural causes of individual differences are unknown. In an animal model of hedonic eating, a prior study found that females were more susceptible than males to eat palatable food when sated and that the neuropeptide orexin/hypocretin (ORX) was crucial in both sexes. The current study examined potential extra-hypothalamic forebrain targets of ORX signaling during hedonic eating. We measured Fos induction in the cortical, thalamic, striatal, and amygdalar areas that receive substantial ORX inputs and contain their receptors in hungry and sated male and female rats during palatable (high-sucrose) food consumption. During the test, hungry rats of both sexes ate substantial amounts, and while sated males ate much less than hungry rats, sated females ate as much as hungry rats. The Fos induction analysis identified sex differences in recruitment of specific areas of the medial prefrontal cortex, paraventricular nucleus of the thalamus (PVT), nucleus accumbens (ACB), and central nucleus of the amygdala (CEA), and similar patterns across sexes in the insular cortex. There was a striking activation of the infralimbic cortex in sated males, who consumed the least amount food and unique correlations between the insular cortex, PVT, and CEA, as well as the prelimbic cortex, ACB, and CEA in sated females but not sated males. The study identified key functional circuits that may drive hedonic eating in a sex-specific manner.
Collapse
Affiliation(s)
- William Parsons
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eliza Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Laura Buczek
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jennifer Migliaccio
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Erin Corbett
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amanda M K Madden
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
46
|
Shields CN, Gremel CM. Effects of central amygdala chemogenetic manipulation and prior chronic alcohol exposure on Pavlovian-to-instrumental transfer. Alcohol Clin Exp Res 2022; 46:1967-1979. [PMID: 36117381 PMCID: PMC9722516 DOI: 10.1111/acer.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent work suggests that a history of chronic alcohol exposure can enhance the influence of nondrug reward cues on ongoing actions. This is often modeled in Pavlovian-to-instrumental transfer (PIT) tasks that examine the interaction between Pavlovian and instrumental learning processes, usually reflected as an increase in action vigor during the presentation of a reward-associated cue. Though prior chronic alcohol exposure strengthens this type of cue-guided behavior, the neural mechanisms underlying such enhancements are not known. METHODS In the present work, we examined the contribution of the central amygdala (CeA), a region strongly implicated in PIT behaviors and functionally altered by chronic alcohol exposure. We utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to examine the impact of inhibitory and excitatory CeA manipulation on PIT behaviors in alcohol-naïve mice and mice with a history of chronic intermittent ethano vapor exposure and withdrawal (CIE). RESULTS Replicating previous work, we found that a history of CIE strengthened baseline PIT, in the absence of any CeA manipulation. We also found that activation of both inhibitory and excitatory DREADDs expressed in CeA enhanced PIT in alcohol-naïve mice, though the latter markedly reduced response rates. However, in mice exposed to CIE, activation of excitatory DREADD receptors expressed in CeA appeared to weaken PIT. CONCLUSIONS These results suggest that alcohol-induced disruptions in amygdala function may contribute to changes in appetitive behaviors, such as cue-guided responding, following chronic exposure to alcohol. Better elucidating the neural mechanisms that underlie disrupted cue-guided behavior following chronic alcohol exposure may help to understand and treat deficits in adaptive behavior associated with chronic alcohol use in humans.
Collapse
Affiliation(s)
- Chloe N. Shields
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina M. Gremel
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
- The Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
47
|
Pauli JL, Chen JY, Basiri ML, Park S, Carter ME, Sanz E, McKnight GS, Stuber GD, Palmiter RD. Molecular and anatomical characterization of parabrachial neurons and their axonal projections. eLife 2022; 11:e81868. [PMID: 36317965 PMCID: PMC9668336 DOI: 10.7554/elife.81868] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
The parabrachial nucleus (PBN) is a major hub that receives sensory information from both internal and external environments. Specific populations of PBN neurons are involved in behaviors including food and water intake, nociceptive responses, breathing regulation, as well as learning and responding appropriately to threatening stimuli. However, it is unclear how many PBN neuron populations exist and how different behaviors may be encoded by unique signaling molecules or receptors. Here we provide a repository of data on the molecular identity, spatial location, and projection patterns of dozens of PBN neuron subclusters. Using single-cell RNA sequencing, we identified 21 subclusters of neurons in the PBN and neighboring regions. Multiplexed in situ hybridization showed many of these subclusters are enriched within specific PBN subregions with scattered cells in several other regions. We also provide detailed visualization of the axonal projections from 21 Cre-driver lines of mice. These results are all publicly available for download and provide a foundation for further interrogation of PBN functions and connections.
Collapse
Affiliation(s)
- Jordan L Pauli
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Jane Y Chen
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Sekun Park
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Matthew E Carter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Elisenda Sanz
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - G Stanley McKnight
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
48
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
49
|
López-Ojeda W, Hurley RA. Kisspeptin in the Limbic System: New Insights Into Its Neuromodulatory Roles. J Neuropsychiatry Clin Neurosci 2022; 34:190-195. [PMID: 35921618 DOI: 10.1176/appi.neuropsych.20220087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Departments of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Radiology (Hurley), Wake Forest School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
50
|
Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022; 25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|