1
|
Ouardouz M, Jasinski P, Khalife M, Mahoney JM, Hernan AE, Scott RC. Disrupted Hippocampal-Prefrontal Networks in a Rat Model of Fragile X Syndrome: A Study Linking Neural Dynamics to Autism-Like Behavioral Impairments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.617900. [PMID: 39464036 PMCID: PMC11507762 DOI: 10.1101/2024.10.15.617900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X Syndrome (FXS) is associated with autism spectrum disorder (ASD) symptoms that are associated with cognitive, learning, and behavioral challenges. We investigated how known molecular disruptions in the Fmr1 knockout (FMR-KO) rat model of FXS negatively impact hippocampal-prefrontal cortex (H-PFC) neural network activity and consequent behavior. Methods FMR-KO and control rats underwent a battery of behavioral tests assessing sociability, memory, and anxiety. Single-unit electrophysiology recordings were then conducted to measure patterns of neural activity in H-PFC circuit. Advanced mathematical models were used to characterize the patterns that were then compared between groups using generalized linear mixed models. Results FMR-KO rats demonstrated significant behavioral deficits in sociability, spatial learning, and anxiety, aligning with symptoms of ASD. At the neural level, these rats exhibited abnormal firing patterns in the H-PFC circuit that is critical for learning, memory, and social behavior. The neural networks in FMR-KO rats were also less densely connected and more fragmented, particularly in hippocampal-PFC correlated firing. These findings suggest that disruptions in neural network dynamics underlie the observed behavioral impairments in FMR-KO rats. Conclusion FMR-KO significantly disrupts several characteristics of action potential firing in the H-PFC network, leading to deficits in social behavior, memory, and anxiety, as seen in FXS. This disruption is characterized by less organized and less resilient hippocampal-PFC networks. These findings suggest that therapeutic strategies aimed at normalizing neural dynamics, such as with brain stimulation, could potentially improve behavior and cognitive functions in autistic individuals. HIGHLIGHTS Fragile X Syndrome is associated with autism, cognitive challenges and anxietyThe loss of Fmr1 protein disrupts processes involved in building neural networksThe consequence is abnormal neural dynamics in hippocampal-prefrontal cortex networksNormalization of dynamics could improve outcomes in FXS and ASD.
Collapse
|
2
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
4
|
Dy ABC, Tanchanco LBS, Sy JCY, Levantino MD, Hagerman RJ. Screening for Fragile X Syndrome Among Filipino Children with Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4465-4473. [PMID: 35972625 DOI: 10.1007/s10803-022-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Individuals with autism spectrum disorder present with difficulties in social communication, restricted interests or behaviors and other co-morbidities. About 2 to 10% of cases of autism have a genetic cause, and Fragile X Syndrome (FXS) is reported in 0 to 6.5% of individuals with autism. However, the FXS and premutation prevalence among Filipino children has never been reported. The aim of the study was to establish the presence of FXS or premutation carriers among Filipino children with autism and to describe the phenotypic characteristic of cases identified. Blood was collected from 235 children aged 2-6 years old and diagnosed with autism. Samples were analyzed using PCR methods to amplify CGG repeats in the FMRI gene. The diagnosis of autism was confirmed through the Autism Diagnostic Observation Schedule-2. Additional characteristics were documented from a physical examination, Griffiths Scales of Child Development assessment and a parent-answered questionnaire using the Vineland Adaptive Behavior Scale. Fragile X testing through PCR methods in 235 children with diagnosed autism showed 220 (93.6%) were negative, no full mutations, 1 (0.436%) premutation carrier and 14 (5.95%) cases contained intermediate alleles. The FXS testing was limited to confirmed cases of autism, which is considered a high-risk group and does not provide prevalence for the general Filipino population. Subjects were self-referred or referred by clinicians, which may not represent the Filipino autism population with a bias towards those with means for clinical consultations and ability to travel to the place of testing. Samples were not measured for mosaicism, DNA methylation or AGG interspersion patterns. These may have effects on the CGG repeat expansion and overall presentation of FXS. Findings from a single premutation carrier cannot characterize features distinctly present in Filipinos with the mutation. Nevertheless, these results support the data that the prevalence of FXS in Asian populations may be lower than non-Asian populations. This can contribute to a better understanding of FXS and genetic causes of autism in the Philippines and other Asian populations.
Collapse
Affiliation(s)
- Angel Belle C Dy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines.
| | - Lourdes Bernadette S Tanchanco
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Jenica Clarisse Y Sy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Myla Dominicina Levantino
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Randi J Hagerman
- University of California Davis, MIND Institute, Sacramento, CA, USA
| |
Collapse
|
5
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
6
|
Klusek J, Will E, Moser C, Hills K, Thurman AJ, Abbeduto L, Roberts JE. Predictors, Parental Views, and Concordance Across Diagnostic Sources of Autism in Male Youth with Fragile X Syndrome: Clinical Best Estimate and Community Diagnoses. Res Child Adolesc Psychopathol 2023; 51:989-1004. [PMID: 36867382 PMCID: PMC10795511 DOI: 10.1007/s10802-023-01044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Persons with fragile X syndrome (FXS) with cooccurring autism spectrum disorder (ASD) are at risk for poorer educational, medical, employment, and independent living outcomes. Thus, the identification of ASD in those with FXS is fundamental to ensuring access to appropriate supports to achieve good quality of life. Yet, optimal diagnostic methods and the exact rate of ASD comorbidity remains controversial, and description of ASD identification in the community in FXS has been limited. This study characterized ASD in a sample of 49 male youth with FXS across multiple diagnostic sources: parent-reported community diagnoses, classification derived from ADOS-2 and ADI-R thresholds, and clinical best-estimate classifications from an expert multidisciplinary team. High concordance was found between ADOS-2/ADI-R and clinical best estimate classifications, with both methods supporting ASD in ~ 75% of male youth with FXS. In contrast, 31% had a community diagnosis. Findings supported gross under-identification of ASD in male youth with FXS in community settings; 60% of those who met clinical best estimate criteria for ASD had not received a diagnosis in the community. Moreover, community diagnoses were poorly aligned with the presence of ASD symptoms as perceived by parents and professionals and, unlike clinical best estimate diagnoses, were not associated with cognitive, behavioral, or language features. Findings highlight under-identification of ASD in community settings as a significant barrier to service access for male youth with FXS. Clinical recommendations should emphasize the benefits of seeking a professional ASD evaluation for children with FXS who are noted to display key ASD symptoms.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA.
| | - Elizabeth Will
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Carly Moser
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC, 29208, USA
| | - Kimberly Hills
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis Health, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Jane E Roberts
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| |
Collapse
|
7
|
Tian Z, Lu XT, Jiang X, Tian J. Bryostatin-1: a promising compound for neurological disorders. Front Pharmacol 2023; 14:1187411. [PMID: 37351510 PMCID: PMC10282138 DOI: 10.3389/fphar.2023.1187411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The central nervous system (CNS) is the most complex system in human body, and there is often a lack of effective treatment strategies for the disorders related with CNS. Natural compounds with multiple pharmacological activities may offer better options because they have broad cellular targets and potentially produce synergic and integrative effects. Bryostatin-1 is one of such promising compounds, a macrolide separated from marine invertebrates. Bryostatin-1 has been shown to produce various biological activities through binding with protein kinase C (PKC). In this review, we mainly summarize the pharmacological effects of bryostatin-1 in the treatment of multiple neurological diseases in preclinical studies and clinical trials. Bryostatin-1 is shown to have great therapeutic potential for Alzheimer's disease, multiple sclerosis, fragile X syndrome, stroke, traumatic brain injury, and depression. It exhibits significant rescuing effects on the deficits of spatial learning, cognitive function, memory and other neurological functions caused by diseases, producing good neuroprotective effects. The promising neuropharmacological activities of bryostatin-1 suggest that it is a potential candidate for the treatment of related neurological disorders although there are still some issues needed to be addressed before its application in clinic.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines on Public Health in Chongqing, Chongqing, China
| |
Collapse
|
8
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
9
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
10
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
11
|
Liang S, Mody M. Abnormal Brain Oscillations in Developmental Disorders: Application of Resting State EEG and MEG in Autism Spectrum Disorder and Fragile X Syndrome. FRONTIERS IN NEUROIMAGING 2022; 1:903191. [PMID: 37555160 PMCID: PMC10406242 DOI: 10.3389/fnimg.2022.903191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 08/10/2023]
Abstract
Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders with similar clinical and behavior symptoms and partially overlapping and yet distinct neurobiological origins. It is therefore important to distinguish these disorders from each other as well as from typical development. Examining disruptions in functional connectivity often characteristic of neurodevelopment disorders may be one approach to doing so. This review focuses on EEG and MEG studies of resting state in ASD and FXS, a neuroimaging paradigm frequently used with difficult-to-test populations. It compares the brain regions and frequency bands that appear to be impacted, either in power or connectivity, in each disorder; as well as how these abnormalities may result in the observed symptoms. It argues that the findings in these studies are inconsistent and do not fit neatly into existing models of ASD and FXS, then highlights the gaps in the literature and recommends future avenues of inquiry.
Collapse
Affiliation(s)
- Sophia Liang
- College of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
12
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
13
|
Sheppard K, Gardin J, Sabnis GS, Peer A, Darrell M, Deats S, Geuther B, Lutz CM, Kumar V. Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation. Cell Rep 2022; 38:110231. [PMID: 35021077 PMCID: PMC8796662 DOI: 10.1016/j.celrep.2021.110231] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community. Sheppard et al. present a method for gait and posture analysis in the common open field apparatus using neural-network-based pose estimation. They apply this high-throughput method to dissect the genetic architecture of mouse movement.
Collapse
Affiliation(s)
- Keith Sheppard
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Justin Gardin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Gautam S Sabnis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Asaf Peer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Megan Darrell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Sean Deats
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Brian Geuther
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
14
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
15
|
del Hoyo Soriano L, Bullard L, Hoyos Alvarez C, Thurman AJ, Abbeduto L. Using telehealth-delivered procedures to collect a parent-implemented expressive language sampling narrative task in monolingual and bilingual families with Autism Spectrum Disorder: A pilot study. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:716550. [PMID: 35036992 PMCID: PMC8758070 DOI: 10.3389/fresc.2021.716550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
Language impairments are frequent, severe, and of prognostic value in autism spectrum disorder (ASD). Unfortunately, the evaluation of the efficacy of treatments targeting the language skills of those with ASD continues to be hindered by a lack of psychometrically sound outcome measures. Expressive Language Sampling (ELS) procedures offer a promising alternative to norm-referenced standardized tests for assessing expressive language in treatment studies. Until now, however, research on the validity and utility of ELS as outcome measures has been limited to administrations by a trained professional in a clinic setting and to use with English-speaking families. These limitations are a barrier for many families accessing the benefits of participation in treatment studies. The current study examines the feasibility of teaching native English-speaking parents (NESP) and native Spanish-speaking parents (NSSP) how to administer the ELS narrative task (ELS-N) to their sons and daughters with ASD (between ages 6 and 21) at home through telehealth-delivered procedures. The parent training was provided in the primary language of the participating parent (i.e., 11 NSSP and 11 NESP) and administered by the parent to the youth in the language that the parent reported to use to communicate with the youth at home (i.e., 9 Spanish and 13 English). Families were able to choose between using their own technology or be provided with the technology needed for participation. Of the 19 parents who completed the training, 16 learned to administer the ELS-N procedures. In addition, strong test-retest reliability and no practice effects over the 4-week interval were observed for ELS-N derived youth outcome measures (i.e., talkativeness, vocabulary, syntax, dysfluency, and intelligibility) for both NSSP and NESP. Results from this pilot study suggest that the home-based parent-implemented ELS-N procedures can be learned and administered at acceptable levels of fidelity by parents, with good test-retest reliability and limited practice effects observed in terms of outcome measures for youth with ASD. Implications for treatment studies and future directions are discussed.
Collapse
Affiliation(s)
- Laura del Hoyo Soriano
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Lauren Bullard
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Cesar Hoyos Alvarez
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Spanish and Portuguese, University of California, Davis, Davis, CA, United States
| | - Angela John Thurman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
16
|
Mody M, Petibon Y, Han P, Kuruppu D, Ma C, Yokell D, Neelamegam R, Normandin MD, Fakhri GE, Brownell AL. In vivo imaging of mGlu5 receptor expression in humans with Fragile X Syndrome towards development of a potential biomarker. Sci Rep 2021; 11:15897. [PMID: 34354107 PMCID: PMC8342610 DOI: 10.1038/s41598-021-94967-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the Fragile X Mental Retardation (FMR1) gene. The resulting loss of Fragile X Mental Retardation Protein (FMRP) leads to excessive glutamate signaling via metabotropic glutamate subtype 5 receptors (mGluR5) which has been implicated in the pathogenesis of the disorder. In the present study we used the radioligand 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB) in simultaneous PET-MR imaging of males with FXS and age- and gender-matched controls to assess the availability of mGlu5 receptors in relevant brain areas. Patients with FXS showed lower [18F]FPEB binding potential (p < 0.01), reflecting reduced mGluR5 availability, than the healthy controls throughout the brain, with significant group differences in insula, anterior cingulate, parahippocampal, inferior temporal and olfactory cortices, regions associated with deficits in inhibition, memory, and visuospatial processes characteristic of the disorder. The results are among the first to provide in vivo evidence of decreased availability of mGluR5 in the brain in individuals with FXS than in healthy controls. The consistent results across the subjects, despite the tremendous challenges with neuroimaging this population, highlight the robustness of the protocol and support for its use in drug occupancy studies; extending our radiotracer development and application efforts from mice to humans.
Collapse
Affiliation(s)
- Maria Mody
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Paul Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Darshini Kuruppu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Daniel Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Ramesh Neelamegam
- Department of Radiology, University of Texas Health Science at San Antonio, San Antonio, TX, 78229, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
17
|
Di Giorgio E, Polli R, Lunghi M, Murgia A. Impact of the COVID-19 Italian Lockdown on the Physiological and Psychological Well-Being of Children with Fragile X Syndrome and Their Families. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115752. [PMID: 34071956 PMCID: PMC8199386 DOI: 10.3390/ijerph18115752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
On 10 March 2020, in Italy, a total lockdown was put in place to limit viral transmission of COVID-19 infection as much as possible. Research on the psychological impact of the COVID-19 pandemic highlighted detrimental effects in children and their parents. However, little is known about such effects in children with neurodevelopment disorders and their caregivers. The present study investigated how the lockdown has impacted the physiological and psychological well-being of children with Fragile X-Syndrome (FXS), aged from 2 to 16 years, and their mothers. In an online survey, 48 mothers of FXS children reported their perception of self-efficacy as caregivers and, at the same time, their children’s sleep habits, behavioral and emotional difficulties during, and retrospectively, before the lockdown. Results showed a general worsening of sleep quality, and increasing behavioral problems. Although mothers reported a reduction in external support, their perception of self-efficacy as caregivers did not change during the home confinement compared to the period before. Overall, the present study suggested that specific interventions to manage sleep problems, as well as specific therapeutic and social support for increasing children and mother psychological well-being, need to be in place to mitigate the long-term effects of a lockdown.
Collapse
Affiliation(s)
- Elisa Di Giorgio
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Correspondence:
| | - Roberta Polli
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Corso Stati Uniti 4/F, 35127 Padova, Italy
| | - Marco Lunghi
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131 Padova, Italy;
| | - Alessandra Murgia
- Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città Della Speranza, Corso Stati Uniti 4/F, 35127 Padova, Italy
| |
Collapse
|
18
|
Altimiras F, Garcia JA, Palacios-García I, Hurley MJ, Deacon R, González B, Cogram P. Altered Gut Microbiota in a Fragile X Syndrome Mouse Model. Front Neurosci 2021; 15:653120. [PMID: 34121987 PMCID: PMC8190892 DOI: 10.3389/fnins.2021.653120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
The human gut microbiome is the ecosystem of microorganisms that live in the human digestive system. Several studies have related gut microbiome variants to metabolic, immune and nervous system disorders. Fragile X syndrome (FXS) is a neurodevelopmental disorder considered the most common cause of inherited intellectual disability and the leading monogenetic cause of autism. The role of the gut microbiome in FXS remains largely unexplored. Here, we report the results of a gut microbiome analysis using a FXS mouse model and 16S ribosomal RNA gene sequencing. We identified alterations in the fmr1 KO2 gut microbiome associated with different bacterial species, including those in the genera Akkermansia, Sutterella, Allobaculum, Bifidobacterium, Odoribacter, Turicibacter, Flexispira, Bacteroides, and Oscillospira. Several gut bacterial metabolic pathways were significantly altered in fmr1 KO2 mice, including menaquinone degradation, catechol degradation, vitamin B6 biosynthesis, fatty acid biosynthesis, and nucleotide metabolism. Several of these metabolic pathways, including catechol degradation, nucleotide metabolism and fatty acid biosynthesis, were previously reported to be altered in children and adults with autism. The present study reports a potential association of the gut microbiome with FXS, thereby opening new possibilities for exploring reliable treatments and non-invasive biomarkers.
Collapse
Affiliation(s)
- Francisco Altimiras
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | - José Antonio Garcia
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ismael Palacios-García
- School of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Michael J Hurley
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Robert Deacon
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile.,FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile.,FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| |
Collapse
|
19
|
Metabolic Shifts as the Hallmark of Most Common Diseases: The Quest for the Underlying Unity. Int J Mol Sci 2021; 22:ijms22083972. [PMID: 33921428 PMCID: PMC8068795 DOI: 10.3390/ijms22083972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
A hyper-specialization characterizes modern medicine with the consequence of classifying the various diseases of the body into unrelated categories. Such a broad diversification of medicine goes in the opposite direction of physics, which eagerly looks for unification. We argue that unification should also apply to medicine. In accordance with the second principle of thermodynamics, the cell must release its entropy either in the form of heat (catabolism) or biomass (anabolism). There is a decreased flow of entropy outside the body due to an age-related reduction in mitochondrial entropy yield resulting in increased release of entropy in the form of biomass. This shift toward anabolism has been known in oncology as Warburg-effect. The shift toward anabolism has been reported in most diseases. This quest for a single framework is reinforced by the fact that inflammation (also called the immune response) is involved in nearly every disease. This strongly suggests that despite their apparent disparity, there is an underlying unity in the diseases. This also offers guidelines for the repurposing of old drugs.
Collapse
|
20
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
21
|
Mani I. CRISPR-Cas9 for treating hereditary diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:165-183. [PMID: 34127193 DOI: 10.1016/bs.pmbts.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This chapter analyzes to use of the genome editing tool to the treatment of various genetic diseases. The genome editing method could be used to change the DNA in cells or organisms to understand their physiological response. Therefore, a key objective is to present general information about the use of the genome editing tool in a pertinent way. An emerging genome editing technology like a clustered regularly short palindromic repeats (CRISPR) is an extensively expended in biological sciences. CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) technique is being utilized to edit any DNA mutations associated with hereditary diseases to study in cells (in vitro) and animals (in vivo). Interestingly, CRISPR-Cas9 could be used to the investigation of treatments of various human hereditary diseases such as hemophila, β-thalassemia, cystic fibrosis, Alzheimer's, Huntington's, Parkinson's, tyrosinemia, Duchnene muscular dystrophy, Tay-Sachs, and fragile X syndrome disorders. Furthermore, CRISPR-Cas9 could also be used in other diseases to the improvement of human health. Finally, this chapter discuss current progress to treatment for hereditary diseases using CRISPR-Cas9 technology and highlights associated challenges and future prospects.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
22
|
Winston M, Nayar K, Landau E, Maltman N, Sideris J, Zhou L, Sharp K, Berry-Kravis E, Losh M. A Unique Visual Attention Profile Associated With the FMR1 Premutation. Front Genet 2021; 12:591211. [PMID: 33633778 PMCID: PMC7901883 DOI: 10.3389/fgene.2021.591211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atypical visual attention patterns have been observed among carriers of the fragile X mental retardation gene (FMR1) premutation (PM), with some similarities to visual attention patterns observed in autism spectrum disorder (ASD) and among clinically unaffected relatives of individuals with ASD. Patterns of visual attention could constitute biomarkers that can help to inform the neurocognitive profile of the PM, and that potentially span diagnostic boundaries. This study examined patterns of eye movement across an array of fixation measurements from three distinct eye-tracking tasks in order to investigate potentially overlapping profiles of visual attention among PM carriers, ASD parents, and parent controls. Logistic regression analyses were conducted to examine whether variables constituting a PM-specific looking profile were able to effectively predict group membership. Participants included 65PM female carriers, 188 ASD parents, and 84 parent controls. Analyses of fixations across the eye-tracking tasks, and their corresponding areas of interest, revealed a distinct visual attention pattern in carriers of the FMR1 PM, characterized by increased fixations on the mouth when viewing faces, more intense focus on bodies in socially complex scenes, and decreased fixations on salient characters and faces while narrating a wordless picture book. This set of variables was able to successfully differentiate individuals with the PM from controls (Sensitivity = 0.76, Specificity = 0.85, Accuracy = 0.77) as well as from ASD parents (Sensitivity = 0.70, Specificity = 0.80, Accuracy = 0.72), but did not show a strong distinction between ASD parents and controls (Accuracy = 0.62), indicating that this set of variables comprises a profile that is unique to PM carriers. Regarding predictive power, fixations toward the mouth when viewing faces was able to differentiate PM carriers from both ASD parents and controls, whereas fixations toward other social stimuli did not differentiate PM carriers from ASD parents, highlighting some overlap in visual attention patterns that could point toward shared neurobiological mechanisms. Results demonstrate a profile of visual attention that appears strongly associated with the FMR1 PM in women, and may constitute a meaningful biomarker.
Collapse
Affiliation(s)
- Molly Winston
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Emily Landau
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Nell Maltman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - John Sideris
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | - Kevin Sharp
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | | | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
23
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
24
|
Bullard L, Harvey D, Abbeduto L. Maternal Mental Health and Parenting Stress and Their Relationships to Characteristics of the Child With Fragile X Syndrome. Front Psychiatry 2021; 12:716585. [PMID: 34899411 PMCID: PMC8651564 DOI: 10.3389/fpsyt.2021.716585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Although previous research supports the notion that characteristics of both the child and the mother impact maternal well-being and parenting stress in mothers of children with FXS, more work is needed in which self-report measures are supplemented by physiological measures of stress and well-being. The inclusion of physiological measures, such as heart rate variability (HRV), may provide a window into the biological origins and consequences of maternal perceptions of their experiences, including the challenges of raising a child with developmental challenges. The proposed project, therefore, involved the collection of multimodal assessment data from mothers and their school-aged children with FXS. Further, given the importance of understanding how mothers of youth with FXS are faring in their everyday environment, the present study collected all data using telehealth procedures and wearable technology. Participants were 20 biological mothers and their children with FXS between the ages of 6 and 11 years. We measured maternal mental health and parenting stress through self-report as well as through HRV as a more objective measure of psychological well-being. We also examined the associations between these variables and child characteristics such as externalizing and internalizing behaviors as well as autism symptomatology. We found significant support for an elevated rate of depressive symptoms in the sample of mothers (35%) and some potential indicators for heightened rates of anxiety (15%) when compared to normed samples and rates in the general population. We also found that the mothers presented with an atypical HRV profile akin to those experiencing depression or chronic stress, although limitations of the present measure suggest the need for additional confirmatory research. Further, we found that child externalizing behaviors were the primary correlates of maternal well-being. These findings contribute to the growing body of literature regarding the unique challenges faced by these mother-child dyads and supports the importance of increasing the availability of services available to these mothers, not only for meeting the needs of their children's development and behavior, but in supporting their own well-being as well.
Collapse
Affiliation(s)
- Lauren Bullard
- MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA, United States
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Leonard Abbeduto
- MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Psychiatry and Behavioral Sciences, UC Davis Health, Sacramento, CA, United States
| |
Collapse
|
25
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
26
|
Andrew DR, Moe ME, Chen D, Tello JA, Doser RL, Conner WE, Ghuman JK, Restifo LL. Spontaneous motor-behavior abnormalities in two Drosophila models of neurodevelopmental disorders. J Neurogenet 2020; 35:1-22. [PMID: 33164597 DOI: 10.1080/01677063.2020.1833005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mutations in hundreds of genes cause neurodevelopmental disorders with abnormal motor behavior alongside cognitive deficits. Boys with fragile X syndrome (FXS), a leading monogenic cause of intellectual disability, often display repetitive behaviors, a core feature of autism. By direct observation and manual analysis, we characterized spontaneous-motor-behavior phenotypes of Drosophila dfmr1 mutants, an established model for FXS. We recorded individual 1-day-old adult flies, with mature nervous systems and prior to the onset of aging, in small arenas. We scored behavior using open-source video-annotation software to generate continuous activity timelines, which were represented graphically and quantitatively. Young dfmr1 mutants spent excessive time grooming, with increased bout number and duration; both were rescued by transgenic wild-type dfmr1+. By two grooming-pattern measures, dfmr1-mutant flies showed elevated repetitions consistent with perseveration, which is common in FXS. In addition, the mutant flies display a preference for grooming posterior body structures, and an increased rate of grooming transitions from one site to another. We raise the possibility that courtship and circadian rhythm defects, previously reported for dfmr1 mutants, are complicated by excessive grooming. We also observed significantly increased grooming in CASK mutants, despite their dramatically decreased walking phenotype. The mutant flies, a model for human CASK-related neurodevelopmental disorders, displayed consistently elevated grooming indices throughout the assay, but transient locomotory activation immediately after placement in the arena. Based on published data identifying FMRP-target transcripts and functional analyses of mutations causing human genetic neurodevelopmental disorders, we propose the following proteins as candidate mediators of excessive repetitive behaviors in FXS: CaMKIIα, NMDA receptor subunits 2A and 2B, NLGN3, and SHANK3. Together, these fly-mutant phenotypes and mechanistic insights provide starting points for drug discovery to identify compounds that reduce dysfunctional repetitive behaviors.
Collapse
Affiliation(s)
- David R Andrew
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Department of Biological Sciences, Lycoming College, Williamsport, PA, USA
| | - Mariah E Moe
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dailu Chen
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Judith A Tello
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Rachel L Doser
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jaswinder K Ghuman
- Department of Psychiatry, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Linda L Restifo
- Department of Neurology, University of Arizona Health Sciences, Tucson, AZ, USA.,Center for Insect Science, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA.,BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Cogram P, Alkon DL, Crockford D, Deacon RMJ, Hurley MJ, Altimiras F, Sun MK, Tranfaglia M. Chronic bryostatin-1 rescues autistic and cognitive phenotypes in the fragile X mice. Sci Rep 2020; 10:18058. [PMID: 33093534 PMCID: PMC7581799 DOI: 10.1038/s41598-020-74848-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome (FXS), an X-chromosome linked intellectual disability, is the leading monogenetic cause of autism spectrum disorder (ASD), a neurodevelopmental condition that currently has no specific drug treatment. Building upon the demonstrated therapeutic effects on spatial memory of bryostatin-1, a relatively specific activator of protein kinase C (PKC)ε, (also of PKCα) on impaired synaptic plasticity/maturation and spatial learning and memory in FXS mice, we investigated whether bryostatin-1 might affect the autistic phenotypes and other behaviors, including open field activity, activities of daily living (nesting and marble burying), at the effective therapeutic dose for spatial memory deficits. Further evaluation included other non-spatial learning and memory tasks. Interestingly, a short period of treatment (5 weeks) only produced very limited or no therapeutic effects on the autistic and cognitive phenotypes in the Fmr1 KO2 mice, while a longer treatment (13 weeks) with the same dose of bryostatin-1 effectively rescued the autistic and non-spatial learning deficit cognitive phenotypes. It is possible that longer-term treatment would result in further improvement in these fragile X phenotypes. This effect is clearly different from other treatment strategies tested to date, in that the drug shows little acute effect, but strong long-term effects. It also shows no evidence of tolerance, which has been a problem with other drug classes (mGluR5 antagonists, GABA-A and -B agonists). The results strongly suggest that, at appropriate dosing and therapeutic period, chronic bryostatin-1 may have great therapeutic value for both ASD and FXS.
Collapse
Affiliation(s)
- Patricia Cogram
- FRAXA-DVI, FRAXA, Santiago, Chile. .,IEB, Faculty of Science, University of Chile, Santiago, Chile.
| | | | | | - Robert M J Deacon
- FRAXA-DVI, FRAXA, Santiago, Chile.,IEB, Faculty of Science, University of Chile, Santiago, Chile
| | - Michael J Hurley
- Neuroimmunology, Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Francisco Altimiras
- Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Faculty of Engineering and Business, Universidad de las Américas, Santiago, Chile
| | | | | |
Collapse
|
28
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
29
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
30
|
Motanis H, Buonomano D. Decreased reproducibility and abnormal experience-dependent plasticity of network dynamics in Fragile X circuits. Sci Rep 2020; 10:14535. [PMID: 32884028 PMCID: PMC7471942 DOI: 10.1038/s41598-020-71333-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder associated with a broad range of neural phenotypes. Interpreting these findings has proven challenging because some phenotypes may reflect compensatory mechanisms or normal forms of plasticity differentially engaged by experiential differences. To help minimize compensatory and experiential influences, we used an ex vivo approach to study network dynamics and plasticity of cortical microcircuits. In Fmr1-/y circuits, the spatiotemporal structure of Up-states was less reproducible, suggesting alterations in the plasticity mechanisms governing network activity. Chronic optical stimulation revealed normal homeostatic plasticity of Up-states, however, Fmr1-/y circuits exhibited abnormal experience-dependent plasticity as they did not adapt to chronically presented temporal patterns in an interval-specific manner. These results, suggest that while homeostatic plasticity is normal, Fmr1-/y circuits exhibit deficits in the ability to orchestrate multiple forms of synaptic plasticity and to adapt to sensory patterns in an experience-dependent manner-which is likely to contribute to learning deficits.
Collapse
Affiliation(s)
- Helen Motanis
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA
| | - Dean Buonomano
- Departments of Neurobiology and Psychology, and Integrative Center for Learning and Memory, University of California, 630 Charles E Young Dr S, Center for Health Sciences Building, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Chatterjee M, Singh P, Xu J, Lombroso PJ, Kurup PK. Inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity reverses behavioral deficits in a rodent model of autism. Behav Brain Res 2020; 391:112713. [PMID: 32461127 PMCID: PMC7346720 DOI: 10.1016/j.bbr.2020.112713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) are highly prevalent childhood illnesses characterized by impairments in communication, social behavior, and repetitive behaviors. Studies have found aberrant synaptic plasticity and neuronal connectivity during the early stages of brain development and have suggested that these contribute to an increased risk for ASD. STEP is a protein tyrosine phosphatase that regulates synaptic plasticity and is implicated in several cognitive disorders. Here we test the hypothesis that STEP may contribute to some of the aberrant behaviors present in the VPA-induced mouse model of ASD. In utero VPA exposure of pregnant dams results in autistic-like behavior in the pups, which is associated with a significant increase in the STEP expression in the prefrontal cortex. The elevated STEP protein levels are correlated with increased dephosphorylation of STEP substrates GluN2B, Pyk2 and ERK, suggesting upregulated STEP activity. Moreover, pharmacological inhibition of STEP rescues the sociability, repetitive and abnormal anxiety phenotypes commonly associated with ASD. These data suggest that STEP may play a role in the VPA model of ASD and STEP inhibition may have a potential therapeutic benefit in this model.
Collapse
Affiliation(s)
- Manavi Chatterjee
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Priya Singh
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Jian Xu
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Pradeep K Kurup
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Surgery, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL 35233, United States.
| |
Collapse
|
32
|
Lovelace JW, Ethell IM, Binder DK, Razak KA. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front Neurosci 2020; 14:771. [PMID: 32848552 PMCID: PMC7417521 DOI: 10.3389/fnins.2020.00771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 01/19/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability. Many symptoms of FXS overlap with those in autism including repetitive behaviors, language delays, anxiety, social impairments and sensory processing deficits. Electroencephalogram (EEG) recordings from humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, show remarkably similar phenotypes suggesting that EEG phenotypes can serve as biomarkers for developing treatments. This includes enhanced resting gamma band power and sound evoked total power, and reduced fidelity of temporal processing and habituation of responses to repeated sounds. Given the therapeutic potential of the antibiotic minocycline in humans with FXS and animal models, it is important to determine sensitivity and selectivity of EEG responses to minocycline. Therefore, in this study, we examined if a 10-day treatment of adult Fmr1 KO mice with minocycline (oral gavage, 30 mg/kg per day) would reduce EEG abnormalities. We tested if minocycline treatment has specific effects based on the EEG measurement type (e.g., resting versus sound-evoked) from the frontal and auditory cortex of the Fmr1 KO mice. We show increased resting EEG gamma power and reduced phase locking to time varying stimuli as well as the 40 Hz auditory steady state response in the Fmr1 KO mice in the pre-drug condition. Minocycline treatment increased gamma band phase locking in response to auditory stimuli, and reduced sound-evoked power of auditory event related potentials (ERP) in Fmr1 KO mice compared to vehicle treatment. Minocycline reduced resting EEG gamma power in Fmr1 KO mice, but this effect was similar to vehicle treatment. We also report frequency band-specific effects on EEG responses. Taken together, these data indicate that sound-evoked EEG responses may serve as more sensitive measures, compared to resting EEG measures, to isolate minocycline effects from placebo in humans with FXS. Given the use of minocycline and EEG recordings in a number of neurodegenerative and neurodevelopmental conditions, these findings may be more broadly applicable in translational neuroscience.
Collapse
Affiliation(s)
- Jonathan W Lovelace
- Department of Psychology and Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Department of Psychology and Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
33
|
Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry. Nat Commun 2020; 11:3744. [PMID: 32719346 PMCID: PMC7385104 DOI: 10.1038/s41467-020-17560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Epilepsy and autism spectrum disorders (ASD) are two distinct brain disorders but have a high rate of co-occurrence, suggesting shared pathogenic mechanisms. Neuroligins are cell adhesion molecules important in synaptic function and ASD, but their role in epilepsy remains unknown. In this study, we show that Neuroligin 2 (NLG2) knockout mice exhibit abnormal spike and wave discharges (SWDs) and behavioral arrests characteristic of absence seizures. The anti-absence seizure drug ethosuximide blocks SWDs and rescues behavioral arrests and social memory impairment in the knockout mice. Restoring GABAergic transmission either by optogenetic activation of the thalamic reticular nucleus (nRT) presynaptic terminals or postsynaptic NLG2 expression in the thalamic neurons reduces the SWDs and behavioral arrests in the knockout mice. These results indicate that NLG2-mediated GABAergic transmission at the nRT-thalamic circuit represents a common mechanism underlying both epileptic seizures and ASD. Neuroligins are postsynaptic cell adhesion molecules that are involved in synapse function and autism spectrum disorder. The authors show that NLG2-mediated GABAergic transmission at the thalamic reticular nucleus-thalamic circuit is a common mechanism underlying epileptic seizures and ASD.
Collapse
|
34
|
Quinlan MA, Robson MJ, Ye R, Rose KL, Schey KL, Blakely RD. Ex vivo Quantitative Proteomic Analysis of Serotonin Transporter Interactome: Network Impact of the SERT Ala56 Coding Variant. Front Mol Neurosci 2020; 13:89. [PMID: 32581705 PMCID: PMC7295033 DOI: 10.3389/fnmol.2020.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Altered serotonin (5-HT) signaling is associated with multiple brain disorders, including major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). The presynaptic, high-affinity 5-HT transporter (SERT) tightly regulates 5-HT clearance after release from serotonergic neurons in the brain and enteric nervous systems, among other sites. Accumulating evidence suggests that SERT is dynamically regulated in distinct activity states as a result of environmental and intracellular stimuli, with regulation perturbed by disease-associated coding variants. Our lab identified a rare, hypermorphic SERT coding substitution, Gly56Ala, in subjects with ASD, finding that the Ala56 variant stabilizes a high-affinity outward-facing conformation (SERT∗) that leads to elevated 5-HT uptake in vitro and in vivo. Hyperactive SERT Ala56 appears to preclude further activity enhancements by p38α mitogen-activated protein kinase (MAPK) and can be normalized by pharmacological p38α MAPK inhibition, consistent with SERT Ala56 mimicking, constitutively, a high-activity conformation entered into transiently by p38α MAPK activation. We hypothesize that changes in SERT-interacting proteins (SIPs) support the shift of SERT into the SERT∗ state which may be captured by comparing the composition of SERT Ala56 protein complexes with those of wildtype (WT) SERT, defining specific interactions through comparisons of protein complexes recovered using preparations from SERT–/– (knockout; KO) mice. Using quantitative proteomic-based approaches, we identify a total of 459 SIPs, that demonstrate both SERT specificity and sensitivity to the Gly56Ala substitution, with a striking bias being a loss of SIP interactions with SERT Ala56 compared to WT SERT. Among this group are previously validated SIPs, such as flotillin-1 (FLOT1) and protein phosphatase 2A (PP2A), whose functions are believed to contribute to SERT microdomain localization and regulation. Interestingly, our studies nominate a number of novel SIPs implicated in ASD, including fragile X mental retardation 1 protein (FMR1) and SH3 and multiple ankyrin repeat domains protein 3 (SHANK3), of potential relevance to long-standing evidence of serotonergic contributions to ASD. Further investigation of these SIPs, and the broader networks they engage, may afford a greater understanding of ASD as well as other brain and peripheral disorders associated with perturbed 5-HT signaling.
Collapse
Affiliation(s)
- Meagan A Quinlan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Ran Ye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
35
|
Pangrazzi L, Balasco L, Bozzi Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21093293. [PMID: 32384730 PMCID: PMC7247582 DOI: 10.3390/ijms21093293] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.
Collapse
|
36
|
Hu J, Chen L, Yin J, Yin H, Huang Y, Tian J. Hyperactivity, Memory Defects, and Craniofacial Abnormalities in Zebrafish fmr1 Mutant Larvae. Behav Genet 2020; 50:152-160. [PMID: 32048109 DOI: 10.1007/s10519-020-09995-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
Abstract
Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Lei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jian Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Huancai Yin
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, People's Republic of China.
| | - Jingjing Tian
- CAS Key Lab of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, People's Republic of China.
- Academy for Engineering & Technology, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
37
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
38
|
Missig G, McDougle CJ, Carlezon WA. Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology 2020; 45:90-103. [PMID: 31060044 PMCID: PMC6879602 DOI: 10.1038/s41386-019-0409-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Sleep has numerous advantages for aligning clinical and preclinical (basic neuroscience) studies of neuropsychiatric illness. Sleep has high translational relevance, because the same endpoints can be studied in humans and laboratory animals. In addition, sleep experiments are conducive to continuous data collection over long periods (hours/days/weeks) and can be based on highly objective neurophysiological measures. Here, we provide a translationally-oriented review on what is currently known about sleep in the context of autism spectrum disorder (ASD), including ASD-related conditions, thought to have genetic, environmental, or mixed etiologies. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders. Animal models used in the study of ASD frequently recapitulate dysregulation of sleep and biological (diurnal, circadian) rhythms, suggesting common pathophysiologies across species. As our understanding of the neurobiology of ASD and sleep each become more refined, it is conceivable that sleep-derived metrics may offer more powerful biomarkers of altered neurophysiology in ASD than the behavioral tests currently used in humans or lab animals. As such, the study of sleep in animal models for ASD may enable fundamentally new insights on the condition and represent a basis for strategies that enable the development of more effective therapeutics.
Collapse
Affiliation(s)
- Galen Missig
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Christopher J. McDougle
- 0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - William A. Carlezon
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| |
Collapse
|
39
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
40
|
Cheng Y, Jin P. Dysfunction of Habituation Learning: A Novel Pathogenic Paradigm of Intellectual Disability and Autism Spectrum Disorder. Biol Psychiatry 2019; 86:253-254. [PMID: 31370964 DOI: 10.1016/j.biopsych.2019.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming, China.
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
41
|
Benachenhou S, Etcheverry A, Galarneau L, Dubé J, Çaku A. Implication of hypocholesterolemia in autism spectrum disorder and its associated comorbidities: A retrospective case-control study. Autism Res 2019; 12:1860-1869. [PMID: 31385649 DOI: 10.1002/aur.2183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) has been associated with low cholesterol levels in a limited number of studies. However, the prevalence of hypocholesterolemia as well as the degree of association with ASD remains to be elucidated. We therefore sought to investigate the lipid profiles of a group of French-Canadian ASD individuals. The medical records of 79 ASD individuals and 79 age and gender-matched healthy controls were retrospectively reviewed. The fasting lipid profiles including total cholesterol (TC), high-density lipoprotein, triglycerides, and low-density lipoprotein were extracted for individuals of both groups along with the following clinical data: anthropometric measurements, medication use and associated disorders. Lipid parameters were compared to age and gender-based normative population and categorized in centile groups. The prevalence of hypocholesterolemia was revealed to be more than threefold higher in ASD individuals as compared to the general population (23%; P = 0.005). The 25th centile was determined as a potential TC threshold that could best predict the ASD (odds ratio [OR] = 3.04; 95% confidence interval [CI]: 1.58-6.65; P < 0.001). This study identified specific ASD comorbidities associated with hypocholesterolemia: TC levels below the 10th centile were associated with a higher rate of ASD-associated intellectual disability (OR = 3.33; 95% CI: 1.26-8.00) and anxiety/depression (OR = 4.74; 95% CI: 1.40-15.73). Overall, these results support a potential association between hypocholesterolemia and ASD occurrence. Application of this study to larger populations is urging to provide more extensive data that may further elucidate the association between hypocholesterolemia and ASD. Autism Res 2019, 12: 1860-1869. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Association of autism spectrum disorder (ASD) with abnormally low levels of cholesterol (hypocholesterolemia) has been documented before. These studies were incomplete, and the conclusion remains speculative. Here, we reviewed the medical records of 79 French-Canadian ASD individuals and compared their total cholesterol (TC) levels to healthy individuals matched for age and gender. We observed four times more hypocholesterolemia in ASD than in the general population. Furthermore, low TC in ASD was associated with higher rates of ASD-associated intellectual disability and anxiety/depression. Our results support an association between hypocholesterolemia and ASD and open novel opportunities for the diagnosis and treatment of specific forms of ASD.
Collapse
Affiliation(s)
- Sérine Benachenhou
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Antoine Etcheverry
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Galarneau
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean Dubé
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Artuela Çaku
- Biochemistry Department, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
42
|
D’Amanda CS, Peay HL, Wheeler AC, Turbitt E, Biesecker BB. Fragile X syndrome clinical trials: exploring parental decision-making. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:926-935. [PMID: 30747463 PMCID: PMC6639141 DOI: 10.1111/jir.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The objective of this research was to understand parental proxy decision-making for drug trial participation for children with Fragile X syndrome (FXS). Specifically, we aimed to capture preferences, motivations, influencing factors and barriers related to trial involvement among trial joiners and decliners and describe ease of trial decision-making and decisional regret. METHODS Interviews were conducted with parents from two groups: those who chose to enrol their child with FXS in a trial (N = 16; Joiners) and those who declined trial participation (N = 15; Decliners). Data were coded and interpreted through inductive content analysis. RESULTS Prominent decisional factors included attitudes about medicating FXS symptoms, potential for direct benefit (primarily evaluated through the degree of match between target outcomes and child symptomatology and drug mechanism), logistical convenience and perceived risks of side effects. The ultimate motivation for participation was potential for direct benefit. None of the parents reported decisional regret, and ease of decision-making ranged from easy to difficult for our participants. CONCLUSIONS Therapeutic optimism was high among those who elected participation. Parents may benefit from an explanation of the rationale behind chosen outcome variables and may be more interested in trials that target or measure as an exploratory outcome the symptoms they find most concerning. Our findings reinforce the need for future trials to reduce participant inconvenience. Our results contrast with what has previously been observed in parents of children with life-threatening conditions; parents of children with FXS may be more trial risk averse and find trial decisions to be harder. Parents of children with FXS considering trials may benefit from a decisional intervention aimed at deliberating motivations and barriers.
Collapse
Affiliation(s)
- Celeste S. D’Amanda
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| | - Holly L. Peay
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International. 3040 East Cornwallis Road, Research Triangle Park, NC, USA 27709-2194, ,
| | - Anne C. Wheeler
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International. 3040 East Cornwallis Road, Research Triangle Park, NC, USA 27709-2194, ,
| | - Erin Turbitt
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| | - Barbara B. Biesecker
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH 31 Center Drive MSC2073, Bethesda, MD, USA 20892-2073, ,
| |
Collapse
|
43
|
Xie S, Karlsson H, Dalman C, Widman L, Rai D, Gardner RM, Magnusson C, Schendel DE, Newschaffer CJ, Lee BK. Family History of Mental and Neurological Disorders and Risk of Autism. JAMA Netw Open 2019; 2:e190154. [PMID: 30821823 PMCID: PMC6484646 DOI: 10.1001/jamanetworkopen.2019.0154] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Familial aggregation of mental and neurological disorders is often observed in autism spectrum disorders (ASD), but reports have generally focused on single disorders and are limited to first-degree relatives. OBJECTIVES To examine family history of mental and neurological disorders among first- to fourth-degree relatives and risk of ASD with and without intellectual disability (ID) in index persons. DESIGN, SETTING, AND PARTICIPANTS In this population-based cohort study, 567 436 index persons were identified from the Stockholm Youth Cohort, an ongoing longitudinal register-linkage cohort study of the total population aged 0 to 17 years residing in Stockholm County, Sweden. Index persons were nonadopted singleton births born between 1984 and 2009 who were at least 2 years of age at the end of follow-up on December 31, 2011, had resided in Stockholm County for at least 2 years since birth, and could be linked to both biological parents. Data analysis was conducted from May 2017 to December 2018. EXPOSURE Mental and neurological diagnoses of relatives of the index persons. MAIN OUTCOMES AND MEASURES Diagnosis of ASD, with or without co-occurring ID, in the index persons. RESULTS The cohort included 567 436 index persons (291 191 [51.3%] male; mean [SD] age at the end of follow-up, 14.3 [7.5] years). The prevalence of ASD with and without ID was 0.4% and 1.5%, respectively. Positive family history of mental and neurological disorders was associated with higher odds of ASD in index persons; 6895 (63.1%) of index persons with ASD had a parent with history of mental and/or neurological disorders, compared with 252 454 (45.4%) of index persons without ASD. Family history of multiple disorders was associated with higher odds of ASD in index persons, including history of ASD (odds ratio among first-degree relatives for ASD with and without ID: 14.2, 9.0), intellectual disability (7.6, 2.3), attention-deficit/hyperactivity disorder (3.3, 4.7), obsessive compulsive disorder (1.9, 2.1), schizophrenia and other nonaffective psychotic disorders (2.1, 1.8), depression (1.4, 2.0), bipolar disorder (1.4, 2.2), personality disorder (2.1, 2.6), cerebral palsy (2.2, 1.5), and epilepsy (2.0, 1.3). The more closely related the affected family member was, the higher the odds was of ASD for the index person. ASD without intellectual disability was associated with more disorders compared to ASD with intellectual disability. ASD with intellectual disability exhibited a weaker familial association with other mental disorder diagnoses but a stronger familial association with some neurological diagnoses as compared to ASD without intellectual disability. CONCLUSIONS AND RELEVANCE This study suggests that family history of mental and neurological disorders is associated with increased risk of ASD. The familial component of ASD etiology may differ by presence or absence of co-occurring ID.
Collapse
Affiliation(s)
- Sherlly Xie
- Drexel University School of Public Health, Philadelphia, Pennsylvania
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christina Dalman
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Linnea Widman
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Dheeraj Rai
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Avon and Wiltshire Partnership National Health Service Mental Health Trust, Bath, United Kingdom
| | - Renee M. Gardner
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Magnusson
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Diana E. Schendel
- Department of Public Health, University of Aarhus, Aarhus, Denmark
- Department of Economics and Business Economics, University of Aarhus, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, University of Aarhus, Aarhus, Denmark
| | - Craig J. Newschaffer
- Drexel University School of Public Health, Philadelphia, Pennsylvania
- A. J. Drexel Autism Institute, Philadelphia, Pennsylvania
| | - Brian K. Lee
- Drexel University School of Public Health, Philadelphia, Pennsylvania
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
- A. J. Drexel Autism Institute, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Liu Q, Chen MX, Sun L, Wallis CU, Zhou JS, Ao LJ, Li Q, Sham PC. Rational use of mesenchymal stem cells in the treatment of autism spectrum disorders. World J Stem Cells 2019; 11:55-72. [PMID: 30842805 PMCID: PMC6397804 DOI: 10.4252/wjsc.v11.i2.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism and autism spectrum disorders (ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD. Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review will focus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Chloe U Wallis
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Jian-Song Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Center for Genomic Sciences, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Zhang XC, Shu LQ, Zhao XS, Li XK. Autism spectrum disorders: autistic phenotypes and complicated mechanisms. World J Pediatr 2019; 15:17-25. [PMID: 30607884 DOI: 10.1007/s12519-018-0210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD), a pervasive developmental neurological disorder, is characterized by impairments in social interaction and communication, and stereotyped, repetitive patterns of interests or behaviors. The mechanism of ASDs is complex, and genetic components and epigenetic modifications play important roles. In this review, we summarized the recent progresses of ASDs focusing on the genetic and epigenetic mechanisms. We also briefly discussed current animal models of ASD and the application of high-throughput sequencing technologies in studying ASD. DATA SOURCES Original research articles and literature reviews published in PubMed-indexed journals. RESULTS Individuals with ASDs exhibit a set of phenotypes including neurological alteration. Genetic components including gene mutation, copy-number variations, and epigenetic modifications play important and diverse roles in ASDs. The establishment of animal models and development of new-generation sequencing technologies have contributed to reveal the complicated mechanisms underlying autistic phenotypes. CONCLUSIONS Dramatic progress has been made for understanding the roles of genetic and epigenetic components in ASD. Future basic and translational studies should be carried out towards those candidate therapeutic targets.
Collapse
Affiliation(s)
- Xi-Cheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Li-Qi Shu
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Xing-Sen Zhao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xue-Kun Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
46
|
Sandoval GM, Shim S, Hong DS, Garrett AS, Quintin EM, Marzelli MJ, Patnaik S, Lightbody AA, Reiss AL. Neuroanatomical abnormalities in fragile X syndrome during the adolescent and young adult years. J Psychiatr Res 2018; 107:138-144. [PMID: 30408626 PMCID: PMC6249038 DOI: 10.1016/j.jpsychires.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Abnormal brain development and cognitive dysfunction have been reported both in children and in adults with fragile X syndrome (FXS). However, few studies have examined neuroanatomical abnormalities in FXS during adolescence. In this study we focus on adolescent subjects with FXS (N = 54) as compared to age- and sex-matched subjects with idiopathic intellectual disability (Comparison Group) (N = 32), to examine neuroanatomical differences during this developmental period. Brain structure was assessed with voxel-based morphometry and independent groups t-test in SPM8 software. Results showed that the FXS group, relative to the comparison group, had significantly larger gray matter volume (GMV) in only one region: the bilateral caudate nucleus, but have smaller GMV in several regions including bilateral medial frontal, pregenual cingulate, gyrus rectus, insula, and superior temporal gyrus. Group differences also were noted in white matter regions. Within the FXS group, lower FMRP levels were associated with less GMV in several regions including cerebellum and gyrus rectus, and less white matter volume (WMV) in pregenual cingulate, middle frontal gyrus, and other regions. Lower full scale IQ within the FXS group was associated with larger right caudate nucleus GMV. In conclusion, adolescents and young adults with FXS demonstrate neuroanatomical abnormalities consistent with those previously reported in children and adults with FXS. These brain variations likely result from reduced FMRP during early neurodevelopment and mediate downstream deleterious effects on cognitive function.
Collapse
|
47
|
Raspa M, Wylie A, Wheeler AC, Kolacz J, Edwards A, Heilman K, Porges SW. Sensory Difficulties in Children With an FMR1 Premutation. Front Genet 2018; 9:351. [PMID: 30233641 PMCID: PMC6127619 DOI: 10.3389/fgene.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Abnormal sensory processing is one of the core characteristics of the fragile X phenotype. Studies of young children with fragile X syndrome (FXS) and the FMR1 premutation have shown sensory challenges as early as infancy and into early childhood. This study sought to examine differences in sensory difficulties in children with an FMR1 premutation compared with children with FXS and typically developing children. We conducted an online survey of 176 parents of affected children (FXS or FMR1 premutation). Most respondents were mothers who are Caucasian (86%), have a 4-year college or graduate degree (68%), and are married (92%). Children ranged in age from 5 to 18, with a mean age of 13.0 years (3.3 SD). Participants completed the BBC Sensory Scales, a 50-item Likert-type scale (1 = Almost Always, 4 = Almost Never) comprised of 8 subscales that assessed auditory processing, visual processing, tactile processing, and eating and feeding behaviors. Mean scores were calculated for the items and each of the subscales. Non-parametric tests examined differences in child and family-level variables. Across all BBCSS subscales, children with an FMR1 premutation displayed more sensory challenges than typically developing children. For six out of the eight subscales, children with the full mutation had the lowest scores indicating more sensory challenges, but this was closely followed by children with an FMR1 premutation. Fragile X status was associated with seven of the eight subscales; children with an FMR1 premutation did not differ from children with FXS on any of the subscales but had more digestive problems than children with no fragile X. Gender, autism status, and family income were also related to sensory sensitivities. In conclusion, these data provide further evidence that some children with an FMR1 premutation experience sensory difficulties that are similar to children with FXS but different than typically developing children.
Collapse
Affiliation(s)
| | | | | | - Jacek Kolacz
- Traumatic Stress Research Consortium, Kinsey Institute, Indiana University Bloomington, Bloomington, IN, United States
| | | | - Keri Heilman
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen W Porges
- Traumatic Stress Research Consortium, Kinsey Institute, Indiana University Bloomington, Bloomington, IN, United States.,Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
48
|
Wegiel J, Brown WT, La Fauci G, Adayev T, Kascsak R, Kascsak R, Flory M, Kaczmarski W, Kuchna I, Nowicki K, Martinez-Cerdeno V, Wisniewski T, Wegiel J. The role of reduced expression of fragile X mental retardation protein in neurons and increased expression in astrocytes in idiopathic and syndromic autism (duplications 15q11.2-q13). Autism Res 2018; 11:1316-1331. [PMID: 30107092 DOI: 10.1002/aur.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/23/2023]
Abstract
Fragile X syndrome (FXS), caused by lack of fragile X mental retardation protein (FMRP), is associated with a high prevalence of autism. The deficit of FMRP reported in idiopathic autism suggests a mechanistic overlap between FXS and autism. The overall goal of this study is to detect neuropathological commonalities of FMRP deficits in the brains of people with idiopathic autism and with syndromic autism caused by dup15q11.2-q13 (dup15). This study tests the hypothesis based on our preliminary data that both idiopathic and syndromic autism are associated with brain region-specific deficits of neuronal FMRP and structural changes of the affected neurons. This immunocytochemical study revealed neuronal FMRP deficits and shrinkage of deficient neurons in the cerebral cortex, subcortical structures, and cerebellum in subjects with idiopathic and dup(15)/autism. Neuronal FMRP deficit coexists with surprising infiltration of the brains of autistic children and adults with FMRP-positive astrocytes known to be typical only for the fetal and short postnatal periods. In the examined autistic subjects, these astrocytes selectively infiltrate the border between white and gray matter in the cerebral and cerebellar cortex, the molecular layer of the cortex, part of the amygdala and thalamus, central cerebellar white matter, and dentate nucleus. Astrocyte pathology results in an additional local loss of FMRP in neurons and their shrinkage. Neuronal deficit of FMRP and shrinkage of affected neurons in structures free of FMRP-positive astrocytes and regions infiltrated with FMRP-expressing astrocytes appear to reflect mechanistic, neuropathological, and functional commonalities of FMRP abnormalities in FXS and autism spectrum disorder. Autism Res 2018, 11: 1316-1331. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Immunocytochemistry reveals a deficit of fragile X mental retardation protein (FMRP) in neurons of cortical and subcortical brain structures but increased FMRP expression in astrocytes infiltrating gray and white matter. The detected shrinkage of FMRP-deficient neurons may provide a mechanistic explanation of reported neuronal structural and functional changes in autism. This study contributes to growing evidence of mechanistic commonalities between fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - W Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Giuseppe La Fauci
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Richard Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Regina Kascsak
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Wojciech Kaczmarski
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Veronica Martinez-Cerdeno
- Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, MIND Institute, University of California, Davis, California
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, NYU Langone Medical Center, New York, New York
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| |
Collapse
|
49
|
Miller GW, Chandrasekaran V, Yaghoobi B, Lein PJ. Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 2018; 67:102-111. [PMID: 29704525 PMCID: PMC6177215 DOI: 10.1016/j.neuro.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023]
Abstract
Chemical exposures have been implicated as environmental risk factors that interact with genetic susceptibilities to influence individual risk for complex neurodevelopmental disorders, including autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder and intellectual disabilities. Altered patterns of neuronal connectivity represent a convergent mechanism of pathogenesis for these and other neurodevelopmental disorders, and growing evidence suggests that chemicals can interfere with specific signaling pathways that regulate the development of neuronal connections. There is, therefore, a growing interest in developing screening platforms to identify chemicals that alter neuronal connectivity. Cell-cell, cell-matrix interactions and systemic influences are known to be important in defining neuronal connectivity in the developing brain, thus, a systems-based model offers significant advantages over cell-based models for screening chemicals for effects on neuronal connectivity. The embryonic zebrafish represents a vertebrate model amenable to higher throughput chemical screening that has proven useful in characterizing conserved mechanisms of neurodevelopment. Moreover, the zebrafish is readily amenable to gene editing to integrate genetic susceptibilities. Although use of the zebrafish model in toxicity testing has increased in recent years, the diverse tools available for imaging structural differences in the developing zebrafish brain have not been widely applied to studies of the influence of gene by environment interactions on neuronal connectivity in the developing zebrafish brain. Here, we discuss tools available for imaging of neuronal connectivity in the developing zebrafish, review what has been published in this regard, and suggest a path forward for applying this information to developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Galen W. Miller
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
50
|
Arbab T, Pennartz CMA, Battaglia FP. Impaired hippocampal representation of place in the Fmr1-knockout mouse model of fragile X syndrome. Sci Rep 2018; 8:8889. [PMID: 29892074 PMCID: PMC5995880 DOI: 10.1038/s41598-018-26853-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is an X-chromosome linked intellectual disability and the most common known inherited single gene cause of autism spectrum disorder (ASD). Building upon demonstrated deficits in neuronal plasticity and spatial memory in FXS, we investigated how spatial information processing is affected in vivo in an FXS mouse model (Fmr1-KO). Healthy hippocampal neurons (so-called place cells) exhibit place-related activity during spatial exploration, and their firing fields tend to remain stable over time. In contrast, we find impaired stability and reduced specificity of Fmr1-KO spatial representations. This is a potential biomarker for the cognitive dysfunction observed in FXS, informative on the ability to integrate sensory information into an abstract representation and successfully retain this conceptual memory. Our results provide key insight into the biological mechanisms underlying cognitive disabilities in FXS and ASD, paving the way for a targeted approach to remedy these.
Collapse
Affiliation(s)
- Tara Arbab
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands. .,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postal Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Postal Box 94216, 1090 GE, Amsterdam, The Netherlands
| | - Francesco P Battaglia
- Cognitive and Systems Neuroscience, Swammerdam Institute, Center for Neuroscience, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|