1
|
Tang S, He B, Liu Y, Wang L, Liang Y, Wang J, Jin H, Wei M, Ren W, Suo Z, Xu Y. A dual-signal mode electrochemical aptasensor based on tetrahedral DNA nanostructures for sensitive detection of citrinin in food using PtPdCo mesoporous nanozymes. Food Chem 2024; 460:140739. [PMID: 39116770 DOI: 10.1016/j.foodchem.2024.140739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.
Collapse
Affiliation(s)
- Shi Tang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Longdi Wang
- COFCO Lijin (Tianjin) Grain and Oil Co., Ltd., Tianjin, 300112, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
2
|
Cui M, Zhang D, Zheng X, Zhai H, Xie M, Fan Q, Wang L, Fan C, Chao J. Intelligent Modular DNA Lysosome-Targeting Chimera Nanodevice for Precision Tumor Therapy. J Am Chem Soc 2024; 146:29609-29620. [PMID: 39428706 DOI: 10.1021/jacs.4c10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lysosome targeting chimeras (LYTACs) have emerged as a powerful modality that can eliminate traditionally undruggable extracellular tumor-related pathogenic proteins, but their low bioavailability and nonspecific distribution significantly restrict their efficacy in precision tumor therapy. Developing a LYTAC system that can selectively target tumor tissues and enable a modular design is crucial but challenging. We here report a programmable nanoplatform for tumor-specific degradation of multipathogenic proteins using an intelligent modular DNA LYTAC (IMTAC) nanodevice. We employ circular DNA origami to integrate predesigned modular multitarget protein binding sites and pH-responsive protein degradation promoters that specifically recognize cell-surface lysosome-shuttling receptors in tumor tissues. By precisely manipulating the stoichiometry and modularity of promoters and ligands targeting diverse proteins, the IMTAC nanodevice enables accurate localization and delivery into tumor tissues, where the acidic tumor microenvironment triggers degradation switch activation, multivalent binding, and efficient degradation of various prespecified proteins. The tissue-specificity and multiple ligands in IMTACs significantly improve the drug utilization rate while reducing off-target effects. Importantly, this system demonstrates the capability of collabo-rative degradation of EGFR and PDL1 in tumor tissue for combined targeting and immunity therapy of hepatocellular carcinoma (HCC), resulting in obvious tumor necrosis and inhibition of tumor growth in vivo even at low concentrations. This study presents a unique strategy for building a general, intelligent, modular, and simple encoded nanoplatform for designing precision medicine degraders and developing proprietary antitumor drugs.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xian Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qin Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
3
|
Yu Z, Baptist AV, Reinhardt SCM, Bertosin E, Dekker C, Jungmann R, Heuer-Jungemann A, Caneva S. Compliant DNA Origami Nanoactuators as Size-Selective Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405104. [PMID: 39014922 DOI: 10.1002/adma.202405104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.
Collapse
Affiliation(s)
- Ze Yu
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Anna V Baptist
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Eva Bertosin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Sabina Caneva
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
4
|
Huzar J, Coreas R, Landry MP, Tikhomirov G. AI-based Prediction of Protein Corona Composition on DNA Nanostructures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609594. [PMID: 39253427 PMCID: PMC11383312 DOI: 10.1101/2024.08.25.609594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered in vivo due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate in vivo are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures in vivo for biophysical and biomedical applications.
Collapse
Affiliation(s)
- Jared Huzar
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
- Innovative Genomics Institute, Berkeley, CA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Grigory Tikhomirov
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA
| |
Collapse
|
5
|
Song L, Zuo X, Li M. Concept and Development of Algebraic Topological Framework Nucleic Acids. Chempluschem 2024; 89:e202300760. [PMID: 38529703 DOI: 10.1002/cplu.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Nucleic acids are considered as promising materials for developing exquisite nanostructures from one to three dimensions. The advances of DNA nanotechnology facilitate ingenious design of DNA nanostructures with diverse shapes and sizes. Especially, the algebraic topological framework nucleic acids (ATFNAs) are functional DNA nanostructures that engineer guest molecules (e. g., nucleic acids, proteins, small molecules, and nanoparticles) stoichiometrically and spatially. The intrinsic precise properties and tailorable functionalities of ATFNAs hold great promise for biological applications, such as cell recognition and immunotherapy. This Perspective highlights the concept and development of precisely assembled ATFNAs, and outlines the new frontiers and opportunities for exploiting the structural advantages of ATFNAs for biological applications.
Collapse
Affiliation(s)
- Lu Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
6
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
7
|
Aksel T, Navarro EJ, Fong N, Douglas SM. Design principles for accurate folding of DNA origami. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585609. [PMID: 38562860 PMCID: PMC10983894 DOI: 10.1101/2024.03.18.585609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We describe design principles for accurate folding of three-dimensional DNA origami. To evaluate design rules, we reduced the problem of DNA strand routing to the known problem of shortest-path finding in a weighted graph. To score candidate DNA strand routes we used a thermodynamic model that accounts for enthalpic and entropic contributions of initial binding, hybridization, and DNA loop closure. We encoded and analyzed new and previously reported design heuristics. Using design principles emerging from this analysis, we redesigned and fabricated multiple shapes and compared their folding accuracy using electrophoretic mobility analysis and electron microscopy imaging. We demonstrate accurate folding can be achieved by optimizing staple routes using our model, and provide a computational framework for applying our methodology to any design.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Erik J. Navarro
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Nicholas Fong
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| | - Shawn M. Douglas
- Department of Cellular and Molecular Pharmacology. University of California, San Francisco
| |
Collapse
|
8
|
Rolczynski BS, Díaz SA, Goldman ER, Medintz IL, Melinger JS. Investigating the dissipation of heat and quantum information from DNA-scaffolded chromophore networks. J Chem Phys 2024; 160:034105. [PMID: 38230810 DOI: 10.1063/5.0181034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Scaffolded molecular networks are important building blocks in biological pigment-protein complexes, and DNA nanotechnology allows analogous systems to be designed and synthesized. System-environment interactions in these systems are responsible for important processes, such as the dissipation of heat and quantum information. This study investigates the role of nanoscale molecular parameters in tuning these vibronic system-environment dynamics. Here, genetic algorithm methods are used to obtain nanoscale parameters for a DNA-scaffolded chromophore network based on comparisons between its calculated and measured optical spectra. These parameters include the positions, orientations, and energy level characteristics within the network. This information is then used to compute the dynamics, including the vibronic population dynamics and system-environment heat currents, using the hierarchical equations of motion. The dissipation of quantum information is identified by the system's transient change in entropy, which is proportional to the heat currents according to the second law of thermodynamics. These results indicate that the dissipation of quantum information is highly dependent on the particular nanoscale characteristics of the molecular network, which is a necessary first step before gleaning the systematic optimization rules. Subsequently, the I-concurrence dynamics are calculated to understand the evolution of the vibronic system's quantum entanglement, which are found to be long-lived compared to these system-bath dissipation processes.
Collapse
Affiliation(s)
- Brian S Rolczynski
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, USA
| |
Collapse
|
9
|
Mentis AFA, Papavassiliou KA, Papavassiliou AG. DNA origami: a tool to evaluate and harness transcription factors. J Mol Med (Berl) 2023; 101:1493-1498. [PMID: 37813986 DOI: 10.1007/s00109-023-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Alongside other players, such as CpG methylation and the "histone code," transcription factors (TFs) represent a key feature of gene regulation. TFs are implicated in critical cellular processes, ranging from cell death, growth, and differentiation, up to intranuclear signaling of steroid and other hormones, physical entities, and hypoxia regulation. Notwithstanding an extensive body of research in this field, several questions and therapeutic options remain unanswered and unexplored, respectively. Of note, many of these TFs represent therapeutic targets, which are either difficult to be pharmacologically tackled or are still not drugged via traditional approaches, such as small-molecule inhibition. Upon providing a brief overview of TFs, we focus herein on how synthetic biology/medicine could assist in their study as well as their therapeutic targeting. Specifically, we contend that DNA origami, i.e., a novel synthetic DNA nanotechnological approach, represents an excellent synthetic biology/medicine tool to accomplish the above goals, since it can harness several vital characteristics of DNA: DNA polymerization, DNA complementarity, DNA "programmability," and DNA "editability." In doing so, DNA origami can be applied to study TF dynamics during DNA transcription, to elucidate xeno-nucleic acids with distinct scaffolds and unconventional base pairs, and to use TFs as competitors of oncogene-engaged promoters. Overall, because of their potential for high-throughput design and their favorable pharmacodynamic and pharmacokinetic properties, DNA origami can be a novel armory for TF-related drug design. Last, we discuss future trends in the field, such as RNA origami and innovative DNA origami-based therapeutic delivery approaches.
Collapse
Affiliation(s)
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
10
|
Martynenko IV, Erber E, Ruider V, Dass M, Posnjak G, Yin X, Altpeter P, Liedl T. Site-directed placement of three-dimensional DNA origami. NATURE NANOTECHNOLOGY 2023; 18:1456-1462. [PMID: 37640908 PMCID: PMC7616159 DOI: 10.1038/s41565-023-01487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
The combination of lithographic methods with two-dimensional DNA origami self-assembly has led, among others, to the development of photonic crystal cavity arrays and the exploration of sensing nanoarrays where molecular devices are patterned on the sub-micrometre scale. Here we extend this concept to the third dimension by mounting three-dimensional DNA origami onto nanopatterned substrates, followed by silicification to provide hybrid DNA-silica structures exhibiting mechanical and chemical stability and achieving feature sizes in the sub-10-nm regime. Our versatile and scalable method relying on self-assembly at ambient temperatures offers the potential to three-dimensionally position any inorganic and organic components compatible with DNA origami nanoarchitecture, demonstrated here with gold nanoparticles. This way of nanotexturing could provide a route for the low-cost production of complex and three-dimensionally patterned surfaces and integrated devices designed on the molecular level and reaching macroscopic dimensions.
Collapse
Affiliation(s)
- Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
| | - Elisabeth Erber
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Veronika Ruider
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Xin Yin
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Altpeter
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
11
|
Wagenbauer KF, Pham N, Gottschlich A, Kick B, Kozina V, Frank C, Trninic D, Stömmer P, Grünmeier R, Carlini E, Tsiverioti CA, Kobold S, Funke JJ, Dietz H. Programmable multispecific DNA-origami-based T-cell engagers. NATURE NANOTECHNOLOGY 2023; 18:1319-1326. [PMID: 37591933 PMCID: PMC10656288 DOI: 10.1038/s41565-023-01471-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023]
Abstract
Multispecific antibodies have emerged as versatile therapeutic agents, and therefore, approaches to optimize and streamline their design and assembly are needed. Here we report on the modular and programmable assembly of IgG antibodies, F(ab) and scFv fragments on DNA origami nanocarriers. We screened 105 distinct quadruplet antibody variants in vitro for the ability to activate T cells in the presence of target cells. T-cell engagers were identified, which in vitro showed the specific and efficient T-cell-mediated lysis of five distinct target cell lines. We used these T-cell engagers to target and lyse tumour cells in vivo in a xenograft mouse tumour model. Our approach enables the rapid generation, screening and testing of bi- and multispecific antibodies to facilitate preclinical pharmaceutical development from in vitro discovery to in vivo proof of concept.
Collapse
Grants
- This work was supported by a European Research Council Consolidator Grant to H.D. (grant agreement 724261), the Deutsche Forschungsgemeinschaft through grants provided within the Gottfried Wilhelm Leibniz Program (to H.D.), the Medical Valley Award, the M4 Award, a GO-Bio initial award (Federal Ministry of Education and Research (BMBF) of Germany), and a Funding by the ForTra gGmbH für Forschungstransfer der Else Kröner-Fresenius Stiftung all to KFW, JJF, BK and HD. The work has received support from the Max Planck School Matter to Life (to H.D.) jointly financed by the Federal Ministry of Education and Research (BMBF) of Germany and the Max Planck Society
- This study was further supported by the international doctoral program the Förderprogramm für Forschung und Lehre der Medizinischen Fakultät der LMU (A.G, grant number 1139), the Deutsche Forschungsgemeinschaft (A.G. – grant number: GO 3823/1-1); S.K. - grant number: KO 5055/3-1), ‘i-Target: immunotargeting of cancer’ (funded by the Elite Network of Bavaria; to S.K.), Melanoma Research Alliance (grant number 409510 to S.K.), Marie Sklodowska-Curie Training Network for Optimizing Adoptive T Cell Therapy of Cancer (funded by the Horizon 2020 programme of the European Union; grant 955575 to S.K.), Else Kröner-Fresenius-Stiftung (to S.K.), German Cancer Aid (AvantCAR.de to S. Kobold), Ernst Jung Stiftung (to S.K.), the Wilhelm-Sander Stiftung (to S. Kobold), Institutional Strategy LMUexcellent of LMU Munich (within the framework of the German Excellence Initiative; to S.K.), Bundesministerium für Bildung und Forschung (S.K.), European Research Council (Starting Grant 756017 and Proof of Concept Grant 101100460 to S. Kobold), Deutsche Forschungsgemeinschaft (DFG; KO5055-2-1 and 510821390 to S.K.), by the SFB-TRR 338/1 2021–452881907 (to S.K.), Fritz-Bender Foundation (to S.K.), Deutsche José Carreras Leukämie Stiftung (to S.K.) and Hector Foundation (to S.K.).
Collapse
Affiliation(s)
- Klaus F Wagenbauer
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Nhi Pham
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Viktorija Kozina
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christopher Frank
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Daniela Trninic
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Pierre Stömmer
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christina Angeliki Tsiverioti
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| | - Jonas J Funke
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
12
|
Zhou L, Ren L, Bai Z, Xia Q, Wang Y, Peng H, Yan Q, Shi J, Li B, Guo L, Wang L. DNA Framework Programmed Conformational Reconstruction of Antibody Complementary Determining Region. JACS AU 2023; 3:2709-2714. [PMID: 37885585 PMCID: PMC10598557 DOI: 10.1021/jacsau.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The conformation of complementary determining region (CDR) is crucial in dictating its specificity and affinity for binding with an antigen, making it a focal point in artificial antibody engineering. Although desirable, programmable scaffolds that can regulate the conformation of individual CDRs with nanometer precision are still lacking. Here, we devise a strategy to program the CDR conformation by anchoring both ends of a free CDR loop to specific sites of a DNA framework structure. This method allows us to define the span of a single CDR loop with an ∼2 nm resolution. Using this approach, we create a series of DNA framework based artificial antibodies (DNFbodies) with varied CDR loop spans, leading to different antibody-antigen binding affinities. We find that an optimized single CDR loop (∼2.3 nm span) exhibits ∼3-fold improved affinity relative to natural antibodies, confirming the critical role of the CDR conformation. This study may inspire the rational design of artificial antibodies.
Collapse
Affiliation(s)
- Liqi Zhou
- National
Laboratory of Solid State Microstructures, Jiangsu Key Laboratory
of Artificial Functional Materials, College of Engineering and Applied
Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lei Ren
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Zhiang Bai
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglin Xia
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Yue Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Hongzhen Peng
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglong Yan
- Xiangfu
Laboratory, Jiashan 314102, People’s Republic
of China
| | - Jiye Shi
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Bin Li
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| | - Linjie Guo
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
13
|
Xu Y, Zheng R, Prasad A, Liu M, Wan Z, Zhou X, Porter RM, Sample M, Poppleton E, Procyk J, Liu H, Li Y, Wang S, Yan H, Sulc P, Stephanopoulos N. High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558353. [PMID: 37790307 PMCID: PMC10542138 DOI: 10.1101/2023.09.18.558353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multivalency enables nanostructures to bind molecular targets with high affinity. Although antibodies can be generated against a wide range of antigens, their shape and size cannot be tuned to match a given target. DNA nanotechnology provides an attractive approach for designing customized multivalent scaffolds due to the addressability and programmability of the nanostructure shape and size. Here, we design a nanoscale synthetic antibody ("nano-synbody") based on a three-helix bundle DNA nanostructure with one, two, or three identical arms terminating in a mini-binder protein that targets the SARS-CoV-2 spike protein. The nano-synbody was designed to match the valence and distance between the three receptor binding domains (RBDs) in the spike trimer, in order to enhance affinity. The protein-DNA nano-synbody shows tight binding to the wild-type, Delta, and several Omicron variants of the SARS-CoV-2 spike trimer, with affinity increasing as the number of arms increases from one to three. The effectiveness of the nano-synbody was also verified using a pseudovirus neutralization assay, with the three-arm nanostructure inhibiting two Omicron variants against which the structures with only one or two arms are ineffective. The structure of the three-arm nano-synbody bound to the Omicron variant spike trimer was solved by negative-stain transmission electron microscopy reconstruction, and shows the protein-DNA nanostructure with all three arms attached to the RBD domains, confirming the intended trivalent attachment. The ability to tune the size and shape of the nano-synbody, as well as its potential ability to attach two or more different binding ligands, will enable the high-affinity targeting of a range of proteins not possible with traditional antibodies.
Collapse
|
14
|
Zhang Z, Feng Z, Zhao X, Jean D, Yu Z, Chapman ER. Functionalization and higher-order organization of liposomes with DNA nanostructures. Nat Commun 2023; 14:5256. [PMID: 37644062 PMCID: PMC10465589 DOI: 10.1038/s41467-023-41013-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Small unilamellar vesicles (SUVs) are indispensable model membranes, organelle mimics, and drug and vaccine carriers. However, the lack of robust techniques to functionalize or organize preformed SUVs limits their applications. Here we use DNA nanostructures to coat, cluster, and pattern sub-100-nm liposomes, generating distance-controlled vesicle networks, strings and dimers, among other configurations. The DNA coating also enables attachment of proteins to liposomes, and temporal control of membrane fusion driven by SNARE protein complexes. Such a convenient and versatile method of engineering premade vesicles both structurally and functionally is highly relevant to bottom-up biology and targeted delivery.
Collapse
Affiliation(s)
- Zhao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Zhaomeng Feng
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaowei Zhao
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Dominique Jean
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
16
|
Watanabe K, Kawamata I, Murata S, Suzuki Y. Multi-Reconfigurable DNA Origami Nanolattice Driven by the Combination of Orthogonal Signals. JACS AU 2023; 3:1435-1442. [PMID: 37234113 PMCID: PMC10206592 DOI: 10.1021/jacsau.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The progress of the scaffolded DNA origami technology has enabled the construction of various dynamic nanodevices imitating the shapes and motions of mechanical elements. To further expand the achievable configurational changes, the incorporation of multiple movable joints into a single DNA origami structure and their precise control are desired. Here, we propose a multi-reconfigurable 3 × 3 lattice structure consisting of nine frames with rigid four-helix struts connected with flexible 10-nucleotide joints. The configuration of each frame is determined by the arbitrarily selected orthogonal pair of signal DNAs, resulting in the transformation of the lattice into various shapes. We also demonstrated sequential reconfiguration of the nanolattice and its assemblies from one into another via an isothermal strand displacement reaction at physiological temperatures. Our modular and scalable design approach could serve as a versatile platform for a variety of applications that require reversible and continuous shape control with nanoscale precision.
Collapse
Affiliation(s)
- Kotaro Watanabe
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Ibuki Kawamata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Satoshi Murata
- Department
of Robotics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuki Suzuki
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Department
of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-Cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
17
|
He Z, Shi K, Li J, Chao J. Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage. iScience 2023; 26:106638. [PMID: 37187699 PMCID: PMC10176269 DOI: 10.1016/j.isci.2023.106638] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Since the pioneering work of immobile DNA Holliday junction by Ned Seeman in the early 1980s, the past few decades have witnessed the development of DNA nanotechnology. In particular, DNA origami has pushed the field of DNA nanotechnology to a new level. It obeys the strict Watson-Crick base pairing principle to create intricate structures with nanoscale accuracy, which greatly enriches the complexity, dimension, and functionality of DNA nanostructures. Benefiting from its high programmability and addressability, DNA origami has emerged as versatile nanomachines for transportation, sensing, and computing. This review will briefly summarize the recent progress of DNA origami, two-dimensional pattern, and three-dimensional assembly based on DNA origami, followed by introduction of its application in nanofabrication, biosensing, drug delivery, and computational storage. The prospects and challenges of assembly and application of DNA origami are also discussed.
Collapse
Affiliation(s)
- Zhimei He
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kejun Shi
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinggang Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Corresponding author
| |
Collapse
|
18
|
Li J, Yang F, Chen X, Fang H, Zha C, Huang J, Sun X, Mohamed Ahmed MB, Guo Y, Liu Y. Dual-ratiometric aptasensor for simultaneous detection of malathion and profenofos based on hairpin tetrahedral DNA nanostructures. Biosens Bioelectron 2023; 227:114853. [PMID: 36863194 DOI: 10.1016/j.bios.2022.114853] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Due to the diversification and complexity of organophosphorus pesticide residues brings great challenges to the detection work. Therefore, we developed a dual-ratiometric electrochemical aptasensor that could detect malathion (MAL) and profenofos (PRO) simultaneously. In this study, metal ions, hairpin-tetrahedral DNA nanostructures (HP-TDN) and nanocomposites were used as signal tracers, sensing framework and signal amplification strategy respectively to develop the aptasensor. Thionine (Thi) labeled HP-TDN (HP-TDNThi) provided specific binding sites for assembling Pb2+ labeled MAL aptamer (Pb2+-APT1) and Cd2+ labeled PRO aptamer (Cd2+-APT2). When the target pesticides were present, Pb2+-APT1 and Cd2+-APT2 were dissociated from the hairpin complementary strand of HP-TDNThi, resulting in reduced oxidation currents of Pb2+ (IPb2+) and Cd2+ (ICd2+), respectively, while the oxidation currents of Thi (IThi) remained unchanged. Thus, IPb2+/IThi and ICd2+/IThi oxidation current ratios were used to quantify MAL and PRO, respectively. In addition, the gold nanoparticles (AuNPs) encapsulated in the zeolitic imidazolate framework (ZIF-8) nanocomposites (Au@ZIF-8) greatly increased the catch of HP-TDN, thereby amplifying the detection signal. The rigid three-dimensional structure of HP-TDN could reduce the steric hindrance effect on the electrode surface, which could greatly improve the recognition efficiency of the aptasensor for the pesticide. Under the optimal conditions, the detection limits of the HP-TDN aptasensor for MAL and PRO were 4.3 pg mL-1 and 13.3 pg mL-1, respectively. Our work proposed a new approach to fabricating a high-performance aptasensor for simultaneous detection of multiple organophosphorus pesticides, opening a new avenue for the development of simultaneous detection sensors in the field of food safety and environmental monitoring.
Collapse
Affiliation(s)
- Jiansen Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Fengzhen Yang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Xiaofeng Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Honggang Fang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Chuanyun Zha
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Mohamed Bedair Mohamed Ahmed
- Food Toxicology and Contaminants Dept., Institute of Food Industries and Nutrition, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.
| | - Yuan Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China; Department of Food Science&Technology, School of Agriculture&Biology, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
19
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
20
|
Büber E, Schröder T, Scheckenbach M, Dass M, Franquelim HG, Tinnefeld P. DNA Origami Curvature Sensors for Nanoparticle and Vesicle Size Determination with Single-Molecule FRET Readout. ACS NANO 2023; 17:3088-3097. [PMID: 36735241 DOI: 10.1021/acsnano.2c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle size is an important characteristic of materials with a direct effect on their physicochemical features. Besides nanoparticles, particle size and surface curvature are particularly important in the world of lipids and cellular membranes as the cell membrane undergoes conformational changes in many biological processes which leads to diverging local curvature values. On account of that, it is important to develop cost-effective, rapid and sufficiently precise systems that can measure the surface curvature on the nanoscale that can be translated to size for spherical particles. As an alternative approach for particle characterization, we present flexible DNA nanodevices that can adapt to the curvature of the structure they are bound to. The curvature sensors use Fluorescence Resonance Energy Transfer (FRET) as the transduction mechanism on the single-molecule level. The curvature sensors consist of segmented DNA origami structures connected via flexible DNA linkers incorporating a FRET pair. The activity of the sensors was first demonstrated with defined binding to different DNA origami geometries used as templates. Then the DNA origami curvature sensors were applied to measure spherical silica beads having different size, and subsequently on lipid vesicles. With the designed sensors, we could reliably distinguish different sized nanoparticles within a size range of 50-300 nm as well as the bending angle range of 50-180°. This study helps with the development of more advanced modular-curvature sensing devices that are capable of determining the sizes of nanoparticles and biological complexes.
Collapse
Affiliation(s)
- Ece Büber
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Tim Schröder
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Michael Scheckenbach
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, 80539Munich, Germany
| | - Henri G Franquelim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152Martinsried, Germany
- Interfaculty Centre for Bioactive Matter, Leipzig University, c/o Deutscher Platz 5 (BBZ), 04109Leipzig, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377Munich, Germany
| |
Collapse
|
21
|
Knappe GA, Wamhoff EC, Bathe M. Functionalizing DNA origami to investigate and interact with biological systems. NATURE REVIEWS. MATERIALS 2023; 8:123-138. [PMID: 37206669 PMCID: PMC10191391 DOI: 10.1038/s41578-022-00517-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 05/21/2023]
Abstract
DNA origami has emerged as a powerful method to generate DNA nanostructures with dynamic properties and nanoscale control. These nanostructures enable complex biophysical studies and the fabrication of next-generation therapeutic devices. For these applications, DNA origami typically needs to be functionalized with bioactive ligands and biomacromolecular cargos. Here, we review methods developed to functionalize, purify, and characterize DNA origami nanostructures. We identify remaining challenges, such as limitations in functionalization efficiency and characterization. We then discuss where researchers can contribute to further advance the fabrication of functionalized DNA origami.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to or
| |
Collapse
|
22
|
Ijäs H, Kostiainen MA, Linko V. Protein Coating of DNA Origami. Methods Mol Biol 2023; 2639:195-207. [PMID: 37166719 DOI: 10.1007/978-1-0716-3028-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA origami has emerged as a common technique to create custom two- (2D) and three-dimensional (3D) structures at the nanoscale. These DNA nanostructures have already proven useful in development of many biotechnological tools; however, there are still challenges that cast a shadow over the otherwise bright future of biomedical uses of these DNA objects. The rather obvious obstacles in harnessing DNA origami as drug-delivery vehicles and/or smart biodevices are related to their debatable stability in biologically relevant media, especially in physiological low-cation and endonuclease-rich conditions, relatively poor transfection rates, and, although biocompatible by nature, their unpredictable compatibility with the immune system. Here we demonstrate a technique for coating DNA origami with albumin proteins for enhancing their pharmacokinetic properties. To facilitate protective coating, a synthesized positively charged dendron was linked to bovine serum albumin (BSA) through a covalent maleimide-cysteine bonding, and then the purified dendron-protein conjugates were let to assemble on the negatively charged surface of DNA origami via electrostatic interaction. The resulted BSA-dendron conjugate-coated DNA origami showed improved transfection, high resistance against endonuclease digestion, and significantly enhanced immunocompatibility compared to bare DNA origami. Furthermore, our proposed coating strategy can be considered highly versatile as a maleimide-modified dendron serving as a synthetic DNA-binding domain can be linked to any protein with an available cysteine site.
Collapse
Affiliation(s)
- Heini Ijäs
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Ludwig-Maximilians-University, Munich, Germany
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
23
|
List J, Kopperger E, Simmel FC. Electrical Actuation of DNA-Based Nanomechanical Systems. Methods Mol Biol 2023; 2639:257-274. [PMID: 37166722 DOI: 10.1007/978-1-0716-3028-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA nanotechnology provides efficient methods for the sequence-programmable construction of mechanical devices with nanoscale dimensions. The resulting nanomachines could serve as tools for the manipulation of macromolecules with similar functionalities as mechanical tools and machinery in the macroscopic world. In order to drive and control these machines and to perform specific tasks, a fast, reliable, and repeatable actuation mechanism is required that can work against external loads. Here we describe a highly effective method for actuating DNA structures using externally applied electric fields. To this end, electric fields are generated with controllable direction and amplitude inside a miniature electrophoresis device integrated with an epifluorescence microscope. With this setup, DNA-based nanoelectromechanical devices can be precisely controlled. As an example, we demonstrate how a DNA-based nanorobotic system can be used to dynamically position molecules on a molecular platform with high speeds and accuracy. The microscopy setup also described here allows simultaneous monitoring of a large number of nanorobotic arms in real time and at the single nanomachine level.
Collapse
Affiliation(s)
- Jonathan List
- Physics Department - E14, TU Munich, Garching, Germany
| | | | | |
Collapse
|
24
|
Büchl A, Kopperger E, Vogt M, Langecker M, Simmel FC, List J. Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking. Biophys J 2022; 121:4849-4859. [PMID: 36071662 PMCID: PMC9808541 DOI: 10.1016/j.bpj.2022.08.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Biomolecular nanomechanical devices are of great interest as tools for the processing and manipulation of molecules, thereby mimicking the function of nature's enzymes. DNA nanotechnology provides the capability to build molecular analogs of mechanical machine elements such as joints and hinges via sequence-programmable self-assembly, which are otherwise known from traditional mechanical engineering. Relative to their size, these molecular machine elements typically do not reach the same relative precision and reproducibility that we know from their macroscopic counterparts; however, as they are scaled down to molecular sizes, physical effects typically not considered by mechanical engineers such as Brownian motion, intramolecular forces, and the molecular roughness of the devices begin to dominate their behavior. In order to investigate the effect of different design choices on the roughness of the mechanical energy landscapes of DNA nanodevices in greater detail, we here study an exemplary DNA origami-based structure, a modularly designed rotor-stator arrangement, which resembles a rotatable nanorobotic arm. Using fluorescence tracking microscopy, we follow the motion of individual rotors and record their corresponding energy landscapes. We then utilize the modular construction of the device to exchange its constituent parts individually and systematically test the effect of different design variants on the movement patterns. This allows us to identify the design parameters that most strongly affect the shape of the energy landscapes of the systems. Taking into account these insights, we are able to create devices with significantly flatter energy landscapes, which translates to mechanical nanodevices with improved performance and behaviors more closely resembling those of their macroscopic counterparts.
Collapse
Affiliation(s)
- Adrian Büchl
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Enzo Kopperger
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Matthias Vogt
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Martin Langecker
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14, Technical University of Munich, Garching, Germany.
| | - Jonathan List
- Physics Department E14, Technical University of Munich, Garching, Germany.
| |
Collapse
|
25
|
Mao X, Liu M, Li Q, Fan C, Zuo X. DNA-Based Molecular Machines. JACS AU 2022; 2:2381-2399. [PMID: 36465542 PMCID: PMC9709946 DOI: 10.1021/jacsau.2c00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Cervantes-Salguero K, Freeley M, Gwyther REA, Jones DD, Chávez JL, Palma M. Single molecule DNA origami nanoarrays with controlled protein orientation. BIOPHYSICS REVIEWS 2022; 3:031401. [PMID: 38505279 PMCID: PMC10903486 DOI: 10.1063/5.0099294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 03/21/2024]
Abstract
The nanoscale organization of functional (bio)molecules on solid substrates with nanoscale spatial resolution and single-molecule control-in both position and orientation-is of great interest for the development of next-generation (bio)molecular devices and assays. Herein, we report the fabrication of nanoarrays of individual proteins (and dyes) via the selective organization of DNA origami on nanopatterned surfaces and with controlled protein orientation. Nanoapertures in metal-coated glass substrates were patterned using focused ion beam lithography; 88% of the nanoapertures allowed immobilization of functionalized DNA origami structures. Photobleaching experiments of dye-functionalized DNA nanostructures indicated that 85% of the nanoapertures contain a single origami unit, with only 3% exhibiting double occupancy. Using a reprogrammed genetic code to engineer into a protein new chemistry to allow residue-specific linkage to an addressable ssDNA unit, we assembled orientation-controlled proteins functionalized to DNA origami structures; these were then organized in the arrays and exhibited single molecule traces. This strategy is of general applicability for the investigation of biomolecular events with single-molecule resolution in defined nanoarrays configurations and with orientational control of the (bio)molecule of interest.
Collapse
Affiliation(s)
- K. Cervantes-Salguero
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - M. Freeley
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - R. E. A. Gwyther
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - D. D. Jones
- Division of Molecular Biosciences, School of Biosciences, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - J. L. Chávez
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, Ohio 45433-7901, USA
| | - M. Palma
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
27
|
Cervantes-Salguero K, Biaggne A, Youngsman JM, Ward BM, Kim YC, Li L, Hall JA, Knowlton WB, Graugnard E, Kuang W. Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching. Int J Mol Sci 2022; 23:7690. [PMID: 35887059 PMCID: PMC9323263 DOI: 10.3390/ijms23147690] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022] Open
Abstract
Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar (θ) and in-plane azimuthal (ϕ) angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve θ control for a full revolution with dispersion as small as ±4.5°. In our second strategy, ϕ control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Austin Biaggne
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - John M. Youngsman
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Brett M. Ward
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
| | - Young C. Kim
- Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA;
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - John A. Hall
- Division of Research and Economic Development, Boise State University, Boise, ID 83725, USA;
| | - William B. Knowlton
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Elton Graugnard
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (A.B.); (J.M.Y.); (B.M.W.); (L.L.); (W.B.K.); (E.G.)
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Wan Kuang
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
28
|
Linko V, Zhang H, Nonappa, Kostiainen MA, Ikkala O. From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Acc Chem Res 2022; 55:1785-1795. [PMID: 35647700 PMCID: PMC9260957 DOI: 10.1021/acs.accounts.2c00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ConspectusThe concept of colloids encompasses a wide range of isotropic and anisotropic particles with diverse sizes, shapes, and functions from synthetic nanoparticles, nanorods, and nanosheets to functional biological units. They are addressed in materials science for various functions, while they are ubiquitous in the biological world for multiple functions. A large variety of synthetic colloids have been researched due to their scientific and technological importance; still they characteristically suffer from finite size distributions, imperfect shapes and interactions, and not fully engineered functions. This contrasts with biological colloids that offer precision in their size, shape, and functionality. Materials science has searched for inspiration from the biological world to allow structural control by self-assembly and hierarchy and to identify novel routes for combinations of functions in bio-inspiration.Herein, we first discuss different approaches for highly defined structural control of technically relevant synthetic colloids based on guided assemblies of biological motifs. First, we describe how polydisperse nanoparticles can be assembled within hollow protein cages to allow well-defined assemblies and hierarchical packings. Another approach relies on DNA nanotechnology-based assemblies, where engineered DNA structures allow programmed assembly. Then we will discuss synthetic colloids that have either particularly narrow size dispersity or even atomically precise structures for new assemblies and potential functions. Such colloids can have well-defined packings for membranes allowing high modulus. They can be switchable using light-responsive moieties, and they can initiate packing of larger assemblies of different geometrical shapes. The emphasis is on atomically defined nanoclusters that allow well-defined assemblies by supramolecular interactions, such as directional hydrogen bonding. Finally, we will discuss stimulus-responsive colloids for new functions, even toward complex responsive functions inspired by life. Therein, stimulus-responsive materials inspired by biological learning could allow the next generation of such materials. Classical conditioning is among the simplest biological learning concepts, requiring two stimuli and triggerable memory. Therein we use thermoresponsive hydrogels with plasmonic gold nanoparticles and a spiropyran photoacid as a model. Heating is the unconditioned stimulus leading to melting of the thermoresponsive gel, whereas light (at a specified wavelength) originally leads to reduced pH without plasmonic or structural changes because of steric gel stabilization. Under heat-induced gel melting, light results in pH-decrease and chain-like aggregation of the gold nanoparticles, allowing a new plasmonic response. Thus, simultaneous heating and light irradiation allow conditioning for a newly derived stimulus, where the logic diagram is analogous to Pavlovian conditioning. The shown assemblies demonstrate the different functionalities achievable using colloids when the sizes and the dispersity are controlled.
Collapse
Affiliation(s)
- Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
| | - Hang Zhang
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
| | - Olli Ikkala
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| |
Collapse
|
29
|
Piskunen P, Latham R, West CE, Castronovo M, Linko V. Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. iScience 2022; 25:104389. [PMID: 35633938 PMCID: PMC9130510 DOI: 10.1016/j.isci.2022.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Precise genome editing with CRISPR/Cas paves the way for many biochemical, biotechnological, and medical applications, and consequently, it may enable treatment of already known and still-to-be-found genetic diseases. Meanwhile, another rapidly emerging field—structural DNA nanotechnology—provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective.
Collapse
|
30
|
Yin W, Sui J, Cao G, Dabiri D. Nanoparticle core size and spacer coating thickness dependence on metal-enhanced luminescence in optical oxygen sensors. Talanta 2022; 259:123690. [PMID: 37027930 DOI: 10.1016/j.talanta.2022.123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Metal-enhanced luminescence (MEL) originated from near field interactions of luminescence with the surface plasmon resonance (SPR) of nearby metallic nanoparticles (NPs) is an effective strategy to increase luminescence detection sensitivity in oxygen sensors. Once the excitation light induces SPR, the generated enhanced local electromagnetic filed will result in an enhanced excitation efficiency and an increased radiative decay rates of luminescence in close proximity. Meanwhile, the nonradioactive energy transfer from the dyes to the metal NPs, leading to emission quenching, can also be affected by their separation. The extent of the intensity enhancement depends critically on the particle size, shape and the separation distance between the dye and the metal surface. Here, we prepared core-shell Ag@SiO2 with different core sizes (35 nm, 58 nm and 95 nm) and shell thickness (5-25 nm) to investigate the size and separation dependence on the emission enhancement in oxygen sensors at 0-21% oxygen concentration. Intensity enhancement factors of 4-9 were observed with a silver core size of 95 nm and silica shell thickness of 5 nm at 0-21% O2. In addition, the intensity enhancement factor increases with increasing core size and decreasing shell thickness in the Ag@SiO2-based oxygen sensors. Using Ag@SiO2 NPs result in brighter emission throughout the 0-21% oxygen concentration. Our fundamental understanding of MEP in the oxygen sensors provides us the opportunity to design and control efficient luminescence enhancement in oxygen and other sensors. .
Collapse
|
31
|
Benson E, Marzo RC, Bath J, Turberfield AJ. A DNA molecular printer capable of programmable positioning and patterning in two dimensions. Sci Robot 2022; 7:eabn5459. [PMID: 35442702 DOI: 10.1126/scirobotics.abn5459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanoscale manipulation and patterning usually require costly and sensitive top-down techniques such as those used in scanning probe microscopies or in semiconductor lithography. DNA nanotechnology enables exploration of bottom-up fabrication and has previously been used to design self-assembling components capable of linear and rotary motion. In this work, we combine three independently controllable DNA origami linear actuators to create a nanoscale robotic printer. The two-axis positioning mechanism comprises a moveable gantry, running on parallel rails, threading a mobile sleeve. We show that the device is capable of reversibly positioning a write head over a canvas through the addition of signaling oligonucleotides. We demonstrate "write" functionality by using the head to catalyze a local DNA strand-exchange reaction, selectively modifying pixels on a canvas. This work demonstrates the power of DNA nanotechnology for creating nanoscale robotic components and could find application in surface manufacturing, biophysical studies, and templated chemistry.
Collapse
Affiliation(s)
- Erik Benson
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, University of Oxford, New Biochemistry Building, Oxford, UK
| | - Rafael Carrascosa Marzo
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, University of Oxford, New Biochemistry Building, Oxford, UK
| | - Jonathan Bath
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, University of Oxford, New Biochemistry Building, Oxford, UK
| | - Andrew J Turberfield
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, University of Oxford, New Biochemistry Building, Oxford, UK
| |
Collapse
|
32
|
Abstract
Cellular processes and functions can be regulated by mechanical forces. Nanodevices that can measure and manipulate these forces are critical tools in chemical and cellular biology. Synthetic DNA oligonucleotides have been used to develop a wide range of powerful nanodevices due to their programmable nature and precise and predictable self-assembly. In recent years, various types of DNA-based mechanical nanodevices have been engineered for studying molecular-level forces. With the help of these nanodevices, our understanding of cellular responses to physical forces has been significantly advanced. In this article, we have reviewed some recent developments in DNA-based mechanical sensors and regulators for application in the characterization of cellular biomechanics and the manipulation of cellular morphology, motion and other functions. The design principles discussed in this article can be further used to inspire other types of powerful DNA-based mechanical nanodevices.
Collapse
Affiliation(s)
- Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
33
|
Hanke M, Hansen N, Chen R, Grundmeier G, Fahmy K, Keller A. Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate. Int J Mol Sci 2022; 23:ijms23052817. [PMID: 35269959 PMCID: PMC8911265 DOI: 10.3390/ijms23052817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA origami technology enables the folding of DNA strands into complex nanoscale shapes whose properties and interactions with molecular species often deviate significantly from that of genomic DNA. Here, we investigate the salting-out of different DNA origami shapes by the kosmotropic salt ammonium sulfate that is routinely employed in protein precipitation. We find that centrifugation in the presence of 3 M ammonium sulfate results in notable precipitation of DNA origami nanostructures but not of double-stranded genomic DNA. The precipitated DNA origami nanostructures can be resuspended in ammonium sulfate-free buffer without apparent formation of aggregates or loss of structural integrity. Even though quasi-1D six-helix bundle DNA origami are slightly less susceptible toward salting-out than more compact DNA origami triangles and 24-helix bundles, precipitation and recovery yields appear to be mostly independent of DNA origami shape and superstructure. Exploiting the specificity of ammonium sulfate salting-out for DNA origami nanostructures, we further apply this method to separate DNA origami triangles from genomic DNA fragments in a complex mixture. Our results thus demonstrate the possibility of concentrating and purifying DNA origami nanostructures by ammonium sulfate-induced salting-out.
Collapse
Affiliation(s)
- Marcel Hanke
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Niklas Hansen
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Ruiping Chen
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (M.H.); (N.H.); (R.C.); (G.G.)
- Correspondence: ; Tel.: +49-5251-605722
| |
Collapse
|
34
|
Wang Y, Lu X, Wu X, Li Y, Tang W, Yang C, Liu J, Ding B. Chemically Modified DNA Nanostructures for Drug Delivery. Innovation (N Y) 2022; 3:100217. [PMID: 35243471 PMCID: PMC8881720 DOI: 10.1016/j.xinn.2022.100217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Based on predictable, complementary base pairing, DNA can be artificially pre-designed into versatile DNA nanostructures of well-defined shapes and sizes. With excellent addressability and biocompatibility, DNA nanostructures have been widely employed in biomedical research, such as bio-sensing, bio-imaging, and drug delivery. With the development of the chemical biology of nucleic acid, chemically modified nucleic acids are also gradually developed to construct multifunctional DNA nanostructures. In this review, we summarize the recent progress in the construction and functionalization of chemically modified DNA nanostructures. Their applications in the delivery of chemotherapeutic drugs and nucleic acid drugs are highlighted. Furthermore, the remaining challenges and future prospects in drug delivery by chemically modified DNA nanostructures are discussed. With excellent addressability and biocompatibility, DNA nanostructures are promising candidates for bio-sensing, bio-imaging, and drug delivery The recent progress in chemical modifications of DNA nanostructures is summarized Chemically modified DNA nanostructures for efficient delivery of chemotherapeutic drugs and nucleic acid drugs are highlighted Challenges and prospects of future development toward chemically modified DNA nanostructures for drug delivery are discussed
Collapse
|
35
|
Lee JY, Kim M, Lee C, Kim DN. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies. ACS NANO 2021; 15:20430-20441. [PMID: 34870958 DOI: 10.1021/acsnano.1c08861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precise engineering of DNA structures is of growing interest to solve challenging problems in biomolecular applications and beyond. The introduction of single-stranded DNA (ssDNA) into the DNA structure can play a pivotal role in providing high controllability of critical structural features. Herein, we present a computational model of ssDNA with structural applications to harness its characteristics. The nonlinear properties of nucleotide gaps are systematically characterized to construct a structural model of the ssDNA across length scales with the incorporation of a finite element framework. The proposed method shows the programmability of structural bending, twisting, and persistence length by implementing the ssDNA in various DNA structures with experimental validation. Our results have significant implications for DNA nanotechnology in expanding the boundary of design and analysis of structural shape and stiffness.
Collapse
Affiliation(s)
- Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Myoungseok Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
36
|
Chen C, Lin T, Ma M, Shi X, Li X. Programmable and scalable assembly of a flexible hexagonal DNA origami. NANOTECHNOLOGY 2021; 33:105606. [PMID: 34530415 DOI: 10.1088/1361-6528/ac2768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale structures demonstrate considerable potential utility in the construction of nanorobots, nanomachines, and many other devices. In this study, a hexagonal DNA origami ring was assembled and visualized via atomic force microscopy. The DNA origami shape could be programmed into either a hexagonal or linear shape with an open or folded pattern. The flexible origami was robust and switchable for dynamic pattern recognition. Its edges were folded by six bundles of DNA helices, which could be opened or folded in a honeycomb shape. Additionally, the edges were programmed into a concave-convex pattern, which enabled linkage between the origami and dipolymers. Furthermore, biotin-streptavidin labels were embedded at each edge for nanoscale calibration. The atomic force microscopy results demonstrated the stability and high-yield of the flexible DNA origami ring. The polymorphous nanostructure is useful for dynamic nano-construction and calibration of structural probes or sensors.
Collapse
Affiliation(s)
- Congzhou Chen
- Key Laboratory of High Confidence Software Technologies, School of Computer Science, Peking University, Beijing 100871, People's Republic of China
| | - Tingting Lin
- Institute of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Mingyuan Ma
- Key Laboratory of High Confidence Software Technologies, School of Computer Science, Peking University, Beijing 100871, People's Republic of China
| | - Xiaolong Shi
- Institute of Computing Science & Technology, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Xin Li
- Department of Gynecology 2, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| |
Collapse
|
37
|
Li Y, Pei J, Lu X, Jiao Y, Liu F, Wu X, Liu J, Ding B. Hierarchical Assembly of Super-DNA Origami Based on a Flexible and Covalent-Bound Branched DNA Structure. J Am Chem Soc 2021; 143:19893-19900. [PMID: 34783532 DOI: 10.1021/jacs.1c09472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA origami technique provides a programmable way to construct nanostructures with arbitrary shapes. The dimension of assembled DNA origami, however, is usually limited by the length of the scaffold strand. Herein, we report a general strategy to efficiently organize multiple DNA origami tiles to form super-DNA origami using a flexible and covalent-bound branched DNA structure. In our design, the branched DNA structures (Bn: with a certain number of 2-6 branches) are synthesized by a copper-free click reaction. Equilateral triangular DNA origamis with different numbers of capture strands (Tn: T1, T2, and T3) are constructed as the coassembly tiles. After hybridization with the branched DNA structures, the super-DNA origami (up to 13 tiles) can be efficiently ordered in the predesigned patterns. Compared with traditional DNA junctions (Jn: J2-J6, as control groups) assembled by base pairing between several DNA strands, a higher yield and more compact structures are obtained using our strategy. The highly ordered and discrete DNA origamis can further precisely organize gold nanoparticles into different patterns. This rationally developed DNA origami ordering strategy based on the flexible and covalent-bound branched DNA structure presents a new avenue for the construction of sophisticated DNA architectures with larger molecular weights.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130012, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yunfei Jiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
39
|
Knappe GA, Wamhoff EC, Read BJ, Irvine DJ, Bathe M. In Situ Covalent Functionalization of DNA Origami Virus-like Particles. ACS NANO 2021; 15:14316-14322. [PMID: 34490781 PMCID: PMC8628367 DOI: 10.1021/acsnano.1c03158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA origami is a powerful nanomaterial for biomedical applications due in part to its capacity for programmable, site-specific functionalization. To realize these applications, scalable and efficient conjugation protocols are needed for diverse moieties ranging from small molecules to biomacromolecules. Currently, there are no facile and general methods for in situ covalent modification and label-free quantification of reaction conversion. Here, we investigate the postassembly functionalization of DNA origami and the subsequent high-performance liquid chromatography-based characterization of these nanomaterials. Following this approach, we developed a versatile DNA origami functionalization and characterization platform. We observed quantitative in situ conversion using widely accessible click chemistry for carbohydrates, small molecules, peptides, polymers, and proteins. This platform should provide broader access to covalently functionalized DNA origami, as illustrated here by PEGylation for passivation and HIV antigen decoration to construct virus-like particle vaccines.
Collapse
Affiliation(s)
- Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Benjamin J. Read
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States of America
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Address correspondence to
| |
Collapse
|
40
|
Sigl C, Willner EM, Engelen W, Kretzmann JA, Sachenbacher K, Liedl A, Kolbe F, Wilsch F, Aghvami SA, Protzer U, Hagan MF, Fraden S, Dietz H. Programmable icosahedral shell system for virus trapping. NATURE MATERIALS 2021; 20:1281-1289. [PMID: 34127822 PMCID: PMC7611604 DOI: 10.1038/s41563-021-01020-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Broad-spectrum antiviral platforms that can decrease or inhibit viral infection would alleviate many threats to global public health. Nonetheless, effective technologies of this kind are still not available. Here, we describe a programmable icosahedral canvas for the self-assembly of icosahedral shells that have viral trapping and antiviral properties. Programmable triangular building blocks constructed from DNA assemble with high yield into various shell objects with user-defined geometries and apertures. We have created shells with molecular masses ranging from 43 to 925 MDa (8 to 180 subunits) and with internal cavity diameters of up to 280 nm. The shell interior can be functionalized with virus-specific moieties in a modular fashion. We demonstrate this virus-trapping concept by engulfing hepatitis B virus core particles and adeno-associated viruses. We demonstrate the inhibition of hepatitis B virus core interactions with surfaces in vitro and the neutralization of infectious adeno-associated viruses exposed to human cells.
Collapse
Affiliation(s)
- Christian Sigl
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Elena M Willner
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Wouter Engelen
- Department of Physics, Technical University of Munich, Munich, Germany
| | | | - Ken Sachenbacher
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Anna Liedl
- Department of Physics, Technical University of Munich, Munich, Germany
| | - Fenna Kolbe
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Florian Wilsch
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, Munich, Germany.
| |
Collapse
|
41
|
Xin Y, Zargariantabrizi AA, Grundmeier G, Keller A. Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules 2021; 26:4798. [PMID: 34443385 PMCID: PMC8399889 DOI: 10.3390/molecules26164798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.
Collapse
Affiliation(s)
| | | | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (Y.X.); (A.A.Z.); (G.G.)
| |
Collapse
|
42
|
Martynenko IV, Ruider V, Dass M, Liedl T, Nickels PC. DNA Origami Meets Bottom-Up Nanopatterning. ACS NANO 2021; 15:10769-10774. [PMID: 34255962 PMCID: PMC8320526 DOI: 10.1021/acsnano.1c04297] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA origami has emerged as a powerful molecular breadboard with nanometer resolution that can integrate the world of bottom-up (bio)chemistry with large-scale, macroscopic devices created by top-down lithography. Substituting the top-down patterning with self-assembled colloidal nanoparticles now takes the manufacturing complexity of top-down lithography out of the equation. As a result, the deterministic positioning of single molecules or nanoscale objects on macroscopic arrays is benchtop ready and easily accessible.
Collapse
Affiliation(s)
- Irina V. Martynenko
- Faculty of Physics and Center for NanoScience (CeNS)
Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1,
80539 Munich, Germany
| | - Veronika Ruider
- Faculty of Physics and Center for NanoScience (CeNS)
Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1,
80539 Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS)
Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1,
80539 Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS)
Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1,
80539 Munich, Germany
| | - Philipp C. Nickels
- Faculty of Physics and Center for NanoScience (CeNS)
Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1,
80539 Munich, Germany
| |
Collapse
|
43
|
Chou LYT. Design Verification as Foundation for Advancing DNA Nanotechnology Applications. ACS NANO 2021; 15:9222-9228. [PMID: 34124882 DOI: 10.1021/acsnano.1c04304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in the field of structural DNA nanotechnology have produced a growing number of nanostructures that are now being developed for diverse applications. Often, these nanostructures contain not only nucleic acids but also a myriad of other classes of molecules and materials such as proteins, lipids, sugars, and synthetic polymers. Increasing structural and compositional complexity promises new functional capabilities, but also demands new tools for design verification. Systematically verifying the design of DNA-scaffolded nanomaterials is necessary to identify and to refine their design rules, and to enable the field to progress toward "real world" applications. In this issue of ACS Nano, Bertosin et al. used single-particle cryo-electron microscopy to characterize the structure of multilayer DNA origamis following coating with oligolysine-based polymers, a class of material which has previously been shown to stabilize DNA nanostructures in physiological environments for use in biological applications. This Perspective summarizes their findings, discusses the broader challenges of verifying the design of DNA nanotechnologies incorporating complex materials, and highlights future directions for advancing their applications.
Collapse
Affiliation(s)
- Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
44
|
Bertosin E, Stömmer P, Feigl E, Wenig M, Honemann MN, Dietz H. Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures. ACS NANO 2021; 15:9391-9403. [PMID: 33724780 PMCID: PMC8223477 DOI: 10.1021/acsnano.0c10137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic coatings can enhance the stability of synthetic DNA objects in low ionic strength environments such as physiological fluids. Here, we used single-particle cryo-electron microscopy (cryo-EM), pseudoatomic model fitting, and single-molecule mass photometry to study oligolysine and polyethylene glycol (PEG)-oligolysine-coated multilayer DNA origami objects. The coatings preserve coarse structural features well on a resolution of multiple nanometers but can also induce deformations such as twisting and bending. Higher-density coatings also led to internal structural deformations in the DNA origami test objects, in which a designed honeycomb-type helical lattice was deformed into a more square-lattice-like pattern. Under physiological ionic strength, where the uncoated objects disassembled, the coated objects remained intact but they shrunk in the helical direction and expanded in the direction perpendicular to the helical axis. Helical details like major/minor grooves and crossover locations were not discernible in cryo-EM maps that we determined of DNA origami coated with oligolysine and PEG-oligolysine, whereas these features were visible in cryo-EM maps determined from the uncoated reference objects. Blunt-ended double-helical interfaces remained accessible underneath the coating and may be used for the formation of multimeric DNA origami assemblies that rely on stacking interactions between blunt-ended helices. The ionic strength requirements for forming multimers from coated DNA origami differed from those needed for uncoated objects. Using single-molecule mass photometry, we found that the mass of coated DNA origami objects prior to and after incubation in low ionic strength physiological conditions remained unchanged. This finding indicated that the coating effectively prevented strand dissociation but also that the coating itself remained stable in place. Our results validate oligolysine coatings as a powerful stabilization method for DNA origami but also reveal several potential points of failure that experimenters should watch to avoid working with false premises.
Collapse
|
45
|
Johnson JA, Kolliopoulos V, Castro CE. Co-self-assembly of multiple DNA origami nanostructures in a single pot. Chem Commun (Camb) 2021; 57:4795-4798. [PMID: 33982710 DOI: 10.1039/d1cc00049g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous self-assembly of two distinct DNA origami nanostructures folded with the same scaffold strand was achieved in a single pot. Relative yields were tuned by adjusting concentrations of the competing strands, correlating well with folding kinetics of individual structures. These results can faciliate efficient fabrication of multi-structure systems and materials.
Collapse
Affiliation(s)
- Joshua A Johnson
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA.
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - Carlos E Castro
- Biophysics Graduate Program, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Dass M, Gür FN, Kołątaj K, Urban MJ, Liedl T. DNA Origami-Enabled Plasmonic Sensing. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5969-5981. [PMID: 33828635 PMCID: PMC8016175 DOI: 10.1021/acs.jpcc.0c11238] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Indexed: 05/02/2023]
Abstract
The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Fatih N. Gür
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Karol Kołątaj
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Maximilian J. Urban
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
47
|
Aissaoui N, Lai-Kee-Him J, Mills A, Declerck N, Morichaud Z, Brodolin K, Baconnais S, Le Cam E, Charbonnier JB, Sounier R, Granier S, Ropars V, Bron P, Bellot G. Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS NANO 2021; 15:4186-4196. [PMID: 33586425 DOI: 10.1021/acsnano.0c05113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Technological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution. In addition, the design can be engineered to tune DNA mechanical properties by exerting a controlled piconewton (pN) force on the molecular system and thus adapted to characterize mechanosensitive proteins. The binding site can also be specifically customized to accommodate the protein of interest, either interacting spontaneously with DNA or through directed chemical conjugation, increasing the range of potential targets for single-particle EM investigation. We assessed the applicability for five different proteins. Finally, as a proof of principle, we used RNAP protein to validate the approach and to explore the compatibility of the template with cryo-EM sample preparation.
Collapse
Affiliation(s)
- Nesrine Aissaoui
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Josephine Lai-Kee-Him
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Allan Mills
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Nathalie Declerck
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
- Departement MICA, INRA, 78352 Jouy-en-Josas, France
| | - Zakia Morichaud
- Université de Montpellier, F-34000 Montpellier, France
- IRIM, CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- Université de Montpellier, F-34000 Montpellier, France
- IRIM, CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
| | - Jean Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Rémy Sounier
- Université de Montpellier, F-34000 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, F-34000 Montpellier, France
| | - Sébastien Granier
- Université de Montpellier, F-34000 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, F-34000 Montpellier, France
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Patrick Bron
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| | - Gaetan Bellot
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France
- Université de Montpellier, F-34000 Montpellier, France
| |
Collapse
|
48
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
49
|
Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000049. [PMID: 33615315 PMCID: PMC7883073 DOI: 10.1002/anbr.202000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Throughout history, humanity has been threatened by countless epidemic and pandemic outbreaks of infectious diseases, from the Justinianic Plague to the Spanish flu to COVID-19. While numerous antimicrobial and antiviral drugs have been developed over the last 200 years to face these threats, the globalized and highly connected world of the 21st century demands for an ever-increasing efficiency in the detection and treatment of infectious diseases. Consequently, the rapidly evolving field of nanomedicine has taken up the challenge and developed a plethora of strategies to fight infectious diseases with the help of various nanomaterials such as noble metal nanoparticles, liposomes, nanogels, and virus capsids. DNA nanotechnology represents a comparatively recent addition to the nanomedicine arsenal, which, over the past decade, has made great progress in the area of cancer diagnostics and therapy. However, the past few years have seen also an increasing number of DNA nanotechnology-related studies that particularly focus on the detection and inhibition of microbial and viral pathogens. Herein, a brief overview of this rather young research field is provided, successful concepts as well as potential challenges are identified, and promising directions for future research are highlighted.
Collapse
Affiliation(s)
- David M. Smith
- DNA Nanodevices UnitDepartment DiagnosticsFraunhofer Institute for Cell Therapy and Immunology IZI04103LeipzigGermany
- Peter Debye Institute for Soft Matter PhysicsFaculty of Physics and Earth SciencesUniversity of Leipzig04103LeipzigGermany
- Institute of Clinical ImmunologyUniversity of Leipzig Medical School04103LeipzigGermany
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar382 007India
| | - Adrian Keller
- Technical and Macromolecular ChemistryPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
50
|
Abstract
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
Collapse
Affiliation(s)
- Wouter Engelen
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| | - Hendrik Dietz
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| |
Collapse
|