1
|
Zhou B, Feng C, Sun S, Chen X, Zhuansun D, Wang D, Yu X, Meng X, Xiao J, Wu L, Wang J, Wang J, Chen K, Li Z, You J, Mao H, Yang S, Zhang J, Jiao C, Li Z, Yu D, Wu X, Zhu T, Yang J, Xiang L, Liu J, Chai T, Shen J, Mao CX, Hu J, Hao X, Xiong B, Zheng S, Liu Z, Feng J. Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Dev Cell 2024; 59:1689-1706.e8. [PMID: 38636517 DOI: 10.1016/j.devcel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
During enteric nervous system (ENS) development, pioneering wavefront enteric neural crest cells (ENCCs) initiate gut colonization. However, the molecular mechanisms guiding their specification and niche interaction are not fully understood. We used single-cell RNA sequencing and spatial transcriptomics to map the spatiotemporal dynamics and molecular landscape of wavefront ENCCs in mouse embryos. Our analysis shows a progressive decline in wavefront ENCC potency during migration and identifies transcription factors governing their specification and differentiation. We further delineate key signaling pathways (ephrin-Eph, Wnt-Frizzled, and Sema3a-Nrp1) utilized by wavefront ENCCs to interact with their surrounding cells. Disruptions in these pathways are observed in human Hirschsprung's disease gut tissue, linking them to ENS malformations. Additionally, we observed region-specific and cell-type-specific transcriptional changes in surrounding gut tissues upon wavefront ENCC arrival, suggesting their role in shaping the gut microenvironment. This work offers a roadmap of ENS development, with implications for understanding ENS disorders.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chenzhao Feng
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Sun
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Didi Zhuansun
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Di Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zejian Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Handan Mao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiaxin Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Chunlei Jiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Zhi Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Donghai Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Tianqi Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China
| | - Jiazhe Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | | | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518081, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute for Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shan Zheng
- Department of Pediatric Surgery, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Ministry of Health, Shanghai 201102, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Clinical Center of Hirschsprung's Disease and Allied Disorders, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Tong M, Bai Y, Han X, Kong L, Ren L, Zhang L, Li X, Yao J, Yan B. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in choroidal neovascularization model. Exp Eye Res 2024; 242:109877. [PMID: 38537669 DOI: 10.1016/j.exer.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.
Collapse
Affiliation(s)
- Ming Tong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ling Ren
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Linyu Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
3
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
4
|
Zhang X, Xiao G, Johnson C, Cai Y, Horowitz ZK, Mennicke C, Coffey R, Haider M, Threadgill D, Eliscu R, Oldham MC, Greenbaum A, Ghashghaei HT. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience 2023; 26:106242. [PMID: 36915679 PMCID: PMC10006693 DOI: 10.1016/j.isci.2023.106242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Guanxi Xiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Zachary K. Horowitz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christine Mennicke
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Robert Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mansoor Haider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Greenwood TA. Genetic Influences on Cognitive Dysfunction in Schizophrenia. Curr Top Behav Neurosci 2022; 63:291-314. [PMID: 36029459 DOI: 10.1007/7854_2022_388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a severe and debilitating psychotic disorder that is highly heritable and relatively common in the population. The clinical heterogeneity associated with schizophrenia is substantial, with patients exhibiting a broad range of deficits and symptom severity. Large-scale genomic studies employing a case-control design have begun to provide some biological insight. However, this strategy combines individuals with clinically diverse symptoms and ignores the genetic risk that is carried by many clinically unaffected individuals. Consequently, the majority of the genetic architecture underlying schizophrenia remains unexplained, and the pathways by which the implicated variants contribute to the clinically observable signs and symptoms are still largely unknown. Parsing the complex, clinical phenotype of schizophrenia into biologically relevant components may have utility in research aimed at understanding the genetic basis of liability. Cognitive dysfunction is a hallmark symptom of schizophrenia that is associated with impaired quality of life and poor functional outcome. Here, we examine the value of quantitative measures of cognitive dysfunction to objectively target the underlying neurobiological pathways and identify genetic variants and gene networks contributing to schizophrenia risk. For a complex disorder, quantitative measures are also more efficient than diagnosis, allowing for the identification of associated genetic variants with fewer subjects. Such a strategy supplements traditional analyses of schizophrenia diagnosis, providing the necessary biological insight to help translate genetic findings into actionable treatment targets. Understanding the genetic basis of cognitive dysfunction in schizophrenia may thus facilitate the development of novel pharmacological and procognitive interventions to improve real-world functioning.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Porter DDL, Henry SN, Ahmed S, Rizzo AL, Makhlouf R, Gregg C, Morton PD. Neuroblast migration along cellular substrates in the developing porcine brain. Stem Cell Reports 2022; 17:2097-2110. [PMID: 35985331 PMCID: PMC9481921 DOI: 10.1016/j.stemcr.2022.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
In the past decade it has become evident that neuroblasts continue to supply the human cortex with interneurons via unique migratory streams shortly following birth. Owing to the size of the human brain, these newborn neurons must migrate long distances through complex cellular landscapes to reach their final locations. This process is poorly understood, largely because of technical difficulties in acquiring and studying neurotypical postmortem human samples along with diverging developmental features of well-studied mouse models. We reasoned that migratory streams of neuroblasts utilize cellular substrates, such as blood vessels, to guide their trek from the subventricular zone to distant cortical targets. Here, we evaluate the association between young interneuronal migratory streams and their preferred cellular substrates in gyrencephalic piglets during the developmental equivalent of human birth, infancy, and toddlerhood. Migratory streams of neuroblasts are preserved through postnatal swine development Evidence of young neocortical interneurons within migratory streams Neuroblasts are tightly associated with vascular and astrocytic cellular substrates Harm to migratory interneurons or their substrates may have lifelong consequences
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sara N Henry
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sadia Ahmed
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Amy L Rizzo
- Office of the University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rita Makhlouf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Collin Gregg
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Salisbury S, McCracken GR, Perry R, Keefe D, Layton KKS, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. The Genomic Consistency of the Loss of Anadromy in an Arctic Fish (Salvelinus alpinus). Am Nat 2022; 199:617-635. [DOI: 10.1086/719122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
10
|
Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia. Mol Psychiatry 2021; 26:6880-6895. [PMID: 34059796 DOI: 10.1038/s41380-021-01149-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days-103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29-32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.
Collapse
|
11
|
Sargazi S, Mirani Sargazi F, Heidari Nia M, Sheervalilou R, Saravani R, Mirinejad S, Shakiba M. Functional Variants of miR-143 Are Associated with Schizophrenia Susceptibility: A Preliminary Population-Based Study and Bioinformatics Analysis. Biochem Genet 2021; 60:868-881. [PMID: 34515927 DOI: 10.1007/s10528-021-10133-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 09/04/2021] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms within genes encoding microRNAs may alter the expression of microRNAs and their target genes, contributing to the etiology of psychiatric disorders. We aimed to investigate the link between rs4705342T/C and rs4705343T/C polymorphisms in the promoter region of miR-143 and the risk of schizophrenia (SCZ) in a sample of an Iranian population. In this experimental study, a total of 398 subjects were recruited. Genotyping carried out using allele-specific PCR (AS-PCR) method. Different bioinformatics databases and Cytoscape V3.4.0 software were used for the analysis of the gene-miRNA interaction network. The genotypic analysis of rs4705342C/T showed that CC genotype in the co-dominant model significantly decreased the risk of SCZ (p < 0.001). Also, a significantly reduced risk of SCZ was observed under allelic (p < 0.001), dominant (p = 0.007), and recessive (p = 0.001) models of this variant. As regards rs4705343T/C, significantly enhanced risk of SCZ was found under the co-dominant CC (p = 0.01) and recessive (p = 0.007) contrasted genetic models. For this variant, the C allele conferred an increased risk of SCZ by 1.41 fold. Haplotype analysis showed that the Crs4705342 Trs4705343 haplotype significantly diminished SCZ susceptibility. The result of the bioinformatics analysis showed that miR-143, as a critical miRNA, targets ERK5, ERBB3, HK2, and PKCε, the four major genes involved in SCZ development. Our findings suggest that these two polymorphisms might affect SCZ susceptibility. Elucidating the precise regulatory mechanisms of gene expression in the development of SCZ will help researchers discover a novel target for therapeutic interventions.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
12
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
14
|
García-Guillén IM, Alonso A, Puelles L, Marín F, Aroca P. Multiple Regionalized Genes and Their Putative Networks in the Interpeduncular Nucleus Suggest Complex Mechanisms of Neuron Development and Axon Guidance. Front Neuroanat 2021; 15:643320. [PMID: 33664652 PMCID: PMC7921722 DOI: 10.3389/fnana.2021.643320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
The interpeduncular nucleus (IPN) is a highly conserved limbic structure in the vertebrate brain, located in the isthmus and rhombomere 1. It is formed by various populations that migrate from different sites to the distinct domains within the IPN: the prodromal, rostral interpeduncular, and caudal interpeduncular nuclei. The aim here was to identify genes that are differentially expressed across these domains, characterizing their putative functional roles and interactions. To this end, we screened the 2,038 genes in the Allen Developing Mouse Brain Atlas database expressed at E18.5 and we identified 135 genes expressed within the IPN. The functional analysis of these genes highlighted an overrepresentation of gene families related to neuron development, cell morphogenesis and axon guidance. The interactome analysis within each IPN domain yielded specific networks that mainly involve members of the ephrin/Eph and Cadherin families, transcription factors and molecules related to synaptic neurotransmission. These results bring to light specific mechanisms that might participate in the formation, molecular regionalization, axon guidance and connectivity of the different IPN domains. This genoarchitectonic model of the IPN enables data on gene expression and interactions to be integrated and interpreted, providing a basis for the further study of the connectivity and function of this poorly understood nuclear complex under both normal and pathological conditions.
Collapse
Affiliation(s)
- Isabel M García-Guillén
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia and IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
15
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
16
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
17
|
Ou GY, Lin WW, Zhao WJ. Neuregulins in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:662474. [PMID: 33897409 PMCID: PMC8064692 DOI: 10.3389/fnagi.2021.662474] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are typically characterized by progressive neuronal loss and neurological dysfunctions in the nervous system, affecting both memory and motor functions. Neuregulins (NRGs) belong to the epidermal growth factor (EGF)-like family of extracellular ligands and they play an important role in the development, maintenance, and repair of both the central nervous system (CNS) and peripheral nervous system (PNS) through the ErbB signaling pathway. They also regulate multiple intercellular signal transduction and participate in a wide range of biological processes, such as differentiation, migration, and myelination. In this review article, we summarized research on the changes and roles of NRGs in neurodegenerative diseases, especially in AD. We elaborated on the structural features of each NRG subtype and roles of NRG/ErbB signaling networks in neurodegenerative diseases. We also discussed the therapeutic potential of NRGs in the symptom remission of neurodegenerative diseases, which may offer hope for advancing related treatment.
Collapse
Affiliation(s)
- Guan-yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wen-wen Lin
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wei-jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Wei-jiang Zhao
| |
Collapse
|
18
|
Weissleder C, Webster MJ, Barry G, Shannon Weickert C. Reduced Insulin-Like Growth Factor Family Member Expression Predicts Neurogenesis Marker Expression in the Subependymal Zone in Schizophrenia and Bipolar Disorder. Schizophr Bull 2020; 47:1168-1178. [PMID: 33274367 PMCID: PMC8266571 DOI: 10.1093/schbul/sbaa159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of inhibitory interneurons from neural stem cells in the subependymal zone is regulated by trophic factors. Reduced levels of trophic factors are associated with inhibitory interneuron dysfunction in the prefrontal cortex and hippocampus in psychiatric disorders, yet the extent to which altered trophic support may underpin deficits in inhibitory interneuron generation in the neurogenic niche remains unexplored in schizophrenia and bipolar disorder. We determined whether the expression of ligands, bioavailability-regulating binding proteins, and cognate receptors of 4 major trophic factor families (insulin-like growth factor [IGF], epidermal growth factor [EGF], fibroblast growth factor [FGF], and brain-derived neurotrophic factor [BDNF]) are changed in schizophrenia and bipolar disorder compared to controls. We used robust linear regression analyses to determine whether altered expression of trophic factor family members predicts neurogenesis marker expression across diagnostic groups. We found that IGF1 mRNA was decreased in schizophrenia and bipolar disorder compared with controls (P ≤ .006), whereas both IGF1 receptor (IGF1R) and IGF binding protein 2 (IGFBP2) mRNAs were reduced in schizophrenia compared with controls (P ≤ .02). EGF, FGF, and BDNF family member expression were all unchanged in both psychiatric disorders compared with controls. IGF1 expression positively predicted neuronal progenitor and immature neuron marker mRNAs (P ≤ .01). IGFBP2 expression positively predicted neural stem cell and neuronal progenitor marker mRNAs (P ≤ .001). These findings provide the first molecular evidence of decreased IGF1, IGF1R, and IGFBP2 mRNA expression in the subependymal zone in psychiatric disorders, which may potentially impact neurogenesis in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Kensington, MD
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY,To whom correspondence should be addressed; Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW 2031, Australia; tel: +61-2-9399-1717, e-mail:
| |
Collapse
|
19
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2020; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
20
|
Salisbury SJ, McCracken GR, Perry R, Keefe D, Layton KK, Kess T, Nugent CM, Leong JS, Bradbury IR, Koop BF, Ferguson MM, Ruzzante DE. Limited genetic parallelism underlies recent, repeated incipient speciation in geographically proximate populations of an Arctic fish (
Salvelinus alpinus
). Mol Ecol 2020; 29:4280-4294. [DOI: 10.1111/mec.15634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Robert Perry
- Department of Environment Fish and Wildlife Division Government of Yukon Whitehorse YT Canada
| | - Donald Keefe
- Department of Environment and Conservation Wildlife Division Government of Newfoundland and Labrador Corner Brook NL Canada
| | - Kara K.S. Layton
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Tony Kess
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
| | - Cameron M. Nugent
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | - Jong S. Leong
- Department of Biology University of Victoria Victoria BC Canada
| | - Ian R. Bradbury
- Department of Biology Dalhousie University Halifax NS Canada
- Department of Fisheries and Oceans Northwest Atlantic Fisheries Centre St. John's NL Canada
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| | - Ben F. Koop
- Department of Biology University of Victoria Victoria BC Canada
- Centre for Biomedical Research University of Victoria Victoria BC Canada
| | - Moira M. Ferguson
- Department of Integrative Biology University of Guelph Guelph ON Canada
| | | |
Collapse
|
21
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Paterson C, Cumming B, Law AJ. Temporal Dynamics of the Neuregulin-ErbB Network in the Murine Prefrontal Cortex across the Lifespan. Cereb Cortex 2020; 30:3325-3339. [PMID: 31897479 DOI: 10.1093/cercor/bhz312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-ErbB signaling is essential for numerous functions in the developing, adult, and aging brain, particularly in the prefrontal cortex (PFC). Mouse models with disrupted Nrg and/or ErbB genes are relevant to psychiatric, developmental, and age-related disorders, displaying a range of abnormalities stemming from cortical circuitry impairment. Many of these models display nonoverlapping phenotypes dependent upon the gene target and timing of perturbation, suggesting that cortical expression of the Nrg-ErbB network undergoes temporal regulation across the lifespan. Here, we report a comprehensive temporal expression mapping study of the Nrg-ErbB signaling network in the mouse PFC across postnatal development through aging. We find that Nrg and ErbB genes display distinct expression profiles; moreover, splice isoforms of these genes are differentially expressed across the murine lifespan. We additionally find a developmental switch in ErbB4 splice isoform expression potentially mediated through coregulation of the lncRNA Miat expression. Our results are the first to comprehensively and quantitatively map the expression patterns of the Nrg-ErbB network in the mouse PFC across the postnatal lifespan and may help disentangle the pathway's involvement in normal cortical sequences of events across the lifespan, as well as shedding light on the pathophysiological mechanisms of abnormal Nrg-ErbB signaling in neurological disease.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Cumming
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Law
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Cell and Developmental Biology, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
23
|
A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis 2020; 11:262. [PMID: 32321920 PMCID: PMC7176668 DOI: 10.1038/s41419-020-2453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration.
Collapse
|
24
|
Hsing HW, Zhuang ZH, Niou ZX, Chou SJ. Temporal Differences in Interneuron Invasion of Neocortex and Piriform Cortex during Mouse Cortical Development. Cereb Cortex 2019; 30:3015-3029. [PMID: 31838488 DOI: 10.1093/cercor/bhz291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.
Collapse
Affiliation(s)
- Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zhen-Xian Niou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
25
|
Tsuang DW, Greenwood TA, Jayadev S, Davis M, Shutes-David A, Bird TD. A Genetic Study of Psychosis in Huntington's Disease: Evidence for the Involvement of Glutamate Signaling Pathways. J Huntingtons Dis 2019; 7:51-59. [PMID: 29480208 DOI: 10.3233/jhd-170277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psychotic symptoms of delusions and hallucinations occur in about 5% of persons with Huntington's disease (HD). The mechanisms underlying these occurrences are unknown, but the same symptoms also occur in schizophrenia, and thus genetic risk factors for schizophrenia may be relevant to the development of psychosis in HD. OBJECTIVE To investigate the possible role of genes associated with schizophrenia in the occurrence of psychotic symptoms in HD. METHODS DNA from subjects with HD and psychosis (HD+P; n = 47), subjects with HD and no psychosis (HD-P; n = 126), and controls (CTLs; n = 207) was genotyped using the Infinium PsychArray-24 v1.1 BeadChip. The allele frequencies of single-nucleotide polymorphisms (SNPs) that were previously associated with schizophrenia and related psychiatric disorders were compared between these groups. RESULTS Of the 30 candidate genes tested, 10 showed an association with psychosis in HD. The majority of these genes, including CTNNA2, DRD2, ERBB4, GRID2, GRIK4, GRM1, NRG1, PCNT, RELN, and SLC1A2, demonstrate network interactions related to glutamate signaling. CONCLUSIONS This study suggests genetic associations between several previously identified candidate genes for schizophrenia and the occurrence of psychotic symptoms in HD. These data support the potential role of genes related to glutamate signaling in HD psychosis.
Collapse
Affiliation(s)
- Debby W Tsuang
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Marie Davis
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Andrew Shutes-David
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Thomas D Bird
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Grieco SF, Wang G, Mahapatra A, Lai C, Holmes TC, Xu X. Neuregulin and ErbB expression is regulated by development and sensory experience in mouse visual cortex. J Comp Neurol 2019; 528:419-432. [PMID: 31454079 PMCID: PMC6901715 DOI: 10.1002/cne.24762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
Abstract
Neuregulins (NRGs) are protein ligands that impact neural development and circuit function. NRGs signal through the ErbB receptor tyrosine kinase family. NRG1/ErbB4 signaling in parvalbumin-expressing (PV) inhibitory interneurons is critical for visual cortical plasticity. There are multiple types of NRGs and ErbBs that can potentially contribute to visual cortical plasticity at different developmental stages. Thus, it is important to understand the normal developmental expression profiles of NRGs and ErbBs in specific neuron types in the visual cortex, and to study whether and how their expression changes in PV inhibitory neurons and excitatory neurons track with sensory perturbation. Cell type-specific translating ribosome affinity purification and qPCR was used to compare mRNA expression of nrg1,2,3,4 and erbB1,2,3,4 in PV and excitatory neurons in mouse visual cortex. We show that the expression of nrg1 and nrg3 decreases in PV neurons at the critical period peak, postnatal day 28 (P28) after monocular deprivation and dark rearing, and in the adult cortex (at P104) after 2-week long dark exposure. In contrast, nrg1 expression by excitatory neurons is unchanged at P28 and P104 following sensory deprivation, whereas nrg3 expression by excitatory neurons shows changes depending on the age and the mode of sensory deprivation. ErbB4 expression in PV neurons remains consistently high and does not appear to change in response to sensory deprivation. These data provide new important details of cell type-specific NRG/ErbB expression in the visual cortex and support that NRG1/ErbB4 signaling is implicated in both critical period and adult visual cortical plasticity.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Gina Wang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Ananya Mahapatra
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
| | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
27
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
28
|
Putnam DK, Ma X, Rice SV, Liu Y, Newman S, Zhang J, Chen X. VCF2CNA: A tool for efficiently detecting copy-number alterations in VCF genotype data and tumor purity. Sci Rep 2019; 9:10357. [PMID: 31316100 PMCID: PMC6637131 DOI: 10.1038/s41598-019-45938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/19/2019] [Indexed: 01/24/2023] Open
Abstract
VCF2CNA is a tool (Linux commandline or web-interface) for copy-number alteration (CNA) analysis and tumor purity estimation of paired tumor-normal VCF variant file formats. It operates on whole genome and whole exome datasets. To benchmark its performance, we applied it to 46 adult glioblastoma and 146 pediatric neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms respectively. VCF2CNA was highly consistent with a state-of-the-art algorithm using raw sequencing data (mean F1-score = 0.994) in high-quality whole genome glioblastoma samples and was robust to uneven coverage introduced by library artifacts. In the whole genome neuroblastoma set, VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated samples compared to 15 found by CGI’s HMM-based CNA model. Moreover, VCF2CNA achieved highly consistent CNA profiles between WGS and WXS platforms (mean F1 score 0.97 on a set of 15 rhabdomyosarcoma samples). In addition, VCF2CNA provides accurate tumor purity estimates for samples with sufficient CNAs. These results suggest that VCF2CNA is an accurate, efficient and platform-independent tool for CNA and tumor purity analyses without accessing raw sequence data.
Collapse
Affiliation(s)
- Daniel K Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
30
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
31
|
Grieco SF, Holmes TC, Xu X. Neuregulin directed molecular mechanisms of visual cortical plasticity. J Comp Neurol 2019; 527:668-678. [PMID: 29464684 PMCID: PMC6103898 DOI: 10.1002/cne.24414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Experience-dependent critical period (CP) plasticity has been extensively studied in the visual cortex. Monocular deprivation during the CP affects ocular dominance, limits visual performance, and contributes to the pathological etiology of amblyopia. Neuregulin-1 (NRG1) signaling through its tyrosine kinase receptor ErbB4 is essential for the normal development of the nervous system and has been linked to neuropsychiatric disorders such as schizophrenia. We discovered recently that NRG1/ErbB4 signaling in PV neurons is critical for the initiation of CP visual cortical plasticity by controlling excitatory synaptic inputs onto PV neurons and thus PV-cell mediated cortical inhibition that occurs following visual deprivation. Building on this discovery, we review the existing literature of neuregulin signaling in developing and adult cortex and address the implication of NRG/ErbB4 signaling in visual cortical plasticity at the cellular and circuit levels. NRG-directed research may lead to therapeutic approaches to reactivate plasticity in the adult cortex.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Todd C Holmes
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
32
|
Rahman A, Weber J, Labin E, Lai C, Prieto AL. Developmental expression of Neuregulin‐3 in the rat central nervous system. J Comp Neurol 2018; 527:797-817. [DOI: 10.1002/cne.24559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Afrida Rahman
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Janet Weber
- Department NeuroscienceUniversity of California San Diego San Diego California
| | - Edward Labin
- Department of NeurologyUniversity of Minnesota Minneapolis
| | - Cary Lai
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Anne L Prieto
- Departmentof Psychological and Brain SciencesIndiana University Bloomington Indiana
| |
Collapse
|
33
|
Aoyagi Y, Hibi T, Kimori Y, Sawada M, Kawakami R, Sawamoto K, Nemoto T. Heterogeneous distribution of doublecortin-expressing cells surrounding the rostral migratory stream in the juvenile mouse. J Comp Neurol 2018; 526:2631-2646. [PMID: 30136724 DOI: 10.1002/cne.24521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
In the postnatal mammalian brain, neural stem cells of the ventricular-subventricular zone continue to generate doublecortin (Dcx)-expressing immature neurons. Throughout life, these immature neurons migrate to the olfactory bulb through the rostral migratory stream (RMS). In this study, we investigated the distribution of these putative immature neurons using enhanced green fluorescent protein (EGFP) expression in the area surrounding the RMS of the juvenile Dcx-EGFP mice. Through the combined use of an optical clearing reagent (a 2,2'-thiodiethanol solution) and two-photon microscopy, we visualized three-dimensionally the EGFP-positive cells in the entire RMS and its surroundings. The resulting wide-field and high-definition images along with computational image processing methods developed in this study were used to comprehensively determine the position of the EGFP-positive cells. Our findings revealed that the EGFP-positive cells were heterogeneously distributed in the area surrounding the RMS. In addition, the orientation patterns of the leading process of these cells, which displayed the morphology of migrating immature neurons, differed depending on their location. These novel results provide highly precise morphological information for immature neurons and suggest that a portion of immature neurons may be detached from the RMS and migrate in various directions.
Collapse
Affiliation(s)
- Yuka Aoyagi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Terumasa Hibi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshitaka Kimori
- Imaging Science Division, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Ryosuke Kawakami
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tomomi Nemoto
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
34
|
Zhang H, He X, Mei Y, Ling Q. Ablation of ErbB4 in parvalbumin-positive interneurons inhibits adult hippocampal neurogenesis through down-regulating BDNF/TrkB expression. J Comp Neurol 2018; 526:2482-2492. [PMID: 30329159 DOI: 10.1002/cne.24506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Parvalbumin (PV) positive interneurons in the subgranular zone (SGZ) can regulate adult hippocampal neurogenesis. ErbB4 is mainly expressed in PV neurons in the hippocampus and is crucial for keeping normal function of PV neurons. However, whether ErbB4 in PV interneurons affects the adult hippocampal neurogenesis remains unknown. In the present study, we deleted ErbB4 specifically in PV neurons by crossing PV-Cre mice with ErbB4f/f mice. Results of BrdU labeling and NeuN staining revealed that the proliferation of neural progenitors was increased but the survival and maturation of newborn neurons were decreased in the hippocampus of mice after deleting ErbB4 in PV neurons, suggesting that ErbB4 in PV neurons is closely associated with the process of adult hippocampal neurogenesis. Interestingly, the expression of brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), was significantly decreased in the hippocampus of ErbB4-deleted mice. Together, our data suggested that ErbB4 in PV neurons might modulate adult hippocampal neurogenesis by affecting BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.,Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Nuclear Medicine, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University Medical PET Center, Hangzhou, Zhejiang, China
| | - Yufei Mei
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingzhou Ling
- Human resources office, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
35
|
Sawada M, Ohno N, Kawaguchi M, Huang SH, Hikita T, Sakurai Y, Bang Nguyen H, Quynh Thai T, Ishido Y, Yoshida Y, Nakagawa H, Uemura A, Sawamoto K. PlexinD1 signaling controls morphological changes and migration termination in newborn neurons. EMBO J 2018; 37:embj.201797404. [PMID: 29348324 DOI: 10.15252/embj.201797404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Mitsuyasu Kawaguchi
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Hikita
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youmei Sakurai
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yuri Ishido
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidehiko Nakagawa
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan .,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
36
|
Loss of Intercalated Cells (ITCs) in the Mouse Amygdala of Tshz1 Mutants Correlates with Fear, Depression, and Social Interaction Phenotypes. J Neurosci 2017; 38:1160-1177. [PMID: 29255003 DOI: 10.1523/jneurosci.1412-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/10/2017] [Accepted: 12/10/2017] [Indexed: 01/17/2023] Open
Abstract
The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity. Using germline and conditional knock-out (cKO) mouse models, we show that Tshz1 is required for the proper migration and differentiation of ITCs. In the absence of Tshz1, migrating ITC precursors fail to settle in their stereotypical locations encapsulating the lateral amygdala and BLA. Furthermore, they display reductions in the ITC marker Foxp2 and ectopic persistence of the dorsal lateral ganglionic eminence marker Sp8. Tshz1 mutant ITCs show increased cell death at postnatal time points, leading to a dramatic reduction by 3 weeks of age. In line with this, Foxp2-null mutants also show a loss of ITCs at postnatal time points, suggesting that Foxp2 may function downstream of Tshz1 in the maintenance of ITCs. Behavioral analysis of male Tshz1 cKOs revealed defects in fear extinction as well as an increase in floating during the forced swim test, indicative of a depression-like phenotype. Moreover, Tshz1 cKOs display significantly impaired social interaction (i.e., increased passivity) regardless of partner genetics. Together, these results suggest that Tshz1 plays a critical role in the development of ITCs and that fear, depression-like and social behavioral deficits arise in their absence.SIGNIFICANCE STATEMENT We show here that the zinc finger transcription factor Tshz1 is expressed during development of the intercalated cells (ITCs) within the mouse amygdala. These neurons have previously been shown to play a crucial role in fear extinction. Tshz1 mouse mutants exhibit severely reduced numbers of ITCs as a result of abnormal migration, differentiation, and survival of these neurons. Furthermore, the loss of ITCs in mouse Tshz1 mutants correlates well with defects in fear extinction as well as the appearance of depression-like and abnormal social interaction behaviors reminiscent of depressive disorders observed in human patients with distal 18q deletions, including the Tshz1 locus.
Collapse
|
37
|
Nakamuta S, Yang YT, Wang CL, Gallo NB, Yu JR, Tai Y, Van Aelst L. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain. J Cell Biol 2017; 216:4313-4330. [PMID: 29089377 PMCID: PMC5716287 DOI: 10.1083/jcb.201704157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/01/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS.
Collapse
Affiliation(s)
| | - Yu-Ting Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Chia-Lin Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
| | - Jia-Ray Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Yilin Tai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
38
|
Louhivuori LM, Turunen PM, Louhivuori V, Yellapragada V, Nordström T, Uhlén P, Åkerman KE. Regulation of radial glial process growth by glutamate via mGluR5/TRPC3 and neuregulin/ErbB4. Glia 2017; 66:94-107. [PMID: 28887860 DOI: 10.1002/glia.23230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022]
Abstract
Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pauli M Turunen
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Verna Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | | | - Tommy Nordström
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Karl E Åkerman
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| |
Collapse
|
39
|
|
40
|
Yan F, Tan X, Wan W, Dixon BJ, Fan R, Enkhjargal B, Li Q, Zhang J, Chen G, Zhang JH. ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. Exp Neurol 2017; 297:92-100. [PMID: 28756200 DOI: 10.1016/j.expneurol.2017.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Previous studies indicated that ErbB4 (EGFR family member v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4) is essential for normal development and maintenance of the nervous system. In this study, we explored the neuroprotective effects of ErbB4 and its downstream YAP (yes-associated protein)/PIK3CB signaling pathway in early brain injury after SAH in a rat model using the endovascular perforation method. Rats were neurologically evaluated with the Modified Garcia Scale and beam balance test at 24h and 72h after SAH. An ErbB4 activator Neuregulin 1β1 (Nrg 1β1), ErbB4 siRNA and YAP siRNA were used to explore this pathway. The expression of p-ErbB4 and YAP was significantly increased after SAH. Multiple immunofluorescence labeling experiments demonstrated that ErbB4 is mainly expressed in neurons. Activation of ErbB4 and its downstream signals improved the neurological deficits after SAH and significantly reduced neuronal cell death. Inhibition of ErbB4 reduced YAP and PIK3CB expression, and aggravated cell apoptosis. YAP knockdown reduced the PIK3CB level and eliminated the anti-apoptotic effects of ErbB4 activation. These findings indicated that ErbB4 plays a neuroprotective role in early brain injury after SAH, possibly via the YAP/PIK3CB signaling pathway.
Collapse
Affiliation(s)
- Feng Yan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA; Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weifeng Wan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Ruiming Fan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Qian Li
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, CA, USA.
| |
Collapse
|
41
|
Feng JF, Liu J, Zhang L, Jiang JY, Russell M, Lyeth BG, Nolta JA, Zhao M. Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports 2017; 9:177-189. [PMID: 28669601 PMCID: PMC5511115 DOI: 10.1016/j.stemcr.2017.05.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies. Developed a technology and device delivering electric current to the brain in vivo Achieved stable delivery of currents to brain with monitoring and safety concerns Exhibited effective guidance of migration of transplanted human NSCs in live brain Demonstrated enhanced motility, survival, and differentiation of the guided hNSCs
Collapse
Affiliation(s)
- Jun-Feng Feng
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA; Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | - Jing Liu
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Lei Zhang
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Ji-Yao Jiang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; Shanghai Institute of Head Trauma, Shanghai 200127, People's Republic of China
| | | | - Bruce G Lyeth
- Department of Neurological Surgery, University of California Davis, Davis, CA 95616, USA
| | - Jan A Nolta
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA 95817, USA
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA.
| |
Collapse
|
42
|
Miyakoshi LM, Marques-Coelho D, De Souza LER, Lima FRS, Martins VR, Zanata SM, Hedin-Pereira C. Evidence of a Cell Surface Role for Hsp90 Complex Proteins Mediating Neuroblast Migration in the Subventricular Zone. Front Cell Neurosci 2017; 11:138. [PMID: 28567003 PMCID: PMC5434112 DOI: 10.3389/fncel.2017.00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
In most mammalian brains, the subventricular zone (SVZ) is a germinative layer that maintains neurogenic activity throughout adulthood. Neuronal precursors arising from this region migrate through the rostral migratory stream (RMS) and reach the olfactory bulbs where they differentiate and integrate into the local circuitry. Recently, studies have shown that heat shock proteins have an important role in cancer cell migration and blocking Hsp90 function was shown to hinder cell migration in the developing cerebellum. In this work, we hypothesize that chaperone complexes may have an important function regulating migration of neuronal precursors from the subventricular zone. Proteins from the Hsp90 complex are present in the postnatal SVZ as well as in the RMS. Using an in vitro SVZ explant model, we have demonstrated the expression of Hsp90 and Hop/STI1 by migrating neuroblasts. Treatment with antibodies against Hsp90 and co-chaperone Hop/STI1, as well as Hsp90 and Hsp70 inhibitors hinder neuroblast chain migration. Time-lapse videomicroscopy analysis revealed that cell motility and average migratory speed was decreased after exposure to both antibodies and inhibitors. Antibodies recognizing Hsp90, Hsp70, and Hop/STI1 were found bound to the membranes of cells from primary SVZ cultures and biotinylation assays demonstrated that Hsp70 and Hop/STI1 could be found on the external leaflet of neuroblast membranes. The latter could also be detected in conditioned medium samples obtained from cultivated SVZ cells. Our results suggest that chaperones Hsp90, Hsp70, and co-chaperone Hop/STI1, components of the Hsp90 complex, regulate SVZ neuroblast migration in a concerted manner through an extracellular mechanism.
Collapse
Affiliation(s)
- Leo M Miyakoshi
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Diego Marques-Coelho
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luiz E R De Souza
- Department of Basic Pathology, Federal University of ParanáParaná, Brazil
| | - Flavia R S Lima
- Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Vilma R Martins
- International Research Center, A.C. Camargo Cancer CenterSão Paulo, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Federal University of ParanáParaná, Brazil
| | - Cecilia Hedin-Pereira
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Laboratory of Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,VPPLR-Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
44
|
Close JL, Yao Z, Levi BP, Miller JA, Bakken TE, Menon V, Ting JT, Wall A, Krostag AR, Thomsen ER, Nelson AM, Mich JK, Hodge RD, Shehata SI, Glass IA, Bort S, Shapovalova NV, Ngo NK, Grimley JS, Phillips JW, Thompson CL, Ramanathan S, Lein E. Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron 2017; 93:1035-1048.e5. [PMID: 28279351 PMCID: PMC5480972 DOI: 10.1016/j.neuron.2017.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/12/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennie L Close
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Abigail Wall
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Angel M Nelson
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan Bort
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - N Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Sharad Ramanathan
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
45
|
Yang MH, Chen KC, Chiang PW, Chung TW, Chen WJ, Chu PY, Chen SCJ, Lu YS, Yuan CH, Wang MC, Lin CY, Huang YF, Jong SB, Lin PC, Tyan YC. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1917394. [PMID: 28053978 PMCID: PMC5174748 DOI: 10.1155/2016/1917394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/10/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022]
Abstract
The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA) biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM) in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ko-Chin Chen
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Pei-Wen Chiang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Wan-Jou Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Yu Chu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sharon Chia-Ju Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Shan Lu
- Office of Safety, Health and Environment, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Chemical, Molecular and Materials Analysis Center, Department of Chemistry, National University of Singapore, Singapore 119077
| | - Ming-Chen Wang
- Department of Biomedical Engineering, Chung Yuan Christian University, Chungli 300, Taiwan
| | - Chia-Yang Lin
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ying-Fong Huang
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shiang-Bin Jong
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Po-Chiao Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Chang Tyan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
46
|
Weissleder C, Fung SJ, Wong MW, Barry G, Double KL, Halliday GM, Webster MJ, Weickert CS. Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Front Aging Neurosci 2016; 8:274. [PMID: 27932973 PMCID: PMC5123444 DOI: 10.3389/fnagi.2016.00274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroblasts exist within the human subependymal zone (SEZ); however, it is debated to what extent neurogenesis changes during normal aging. It is also unknown how precursor proliferation may correlate with the generation of neuronal and glial cells or how expression of growth factors and receptors may change throughout the adult lifespan. We found evidence of dividing cells in the human SEZ (n D 50) in conjunction with a dramatic age-related decline (21-103 years) of mRNAs indicative of proliferating cells (Ki67) and immature neurons (doublecortin). Microglia mRNA (ionized calcium-binding adapter molecule 1) increased during aging, whereas transcript levels of stem/precursor cells (glial fibrillary acidic protein delta and achaete-scute homolog 1), astrocytes (vimentin and pan-glial fibrillary acidic protein), and oligodendrocytes (oligodendrocyte lineage transcription factor 2) remained stable. Epidermal growth factor receptor (EGFR) and fibroblast growth factor 2 (FGF2) mRNAs increased throughout adulthood, while transforming growth factor alpha (TGFα), EGF, Erb-B2 receptor tyrosine kinase 4 (ErbB4) and FGF receptor 1 (FGFR1) mRNAs were unchanged across adulthood. Cell proliferation mRNA positively correlated with FGFR1 transcripts. Immature neuron and oligodendrocyte marker expression positively correlated with TGFα and ErbB4 mRNAs, whilst astrocyte transcripts positively correlated with EGF, FGF2, and FGFR1 mRNAs. Microglia mRNA positively correlated with EGF and FGF2 expression. Our findings indicate that neurogenesis in the human SEZ continues well into adulthood, although proliferation and neuronal differentiation may decline across adulthood. We suggest that mRNA expression of EGF- and FGF-related family members do not become limited during aging and may modulate neuronal and glial fate determination in the SEZ throughout human life.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Samantha J Fung
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Matthew W Wong
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Guy Barry
- Garvan Institute of Medical Research, St. Vincent's Clinical School and School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Kay L Double
- Brain and Mind Research Institute, School of Medical Sciences, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, The Stanley Medical Research Institute Kensington, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
47
|
Neuregulin1 alpha activates migration of neuronal progenitors expressing ErbB4. Mol Cell Neurosci 2016; 77:87-94. [PMID: 27989735 DOI: 10.1016/j.mcn.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022] Open
Abstract
Deficits in neuronal migration during development in the central nervous system may contribute to psychiatric diseases. The ligand neuregulin1 (NRG1) and its receptor ErbB4 are genes conferring susceptibility to schizophrenia, playing a key role in the control of neuronal migration both during development and adulthood. Several NRG1 and ErbB4 isoforms were identified, which deeply differ in their characteristics. Here we focused on the four ErbB4 isoforms and the two NRG1 isoforms differing in their EGF-like domain, namely α and β. We hypothesized that these isoforms, which are differently regulated in schizophrenic patients, could play different roles in neuronal migration. Our hypothesis was strengthened by the observation that both NRG1α and NRG1β and the four ErbB4 isoforms are expressed in the medial and lateral ganglionic eminences and in the cortex during development in rat. We analysed in vitro the signal transduction pathways activated by the different ErbB4 isoforms following the treatment with soluble recombinant NRG1α or NRG1β and the ability to stimulate migration. Our data show that two ErbB4 isoforms, namely JMa-cyt2 and JMb-cyt1, following NRG1α and NRG1β treatment, strongly activate AKT phosphorylation, conferring high migratory activity to neuronal progenitors, thus demonstrating that both NRG1α and NRG1β can play a role in neuronal migration.
Collapse
|
48
|
Hayes LN, Shevelkin A, Zeledon M, Steel G, Chen PL, Obie C, Pulver A, Avramopoulos D, Valle D, Sawa A, Pletnikov MV. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:79-87. [PMID: 27606322 PMCID: PMC4996025 DOI: 10.1159/000445836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022]
Abstract
Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- Lindsay N. Hayes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Alexey Shevelkin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mariela Zeledon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Gary Steel
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan, ROC
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ann Pulver
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Akira Sawa
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
49
|
Bidirectional Signaling of Neuregulin-2 Mediates Formation of GABAergic Synapses and Maturation of Glutamatergic Synapses in Newborn Granule Cells of Postnatal Hippocampus. J Neurosci 2016; 35:16479-93. [PMID: 26674872 DOI: 10.1523/jneurosci.1585-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Expression of neuregulin-2 (NRG2) is intense in a few regions of the adult brain where neurogenesis persists; however, little is understood about its role in developments of newborn neurons. To study the role of NRG2 in synaptogenesis at different developmental stages, newborn granule cells in rat hippocampal slice cultures were labeled with retrovirus encoding tetracycline-inducible microRNA targeting NRG2 and treated with doxycycline (Dox) at the fourth or seventh postinfection day (dpi). The developmental increase of GABAergic postsynaptic currents (GPSCs) was suppressed by the early Dox treatment (4 dpi), but not by late treatment (7 dpi). The late Dox treatment was used to study the effect of NRG2 depletion specific to excitatory synaptogenesis. The Dox effect on EPSCs emerged 4 d after the impairment in dendritic outgrowth became evident (10 dpi). Notably, Dox treatment abolished the developmental increases of AMPA-receptor mediated EPSCs and the AMPA/NMDA ratio, indicating impaired maturation of glutamatergic synapses. In contrast to GPSCs, Dox effects on EPSCs and dendritic growth were independent of ErbB4 and rescued by concurrent overexpression of NRG2 intracellular domain. These results suggest that forward signaling of NRG2 mediates GABAergic synaptogenesis and its reverse signaling contributes to dendritic outgrowth and maturation of glutamatergic synapses. SIGNIFICANCE STATEMENT The hippocampal dentate gyrus is one of special brain regions where neurogenesis persists throughout adulthood. Synaptogenesis is a critical step for newborn neurons to be integrated into preexisting neural network. Because neuregulin-2 (NRG2), a growth factor, is intensely expressed in these regions, we investigated whether it plays a role in synaptogenesis and dendritic growth. We found that NRG2 has dual roles in the development of newborn neurons. For GABAergic synaptogenesis, the extracellular domain of NRG2 acts as a ligand for a receptor on GABAergic neurons. In contrast, its intracellular domain was essential for dendritic outgrowth and glutamatergic synapse maturation. These results imply that NRG2 may play a critical role in network integration of newborn neurons.
Collapse
|
50
|
Gengatharan A, Bammann RR, Saghatelyan A. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb. Front Neurosci 2016; 10:149. [PMID: 27092050 PMCID: PMC4820452 DOI: 10.3389/fnins.2016.00149] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future.
Collapse
Affiliation(s)
- Archana Gengatharan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec Quebec, QC, Canada
| | - Rodrigo R Bammann
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec Quebec, QC, Canada
| | - Armen Saghatelyan
- Cellular Neurobiology Unit, Centre de Recherche de l'Institut Universitaire en Santé Mentale de QuébecQuebec, QC, Canada; Department of Psychiatry and Neuroscience, Université LavalQuebec, QC, Canada
| |
Collapse
|