1
|
Eskhan A, Abu-Lail NI. Role of adhesion in the mechanics of pathogenic Listeria monocytogenes EGDe as a function of the pH of growth. Biointerphases 2024; 19:051008. [PMID: 39441073 PMCID: PMC11501791 DOI: 10.1116/6.0003840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Atomic force microscopy was utilized to estimate the adhesion strengths to silicon nitride as well as the cellular elasticities of pathogenic Listeria monocytogenes EGDe cells cultured in media adjusted to five different pH conditions of growth (5, 6, 7, 8, and 9) under water with 0.0027 fixed ionic strength. Particularly, the role of adhesion on the bacterial elastic properties was investigated. The nonadhesive Hertz model of contact mechanics was used to extract Young's moduli of elasticity of bacterial cells from the approach force-indentation data. Additionally, the adhesive models of contact mechanics: Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT) were used to estimate Young's moduli of elasticity of bacterial cells from the retraction force-indentation data. Our results indicated that adhesion to silicon nitride was the highest for cells cultured at a pH of 7. Similarly, bacterial cells cultured at pH 7 were characterized by the highest Young's moduli of elasticities compared to the lower or higher pH conditions of growth. Young's moduli of elasticities estimated from the Hertz model were stiffer than those estimated using JKR or DMT models. As the adhesion between bacterial cells and indenters increased, the difference between the Hertz model and JKR or DMT models estimates of Young's moduli of elasticity increased as well. Contradicting the current norm of using the Hertz model to quantify bacterial elasticity in the literature, our results highlight the extreme importance of utilizing contact mechanics models with adhesion components in them such as the JKR and DMT models to estimate bacterial elasticity.
Collapse
Affiliation(s)
- Asma Eskhan
- Department of Chemical Engineering, Al-Balqa Applied University, P.O. Box 15008, Amman 11134, Jordan
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, Texas 78249
| |
Collapse
|
2
|
Carapeto AP, Marcuello C, Faísca PFN, Rodrigues MS. Morphological and Biophysical Study of S100A9 Protein Fibrils by Atomic Force Microscopy Imaging and Nanomechanical Analysis. Biomolecules 2024; 14:1091. [PMID: 39334857 PMCID: PMC11429797 DOI: 10.3390/biom14091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Atomic force microscopy (AFM) imaging enables the visualization of protein molecules with high resolution, providing insights into their shape, size, and surface topography. Here, we use AFM to study the aggregation process of protein S100A9 in physiological conditions, in the presence of calcium at a molar ratio 4Ca2+:S100A9. We find that S100A9 readily assembles into a worm-like fibril, with a period dimension along the fibril axis of 11.5 nm. The fibril's chain length extends up to 136 periods after an incubation time of 144 h. At room temperature, the fibril's bending stiffness was found to be 2.95×10-28 Nm2, indicating that the fibrils are relatively flexible. Additionally, the values obtained for the Young's modulus (Ex=6.96×105 Pa and Ey=3.37×105 Pa) are four orders of magnitude lower than those typically reported for canonical amyloid fibrils. Our findings suggest that, under the investigated conditions, a distinct aggregation mechanism may be in place in the presence of calcium. Therefore, the findings reported here could have implications for the field of biomedicine, particularly with regard to Alzheimer's disease.
Collapse
Affiliation(s)
- Ana P. Carapeto
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (C.M.); (M.S.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Carlos Marcuello
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (C.M.); (M.S.R.)
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
| | - Patrícia F. N. Faísca
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (C.M.); (M.S.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mário S. Rodrigues
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (C.M.); (M.S.R.)
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
3
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A method for analyzing AFM force mapping data obtained from soft tissue cryosections. J Biomech 2024; 168:112113. [PMID: 38648717 PMCID: PMC11128031 DOI: 10.1016/j.jbiomech.2024.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Department of Ophthalmology, Emory University, Atlanta, GA; Center for Visual & Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Department of Ophthalmology, Emory University, Atlanta, GA.
| |
Collapse
|
4
|
Kurki L, Oinonen N, Foster AS. Automated Structure Discovery for Scanning Tunneling Microscopy. ACS NANO 2024; 18:11130-11138. [PMID: 38644571 PMCID: PMC11064214 DOI: 10.1021/acsnano.3c12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Scanning tunneling microscopy (STM) with a functionalized tip apex reveals the geometric and electronic structures of a sample within the same experiment. However, the complex nature of the signal makes images difficult to interpret and has so far limited most research to planar samples with a known chemical composition. Here, we present automated structure discovery for STM (ASD-STM), a machine learning tool for predicting the atomic structure directly from an STM image, by building upon successful methods for structure discovery in noncontact atomic force microscopy (nc-AFM). We apply the method on various organic molecules and achieve good accuracy on structure predictions and chemical identification on a qualitative level while highlighting future development requirements for ASD-STM. This method is directly applicable to experimental STM images of organic molecules, making structure discovery available for a wider scanning probe microscopy audience outside of nc-AFM. This work also allows more advanced machine learning methods to be developed for STM structure discovery.
Collapse
Affiliation(s)
- Lauri Kurki
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
| | - Niko Oinonen
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
- Nanolayers
Research Computing Ltd., London N12 0HL, U.K.
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University, Aalto, Espoo 00076, Finland
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Kaur H, Garg M, Tomar D, Singh S, Jena KC. Role of tungsten disulfide quantum dots in specific protein-protein interactions at air-water interface. J Chem Phys 2024; 160:084705. [PMID: 38411235 DOI: 10.1063/5.0187563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The intriguing network of antibody-antigen (Ab-Ag) interactions is highly governed by environmental perturbations and the nature of biomolecular interaction. Protein-protein interactions (PPIs) have potential applications in developing protein-adsorption-based sensors and nano-scale materials. Therefore, characterizing PPIs in the presence of a nanomaterial at the molecular level becomes imperative. The present work involves the investigation of antiferritin-ferritin (Ab-Ag) protein interactions under the influence of tungsten disulfide quantum dots (WS2 QDs). Isothermal calorimetry and contact angle measurements validated the strong influence of WS2 QDs on Ab-Ag interactions. The interfacial signatures of nano-bio-interactions were evaluated using sum frequency generation vibration spectroscopy (SFG-VS) at the air-water interface. Our SFG results reveal a variation in the tilt angle of methyl groups by ∼12° ± 2° for the Ab-Ag system in the presence of WS2 QDs. The results illustrated an enhanced ordering of water molecules in the presence of QDs, which underpins the active role of interfacial water molecules during nano-bio-interactions. We have also witnessed a differential impact of QDs on Ab-Ag by raising the concentration of the Ab-Ag combination, which showcased an increased inter-molecular interaction among the Ab and Ag molecules and a minimal influence on the methyl tilt angle. These findings suggest the formation of stronger and ordered Ab-Ag complexes upon introducing WS2 QDs in the aqueous medium and signify the potentiality of WS2 QDs relevant to protein-based sensing assays.
Collapse
Affiliation(s)
- Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Mayank Garg
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kailash C Jena
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
6
|
Yang X, Yang Y, Zhang Z, Li M. Deep Learning Image Recognition-Assisted Atomic Force Microscopy for Single-Cell Efficient Mechanics in Co-culture Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:837-852. [PMID: 38154137 DOI: 10.1021/acs.langmuir.3c03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Atomic force microscopy (AFM)-based force spectroscopy assay has become an important method for characterizing the mechanical properties of single living cells under aqueous conditions, but a disadvantage is its reliance on manual operation and experience as well as the resulting low throughput. Particularly, providing a capacity to accurately identify the type of the cell grown in co-culture environments without the need of fluorescent labeling will further facilitate the applications of AFM in life sciences. Here, we present a study of deep learning image recognition-assisted AFM, which not only enables fluorescence-independent recognition of the identity of single co-cultured cells but also allows efficient downstream AFM force measurements of the identified cells. With the use of the deep learning-based image recognition model, the viability and type of individual cells grown in co-culture environments were identified directly from the optical bright-field images, which were confirmed by the following cell growth and fluorescent labeling results. Based on the image recognition results, the positional relationship between the AFM probe and the targeted cell was automatically determined, allowing the precise movement of the AFM probe to the target cell to perform force measurements. The experimental results show that the presented method was applicable not only to the conventional (microsphere-modified) AFM probe used in AFM indentation assay for measuring the Young's modulus of single co-cultured cells but also to the single-cell probe used in AFM-based single-cell force spectroscopy (SCFS) assay for measuring the adhesion forces of single co-cultured cells. The study illustrates deep learning imaging recognition-assisted AFM as a promising approach for label-free and high-throughput detection of single-cell mechanics under co-culture conditions, which will facilitate unraveling the mechanical cues involved in cell-cell interactions in their native states at the single-cell level and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Xuliang Yang
- School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanqi Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Zhang
- School of Artificial Intelligence, Shenyang University of Technology, Shenyang 110870, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kang S, Park J, Lee M. Machine learning-enabled autonomous operation for atomic force microscopes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:123704. [PMID: 38109471 DOI: 10.1063/5.0172682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
The use of scientific instruments generally requires prior knowledge and skill on the part of operators, and thus, the obtained results often vary with different operators. The autonomous operation of instruments producing reproducible and reliable results with little or no operator-to-operator variation could be of considerable benefit. Here, we demonstrate the autonomous operation of an atomic force microscope using a machine learning-based object detection technique. The developed atomic force microscope was able to autonomously perform instrument initialization, surface imaging, and image analysis. Two cameras were employed, and a machine-learning algorithm of region-based convolutional neural networks was implemented, to detect and recognize objects of interest and to perform self-calibration, alignment, and operation of each part of the instrument, as well as the analysis of obtained images. Our machine learning-based approach could be generalized to apply to various types of scanning probe microscopes and other scientific instruments.
Collapse
Affiliation(s)
- Seongseok Kang
- Department of Physics, Chungbuk National University, Seowon-Gu, Cheongju 28644, South Korea
| | - Junhong Park
- Department of Physics, Chungbuk National University, Seowon-Gu, Cheongju 28644, South Korea
| | - Manhee Lee
- Department of Physics, Chungbuk National University, Seowon-Gu, Cheongju 28644, South Korea
| |
Collapse
|
8
|
Gao L, Chen Y, Lv Z, Zhou J, Wu K. Probing and Modulation of the Electric Double Layer at the Insulating Oil-Paper Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38016169 DOI: 10.1021/acs.langmuir.3c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Charge accumulation in the insulating oil-paper system determines the operating safety of the converter transformers in high-voltage direct current (HVDC) transmissions. However, it has been a long-standing challenge to reveal the charge distribution of the electric double layer (EDL) at the insulating oil-paper interface and relate it to charge transport. In particular, the EDL and charging mechanisms at the oil-paper interface have not been fully understood. We herein demonstrate that the charge distribution of EDL at the oil-paper interface is probed through Kelvin probe force microscopy (KPFM). The origin charge distribution of EDL without any additives shows that the negative charge gathers on the insulating paper surface, while the positive charge diffuses in the insulating oil, which is derived from the electron affinity difference between insulating oil and insulating paper and acts as an additional obstacle to charge transportation at the oil-paper interface. Interestingly, the additive 3-amino-2,4-triazole (ATA) can tune the charge distribution of EDL by bringing extra hole traps, which significantly decreases the interface barrier and reduces the charge accumulation at the oil-paper interface. As well as increasing charge mobility in oil-paper insulation, ATA also ensures stabilization of operation under polarity inversion conditions by accelerating the dissipation rate of accumulated charge.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Electric Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuqi Chen
- State Key Laboratory of Electric Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zepeng Lv
- State Key Laboratory of Electric Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jun Zhou
- State Key Laboratory of Electric Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kai Wu
- State Key Laboratory of Electric Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A Method for Analyzing AFM Force Mapping Data Obtained from Soft Tissue Cryosections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566263. [PMID: 38014311 PMCID: PMC10680563 DOI: 10.1101/2023.11.08.566263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Gulati K, Adachi T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater 2023; 170:15-38. [PMID: 37562516 DOI: 10.1016/j.actbio.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Surface modification of implants in the nanoscale or implant nano-engineering has been recognized as a strategy for augmenting implant bioactivity and achieving long-term implant success. Characterizing and optimizing implant characteristics is crucial to achieving desirable effects post-implantation. Modified implant enables tailored, guided and accelerated tissue integration; however, our understanding is limited to multicellular (bulk) interactions. Finding the nanoscale forces experienced by a single cell on nano-engineered implants will aid in predicting implants' bioactivity and engineering the next generation of bioactive implants. Atomic force microscope (AFM) is a unique tool that enables surface characterization and understanding of the interactions between implant surface and biological tissues. The characterization of surface topography using AFM to gauge nano-engineered implants' characteristics (topographical, mechanical, chemical, electrical and magnetic) and bioactivity (adhesion of cells) is presented. A special focus of the review is to discuss the use of single-cell force spectroscopy (SCFS) employing AFM to investigate the minute forces involved with the adhesion of a single cell (resident tissue cell or bacterium) to the surface of nano-engineered implants. Finally, the research gaps and future perspectives relating to AFM-characterized current and emerging nano-engineered implants are discussed towards achieving desirable bioactivity performances. This review highlights the use of advanced AFM-based characterization of nano-engineered implant surfaces via profiling (investigating implant topography) or probing (using a single cell as a probe to study precise adhesive forces with the implant surface). STATEMENT OF SIGNIFICANCE: Nano-engineering is emerging as a surface modification platform for implants to augment their bioactivity and achieve favourable treatment outcomes. In this extensive review, we closely examine the use of Atomic Force Microscopy (AFM) to characterize the properties of nano-engineered implant surfaces (topography, mechanical, chemical, electrical and magnetic). Next, we discuss Single-Cell Force Spectroscopy (SCFS) via AFM towards precise force quantification encompassing a single cell's interaction with the implant surface. This interdisciplinary review will appeal to researchers from the broader scientific community interested in implants and cell adhesion to implants and provide an improved understanding of the surface characterization of nano-engineered implants.
Collapse
Affiliation(s)
- Karan Gulati
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan; The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Taiji Adachi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. NANOSCALE 2023; 15:13346-13358. [PMID: 37526589 DOI: 10.1039/d3nr02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Wang G, Tang K, Jiang W, Liao Q, Li Y, Liu P, Wu Y, Liu M, Wang H, Li B, Du J, Chu PK. Quantifiable Relationship Between Antibacterial Efficacy and Electro-Mechanical Intervention on Nanowire Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212315. [PMID: 36738179 DOI: 10.1002/adma.202212315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Indexed: 05/12/2023]
Abstract
Physical disruption is an important antibacterial means as it is lethal to bacteria without spurring antimicrobial resistance. However, it is very challenging to establish a quantifiable relationship between antibacterial efficacy and physical interactions such as mechanical and electrical forces. Herein, titanium nitride (TN) nanowires with adjustable orientations and capacitances are prepared to exert gradient electro-mechanical forces on bacteria. While vertical nanowires show the strongest mechanical force resulting in an antibacterial efficiency of 0.62 log reduction (vs 0.22 for tiled and 0.36 for inclined nanowires, respectively), the addition of electrical charges maximizes the electro-mechanical interactions and elevates the antibacterial efficacy to more than 3 log reduction. Biophysical and biochemical analyses indicate that electrostatic attraction by electrical charge narrows the interface. The electro-mechanical intervention more easily stiffens and rips the bacteria membrane, disturbing the electron balance and generating intracellular oxidative stress. The antibacterial ability is maintained in vivo and bacteria-challenged rats are protected from serious infection. The physical bacteria-killing process demonstrated here can be controlled by adjusting the electro-mechanical interactions. Overall, these results revealed important principles for rationally designing high-performance antibacterial interfaces for clinical applications.
Collapse
Affiliation(s)
- Guomin Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Kaiwei Tang
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, 309 E. Second St, Pomona, CA, 91766, USA
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yong Li
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Mengting Liu
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu, 215007, P. R. China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Li X, Zhao L, Feng R, Du X, Guo Z, Meng Y, Zou Y, Liao W, Liu Q, Sheng Y, Zhao G, Zhong H, Zhao W. Single molecule localizations of voltage-gated sodium channel Na V1.5 on the surfaces of normal and cancer breast cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1855-1860. [PMID: 36960734 DOI: 10.1039/d3ay00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are widely expressed in various types of tumor and cancer cells, and NaV1.5 is overexpressed in highly metastatic breast cancer cells. There may be positive relations between the expression levels of NaV1.5 and breast cancer recurrence and metastasis. Herein, NaV1.5 was detected and localized on the surfaces of normal and cancer breast cells by the single molecule recognition imaging (SMRI) mode of atomic force microscopy (AFM). The results reveal that NaV1.5 was irregularly distributed on the surfaces of normal and cancer breast cells. The NaV1.5 has an area percentage of 0.6% and 7.2% on normal and cancer breast cells, respectively, which indicates that there is more NaV1.5 on cancer cells than on normal cells. The specific interaction forces and binding kinetics in the NaV1.5-antibody complex system were investigated with the single molecule force spectroscopy (SMFS) mode of AFM, indicating that the stability of the NaV1.5-antibody on normal breast cells is higher than that on cancer breast cells. All these results will be useful to study the interactions of other ion channel-antibody systems, and will also be useful to understand the role of sodium channels in tumor metastasis and invasion.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Li Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Rongrong Feng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Xiaowei Du
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zelin Guo
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yu Meng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yulan Zou
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Wenchao Liao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Qiyuan Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yaohuan Sheng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Gaowei Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, People's Republic of China.
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
14
|
Zhu J, Tian Y, Cao L, Hu J, Yan J, Wang Z, Liu X. Comparison of the effects of AgNPs on the morphological and mechanical characteristics of cancerous cells. J Microsc 2023; 289:187-197. [PMID: 36565476 DOI: 10.1111/jmi.13166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Currently, silver nanoparticles (AgNPs) are the most produced nanoparticles in global market and have been widely utilized in the biomedical field. Here, we investigated the morphological and mechanical effects of AgNPs on cancerous cells of A549 cells and SMMC-7721 cells with atomic force microscope (AFM). The influence of AgNPs on the morphological properties and mechanical properties of cancerous cells were characterized utilizing the force-volume (FV) mode and force spectroscopy (FS) mode of AFM measurement. We mainly focus on the comparison of the effects of AgNPs on the two types of cancerous cells based on the fitting results of calculating the Young's moduli utilizing the Sneddon model. The results showed that the morphology changed little, but the mechanical properties of height, roughness, adhesion force and Young's moduli of two cancerous cells varied significantly with the stimulation of different concentrations of AgNPs. This research has provided insights into the classification and characterization of the effects of the various concentrations of AgNPs on the cancerous cells in vitro by utilizing AFM methodologies for disease therapy.
Collapse
Affiliation(s)
- Jiajing Zhu
- School of Engineering, University of Warwick, Coventry, UK.,Wheeled System Technology Department, China North Vehicle Research Institute, Beijing, China
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry, UK
| | - Liang Cao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jing Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jin Yan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.,Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Chowdhury T, Cressiot B, Parisi C, Smolyakov G, Thiébot B, Trichet L, Fernandes FM, Pelta J, Manivet P. Circulating Tumor Cells in Cancer Diagnostics and Prognostics by Single-Molecule and Single-Cell Characterization. ACS Sens 2023; 8:406-426. [PMID: 36696289 DOI: 10.1021/acssensors.2c02308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating tumor cells (CTCs) represent an interesting source of biomarkers for diagnosis, prognosis, and the prediction of cancer recurrence, yet while they are extensively studied in oncobiology research, their diagnostic utility has not yet been demonstrated and validated. Their scarcity in human biological fluids impedes the identification of dangerous CTC subpopulations that may promote metastatic dissemination. In this Perspective, we discuss promising techniques that could be used for the identification of these metastatic cells. We first describe methods for isolating patient-derived CTCs and then the use of 3D biomimetic matrixes in their amplification and analysis, followed by methods for further CTC analyses at the single-cell and single-molecule levels. Finally, we discuss how the elucidation of mechanical and morphological properties using techniques such as atomic force microscopy and molecular biomarker identification using nanopore-based detection could be combined in the future to provide patients and their healthcare providers with a more accurate diagnosis.
Collapse
Affiliation(s)
- Tafsir Chowdhury
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Cleo Parisi
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Georges Smolyakov
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Léa Trichet
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Juan Pelta
- CY Cergy Paris Université, CNRS, LAMBE, 95000 Cergy, France.,Université Paris-Saclay, Université d'Evry, CNRS, LAMBE, 91190 Evry, France
| | - Philippe Manivet
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| |
Collapse
|
17
|
Kolbeck P, Dass M, Martynenko IV, van Dijk-Moes RJA, Brouwer KJH, van Blaaderen A, Vanderlinden W, Liedl T, Lipfert J. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. NANO LETTERS 2023; 23:1236-1243. [PMID: 36745573 PMCID: PMC9951250 DOI: 10.1021/acs.nanolett.2c04299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
Collapse
Affiliation(s)
- Pauline
J. Kolbeck
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Mihir Dass
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Irina V. Martynenko
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Relinde J. A. van Dijk-Moes
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Kelly J. H. Brouwer
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Alfons van Blaaderen
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Willem Vanderlinden
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Tim Liedl
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Jan Lipfert
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| |
Collapse
|
18
|
Amyot R, Kodera N, Flechsig H. BioAFMviewer software for simulation atomic force microscopy of molecular structures and conformational dynamics. J Struct Biol X 2023; 7:100086. [PMID: 36865763 PMCID: PMC9972558 DOI: 10.1016/j.yjsbx.2023.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Atomic force microscopy (AFM) and high-speed scanning have significantly advanced real time observation of biomolecular dynamics, with applications ranging from single molecules to the cellular level. To facilitate the interpretation of resolution-limited imaging, post-experimental computational analysis plays an increasingly important role to understand AFM measurements. Data-driven simulation of AFM, computationally emulating experimental scanning, and automatized fitting has recently elevated the understanding of measured AFM topographies by inferring the underlying full 3D atomistic structures. Providing an interactive user-friendly interface for simulation AFM, the BioAFMviewer software has become an established tool within the Bio-AFM community, with a plethora of applications demonstrating how the obtained full atomistic information advances molecular understanding beyond topographic imaging. This graphical review illustrates the BioAFMviewer capacities and further emphasizes the importance of simulation AFM to complement experimental observations.
Collapse
Affiliation(s)
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
19
|
Baccouch R, Shi Y, Vernay E, Mathelié-Guinlet M, Taib-Maamar N, Villette S, Feuillie C, Rascol E, Nuss P, Lecomte S, Molinari M, Staneva G, Alves ID. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184084. [PMID: 36368636 DOI: 10.1016/j.bbamem.2022.184084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes. In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.
Collapse
Affiliation(s)
- Rim Baccouch
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Yarong Shi
- Laboratoire de Recherche en Nanosciences, LRN EA4682, University of Reims Champagne Ardenne, France
| | - Emilie Vernay
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Marion Mathelié-Guinlet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Nada Taib-Maamar
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Sandrine Villette
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Estelle Rascol
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Philippe Nuss
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, Paris, France; Service de psychiatrie et de psychologie médicale, Sorbonne Université, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, 1113 Sofia, Bulgaria
| | - Isabel D Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Bat B14, allée Geoffroy St. Hilaire, F-33600 Pessac, France.
| |
Collapse
|
20
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
21
|
Li Q, Chao J, Zhang H, Fan C. Single-Molecule Nanomechanical Genotyping with DNA Origami-Based Shape IDs. Methods Mol Biol 2023; 2639:147-156. [PMID: 37166716 DOI: 10.1007/978-1-0716-3028-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomic force microscopy (AFM)-based nanomechanical imaging provides a sub-10-nm-resolution approach for imaging biomolecules under ambient conditions. Here we describe how to generate a set of DNA origami-based shape IDs (triangular and cross shape, with and without streptavidin) to site-specifically label target genomic DNA sequences containing two single-nucleotide polymorphisms (SNPs). Adjacent labeling sites separated by only 30 nucleobases (~10 nm) can be differentiated under AFM imaging. We can directly genotype single molecules of human genomic DNA.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Peña B, Gao S, Borin D, Del Favero G, Abdel-Hafiz M, Farahzad N, Lorenzon P, Sinagra G, Taylor MRG, Mestroni L, Sbaizero O. Cellular Biomechanic Impairment in Cardiomyocytes Carrying the Progeria Mutation: An Atomic Force Microscopy Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14928-14940. [PMID: 36420863 PMCID: PMC9730902 DOI: 10.1021/acs.langmuir.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Given the clinical effect of progeria syndrome, understanding the cell mechanical behavior of this pathology could benefit the patient's treatment. Progeria patients show a point mutation in the lamin A/C gene (LMNA), which could change the cell's biomechanical properties. This paper reports a mechano-dynamic analysis of a progeria mutation (c.1824 C > T, p.Gly608Gly) in neonatal rat ventricular myocytes (NRVMs) using cell indentation by atomic force microscopy to measure alterations in beating force, frequency, and contractile amplitude of selected cells within cell clusters. Furthermore, we examined the beating rate variability using a time-domain method that produces a Poincaré plot because beat-to-beat changes can shed light on the causes of arrhythmias. Our data have been further related to our cell phenotype findings, using immunofluorescence and calcium transient analysis, showing that mutant NRVMs display changes in both beating force and frequency. These changes were associated with a decreased gap junction localization (Connexin 43) in the mutant NRVMs even in the presence of a stable cytoskeletal structure (microtubules and actin filaments) when compared with controls (wild type and non-treated cells). These data emphasize the kindred between nucleoskeleton (LMNA), cytoskeleton, and the sarcolemmal structures in NRVM with the progeria Gly608Gly mutation, prompting future mechanistic and therapeutic investigations.
Collapse
Affiliation(s)
- Brisa Peña
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Shanshan Gao
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Daniele Borin
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| | - Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-42, 1090Vienna, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Wien, Währinger Straße 38-42, 1090Vienna, Austria
| | - Mostafa Abdel-Hafiz
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Nasim Farahzad
- Bioengineering
Department, University of Colorado Denver
Anschutz Medical Campus, 12705 E. Montview Avenue, Suite 100, Aurora, Colorado80045, United States
| | - Paola Lorenzon
- Department
F of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Gianfranco Sinagra
- Polo
Cardiologico, Azienda Sanitaria Universitaria
Integrata di Trieste, Strada di Fiume 447, Trieste34127, Italy
| | - Matthew R. G. Taylor
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Luisa Mestroni
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
| | - Orfeo Sbaizero
- Cardiovascular
Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado80045, United States
- Department
of Engineering and Architecture, University
of Trieste, Trieste34127, Italy
| |
Collapse
|
23
|
Manioglu S, Modaresi SM, Ritzmann N, Thoma J, Overall SA, Harms A, Upert G, Luther A, Barnes AB, Obrecht D, Müller DJ, Hiller S. Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane. Nat Commun 2022; 13:6195. [PMID: 36271003 PMCID: PMC9587031 DOI: 10.1038/s41467-022-33838-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Polymyxins are last-resort antibiotics with potent activity against multi-drug resistant pathogens. They interact with lipopolysaccharide (LPS) in bacterial membranes, but mechanistic details at the molecular level remain unclear. Here, we characterize the interaction of polymyxins with native, LPS-containing outer membrane patches of Escherichia coli by high-resolution atomic force microscopy imaging, along with structural and biochemical assays. We find that polymyxins arrange LPS into hexagonal assemblies to form crystalline structures. Formation of the crystalline structures is correlated with the antibiotic activity, and absent in polymyxin-resistant strains. Crystal lattice parameters alter with variations of the LPS and polymyxin molecules. Quantitative measurements show that the crystalline structures decrease membrane thickness and increase membrane area as well as stiffness. Together, these findings suggest the formation of rigid LPS-polymyxin crystals and subsequent membrane disruption as the mechanism of polymyxin action and provide a benchmark for optimization and de novo design of LPS-targeting antimicrobials.
Collapse
Affiliation(s)
- Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland
| | | | - Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Sarah A Overall
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, Switzerland
| | | | | | | | | | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, Basel, Switzerland.
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, Switzerland.
| |
Collapse
|
24
|
Fremdling P, Esser TK, Saha B, Makarov AA, Fort KL, Reinhardt-Szyba M, Gault J, Rauschenbach S. A Preparative Mass Spectrometer to Deposit Intact Large Native Protein Complexes. ACS NANO 2022; 16:14443-14455. [PMID: 36037396 PMCID: PMC9527803 DOI: 10.1021/acsnano.2c04831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Electrospray ion-beam deposition (ES-IBD) is a versatile tool to study the structure and reactivity of molecules from small metal clusters to large protein assemblies. It brings molecules gently into the gas phase, where they can be accurately manipulated and purified, followed by controlled deposition onto various substrates. In combination with imaging techniques, direct structural information on well-defined molecules can be obtained, which is essential to test and interpret results from indirect mass spectrometry techniques. To date, ion-beam deposition experiments are limited to a small number of custom instruments worldwide, and there are no commercial alternatives. Here we present a module that adds ion-beam deposition capabilities to a popular commercial MS platform (Thermo Scientific Q Exactive UHMR mass spectrometer). This combination significantly reduces the overhead associated with custom instruments, while benefiting from established high performance and reliability. We present current performance characteristics including beam intensity, landing-energy control, and deposition spot size for a broad range of molecules. In combination with atomic force microscopy (AFM) and transmission electron microscopy (TEM), we distinguish near-native from unfolded proteins and show retention of the native shape of protein assemblies after dehydration and deposition. Further, we use an enzymatic assay to quantify the activity of a noncovalent protein complex after deposition on a dry surface. Together, these results not only indicate a great potential of ES-IBD for applications in structural biology, but also outline the challenges that need to be solved for it to reach its full potential.
Collapse
Affiliation(s)
- Paul Fremdling
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim K. Esser
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bodhisattwa Saha
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alexander A. Makarov
- Thermo
Fisher Scientific, Bremen 28199, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
| | | | | | - Joseph Gault
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephan Rauschenbach
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| |
Collapse
|
25
|
Zhao L, Fu X, Zhang L, Ye Z. Effect of mechanical properties of Jurkat cell on adhesion properties of Jurkat integrin and VCAM-1: An AFM study. Colloids Surf B Biointerfaces 2022; 218:112784. [PMID: 36030725 DOI: 10.1016/j.colsurfb.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
Mechanical properties play key roles in the immune system, especially the activation, transformation and subsequent effector responses of immune cells. As transmembrane adhesion receptors, integrins mediate the adhesion events of both cells and cell-extracellular matrix (ECM). Integrin affinity would influence the crosslinking of cytoskeleton, leading to the change of elastic properties of cells. In this study, the cells were treated with F-actin destabilizing agent Cytochalasin-D (Cyt-D), fixed by Glutaraldehyde, and cultivated in hypotonic solution respectively. We used Atomic force microscopy (AFM) to quantitatively measure the elasticity of Jurkat cells and adhesion properties between integrins and vascular cell adhesion molecule-1 (VCAM-1), and immunofluorescence to study the alteration of cytoskeleton. Glutaraldehyde had a positive effect on the adhesion force and Young's modulus. However, these mechanical properties decreased in a hypotonic environment, confirming the findings of cellular physiological structure. There was no significant difference in the bond strength and elasticity of Jurkat cells treated with Cytochalasin-D, probably because of lower importance of actin in suspension cells. All the treatments in this study pose a negative effect on the adhesion probability between integrins and VCAM-1, which demonstrates the effect of structural alteration of the cytoskeleton on the conformation of integrin. Clear consistency between adhesion force of integrin/VCAM-1 bond and Young's modulus of Jurkat cells was shown. Our results further demonstrated the relationship between cytoskeleton and integrin-ligand by mechanical characteristics.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Xingliang Fu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Liyuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China.
| |
Collapse
|
26
|
Khan N, Aslan H, Büttner H, Rohde H, Golbek TW, Roeters SJ, Woutersen S, Weidner T, Meyer RL. The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. eLife 2022; 11:76164. [PMID: 35796649 PMCID: PMC9302970 DOI: 10.7554/elife.76164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis causes some of the most hard-to-treat clinical infections by forming biofilms: Multicellular communities of bacteria encased in a protective matrix, supporting immune evasion and tolerance against antibiotics. Biofilms occur most commonly on medical implants, and a key event in implant colonization is the robust adherence to the surface, facilitated by interactions between bacterial surface proteins and host matrix components. S. epidermidis is equipped with a giant adhesive protein, extracellular matrix-binding protein (Embp), which facilitates bacterial interactions with surface-deposited, but not soluble fibronectin. The structural basis behind this selective binding process has remained obscure. Using a suite of single-cell and single-molecule analysis techniques, we show that S. epidermidis is capable of such distinction because Embp binds specifically to fibrillated fibronectin on surfaces, while ignoring globular fibronectin in solution. S. epidermidis adherence is critically dependent on multivalent interactions involving 50 fibronectin-binding repeats of Embp. This unusual, Velcro-like interaction proved critical for colonization of surfaces under high flow, making this newly identified attachment mechanism particularly relevant for colonization of intravascular devices, such as prosthetic heart valves or vascular grafts. Other biofilm-forming pathogens, such as Staphylococcus aureus, express homologs of Embp and likely deploy the same mechanism for surface colonization. Our results may open for a novel direction in efforts to combat devastating, biofilm-associated infections, as the development of implant materials that steer the conformation of adsorbed proteins is a much more manageable task than avoiding protein adsorption altogether. A usually harmless bacterium called Staphylococcus epidermidis lives on human skin. Sometimes it makes its way into the bloodstream through a cut or surgical procedure, but it rarely causes blood infections. It can, however, cause severe infections when it attaches to the surface of a medical implant like a pacemaker or an artificial replacement joint. It does this by forming a colony of bacteria on the implant’s surface called a biofilm, which protects the bacteria from destruction by the immune system or antibiotics. Understanding how Staphylococcus epidermidis implant infections start is critical to preventing them. This information may help scientists develop infection-resistant implants or new treatments for implant infections. Scientists suspect that Staphylococcus epidermidis attaches to implants by binding to a human protein called fibronectin, which coats medical implants in the human body. Another protein on the surface of the bacteria, called Embp, facilitates the connection. But why the bacteria attach to fibronectin on implants, and not fibronectin molecules in the bloodstream, is unclear. Now, Khan, Aslan et al. show that Embp forms a Velcro-like bond with fibronectin on the surface of implants. In the experiments, Khan and Aslan et al. used powerful microscopes to create 3-dimensional images of the interactions between Embp and fibronectin. The experiments showed that Embp's attachment site is hidden on the globe-shaped form of fibronectin circulating in the blood. But when fibronectin covers an implant surface, it forms a fibrous network, and Embp can attach to it with up to 50 Velcro-like individual connections. These many weak connections form a strong bond that withstands the force of blood pumping past. The experiments show that the fibrous coating of fibronectin on implants makes them a hotspot for Staphylococcus epidermidis infections. Finding ways to block Embp from attaching to fibronectin on implants, or altering the form fibronectin takes on implants, may help prevent these infections. Many bacteria that form biofilms have an Embp-like protein. As a result, these discoveries may also help scientists develop prevention or treatment strategies for other bacterial biofilm infections.
Collapse
Affiliation(s)
- Nasar Khan
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Hüsnü Aslan
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Henning Büttner
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Sander Woutersen
- Van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
27
|
Cuenot S, Gélébart P, Sinquin C, Colliec-Jouault S, Zykwinska A. Mechanical relaxations of hydrogels governed by their physical or chemical crosslinks. J Mech Behav Biomed Mater 2022; 133:105343. [PMID: 35780569 DOI: 10.1016/j.jmbbm.2022.105343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
In the field of tissue engineering, in order to restore tissue functionality hydrogels that closely mimic biological and mechanical properties of the extracellular matrix are intensely developed. Mechanical properties including relaxation of the surrounding microenvironment regulate essential cellular processes. However, the mechanical properties of engineered hydrogels are particularly complex since they involve not only a nonlinear elastic behavior but also time-dependent responses. An accurate determination of these properties at microscale, i.e. as probed by cells, becomes an essential step to further design hydrogel-based biomaterials able to induce specific cellular responses. Atomic Force Microscopy (AFM) with contact sizes of the order of few micrometers constitutes an appropriate technique to determine the origin of relaxation mechanisms occurring in hydrogels. In the present study, AFM force relaxation experiments are conducted on chemically and physically crosslinked hydrogels respectively based on a synthetic polymer, polyacrylamide and a natural polymer, a bacterial exopolysaccharide infernan, produced by the deep-sea hydrothermal vent bacterium, Alteromonas infernus. Two distinct relaxation mechanisms are clearly evidenced depending on the nature of hydrogel network crosslinks. Chemically crosslinked hydrogel exhibits poroelastic relaxations, whereas physically crosslinked hydrogel shows time-dependent responses arising from viscoelastic effects. In addition, two relaxation processes are revealed in ionic physical hydrogel originating from chain rearrangement and breaking/reforming of the ionic crosslinks. The effect of the ionic strength on both the long-term elastic modulus and relaxation times of physical hydrogels was also shown. These findings highlight that physical hydrogels with well-defined time-dependent mechanical properties could be tuned for an optimized response of cells.
Collapse
Affiliation(s)
- Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, 2, Rue de la Houssinière, 44322, Nantes, Cedex 3, France.
| | | | | | | | | |
Collapse
|
28
|
Cao N, Zhao Y, Chen H, Huang J, Yu M, Bao Y, Wang D, Cui S. Poly(ethylene glycol) Becomes a Supra-Polyelectrolyte by Capturing Hydronium Ions in Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nanpu Cao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinying Huang
- School of Optoelectronic Science, Changchun College of Electronic Technology, Changchun 130114, China
| | - Miao Yu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Bao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shuxun Cui
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
29
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
30
|
Molecular Recognition of Proteins through Quantitative Force Maps at Single Molecule Level. Biomolecules 2022; 12:biom12040594. [PMID: 35454182 PMCID: PMC9024611 DOI: 10.3390/biom12040594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Intermittent jumping force is an operational atomic-force microscopy mode that produces simultaneous topography and tip-sample maximum-adhesion images based on force spectroscopy. In this work, the operation conditions have been implemented scanning in a repulsive regime and applying very low forces, thus avoiding unspecific tip-sample forces. Remarkably, adhesion images give only specific rupture events, becoming qualitative and quantitative molecular recognition maps obtained at reasonably fast rates, which is a great advantage compared to the force–volume modes. This procedure has been used to go further in discriminating between two similar protein molecules, avidin and streptavidin, in hybrid samples. The adhesion maps generated scanning with biotinylated probes showed features identified as avidin molecules, in the range of 40–80 pN; meanwhile, streptavidin molecules rendered 120–170 pN at the selected working conditions. The gathered results evidence that repulsive jumping force mode applying very small forces allows the identification of biomolecules through the specific rupture forces of the complexes and could serve to identify receptors on membranes or samples or be applied to design ultrasensitive detection technologies.
Collapse
|
31
|
Zhu J, Tian Y, Yan J, Hu J, Wang Z, Liu X. The effects of measurement parameters on the cancerous cell nucleus characterization by atomic force microscopy in vitro. J Microsc 2022; 287:3-18. [PMID: 35411607 PMCID: PMC9322684 DOI: 10.1111/jmi.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
Cancer is now responsible for the major leading cause of death worldwide. It is noteworthy that lung cancer has been recognised as the highest incidence (11.6%) and mortality (18.4%) for combined sexes among a variety of cancer diseases. Therefore, it is of great value to investigate the mechanical properties of lung cancerous cells for early diagnosis. This paper focus on the influence of measurement parameters on the measured central Young's moduli of single live A549 cell in vitro based on the force spectroscopy mode of atomic force microscopy (AFM). The effects of the measurement parameters on the measured central Young's moduli were analysed by fitting the force–depth curves utilising the Sneddon model. The results revealed that the Young's moduli of A549 cells increased with the larger indentation force, higher indentation speed, less retraction time, deeper Z length and lower purity percentage of serum. The Young's moduli of cells increased first and then decreased with the increasing dwell time. Hence, this research may have potential significance to provide reference for the standardised detection of a single cancerous cell in vitro using AFM methodologies. Cancer is now responsible for the majority leading cause of death worldwide and it is noteworthy that lung cancer has been recognised as the highest incidence (11.6%) and mortality (18.4%) for combined sexes among a variety of cancer diseases. Therefore, it is of great value to investigate the mechanical properties of lung cancerous cells for early diagnosis. This paper primarily investigated the morphological properties and the influence of measurement parameters on the measured local elastic moduli of single live A549 cell in vitro using the AFM‐based force spectroscopy mode. In practice, there are many factors for incorrect or inaccurate experimental results using AFM to measure the characteristics of live cells, such as non‐homogeneous nature of cells, probe geometry and size, mechanical analysis model, substrate stiffness and different measurement parameters. The various measurement parameters have become the huge impact factor to influence the measurement result. Hence, this research may have potential significance to provide reference for the standardised detection of a single cancerous cell in vitro using AFM methodologies.
Collapse
Affiliation(s)
- Jiajing Zhu
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Jin Yan
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jing Hu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zuobin Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China.,International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
32
|
Ido S, Kobayashi K, Oyabu N, Hirata Y, Matsushige K, Yamada H. Structured Water Molecules on Membrane Proteins Resolved by Atomic Force Microscopy. NANO LETTERS 2022; 22:2391-2397. [PMID: 35274954 DOI: 10.1021/acs.nanolett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water structuring on the outer surface of protein molecules called the hydration shell is essential as well as the internal water structures for higher-order structuring of protein molecules and their biological activities in vivo. We now show the molecular-scale hydration structure measurements of native purple membrane patches composed of proton pump proteins by a noninvasive three-dimensional force mapping technique based on frequency modulation atomic force microscopy. We successfully resolved the ordered water molecules localized near the proton uptake channels on the cytoplasmic side of the individual bacteriorhodopsin proteins in the purple membrane. We demonstrate that the three-dimensional force mapping can be widely applicable for molecular-scale investigations of the solid-liquid interfaces of various soft nanomaterials.
Collapse
Affiliation(s)
- Shinichiro Ido
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Kei Kobayashi
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Noriaki Oyabu
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Yoshiki Hirata
- National Institute of Advanced Industrial Science and Technology, 1-1 Umezono, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazumi Matsushige
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| | - Hirofumi Yamada
- Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
33
|
Mana T, Kundu J, Lahiri H, Bera S, Kolay J, Sinha S, Mukhopadhyay R. Molecularly resolved, label-free nucleic acid sensing at solid-liquid interface using non-ionic DNA analogues. RSC Adv 2022; 12:9263-9274. [PMID: 35424880 PMCID: PMC8985177 DOI: 10.1039/d2ra00386d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid-based biosensors, where the capture probe is a nucleic acid, e.g., DNA or its synthetic analogue xeno nucleic acid (XNA), offer interesting ways of eliciting clinically relevant information from hybridization/dehybridization signals. In this respect, the application of XNA probes is attractive since the drawbacks of DNA probes might be overcome. Within the XNA probe repertoire, peptide nucleic acid (PNA) and morpholino (MO) are promising since their backbones are non-ionic. Therefore, in the absence of electrostatic charge repulsion between the capture probe and the target nucleic acid, a stable duplex can be formed. In addition, these are nuclease-resistant probes. Herein, we have tested the molecularly resolved nucleic acid sensing capacity of PNA and MO capture probes using a fluorescent label-free single molecule force spectroscopy approach. As far as single nucleobase mismatch discrimination is concerned, both PNA and MO performed better than DNA, while the performance of the MO probe was the best. We propose that the conformationally more rigid backbone of MO, compared to the conformationally flexible PNA, is an advantage for MO, since the probe orientation can be made more upright on the surface and therefore MO can be more effectively accessed by the target sequences. The performance of the XNA probes has been compared to that of the DNA probe, using fixed nucleobase sequences, so that the effect of backbone variation could be investigated. To our knowledge, this is the first report on molecularly resolved nucleic acid sensing by non-ionic capture probes, here, MO and PNA. Improved nucleic acid sensing in terms of single nucleobase mismatch discrimination, as achieved by the surface-confined non-ionic PNA and MO capture probes, is exemplified by single molecule force spectroscopy.![]()
Collapse
Affiliation(s)
- Tanushree Mana
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | - Hiya Lahiri
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Sudipta Bera
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Jayeeta Kolay
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India
| | - Rupa Mukhopadhyay
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata 700 032 India +91 33 2473 2805 +91 33 2473 4971 extn 1506
| |
Collapse
|
34
|
Amyot R, Marchesi A, Franz CM, Casuso I, Flechsig H. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images. PLoS Comput Biol 2022; 18:e1009970. [PMID: 35294442 PMCID: PMC8959186 DOI: 10.1371/journal.pcbi.1009970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/28/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy (AFM) can visualize the dynamics of single biomolecules under near-physiological conditions. However, the scanning tip probes only the molecular surface with limited resolution, missing details required to fully deduce functional mechanisms from imaging alone. To overcome such drawbacks, we developed a computational framework to reconstruct 3D atomistic structures from AFM surface scans, employing simulation AFM and automatized fitting to experimental images. We provide applications to AFM images ranging from single molecular machines, protein filaments, to large-scale assemblies of 2D protein lattices, and demonstrate how the obtained full atomistic information advances the molecular understanding beyond the original topographic AFM image. We show that simulation AFM further allows for quantitative molecular feature assignment within measured AFM topographies. Implementation of the developed methods into the versatile interactive interface of the BioAFMviewer software, freely available at www.bioafmviewer.com, presents the opportunity for the broad Bio-AFM community to employ the enormous amount of existing structural and modeling data to facilitate the interpretation of resolution-limited AFM images.
Collapse
Affiliation(s)
- Romain Amyot
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Arin Marchesi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Clemens M. Franz
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Ignacio Casuso
- Aix Marseille University, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
35
|
Holuigue H, Lorenc E, Chighizola M, Schulte C, Varinelli L, Deraco M, Guaglio M, Gariboldi M, Podestà A. Force Sensing on Cells and Tissues by Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:2197. [PMID: 35336366 PMCID: PMC8955449 DOI: 10.3390/s22062197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.
Collapse
Affiliation(s)
- Hatice Holuigue
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Ewelina Lorenc
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Matteo Chighizola
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Carsten Schulte
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Alessandro Podestà
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| |
Collapse
|
36
|
Hang X, He S, Dong Z, Li Y, Huang Z, Zhang Y, Sun H, Lin L, Li H, Wang Y, Liu B, Wu N, Ren T, Fan Y, Lou J, Yang R, Jiang L, Chang L. High-Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106196. [PMID: 35322558 DOI: 10.1002/smll.202106196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cell mechanical forces play fundamental roles in regulating cellular responses to environmental stimulations. The shortcomings of conventional methods, including force resolution and cellular throughput, make them less accessible to mechanical heterogeneity at the single-cell level. Here, a DNA tensioner platform is introduced with high throughput (>10 000 cells per chip) and pN-level resolution. A microfluidic-based cell array is trapped on "hairpin-structured" DNA tensioners that enable transformation of the mechanical information of living cells into fluorescence signals. By using the platform, one can identify enhanced mechanical forces of drug-resistant cells as compared to their drug-sensitive counterparts, and mechanical differences between metastatic tumor cells in pleural effusion and nonmetastatic histiocytes. Further genetic analysis traces two genes, VEGFA and MINK1, that may play deterministic roles in regulating mechanical heterogeneities. In view of the ubiquity of cells' mechanical forces in the extracellular microenvironment (ECM), this platform shows wide potential to establish links of cellular mechanical heterogeneity to genetic heterogeneity.
Collapse
Affiliation(s)
- Xinxin Hang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Shiqi He
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zaizai Dong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Hong Sun
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Long Lin
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hu Li
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yang Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tianling Ren
- Beijing National Research Center for Information Science and Technology (BNRist), Institute of Microelectronics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, No. 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Ruiguo Yang
- Nebraska Center for Integrated Biomolecular Communication, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Future Technology, and Sino-Danish College, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| |
Collapse
|
37
|
Kim YJ, Lim J, Kim DN. Accelerating AFM Characterization via Deep-Learning-Based Image Super-Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103779. [PMID: 34837327 DOI: 10.1002/smll.202103779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Atomic force microscopy (AFM) is one of the most popular imaging and characterizing methods applicable to a wide range of nanoscale material systems. However, high-resolution imaging using AFM generally suffers from a low scanning yield due to its method of raster scanning. Here, a systematic method of data acquisition and preparation combined with a deep-learning-based image super-resolution, enabling rapid AFM characterization with accuracy, is proposed. Its application to measuring the geometrical and mechanical properties of structured DNA assemblies reveals that around a tenfold reduction in AFM imaging time can be achieved without significant loss of accuracy. Through a transfer learning strategy, it can be efficiently customized for a specific target sample on demand.
Collapse
Affiliation(s)
- Young-Joo Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jaekyung Lim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
38
|
Lee JY, Park JW. Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level. Analyst 2021; 147:341-348. [PMID: 34935781 DOI: 10.1039/d1an02108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA methylation plays key roles in various areas, such as gene expression, regulation, epigenetics, and cancers. Since 5-methylcytosine (5mC) is commonly present in methylated DNA, characterizing the binding kinetics and thermodynamics of the nucleotide to the enzymatic pocket can help to understand the DNA replication process. Furthermore, 5-carboxycytosine (5caC) is a form that appears through the iterative oxidation of 5mC, and its effect on the DNA replication process is still not well known. Here, we immobilized a DNA polymerase (DNAP) with an orientation control on a tip of an atomic force microscope (AFM), and observed the interaction between the immobilized deoxyguanosine triphosphate (dGTP) on the surface and the DNAP in the presence of a DNA duplex. The interaction probability increased as the concentration of the DNA strand, and the affinity constant between the DNAP and DNA was obtained by fitting the change. Increasing the concentration of dGTP in solution diminished the interaction probability, and a fitting allowed us to retrieve the affinity constant between dGTP and the DNAP holding the DNA in the reaction pocket. Because the dissociation constant could be obtained through the loading rate dependence of the unbinding force value, both affinity and kinetic constants for cytosine (C), 5mC, and 5caC in the DNAP were compared in the light of the steric and electronic effect of the substituents at 5-position of cytosine.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
| | - Joon Won Park
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea. .,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
39
|
Kumemura M, Pekin D, Menon VA, Van Seuningen I, Collard D, Tarhan MC. Fabricating Silicon Resonators for Analysing Biological Samples. MICROMACHINES 2021; 12:1546. [PMID: 34945396 PMCID: PMC8708134 DOI: 10.3390/mi12121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.
Collapse
Affiliation(s)
- Momoko Kumemura
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan;
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
| | - Deniz Pekin
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Vivek Anand Menon
- Division of Mechanical Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Dominique Collard
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
| | - Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520—IEMN, Institut
d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| |
Collapse
|
40
|
Wang Q, Qin Q, Chen Y, Yang T, Xu Q, Mu H, Han J, Cao K, Jiao M, Liu M, Zhang S, Yang C. STED microscopy reveals in-situ photoluminescence properties of single nanostructures in densely perovskite thin films. OPTICS EXPRESS 2021; 29:40051-40060. [PMID: 34809355 DOI: 10.1364/oe.442345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
All-inorganic perovskite nanomaterials have attracted much attention recently due to their prominent optical performance and potential application for optoelectronic devices. The carriers dynamics of all-inorganic perovskites has been the research focus because the understanding of carriers dynamics process is of critical importance for improving the fluorescence conversion efficiency. While photophysical properties of excited carrier are usually measured at the macroscopic scale, it is necessary to probe the in-situ dynamics process at the nanometer scale and gain deep insights into the photophysical mechanisms and their localized dependence on the thin-film nanostructures. Stimulated emission depletion (STED) nanoscopy with super-resolution beyond the diffraction limit can directly provide explicit information at a single particle level or nanometer scale. Through this unique technique, we firstly study the in-situ dynamics process of single CsPbBr3 nanocrystals(NCs) and nanostructures embedded inside high-dense samples. Our findings reveal the different physical mechanisms of PL blinking and antibunching for single CsPbBr3 NCs and nanostructures that correlate with thin-film nanostructural features (e.g. defects, grain boundaries and carrier mobility). The insights gained into such nanostructure-localized physical mechanisms are critically important for further improving the material quality and its corresponding device performance.
Collapse
|
41
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
42
|
Riechers SL, Petrik N, Loring JS, Murphy MK, Pearce CI, Kimmel GA, Rosso KM. Integrated atomic force microscopy and x-ray irradiation for in situ characterization of radiation-induced processes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113701. [PMID: 34852514 DOI: 10.1063/5.0054646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Understanding radiation-induced chemical and physical transformations at material interfaces is important across diverse fields, but experimental approaches are often limited to either ex situ observations or in situ electron microscopy or synchrotron-based methods, in which cases the radiation type and dose are inextricably tied to the imaging basis itself. In this work, we overcome this limitation by demonstrating integration of an x-ray source with an atomic force microscope to directly monitor radiolytically driven interfacial chemistry at the nanoscale. We illustrate the value of in situ observations by examining effects of radiolysis on material adhesion forces in aqueous solution as well as examining the production of alkali nitrates at the interface between an alkali halide crystal surface and air. For the examined salt-air interface, direct visualization under flexible experimental conditions greatly extends prior observations by enabling the transformation process to be followed comprehensively from source-to-sink with mass balance quantitation. Our novel rad-atomic force microscope opens doors into understanding the dynamics of radiolytically driven mass transfer and surface alteration at the nanoscale in real-time.
Collapse
Affiliation(s)
- Shawn L Riechers
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Nikolai Petrik
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - John S Loring
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mark K Murphy
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg A Kimmel
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
43
|
Ando T. Biophysical reviews top five: atomic force microscopy in biophysics. Biophys Rev 2021; 13:455-458. [PMID: 34466165 PMCID: PMC8355283 DOI: 10.1007/s12551-021-00820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/03/2023] Open
Abstract
Since its invention in the late 1980s, atomic force microscopy (AFM), in which a nanometer-sized tip is used to physically interrogate the properties of a surface at high resolution, has brought about scientific revolutions in both surface science and biological physics. In response to a request from the journal, I have prepared a top-five list of scientific papers that I feel represent truly landmark developments in the use of AFM in the biophysics field. This selection is necessarily limited by number (just five) and subjective (my opinion) and I offer my apologies to those not appearing in this list.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
44
|
Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, Cao Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat Commun 2021; 12:5082. [PMID: 34426584 PMCID: PMC8382745 DOI: 10.1038/s41467-021-25425-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacteria can resist large mechanical perturbations during their invasion and colonization by secreting various surface proteins with intramolecular isopeptide or ester bonds. Compared to isopeptide bonds, ester bonds are prone to hydrolysis. It remains elusive whether ester bonds can completely block mechanical extension similarly to isopeptide bonds, or whether ester bonds dissipate mechanical energy by bond rupture. Here, we show that an ester-bond containing stalk domain of Cpe0147 is inextensible even at forces > 2 nN. The ester bond locks the structure to a partially unfolded conformation, in which the ester bond remains largely water inaccessible. This allows the ester bond to withstand considerable mechanical forces and in turn prevent complete protein unfolding. However, the protecting effect might be reduced at non-physiological basic pHs or low calcium concentrations due to destabilizing the protein structures. Inspired by this design principle, we engineer a disulfide mutant resistant to mechanical unfolding under reducing conditions. Bacterial surface adhesion proteins are characterized by unusual mechanical properties. Here, the authors use atomic force microscopy-based technique to study a surface-anchoring protein Cpe0147 from Clostridium perfringens and show that an ester bond can withstand considerable mechanical forces and prevent complete protein unfolding.
Collapse
Affiliation(s)
- Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Quan Ma
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| |
Collapse
|
45
|
Ki H, Jo J, Kim Y, Kim TW, Kim C, Kim Y, Kim CW, Muniyappan S, Lee SJ, Kim Y, Kim HM, Yang Y, Rhee YM, Ihee H. Uncovering the Conformational Distribution of a Small Protein with Nanoparticle-Aided Cryo-Electron Microscopy Sampling. J Phys Chem Lett 2021; 12:6565-6573. [PMID: 34251825 DOI: 10.1021/acs.jpclett.1c01277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we introduce the nanoparticle-aided cryo-electron microscopy sampling (NACS) method to access the conformational distribution of a protein molecule. Two nanogold particles are labeled at two target sites, and the interparticle distance is measured as a structural parameter via cryo-electron microscopy (cryo-EM). The key aspect of NACS is that the projected distance information instead of the global conformational information is extracted from each protein molecule. This is possible because the contrast provided by the nanogold particles is strong enough to provide the projected distance, while the protein itself is invisible due to its low contrast. We successfully demonstrate that various protein conformations, even for small or disordered proteins, which generally cannot be accessed via cryo-EM, can be captured. The demonstrated method with the potential to directly observe the conformational distribution of such systems may open up new possibilities in studying their dynamics at a single-molecule level.
Collapse
Affiliation(s)
- Hosung Ki
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Junbeom Jo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Youngmin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yeeun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Srinivasan Muniyappan
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yonggwan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
46
|
Grall S, Alić I, Pavoni E, Awadein M, Fujii T, Müllegger S, Farina M, Clément N, Gramse G. Attoampere Nanoelectrochemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101253. [PMID: 34121314 DOI: 10.1002/smll.202101253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical microscopy techniques have extended the understanding of surface chemistry to the micrometer and even sub-micrometer level. However, fundamental questions related to charge transport at the solid-electrolyte interface, such as catalytic reactions or operation of individual ion channels, require improved spatial resolutions down to the nanoscale. A prerequisite for single-molecule electrochemical sensitivity is the reliable detection of a few electrons per second, that is, currents in the atto-Ampere (10-18 A) range, 1000 times below today's electrochemical microscopes. This work reports local cyclic voltammetry (CV) measurements at the solid-liquid interface on ferrocene self-assembled monolayer (SAM) with sub-atto-Ampere sensitivity and simultaneous spatial resolution < 80 nm. Such sensitivity is obtained through measurements of the charging of the local faradaic interface capacitance at GHz frequencies. Nanometer-scale details of different molecular organizations with a 19% packing density difference are resolved, with an extremely small dispersion of the molecular electrical properties. This is predicted previously based on weak electrostatic interactions between neighboring redox molecules in a SAM configuration. These results open new perspectives for nano-electrochemistry like the study of quantum mechanical resonance in complex molecules and a wide range of applications from electrochemical catalysis to biophysics.
Collapse
Affiliation(s)
- Simon Grall
- Institute of Biophysics, Johannes Kepler University, Linz, 4020, Austria
| | - Ivan Alić
- Institute of Biophysics, Johannes Kepler University, Linz, 4020, Austria
| | - Eleonora Pavoni
- Department of Information Engineering, Marche Polytechnic University, Ancona, 60131, Italy
| | - Mohamed Awadein
- Keysight Labs Austria, Keysight Technologies, Linz, 4020, Austria
| | - Teruo Fujii
- LIMMS/CNRS, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Stefan Müllegger
- Institute of Semiconductor and Solid-State Physics, Johannes Kepler University, Linz, 4040, Austria
| | - Marco Farina
- Department of Information Engineering, Marche Polytechnic University, Ancona, 60131, Italy
| | - Nicolas Clément
- LIMMS/CNRS, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Georg Gramse
- Institute of Biophysics, Johannes Kepler University, Linz, 4020, Austria
- Keysight Labs Austria, Keysight Technologies, Linz, 4020, Austria
| |
Collapse
|
47
|
Shen Y, Cosquer G, Zhang H, Breedlove BK, Cui M, Yamashita M. 4f-π Molecular Hybrid Exhibiting Rich Conductive Phases and Slow Relaxation of Magnetization. J Am Chem Soc 2021; 143:9543-9550. [PMID: 34156240 DOI: 10.1021/jacs.1c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cooperation between single-molecule magnets and electrical conductivity holds promise for preparing high-density magnetic devices; however, there are only a few reports so far. Here we report a 4f-π-based molecular hybrid, k-(ET)5Dy(NCS)7(KCl)0.5 (1) (ET = bis(ethylenedithio)tetrathiafulvalene, NCS- = thiocyanate), which undergoes slow relaxation of the magnetization and electrical conductivity. Unlike common ET-based conductive salts, K+ ions were intercalated into ET layers and coordinated with ET radicals. We found that the ET charges were sensitive to temperature, resulting in rich conductive phases at 75-300 K. In particular, the upturn in conductivity with a clear hysteresis loop was explained by the formation of partially oxidized states with charges close to 0.5+, which accounts for a metallic state. From the results of electronic structure calculations, the hole concentration increased to 125 K, which is consistent with a partially oxidized state upon cooling. The weak antiferromagnetic interactions accompanied by a dual magnetic relaxation process below 4 K are closely associated with the weak 4f-π interactions.
Collapse
Affiliation(s)
- Yongbing Shen
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Goulven Cosquer
- Research Group of Solid Material Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Haitao Zhang
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Mengxing Cui
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
48
|
Abstract
Mycoplasma mobile, a parasitic bacterium, glides on solid surfaces, such as animal cells and glass, by a special mechanism. This process is driven by the force generated through ATP hydrolysis on an internal structure. However, the spatial and temporal behaviors of the internal structures in living cells are unclear. In this study, we detected the movements of the internal structure by scanning cells immobilized on a glass substrate using high-speed atomic force microscopy (HS-AFM). By scanning the surface of a cell, we succeeded in visualizing particles, 2 nm in height and aligned mostly along the cell axis with a pitch of 31.5 nm, consistent with previously reported features based on electron microscopy. Movements of individual particles were then analyzed by HS-AFM. In the presence of sodium azide, the average speed of particle movements was reduced, suggesting that movement is linked to ATP hydrolysis. Partial inhibition of the reaction by sodium azide enabled us to analyze particle behavior in detail, showing that the particles move 9 nm right, relative to the gliding direction, and 2 nm into the cell interior in 330 ms and then return to their original position, based on ATP hydrolysis.
Collapse
|
49
|
Bian K, Gerber C, Heinrich AJ, Müller DJ, Scheuring S, Jiang Y. Scanning probe microscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00033-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Li M, Xi N, Liu L. Peak force tapping atomic force microscopy for advancing cell and molecular biology. NANOSCALE 2021; 13:8358-8375. [PMID: 33913463 DOI: 10.1039/d1nr01303c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|