1
|
Oshimi K, Ishiwata H, Nakashima H, Mandić S, Kobayashi H, Teramoto M, Tsuji H, Nishibayashi Y, Shikano Y, An T, Fujiwara M. Bright Quantum-Grade Fluorescent Nanodiamonds. ACS NANO 2024; 18:35202-35213. [PMID: 39681540 PMCID: PMC11697348 DOI: 10.1021/acsnano.4c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6-1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2-3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28 K / Hz . The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications.
Collapse
Affiliation(s)
- Keisuke Oshimi
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hitoshi Ishiwata
- The
National Institutes for Quantum Science and Technology (QST), Institute
for Quantum Life Science (iQLS), Chiba 263-8555, Japan
| | - Hiromu Nakashima
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Sara Mandić
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hina Kobayashi
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| | - Minori Teramoto
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Hirokazu Tsuji
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Yoshiki Nishibayashi
- Advanced
Materials Laboratory, Sumitomo Electric
Industries, Ltd., Hyogo 664-0016, Japan
| | - Yutaka Shikano
- Institute
of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Center
for Artificial Intelligence Research (C-AIR), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Institute
for Quantum Studies, Chapman University, Orange, California 92866, United States
| | - Toshu An
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masazumi Fujiwara
- Department
of Chemistry, Graduate School of Life, Environmental, Natural Science
and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Emperauger MC, Kurek E, Semmer F, Perronet K, Daniel J, Blanchard-Desce M, Marquier F. 3D real-time single particle tracking using two-photon fluorescence from bright dye-based organic nanoparticles. NANOSCALE 2024. [PMID: 39670866 DOI: 10.1039/d4nr03526g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
This paper addresses the use of ultrabright dye-based fluorescent organic nanoparticles in a 3D single-particle tracking two-photon microscopy setup. The nanoparticles consist of an assembly of quadrupolar dyes, presenting a large two-photon absorption cross-section. They exhibit low photobleaching, crucial for long-term tracking, and their high brightness allows nanometer localization precision. Their small size compared to previously used nonlinear inorganic nanocrystals, stable structure at physiological temperature, and adjustable optical properties make them promising tools for further biological research. This study highlights their potential to track dynamic processes with precision and stability, paving the way for exploring cellular processes at the nanoscale.
Collapse
Affiliation(s)
- Marie-Charlotte Emperauger
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Eleonore Kurek
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - Florian Semmer
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Karen Perronet
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| | - Jonathan Daniel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - Mireille Blanchard-Desce
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), 351 Cours de la Libération, 33405 Talence, France.
| | - François Marquier
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Gupta P, Rathi P, Gupta R, Baldi H, Coquerel Q, Debnath A, Derami HG, Raman B, Singamaneni S. Neuronal maturation-dependent nano-neuro interaction and modulation. NANOSCALE HORIZONS 2023; 8:1537-1555. [PMID: 37672212 PMCID: PMC10615777 DOI: 10.1039/d3nh00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Harsh Baldi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Quentin Coquerel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Avishek Debnath
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
4
|
Le T, Chiang Y, Hui Y, Le T, Tzeng Y, Sharma N, Chiang W, Hsiao W. In vitroBioimaging of Fluorescent Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:95-127. [DOI: 10.1002/9781394202164.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
5
|
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, Wu X, Olinga P, Wlodarzyk-Biegun M, Schirhagl R. Fluorescent Nanodiamonds for Tracking Single Polymer Particles in Cells and Tissues. Anal Chem 2023; 95:13046-13054. [PMID: 37612789 PMCID: PMC10483464 DOI: 10.1021/acs.analchem.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Polymer nanoparticles are widely used in drug delivery and are also a potential concern due to the increased burden of nano- or microplastics in the environment. In order to use polymer nanoparticles safely and understand their mechanism of action, it is useful to know where within cells and tissues they end up. To this end, we labeled polymer nanoparticles with nanodiamond particles. More specifically, we have embedded nanodiamond particles in the polymer particles and characterized the composites. Compared to conventional fluorescent dyes, these labels have the advantage that nanodiamonds do not bleach or blink, thus allowing long-term imaging and tracking of polymer particles. We have demonstrated this principle both in cells and entire liver tissues.
Collapse
Affiliation(s)
- Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Thea A. Vedelaar
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Yue Zhang
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kaiqi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Hui Wang
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Xixi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Peter Olinga
- Department
of Pharmaceutical Technology and Biopharmacy, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Małgorzata
K. Wlodarzyk-Biegun
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- Biotechnology
Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
6
|
Fujiwara M. Diamond quantum sensors in microfluidics technology. BIOMICROFLUIDICS 2023; 17:054107. [PMID: 37854889 PMCID: PMC10581739 DOI: 10.1063/5.0172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions within diverse chemical and biological contexts. Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels. In this Perspective, we present recent advancements in the integration of diamond quantum sensors with microfluidic devices and explore their prospects with a focus on forthcoming technological developments.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| |
Collapse
|
7
|
San-Martin CR, Zhang Y, Hamoh T, Berendse L, Klijn C, Li R, Sigaeva A, Kawałko J, Li HT, Tehrani J, Mzyk A, Schirhagl R. Fluorescent nanodiamond labels: Size and concentration matters for sperm cell viability. Mater Today Bio 2023; 20:100629. [PMID: 37441134 PMCID: PMC10333662 DOI: 10.1016/j.mtbio.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 07/15/2023] Open
Abstract
Nanodiamonds are increasingly popular in biomedical applications, including optical labelling, drug delivery and nanoscale sensing. Potential new applications are in studying infertility or labelling sperm cells. However, for these applications, it is necessary that nanodiamonds are inert and do not alter sperm properties. In this article, we assessed the biocompatibility of nanodiamonds in detail. We investigated different sizes and concentrations of nanodiamonds and sperm preparation methods. We evaluated if the metabolic activity, membrane integrity, morphology and formation of reactive oxygen species were altered. These parameters were tested for sperm cells in their uncapacitated and capacitated states. Unfortunately, FNDs are not universally biocompatible. Generally, cells in the capacitated state are more prone to stress. Additionally, larger particles and lower concentrations are tolerated better than smaller and higher concentrated particles.
Collapse
Affiliation(s)
- Claudia Reyes San-Martin
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Yue Zhang
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Thamir Hamoh
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Lotte Berendse
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Carline Klijn
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Runrun Li
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Alina Sigaeva
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Jakub Kawałko
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Hui Ting Li
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Centre Groningen, 9700 RB, Groningen, Netherlands
| | - Jian Tehrani
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| | - Aldona Mzyk
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Romana Schirhagl
- Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, Netherlands
| |
Collapse
|
8
|
Leung HM, Chu HC, Mao ZW, Lo PK. Versatile nanodiamond-based tools for therapeutics and bioimaging. Chem Commun (Camb) 2023; 59:2039-2055. [PMID: 36723092 DOI: 10.1039/d2cc06495b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanodiamonds (NDs) are a remarkable class of carbon-based nanoparticles in nanomedicine which have recently become a hot topic of research due to their unique features including functionalization versatility, tunable opto-magnetic properties, chemical stability, minimal cytotoxicity, high affinity to biomolecules and biocompatibility. These attractive features make NDs versatile tools for a wide range of biologically relevant applications. In this feature article, we discuss the opto-magnetic properties of negatively charged nitrogen vacancy (NV-) centres in NDs as fluorescence probes. We further discuss the frequently used chemical methods for surface chemistry modification of NDs which are relevant for biomedical applications. The in vitro and in vivo biocompatibility of modified NDs is also highlighted. Subsequently, we give an overview of recent state-of-the-art biomedical applications of NDs as versatile tools for bioimaging and detection, and as targeting nanocarriers for chemotherapy, photodynamic therapy, gene therapy, antimicrobial and antiviral therapy, and bone tissue engineering. Finally, we pinpoint the main challenges for NDs in biomedical applications which lie ahead and discuss perspectives on future directions in advancing the field for practical applications and clinical translations.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Zheng-Wei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
10
|
Grimaud B, Frétaud M, Terras F, Bénassy A, Duroure K, Bercier V, Trippé-Allard G, Mohammedi R, Gacoin T, Del Bene F, Marquier F, Langevin C, Treussart F. In Vivo Fast Nonlinear Microscopy Reveals Impairment of Fast Axonal Transport Induced by Molecular Motor Imbalances in the Brain of Zebrafish Larvae. ACS NANO 2022; 16:20470-20487. [PMID: 36459488 DOI: 10.1021/acsnano.2c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cargo transport by molecular motors along microtubules is essential for the function of eukaryotic cells, in particular neurons in which axonal transport defects constitute the early pathological features of neurodegenerative diseases. Mainly studied in motor and sensory neurons, axonal transport is still difficult to characterize in neurons of the brain in absence of appropriate in vivo tools. Here, we measured fast axonal transport by tracing the second harmonic generation (SHG) signal of potassium titanyl phosphate (KTP) nanocrystals (nanoKTP) endocytosed by brain neurons of zebrafish (Zf) larvae. Thanks to the optical translucency of Zf larvae and to the perfect photostability of nanoKTP SHG, we achieved a high scanning speed of 20 frames (of ≈90 μm × 60 μm size) per second in Zf brain. We focused our study on endolysosomal vesicle transport in axons of known polarization, separately analyzing kinesin and dynein motor-driven displacements. To validate our assay, we used either loss-of-function mutations of dynein or kinesin 1 or the dynein inhibitor dynapyrazole and quantified several transport parameters. We successfully demonstrated that dynapyrazole reduces the nanoKTP mobile fraction and retrograde run length consistently, while the retrograde run length increased in kinesin 1 mutants. Taking advantage of nanoKTP SHG directional emission, we also quantified fluctuations of vesicle orientation. Thus, by combining endocytosis of nanocrystals having a nonlinear response, fast two-photon microscopy, and high-throughput analysis, we are able to finely monitor fast axonal transport in vivo in the brain of a vertebrate and reveal subtle axonal transport alterations. The high spatiotemporal resolution achieved in our model may be relevant to precisely investigate axonal transport impairment associated with disease models.
Collapse
Affiliation(s)
- Baptiste Grimaud
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Maxence Frétaud
- INRAE, IERP, Université Paris-Saclay, 78350Jouy-ens-Josas, France
- INRAE, VIM, Université Paris-Saclay, 78350Jouy-en-Josas, France
| | - Feriel Terras
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Antoine Bénassy
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Karine Duroure
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - Valérie Bercier
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, 3000Leuven, Belgium
| | - Gaëlle Trippé-Allard
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Rabei Mohammedi
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Thierry Gacoin
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128Palaiseau Cedex, France
| | - Filippo Del Bene
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, 75012Paris, France
| | - François Marquier
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | | | - François Treussart
- ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, Université Paris-Saclay, 91190Gif-sur-Yvette, France
| |
Collapse
|
11
|
Iwasaki H, Ichinose S, Tajika Y, Murakami T. Recent technological advances in correlative light and electron microscopy for the comprehensive analysis of neural circuits. Front Neuroanat 2022; 16:1061078. [PMID: 36530521 PMCID: PMC9748091 DOI: 10.3389/fnana.2022.1061078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/04/2023] Open
Abstract
Light microscopy (LM) covers a relatively wide area and is suitable for observing the entire neuronal network. However, resolution of LM is insufficient to identify synapses and determine whether neighboring neurons are connected via synapses. In contrast, the resolution of electron microscopy (EM) is sufficiently high to detect synapses and is useful for identifying neuronal connectivity; however, serial images cannot easily show the entire morphology of neurons, as EM covers a relatively narrow region. Thus, covering a large area requires a large dataset. Furthermore, the three-dimensional (3D) reconstruction of neurons by EM requires considerable time and effort, and the segmentation of neurons is laborious. Correlative light and electron microscopy (CLEM) is an approach for correlating images obtained via LM and EM. Because LM and EM are complementary in terms of compensating for their shortcomings, CLEM is a powerful technique for the comprehensive analysis of neural circuits. This review provides an overview of recent advances in CLEM tools and methods, particularly the fluorescent probes available for CLEM and near-infrared branding technique to match LM and EM images. We also discuss the challenges and limitations associated with contemporary CLEM technologies.
Collapse
Affiliation(s)
- Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
12
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
13
|
Sigaeva A, Hochstetter A, Bouyim S, Chipaux M, Stejfova M, Cigler P, Schirhagl R. Single-Particle Tracking and Trajectory Analysis of Fluorescent Nanodiamonds in Cell-Free Environment and Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201395. [PMID: 36038355 DOI: 10.1002/smll.202201395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Diamond magnetometry can provide new insights on the production of free radicals inside live cells due to its high sensitivity and spatial resolution. However, the measurements often lack intracellular context for the recorded signal. In this paper, the possible use of single-particle tracking and trajectory analysis of fluorescent nanodiamonds (FNDs) to bridge that gap is explored. It starts with simulating a set of different possible scenarios of a particle's movement, reflecting different modes of motion, degrees of confinement, as well as shapes and sizes of that confinement. Then, the insights from the analysis of the simulated trajectories are applied to describe the movement of FNDs in glycerol solutions. It is shown that the measurements are in good agreement with the previously reported findings and that trajectory analysis yields meaningful results, when FNDs are tracked in a simple environment. Then the much more complex situation of FNDs moving inside a live cell is focused. The behavior of the particles after different incubation times is analyzed, and the possible intracellular localization of FNDs is deducted from their trajectories. Finally, this approach is combined with long-term magnetometry methods to obtain maps of the spin relaxation dynamics (or T1) in live cells, as FNDs move through the cytosol.
Collapse
Affiliation(s)
- Alina Sigaeva
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Axel Hochstetter
- Research & Development, Life on a Chip e.K., Brunnenaecker 5, 73571, Goeggingen, Germany
| | - Sighom Bouyim
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Mayeul Chipaux
- Institute of Physics, Life on Chip e.K., École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Miroslava Stejfova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, 166 10, Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, 166 10, Czech Republic
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| |
Collapse
|
14
|
Reyes-San-Martin C, Hamoh T, Zhang Y, Berendse L, Klijn C, Li R, Llumbet AE, Sigaeva A, Kawałko J, Mzyk A, Schirhagl R. Nanoscale MRI for Selective Labeling and Localized Free Radical Measurements in the Acrosomes of Single Sperm Cells. ACS NANO 2022; 16:10701-10710. [PMID: 35771989 PMCID: PMC9331174 DOI: 10.1021/acsnano.2c02511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Free radicals play a major role in sperm development, including maturation and fertilization, but they are also linked to infertility. Since they are short-lived and reactive, they are challenging to detect with state of the art methodologies. Thus, many details surrounding their role remain unknown. One unknown factor is the source of radicals that plays a role in the sperm maturation process. Two alternative sources have been postulated: First, the NADPH-oxidase system embedded in the plasma membrane (NOX5) and second, the NADH-dependent oxidoreductase of mitochondria. Due to a lack of localized measurements, the relative contribution of each source for capacitation remains unknown. To answer this question, we use a technique called diamond magnetometry, which allows nanoscale MRI to perform localized free radical detection. With this tool, we were able to quantify radical formation in the acrosome of sperm heads. This allowed us to quantify radical formation locally in real time during capacitation. We further investigated how different inhibitors or triggers alter the radical generation. We were able to identify NOX5 as the prominent source of radical generation in capacitation while the NADH-dependent oxidoreductase of mitochondria seems to play a smaller role.
Collapse
Affiliation(s)
- Claudia Reyes-San-Martin
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Thamir Hamoh
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Lotte Berendse
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Carline Klijn
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Arturo E. Llumbet
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Laboratory
of Genomics of Germ Cells, Biomedical Sciences Institute, Faculty
of Medicine, University of Chile, Independencia, 1027, Independencia, Santiago 8380000, Chile
| | - Alina Sigaeva
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Jakub Kawałko
- AGH
University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
15
|
Chang SLY, Reineck P, Krueger A, Mochalin VN. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS NANO 2022; 16:8513-8524. [PMID: 35605109 DOI: 10.1021/acsnano.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanodiamonds are at the heart of a plethora of emerging applications in areas ranging from nanocomposites and tribology to nanomedicine and quantum sensing. The development of alternative synthesis methods, a better understanding, and the availability of ultrasmall nanodiamonds of less than 3 nm size with a precisely engineered composition, including the particle surface and atomic defects in the diamond crystal lattice, would mark a leap forward for many existing and future applications. Yet today, we are unable to accurately control nanodiamond composition at the atomic scale, nor can we reliably create and isolate particles in this size range. In this perspective, we discuss recent advances, challenges, and opportunities in the synthesis, characterization, and application of ultrasmall nanodiamonds. We particularly focus on the advantages of bottom-up synthesis of these particles and critically assess the physicochemical properties of ultrasmall nanodiamonds, which significantly differ from those of larger particles and bulk diamond.
Collapse
Affiliation(s)
- Shery L Y Chang
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
16
|
Oshimi K, Nishimura Y, Matsubara T, Tanaka M, Shikoh E, Zhao L, Zou Y, Komatsu N, Ikado Y, Takezawa Y, Kage-Nakadai E, Izutsu Y, Yoshizato K, Morita S, Tokunaga M, Yukawa H, Baba Y, Teki Y, Fujiwara M. Glass-patternable notch-shaped microwave architecture for on-chip spin detection in biological samples. LAB ON A CHIP 2022; 22:2519-2530. [PMID: 35510631 DOI: 10.1039/d2lc00112h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a notch-shaped coplanar microwave waveguide antenna on a glass plate designed for on-chip detection of optically detected magnetic resonance (ODMR) of fluorescent nanodiamonds (NDs). A lithographically patterned thin wire at the center of the notch area in the coplanar waveguide realizes a millimeter-scale ODMR detection area (1.5 × 2.0 mm2) and gigahertz-broadband characteristics with low reflection (∼8%). The ODMR signal intensity in the detection area is quantitatively predictable by numerical simulation. Using this chip device, we demonstrate a uniform ODMR signal intensity over the detection area for cells, tissue, and worms. The present demonstration of a chip-based microwave architecture will enable scalable chip integration of ODMR-based quantum sensing technology into various bioassay platforms.
Collapse
Affiliation(s)
- Keisuke Oshimi
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Masuaki Tanaka
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Eiji Shikoh
- Department of Electrical and Information Engineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yajuan Zou
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Yuta Ikado
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yuka Takezawa
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Eriko Kage-Nakadai
- Department of Human Life Science, Graduate School of Food and Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | - Yumi Izutsu
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Katsutoshi Yoshizato
- Synthetic biology laboratory, Graduate school of medicine, Osaka City University, Osaka 545-8585, Japan
| | - Saho Morita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Tokunaga
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| |
Collapse
|
17
|
Patil S, Mishra VS, Yadav N, Reddy PC, Lochab B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3438-3451. [PMID: 35754387 DOI: 10.1021/acsabm.2c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanodiamonds (NDs) are increasingly being assessed as potential candidates for drug delivery in cancer cells and they hold great promise in overcoming the side effects of traditional chemotherapeutics. In the current work, carboxylic acid functionalized nanodiamonds (ND-COOH) were covalently modified with poly(amidoamine) dendrimer (PAMAM) to form amine-terminated nanodiamonds (NP). Unlike ND-COOH, the chemically modified nanodiamond platform NP revealed a pH-independent aqueous dispersion stability, enhancing its potential as an effective carrier. Physical encapsulation of poorly water soluble cabazitaxel (CTX) drug on NP formed ND-PAMAM-CTX (NPC) nanoconjugates and substantially reduced the size of CTX from micrometer to nanometer. CTX was localized within the pores of nanoparticle aggregates and the cavities of the PAMAM dendrimer, thus facilitating the loaded drug's controlled and sustained release. NPC's cumulative CTX release efficiency was determined to be ∼95% at pH 4 after 96 h. A high cellular uptake of NPC both within the cytoplasm and nucleus of U87 cells is confirmed, accounting for a reduced IC50 value (1 nM). Both the cell cycle and Western blot analyses confirmed enhanced cell death and suppressed tubulin protein expression in NPC-treated cells. A significantly high inhibition to cell division with early apoptosis and reduced metastasis demonstrates the effective loading of CTX dosages on the nanocarrier. The present work highlights the potential of a newly designed nanocarrier NP as an efficient nanocargo for cellular delivery applications and may provide future insights to treat one of the most aggressive tumors in neuro-oncological research, glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| |
Collapse
|
18
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
19
|
Impact of α-Synuclein Fibrillar Strains and β-Amyloid Assemblies on Mouse Cortical Neurons Endo-Lysosomal Logistics. eNeuro 2022; 9:ENEURO.0227-21.2022. [PMID: 35470226 PMCID: PMC9118757 DOI: 10.1523/eneuro.0227-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/29/2022] Open
Abstract
Endosomal transport and positioning cooperate in the establishment of neuronal compartment architecture, dynamics, and function, contributing to neuronal intracellular logistics. Furthermore, dysfunction of endo-lysosomal has been identified as a common mechanism in neurodegenerative diseases. Here, we analyzed endo-lysosomal transport when α-synuclein (α-syn) fibrillar polymorphs, β-amyloid (Aβ) fibrils, and oligomers were externally applied on primary cultures of mouse cortical neurons. To measure this transport, we used a simple readout based on the spontaneous endocytosis in cultured neurons of fluorescent nanodiamonds (FNDs), a perfectly stable nano-emitter, and the subsequent automatic extraction and quantification of their directed motions at high-throughput. α-Syn fibrillar polymorphs, Aβ fibrils, and oligomers induce a 2-fold decrease of the fraction of nanodiamonds transported along microtubules, while only slightly reducing their interaction with cortical neurons. This important decrease in moving endosomes is expected to have a huge impact on neuronal homeostasis. We next assessed lysosomes dynamics, using LysoTracker. Neurons exposure to Aβ oligomers led to an increase in the number of lysosomes, a decrease in the fraction of moving lysosome and an increase in their size, reminiscent of that found in APP transgenic model of Alzheimer’s disease. We then analyzed the effect of α-syn fibrillar polymorphs, Aβ fibrils, and oligomers on endosomal and lysosomal transport and quantified directed transport of those assemblies within cortical neurons. We report different impacts on endosomal and lysosomal transport parameters and differences in the trajectory lengths of cargoes loaded with pathogenic protein assemblies. Our results suggest that intraneuronal pathogenic protein aggregates internalization and transport may represent a target for novel neuroprotective therapeutic strategies.
Collapse
|
20
|
Xu Z, Wang L, Huan X, Lee H, Yang J, Zhou Z, Chen M, Hu S, Liu Y, Feng S, Zhang T, Xu F, Chu Z, Kim JT. On-Demand, Direct Printing of Nanodiamonds at the Quantum Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103598. [PMID: 34939368 PMCID: PMC8844569 DOI: 10.1002/advs.202103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
The quantum defects in nanodiamonds, such as nitrogen-vacancy (NV) centers, are emerging as a promising candidate for nanoscale sensing and imaging, and the controlled placement with respect to target locations is vital to their practical applications. Unfortunately, this prerequisite continues to suffer from coarse positioning accuracy, low throughput, and process complexity. Here, it is reported on direct, on-demand electrohydrodynamic printing of nanodiamonds containing NV centers with high precision control over quantity and position. After thorough characterizations of the printing conditions, it is shown that the number of printed nanodiamonds can be controlled at will, attaining the single-particle level precision. This printing approach, therefore, enables positioning NV center arrays with a controlled number directly on the universal substrate without any lithographic process. The approach is expected to pave the way toward new horizons not only for experimental quantum physics but also for the practical implementation of such quantum systems.
Collapse
Affiliation(s)
- Zhaoyi Xu
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Lingzhi Wang
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Xiao Huan
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Heekwon Lee
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Jihyuk Yang
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Zhiwen Zhou
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Mojun Chen
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Shiqi Hu
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Yu Liu
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Shien‐Ping Feng
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Tongtong Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Feng Xu
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Zhiqin Chu
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongChina
- Joint Appointment with School of Biomedical SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Ji Tae Kim
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| |
Collapse
|
21
|
Liu Y, Yan J, Huang Y, Sun Z, Zhang H, Fu L, Li X, Jin Y. Single-Atom Fe-Anchored Nano-Diamond With Enhanced Dual-Enzyme Mimicking Performance for H 2O 2 and Glutathione Detection. Front Bioeng Biotechnol 2022; 9:790849. [PMID: 35047488 PMCID: PMC8762219 DOI: 10.3389/fbioe.2021.790849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023] Open
Abstract
Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In the present study, we successfully prepared single-atom iron oxide-nanoparticle (Fe-NP)-modified nanodiamonds (NDs) named Fe-NDs via a one-pot in situ reduction method. This nanozyme functionally mimics two major enzymes, namely, peroxidase and oxidase. Accordingly, a colorimetric sensing platform was designed to detect hydrogen peroxide (H2O2) and GSH. Owing to their peroxidase-like activity, Fe-NDs can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue with sufficient linearity at H2O2 concentrations of 1-60 μM and with a detection limit of 0.3 μM. Furthermore, using different concentrations of GSH, oxidized TMB can be reduced to TMB, and the color change from blue to nearly colorless can be observed by the naked eye (linear range, 1-25 μM; detection limit, 0.072 μM). The established colorimetric method based on oxidase-like activity can be successfully used to detect reduced GSH in tablets and injections with good selectivity and high sensitivity. The results of this study exhibited reliable consistency with the detection results obtained using high-performance liquid chromatography (HPLC). Therefore, the Fe-NDs colorimetric sensor designed in this study offers adequate accuracy and sensitivity.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Jilin University, Changchun, China
| | - Jianghong Yan
- First Clinical Hospital, Jilin Province Academy of Traditional Chinese Medicine, Changchun, China
| | - Yu Huang
- College of Chemistry, Jilin University, Changchun, China
| | - Zhiheng Sun
- College of Chemistry, Jilin University, Changchun, China
| | - Huijing Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Lihaoyuan Fu
- College of Chemistry, Jilin University, Changchun, China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
22
|
Abstract
Current technological advances in neural probing and modulation have enabled an extraordinary glimpse into the intricacies of the nervous system. Particularly, nanomaterials are proving to be an incredibly versatile platform for neurological applications owing to their biocompatibility, tunability, highly specific targeting and sensing, and long-term chemical stability. Among the most desirable nanomaterials for neuroengineering, freestanding nanomaterials are minimally invasive and remotely controlled. This review outlines the most recent developments of freestanding nanomaterials that operate on the neuronal interface. First, the different nanomaterials and their mechanisms for modulating neurons are explored to provide a basis for how freestanding nanomaterials operate. Then, the three main applications of subcellular neuronal engineering-modulating neuronal behavior, exploring fundamental neuronal mechanism, and recording neuronal signal-are highlighted with specific examples of current advancements. Finally, we conclude with our perspective on future nanomaterial designs and applications.
Collapse
Affiliation(s)
- Elaine Liang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
24
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
25
|
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102970. [PMID: 34705318 PMCID: PMC8693050 DOI: 10.1002/advs.202102970] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single-triplet energy gap (ΔEST ) have been considered as the most promising new-generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal-free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time-resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
26
|
Garcia-Etxarri A, Yuste R. Time for NanoNeuro. Nat Methods 2021; 18:1287-1293. [PMID: 34663955 DOI: 10.1038/s41592-021-01270-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
The study of electronic properties of materials at the nanoscale has unveiled physical laws and generated materials such as nanoparticles, quantum dots, nanodiamonds, nanoelectrodes, and nanoprobes. Independently, large-scale public and private neuroscience programs have been launched to develop methods to measure and manipulate neural circuits in living animals and humans. Here, we review an upcoming field, NanoNeuro, defined as the intersection of nanoscience and neuroscience, that aims to develop nanoscale methods to record and stimulate neuronal activity. Because of their unique physical properties, nanomaterials have intrinsic advantages as biosensors and actuators, and they may be applicable to humans without the need for genetic modifications. Thus, nanoscience could make major methodological contributions to the future of neuroscience and, more generally, to biomedical sciences.
Collapse
Affiliation(s)
- Aitzol Garcia-Etxarri
- Donostia International Physics Center, Donostia-San Sebastián, Spain. .,IKERBASQUE, Bilbao, Spain.
| | - Rafael Yuste
- Donostia International Physics Center, Donostia-San Sebastián, Spain. .,IKERBASQUE, Bilbao, Spain. .,Kavli Institute of Brain Sciences, Dept. Biological Sciences, Columbia University, New York, USA.
| |
Collapse
|
27
|
Yi Z, Gao H, Ji X, Yeo XY, Chong SY, Mao Y, Luo B, Shen C, Han S, Wang JW, Jung S, Shi P, Ren H, Liu X. Mapping Drug-Induced Neuropathy through In-Situ Motor Protein Tracking and Machine Learning. J Am Chem Soc 2021; 143:14907-14915. [PMID: 34469145 DOI: 10.1021/jacs.1c07312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemotherapy can induce toxicity in the central and peripheral nervous systems and result in chronic adverse reactions that impede continuous treatment and reduce patient quality of life. There is a current lack of research to predict, identify, and offset drug-induced neurotoxicity. Rapid and accurate assessment of potential neuropathy is crucial for cost-effective diagnosis and treatment. Here we report dynamic near-infrared upconversion imaging that allows intraneuronal transport to be traced in real time with millisecond resolution, but without photobleaching or blinking. Drug-induced neurotoxicity can be screened prior to phenotyping, on the basis of subtle abnormalities of kinetic characteristics in intraneuronal transport. Moreover, we demonstrate that combining the upconverting nanoplatform with machine learning offers a powerful tool for mapping chemotherapy-induced peripheral neuropathy and assessing drug-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huxin Gao
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Xin-Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore 117599, Singapore
| | - Yujie Mao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Baiwen Luo
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Chao Shen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China
| | - Sanyang Han
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Hongliang Ren
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- The Chinese University of Hong Kong (CUHK) Robotics Institute, Shatin, Hong Kong 999077, People's Republic of China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| |
Collapse
|
28
|
Fujiwara M, Shikano Y. Diamond quantum thermometry: from foundations to applications. NANOTECHNOLOGY 2021; 32:482002. [PMID: 34416739 DOI: 10.1088/1361-6528/ac1fb1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Diamond quantum thermometry exploits the optical and electrical spin properties of colour defect centres in diamonds and, acts as a quantum sensing method exhibiting ultrahigh precision and robustness. Compared to the existing luminescent nanothermometry techniques, a diamond quantum thermometer can be operated over a wide temperature range and a sensor spatial scale ranging from nanometres to micrometres. Further, diamond quantum thermometry is employed in several applications, including electronics and biology, to explore these fields with nanoscale temperature measurements. This review covers the operational principles of diamond quantum thermometry for spin-based and all-optical methods, material development of diamonds with a focus on thermometry, and examples of applications in electrical and biological systems with demand-based technological requirements.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Shikano
- Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510, Japan
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
- Institute for Quantum Studies, Chapman University, 1 University Dr, Orange, CA 92866, United States of America
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
29
|
Zhang C, Chen X, Ho SH. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125959. [PMID: 33990041 DOI: 10.1016/j.jhazmat.2021.125959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanomaterials (CNMs) provide an effective solution and a novel advancement for wastewater treatment. In this review, a total of 3823 bibliographic records derived from recent 10 years are visualized based on scientometric analysis. The results indicate metal-free CNMs-mediated advanced oxidation processes (AOPs) might be a motive force to develop CNMs application for wastewater treatment; however, corresponding evaluations of aquatic toxicity still lack sufficient attention. Therefore, recent breakthroughs and topical innovations related to prevalent wastewater treatment technologies (i.e., adsorption, catalysis and membrane separation) using three typical dimensional CNMs (nanodiamonds, carbon nanotubes, and graphene-based nanomaterials) are comprehensively summarized in-depth, along with a compendious introduction to some novel techniques (e.g., computational simulation) for identifying reaction mechanisms. Then, current research focusing on CNMs-associated aquatic toxicity is discussed thoroughly, mainly demonstrating: (1) the adverse effects on aquatic organisms should not be overlooked prior to large-scale CNMs application; (2) divergent consequences can be further reduced if the ecological niche of aquatic organisms is emphasized; and (3) further investigations on joint toxicity can provide greater beneficial insight into realistic exposure scenarios. Finally, ongoing challenges and developmental directions of CNMs-based wastewater treatment and evaluation of its aquatic toxicity are pinpointed and shaped in terms of future research.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
30
|
Zhang Y, Sharmin R, Sigaeva A, Klijn CWM, Mzyk A, Schirhagl R. Not all cells are created equal - endosomal escape in fluorescent nanodiamonds in different cells. NANOSCALE 2021; 13:13294-13300. [PMID: 34477735 DOI: 10.1039/d1nr02503a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Successful delivery of fluorescent nanodiamonds (FNDs) into the cytoplasm is essential to many biological applications. Other applications require FNDs to stay within the endosomes. The diversity of cellular uptake of FNDs and following endosomal escape are less explored. In this article, we quantify particle uptake at a single cell level. We report that FNDs enter into the cells gradually. The number of internalized FNDs per cell differs significantly for the cell lines we investigated at the same incubation time. In HeLa cells we do not see any significant endosomal escape. We also found a wide distribution of FND endosomal escape efficiency within the same cell type. However, compared with HeLa cells, FNDs in HUVECs can easily escape from the endosomes and less than 25% FNDs remained in the vesicles after 4 h incubation time. We believe this work can bring more attention to the diversity of the cells and provide potential guidelines for future studies.
Collapse
Affiliation(s)
- Yue Zhang
- University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Mi Z, Chen CB, Tan HQ, Dou Y, Yang C, Turaga SP, Ren M, Vajandar SK, Yuen GH, Osipowicz T, Watt F, Bettiol AA. Quantifying nanodiamonds biodistribution in whole cells with correlative iono-nanoscopy. Nat Commun 2021; 12:4657. [PMID: 34341359 PMCID: PMC8329174 DOI: 10.1038/s41467-021-25004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy. The authors demonstrate efficient excitation of nanodiamonds by a focused beam of helium ions, resulting in ionoluminescence. They use this for quantification and correlative localization of single particles within a whole cell at sub-30 nm resolution, and investigate nanodiamond radiosensitisation effects.
Collapse
Affiliation(s)
- Zhaohong Mi
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Hong Qi Tan
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.,Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yanxin Dou
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Chengyuan Yang
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shuvan Prashant Turaga
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Gin Hao Yuen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Frank Watt
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore. .,Division of Science, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
32
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
33
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
34
|
Claveau S, Kindermann M, Papine A, Díaz-Riascos ZV, Délen X, Georges P, López-Alemany R, Tirado ÒM, Bertrand JR, Abasolo I, Cigler P, Treussart F. Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of active siRNA to a xenografted tumor in mice. NANOSCALE 2021; 13:9280-9292. [PMID: 33982741 DOI: 10.1039/d1nr00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diamond nanoparticles (nanodiamonds) can transport active drugs in cultured cells as well as in vivo. However, in the latter case, methods allowing the determination of their bioavailability accurately are still lacking. A nanodiamond can be made fluorescent with a perfectly stable emission and a lifetime ten times longer than that of tissue autofluorescence. Taking advantage of these properties, we present an automated quantification method of fluorescent nanodiamonds (FND) in histological sections of mouse organs and tumors, after systemic injection. We use a home-made time-delayed fluorescence microscope comprising a custom pulsed laser source synchronized on the master clock of a gated intensified array detector. This setup allows ultra-high-resolution images (120 Mpixels in size) of whole mouse organ sections to be obtained, with subcellular resolution and single-particle sensitivity. As a proof-of-principle experiment, we quantified the biodistribution and aggregation state of new cationic FNDs capable of transporting small interfering RNA inhibiting the oncogene responsible for Ewing sarcoma. Image analysis showed a low yield of nanodiamonds in the tumor after intravenous injection. Thus, for the in vivo efficacy assay, we injected the nanomedicine into the tumor. We achieved a 28-fold inhibition of the oncogene. This method can readily be applied to other nanoemitters with ≈100 ns lifetime.
Collapse
Affiliation(s)
- Sandra Claveau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France. and Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis (METSY), 94805 Villejuif, France
| | - Marek Kindermann
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic and Department of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | | | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Xavier Délen
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Patrick Georges
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, CIBERONC, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Òscar Martínez Tirado
- Sarcoma Research Group, Oncobell Program, CIBERONC, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jean-Rémi Bertrand
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis (METSY), 94805 Villejuif, France
| | - Ibane Abasolo
- Drug Delivery & Targeting, Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - François Treussart
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Zhang T, Kalimuthu S, Rajasekar V, Xu F, Yiu YC, Hui TKC, Neelakantan P, Chu Z. Biofilm inhibition in oral pathogens by nanodiamonds. Biomater Sci 2021; 9:5127-5135. [PMID: 33997876 DOI: 10.1039/d1bm00608h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex microbial communities, e.g., biofilms residing in our oral cavity, have recognized clinical significance, as they are typically the main cause for infections. Particularly, they show high resistance to conventional antibiotics, and alternatives including nanotechnology are being intensively explored nowadays to provide more efficient therapeutics. Diamond nanoparticles, namely, nanodiamonds (NDs) with many promising physico-chemical properties, have been demonstrated to work as an effective antibacterial agent against planktonic cells (free-floating state). However, little is known about the behaviors of NDs against biofilms (sessile state). In this study, we uncovered their role in inhibiting biofilm formation and their disrupting effect on preformed biofilms in several selected orally and systemically important organisms. The current findings will advance the mechanistic understanding of NDs on oral pathogens and might accelerate corresponding clinical translation.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang C, Chen X, Chou WC, Ho SH. Phytotoxic effect and molecular mechanism induced by nanodiamonds towards aquatic Chlorella pyrenoidosa by integrating regular and transcriptomic analyses. CHEMOSPHERE 2021; 270:129473. [PMID: 33401071 DOI: 10.1016/j.chemosphere.2020.129473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The growing diverse applications of nanodiamonds (NDs), especially as adsorbents and catalysts for wastewater treatment, have significantly increased their discharge and potential risk towards aquatic ecosystems. Although NDs have been certified for superior biocompatibility and lower toxicity towards numerous human cell lines, the characteristic response and underlying mechanism of aquatic microalgal response remains unclear. Here, the response of Chlorella pyrenoidosa to five concentrations of NDs was thoroughly investigated by comprehensive phenotypic and transcriptional examinations. Results indicated that higher concentration of NDs (50 mg/L) induced 75.4% growth inhibition, exacerbated oxidative stress and malformed morphology of microalgae after 48 h exposure. Meanwhile, the aggregated microalgae formed several flocs, apparently under 50 mg/L NDs. Noticeably, photosynthesis was susceptible to the NDs exposure. Although, the chlorophyll content and genes involved in photosynthesis were significantly improved by NDs, the results obtained from the photochemical parameters indicated that the excessive electrons during photosynthesis might be a pivotal reason for oxidative stress generation. Additionally, the genes included in amino acids metabolism and protein synthesis were up-regulated to alleviate the oxidative stress. Collectively, this work discloses the explicit molecular mechanisms of aquatic microalgae and provides comprehensive insights of potential aqueous environmental risk of gradually emergent NDs.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xudong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei-Chun Chou
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, United States
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
37
|
Feng X, Leong WH, Xia K, Liu CF, Liu GQ, Rendler T, Wrachtrup J, Liu RB, Li Q. Association of Nanodiamond Rotation Dynamics with Cell Activities by Translation-Rotation Tracking. NANO LETTERS 2021; 21:3393-3400. [PMID: 33847115 DOI: 10.1021/acs.nanolett.0c04864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Correlated translation-orientation tracking of single particles can provide important information for understanding the dynamics of live systems and their interaction with the probes. However, full six-dimensional (6D) motion tracking has yet to be achieved. Here, we developed synchronized 3D translation and 3D rotation tracking of single diamond particles based on nitrogen-vacancy center sensing. We first performed 6D tracking of diamond particles attached to a giant plasma membrane vesicle to demonstrate the method. Quantitative analysis of diamond particles' motion allowed elimination of the geometric effect and revealed the net rotation on the vesicle. 6D tracking was then applied to measure live cell dynamics. Motion characteristics of nanodiamonds on cell membranes under various controlled physiological conditions suggest that the nanodiamonds' rotation is associated with cell metabolic activities. Our technique extends the toolbox of single particle tracking and provides a unique solution to problems where correlated analysis of translation and rotation is critical.
Collapse
Affiliation(s)
- Xi Feng
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weng-Hang Leong
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kangwei Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chu-Feng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gang-Qin Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Torsten Rendler
- 3rd Institute of Physics and Center for Applied Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany
| | - Joerg Wrachtrup
- 3rd Institute of Physics and Center for Applied Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ren-Bao Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Hong Kong, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Hong Kong Institute of Quantum Information Science and Technology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Quantum Coherence, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Noterman MF, Chaubey K, Lin-Rahardja K, Rajadhyaksha AM, Pieper AA, Taylor EB. Dual-process brain mitochondria isolation preserves function and clarifies protein composition. Proc Natl Acad Sci U S A 2021; 118:e2019046118. [PMID: 33836587 PMCID: PMC7980376 DOI: 10.1073/pnas.2019046118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The brain requires continuously high energy production to maintain ion gradients and normal function. Mitochondria critically undergird brain energetics, and mitochondrial abnormalities feature prominently in neuropsychiatric disease. However, many unique aspects of brain mitochondria composition and function are poorly understood. Developing improved neuroprotective therapeutics thus requires more comprehensively understanding brain mitochondria, including accurately delineating protein composition and channel-transporter functional networks. However, obtaining pure mitochondria from the brain is especially challenging due to its distinctive lipid and cell structure properties. As a result, conflicting reports on protein localization to brain mitochondria abound. Here we illustrate this problem with the neuropsychiatric disease-associated L-type calcium channel Cav1.2α1 subunit previously observed in crude mitochondria. We applied a dual-process approach to obtain functionally intact versus compositionally pure brain mitochondria. One branch utilizes discontinuous density gradient centrifugation to isolate semipure mitochondria suitable for functional assays but unsuitable for protein localization because of endoplasmic reticulum (ER) contamination. The other branch utilizes self-forming density gradient ultracentrifugation to remove ER and yield ultrapure mitochondria that are suitable for investigating protein localization but functionally compromised. Through this process, we evaluated brain mitochondria protein content and observed the absence of Cav1.2α1 and other previously reported mitochondrial proteins, including the NMDA receptor, ryanodine receptor 1, monocarboxylate transporter 1, excitatory amino acid transporter 1, and glyceraldehyde 3-phosphate dehydrogenase. Conversely, we confirmed mitochondrial localization of several plasma membrane proteins previously reported to also localize to mitochondria. We expect this dual-process isolation procedure will enhance understanding of brain mitochondria in both health and disease.
Collapse
Affiliation(s)
- Maria F Noterman
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Kristi Lin-Rahardja
- Department of Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106
| | - Anjali M Rajadhyaksha
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY 10065
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY 10065
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY 10065
- Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242;
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
39
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
40
|
Nishimura Y, Oshimi K, Umehara Y, Kumon Y, Miyaji K, Yukawa H, Shikano Y, Matsubara T, Fujiwara M, Baba Y, Teki Y. Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Sci Rep 2021; 11:4248. [PMID: 33608613 PMCID: PMC7895939 DOI: 10.1038/s41598-021-83285-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
Measuring optically detected magnetic resonance (ODMR) of diamond nitrogen vacancy centers significantly depends on the photon detectors used. We study camera-based wide-field ODMR measurements to examine the performance in thermometry by comparing the results to those of the confocal-based ODMR detection. We show that the temperature sensitivity of the camera-based measurements can be as high as that of the confocal detection and that possible artifacts of the ODMR shift are produced owing to the complexity of the camera-based measurements. Although measurements from wide-field ODMR of nanodiamonds in living cells can provide temperature precisions consistent with those of confocal detection, the technique requires the integration of rapid ODMR measurement protocols for better precisions. Our results can aid the development of camera-based real-time large-area spin-based thermometry of living cells.
Collapse
Affiliation(s)
- Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yumi Umehara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yuka Kumon
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazu Miyaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, Yokohama, 223-8522, Japan
- Institute for Quantum Studies, Chapman University, Orange , CA, 92866, USA
- JST PRESTO, Saitama, 332-0012, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| |
Collapse
|
41
|
Hebisch E, Hjort M, Volpati D, Prinz CN. Nanostraw-Assisted Cellular Injection of Fluorescent Nanodiamonds via Direct Membrane Opening. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006421. [PMID: 33502091 DOI: 10.1002/smll.202006421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Due to their stable fluorescence, biocompatibility, and amenability to functionalization, fluorescent nanodiamonds (FND) are promising materials for long term cell labeling and tracking. However, transporting them to the cytosol remains a major challenge, due to low internalization efficiencies and endosomal entrapment. Here, nanostraws in combination with low voltage electroporation pulses are used to achieve direct delivery of FND to the cytosol. The nanostraw delivery leads to efficient and rapid FND transport into cells compared to when incubating cells in a FND-containing medium. Moreover, whereas all internalized FND delivered by incubation end up in lysosomes, a significantly larger proportion of nanostraw-injected FND are in the cytosol, which opens up for using FND as cellular probes. Furthermore, in order to answer the long-standing question in the field of nano-biology regarding the state of the cell membrane on hollow nanostructures, live cell stimulated emission depletion (STED) microscopy is performed to image directly the state of the membrane on nanostraws. The time-lapse STED images reveal that the cell membrane opens entirely on top of nanostraws upon application of gentle electrical pulses, which supports the hypothesis that many FND are delivered directly to the cytosol, avoiding endocytosis and lysosomal entrapment.
Collapse
Affiliation(s)
- Elke Hebisch
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Martin Hjort
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
- Navan Technologies Inc., 733 Industrial Rd, San Carlos, CA, United States
| | - Diogo Volpati
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden
| |
Collapse
|
42
|
Morita A, Hamoh T, Sigaeva A, Norouzi N, Nagl A, van der Laan KJ, Evans EPP, Schirhagl R. Targeting Nanodiamonds to the Nucleus in Yeast Cells. NANOMATERIALS 2020; 10:nano10101962. [PMID: 33023102 PMCID: PMC7601435 DOI: 10.3390/nano10101962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Neda Norouzi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Andreas Nagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Emily P. P. Evans
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (A.S.); (N.N.); (A.N.); (K.J.v.d.L.); (E.P.P.E.)
- Correspondence:
| |
Collapse
|
43
|
Zhou J, Li C, Li D, Liu X, Mu Z, Gao W, Qiu J, Deng R. Single-molecule photoreaction quantitation through intraparticle-surface energy transfer (i-SET) spectroscopy. Nat Commun 2020; 11:4297. [PMID: 32855425 PMCID: PMC7453008 DOI: 10.1038/s41467-020-18223-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Quantification of nanoparticle-molecule interaction at a single-molecule level remains a daunting challenge, mainly due to ultra-weak emission from single molecules and the perturbation of the local environment. Here we report the rational design of an intraparticle-surface energy transfer (i-SET) process, analogous to high doping concentration-induced surface quenching effects, to realize single-molecule sensing by nanoparticle probes. This design, based on a Tb3+-activator-rich core-shell upconversion nanoparticle, enables a much-improved spectral response to fluorescent molecules at single-molecule levels through enhanced non-radiative energy transfer with a rate over an order of magnitude faster than conventional counterparts. We demonstrate a quantitative analysis of spectral changes of one to four fluorophores tethered on a single nanoparticle through i-SET spectroscopy. Our results provide opportunities to identify photoreaction kinetics at single-molecule levels and provide direct information for understanding behaviors of individual molecules with unprecedented sensitivity.
Collapse
Affiliation(s)
- Jian Zhou
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyu Li
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Denghao Li
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofeng Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhao Mu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Renren Deng
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China. .,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
44
|
Abstract
Biomedical imaging allows in vivo studies of organisms, providing valuable information of biological processes at both cellular and tissue levels. Nanodiamonds have recently emerged as a new type of probe for fluorescence imaging and contrast agent for magnetic resonance and photoacoustic imaging. Composed of sp3-carbon atoms, diamond is chemically inert and inherently biocompatible. Uniquely, its matrix can host a variety of optically and magnetically active defects suited for bioimaging applications. Since the first production of fluorescent nanodiamonds in 2005, a large number of experiments have demonstrated that fluorescent nanodiamonds are useful as photostable markers and nanoscale sensors in living cells and organisms. In this review, we focus our discussion on the recent advancements of nanodiamond-enabled biomedical imaging for preclinical applications.
Collapse
Affiliation(s)
- Yen-Yiu Liu
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Be-Ming Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 106, Taiwan
| |
Collapse
|
45
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
46
|
Gulka M, Salehi H, Varga B, Middendorp E, Pall O, Raabova H, Cloitre T, Cuisinier FJG, Cigler P, Nesladek M, Gergely C. Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds. Sci Rep 2020; 10:9791. [PMID: 32555227 PMCID: PMC7299945 DOI: 10.1038/s41598-020-66593-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
In recent years, fluorescent nanodiamond (fND) particles containing nitrogen-vacancy (NV) centers gained recognition as an attractive probe for nanoscale cellular imaging and quantum sensing. For these applications, precise localization of fNDs inside of a living cell is essential. Here we propose such a method by simultaneous detection of the signal from the NV centers and the spectroscopic Raman signal from the cells to visualize the nucleus of living cells. However, we show that the commonly used Raman cell signal from the fingerprint region is not suitable for organelle imaging in this case. Therefore, we develop a method for nucleus visualization exploiting the region-specific shape of C-H stretching mode and further use k-means cluster analysis to chemically distinguish the vicinity of fNDs. Our technique enables, within a single scan, to detect fNDs, distinguish by chemical localization whether they have been internalized into cell and simultaneously visualize cell nucleus without any labeling or cell-fixation. We show for the first time spectral colocalization of unmodified high-pressure high-temperature fND probes with the cell nucleus. Our methodology can be, in principle, extended to any red- and near-infrared-luminescent cell-probes and is fully compatible with quantum sensing measurements in living cells.
Collapse
Affiliation(s)
- Michal Gulka
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium.
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01, Kladno, Czech Republic.
| | - Hamideh Salehi
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Bela Varga
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Elodie Middendorp
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Orsolya Pall
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Helena Raabova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Frederic J G Cuisinier
- Laboratoire de Bioingénierie et Nanoscience (LBN), Université de Montpellier, Montpellier, France
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Milos Nesladek
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01, Kladno, Czech Republic
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
47
|
Schaumann EN, Tian B. Biological Interfaces, Modulation, and Sensing with Inorganic Nano-Bioelectronic Materials. SMALL METHODS 2020; 4:1900868. [PMID: 34295965 PMCID: PMC8294120 DOI: 10.1002/smtd.201900868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/16/2020] [Indexed: 05/30/2023]
Abstract
The last several years have seen a large and increasing interest in scientific developments that combine methods and materials from nanotechnology with questions and applications in bioelectronics. This follows with a number of broader trends: the rapid increase in functionality for materials at the nanoscale; a growing recognition of the importance of electric fields in diverse physiological processes; and continuous improvements in technologies that are naturally complementary with bioelectronics, such as optogenetics. Here, a progress report is provided on several of the most exciting recent developments in this field. The three critical functions of biointerface formation, biological modulation, and biological sensing using newly developed nanoscale materials are considered.
Collapse
Affiliation(s)
- Erik N Schaumann
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Single-particle spectroscopy for functional nanomaterials. Nature 2020; 579:41-50. [PMID: 32132689 DOI: 10.1038/s41586-020-2048-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022]
Abstract
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
Collapse
|
49
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
50
|
Moscariello P, Raabe M, Liu W, Bernhardt S, Qi H, Kaiser U, Wu Y, Weil T, Luhmann HJ, Hedrich J. Unraveling In Vivo Brain Transport of Protein-Coated Fluorescent Nanodiamonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902992. [PMID: 31465151 DOI: 10.1002/smll.201902992] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood-brain barrier (BBB) preventing systemic delivery of drugs and optical probes into the brain. To overcome these limitations, nanodiamonds (NDs) are investigated in this study as they are a powerful sensing and imaging platform for various biological applications and possess outstanding stable far-red fluorescence, do not photobleach, and are highly biocompatible. Herein, fluorescent NDs encapsulated by a customized human serum albumin-based biopolymer (polyethylene glycol) coating (dcHSA-PEG) are taken up by target brain cells. In vitro BBB models reveal transcytosis and an additional direct cell-cell transport via tunneling nanotubes. Systemic application of dcHSA-NDs confirms their ability to cross the BBB in a mouse model. Tracking of dcHSA-NDs is possible at the single cell level and reveals their uptake into neurons and astrocytes in vivo. This study shows for the first time systemic NDs brain delivery and suggests transport mechanisms across the BBB and direct cell-cell transport. Fluorescent NDs are envisioned as traceable transporters for in vivo brain imaging, sensing, and drug delivery.
Collapse
Affiliation(s)
- Pierpaolo Moscariello
- Institute of Physiology, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Weina Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sandra Bernhardt
- Institute of Physiology, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Jana Hedrich
- Institute of Physiology, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|