1
|
Chen L, Xia B, Wang Y, Huang X, Gu Y, Wu W, Zhou Y. CMSSP: A Contrastive Mass Spectra-Structure Pretraining Model for Metabolite Identification. Anal Chem 2024; 96:16871-16881. [PMID: 39397774 DOI: 10.1021/acs.analchem.4c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A pivotal challenge in metabolite research is the structural annotation of metabolites from tandem mass spectrometry (MS/MS) data. The integration of artificial intelligence (AI) has revolutionized the interpretation of MS data, facilitating the identification of elusive metabolites within the metabolomics landscape. Innovative methodologies are primarily focusing on transforming MS/MS spectra or molecular structures into a unified modality to enable similarity-based comparison and interpretation. In this work, we present CMSSP, a novel Contrastive Mass Spectra-Structure Pretraining framework designed for metabolite annotation. The primary objective of CMSSP is to establish a representation space that facilitates a direct comparison between MS/MS spectra and molecular structures, transcending the limitations of distinct modalities. The evaluation on two benchmark test sets demonstrates the efficacy of the approach. CMSSP achieved a remarkable enhancement in annotation accuracy, outperforming the state-of-the-art methods by a significant margin. Specifically, it improved the top-1 accuracy by 30% on the CASMI 2017 data set and realized a 16% increase in top-10 accuracy on an independent test set. Moreover, the model displayed superior identification accuracy across all seven chemical categories, showcasing its robustness and versatility. Finally, the MS/MS data of 30 metabolites from Glycyrrhiza glabra were analyzed, achieving top-1 and top-3 accuracies of 86.7 and 100%, respectively. The CMSSP model serves as a potent tool for the dissection and interpretation of intricate MS/MS data, propelling the field toward more accurate and efficient metabolite annotation. This not only augments the analytical capabilities of metabolomics but also paves the way for future discoveries in understanding of complex biological systems.
Collapse
Affiliation(s)
- Lu Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xia Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu 611135, China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Salem PPO, Silva DO, Silva PRS, Costa LPDM, Nicácio KJ, Murgu M, Caldas IS, Leite FB, Paula ACCD, Dias DF, Soares MG, Chagas-Paula DA. Bioguided isolation of anti-inflammatory and anti-urolithiatic active compounds from the decoction of Cissus gongylodes leaves. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118950. [PMID: 39419303 DOI: 10.1016/j.jep.2024.118950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cissus gongylodes has traditionally been used in the diet of indigenous people in Brazil and in traditional medicine for kidney stone removal and inflammatory diseases. The active compounds responsible for these pharmacological activities are unknown. AIM OF THE STUDY This study aims to isolate, for the first time, the compounds in the decoction of C. gongylodes leaves responsible for their anti-inflammatory and anti-urolithiatic ethnopharmacological properties. MATERIALS AND METHODS The most active fractions of the C. gongylodes leaf decoction were fractionated using SPE-C18 and the compounds were purified through HPLC-UV-DAD. The decoction fractions and isolated compounds were evaluated for their anti-inflammatory and anti-urolithiatic activities. The anti-inflammatory activity was assessed using an ex vivo assay in human blood induced by LPS and calcium ionophore, measuring inflammatory mediators, PGE2 and LTB4. The anti-urolithiatic activity was evaluated using an in vitro experimental model with human urine to determine the dissolution of the most recurrent calcium oxalate (CaOx) crystals. Additionally, the decoction was chemically characterized through metabolomic analysis using UHPLC-ESI-HRMS. RESULTS The isolated compounds from the decoction of C. gongylodes, including rutin, eriodictyol 3'-O-glycoside, and isoquercetin, have demonstrated significant multi-target actions. These components act as anti-inflammatory agents by inhibiting the release of main inflammatory mediators, PGE2 and LTB4. Additionally, they exhibit anti-urolithiatic properties, promoting the dissolution of calcium oxalate (CaOx) crystals. Furthermore, the characterization of the decoction by UHPLC-ESI-HRMS revealed a high content of flavonoids, mainly glycosylated flavonoids. CONCLUSIONS The results support the traditional use of C. gongylodes decoction, identifying the compounds responsible for its anti-inflammatory and anti-urolithiatic effects. The decoction fractions and isolated compounds exhibited dual anti-inflammatory activity, effectively inhibiting key inflammatory pathways and potentially presenting fewer adverse effects while also promoting the dissolution of CaOx crystals associated with urolithiasis. The multi-target action displayed by C. gongylodes is particularly desirable in the treatment of urolithiasis, as inflammation and PGE2 production precede and contribute to the formation of CaOx crystals in the kidneys. Based on these actions, C. gongylodes emerges as a potent source of active compounds for the development of new treatments for urolithiasis.
Collapse
Affiliation(s)
- Paula P O Salem
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniele O Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Paulo R S Silva
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lara P D M Costa
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Karen J Nicácio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | | | - Ivo S Caldas
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernanda B Leite
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Ana C C de Paula
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Danielle F Dias
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Marisi G Soares
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniela A Chagas-Paula
- Laboratory of Phytochemistry, Medicinal Chemistry, and Metabolomics, Chemistry Institute University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
3
|
Liu H, Li J, Xu C, Liu H, Zhao Z. Unravelling the molecular regulation network of carbon metabolism and lipid metabolism during seed development in Akebia trifoliata via integrated multi-omics analysis. Sci Rep 2024; 14:22893. [PMID: 39358430 PMCID: PMC11446908 DOI: 10.1038/s41598-024-74075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Akebia trifoliata is a medicinal plant with high oil content and broad pharmacological effects. To investigate the regulatory mechanisms of key metabolic pathways during seed development, we conducted an integrated multi-omics analysis, including transcriptomics, proteomics, and metabolomics, exploring the dynamic changes in carbon and lipid metabolism. Metabolomics analysis revealded that glucose and sucrose levels decreased, while glycolytic intermediate phosphoenolpyruvate and fatty acids increased with seed development, indicating a shift in carbon flux towards fatty acid synthesis. Integrated transcriptomic and proteomic analyses showed that 70 days after flowering, the expression levels of genes and proteins associated with carbon and fatty acid metabolism were upregulated, suggesting an increased energy demand. Additionally, LEC2, LEC1, WRI1, FUS3, and ABI3 were identified as vital regulators of lipid synthesis. By constructing a multi-omics co-expression network, we identified hub genes such as aroE, GAPDH, KCS, TPS, and hub proteins like PGM, PDH, ENO, PFK, PK, ACCase, SAD, PLC, and OGDH that play critical regulatory roles in seed lipid synthesis. This study provides new ideas for the molecular basis of lipid synthesis in Akebia trifoliata seeds and can facilitate future research on the genetic improvement through molecular-assisted breeding.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Jinling Li
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Cunbin Xu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Hongchang Liu
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China
| | - Zhi Zhao
- Guizhou Key Laboratory of Propagation and Cultivation of Medicinal Plants, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
De Y, Yan W, Gao F, Mu H. Unraveling the signaling pathways of phytohormones underlying salt tolerance in Elymus sibiricus: A transcriptomic and metabolomic approach. Genomics 2024; 116:110893. [PMID: 38944355 DOI: 10.1016/j.ygeno.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Understanding phytohormonal signaling is crucial for elucidating plant defense mechanisms against environmental stressors. However, knowledge regarding phytohormone-mediated tolerance pathways under salt stress in Elymus sibiricus, an important species for forage and ecological restoration, remains limited. In this study, transcriptomic and metabolomic approaches uncover the dynamics of phytohormonal signaling in Elymus sibiricus under salt stress. Notably, four hours after exposure to salt, significant activity was observed in the ABA, JA, IAA, and CTK pathways, with ABA, JA, JA-L-Ile, and IAA identified as key mediators in the response of Elymus sibiricus' to salinity. Moreover, SAPK3, Os04g0167900-like, CAT1, MKK2, and MPK12 were identified as potential central regulators within these pathways. The complex interactions between phytohormones and DEGs are crucial for facilitating the adaptation of Elymus sibiricus to saline environments. These findings enhance our understanding of the salt tolerance mechanisms in Elymus sibiricus and provide a foundation for breeding salt-resistant varieties.
Collapse
Affiliation(s)
- Ying De
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China.
| | - Weihong Yan
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Fengqin Gao
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| | - Huaibin Mu
- Chinese Academy of Agricultural Sciences, Grassland Research Institute, Hohhot 010010, China
| |
Collapse
|
5
|
Zeng R, Chen T, Li X, Cao J, Li J, Xu X, Zhang L, Chen Y. Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress. PLANT, CELL & ENVIRONMENT 2024; 47:3198-3214. [PMID: 38722055 DOI: 10.1111/pce.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 07/12/2024]
Abstract
Waterlogging stress (WS) hinders kernel development and directly reduces peanut yield; however, the mechanism of kernel filling in response to WS remains unknown. The waterlogging-sensitive variety Huayu 39 was subjected to WS for 3 days at 7 days after the gynophores touched the ground (DAG). We found that WS affected kernel filling at 14, 21, and 28 DAG. WS decreased the average filling rate and kernel dry weight, while transcriptome sequencing and widely targeted metabolomic analysis revealed that WS inhibited the gene expression in starch and sucrose metabolism, which reduced sucrose input and transformation ability. Additionally, genes related to ethylene and melatonin synthesis and the accumulation of tryptophan and methionine were upregulated in response to WS. WS upregulated the expression of the gene encoding tryptophan decarboxylase (AhTDC), and overexpression of AhTDC in Arabidopsis significantly reduced the seed length, width, and weight. Therefore, WS reduced the kernel-filling rate, leading to a reduction in the 100-kernel weight. This survey informs the development of measures that alleviate the negative impact of WS on peanut yield and quality and provides a basis for exploring high-yield and high-quality cultivation, molecular-assisted breeding, and waterlogging prevention in peanut farming.
Collapse
Affiliation(s)
- Ruier Zeng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jing Cao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| | - Yong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agronomy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Li C, Wu B, Wang W, Yang X, Liu Y, Zhu G, Xie S, Jiang Q, Ding Y, Zhang Y, Zhao P, Zou L. Integrated Metabolomics and Transcriptomics Analyses of the Biosynthesis of Arbutin and 6'- O-Caffeoylarbutin in Vaccinium dunalianum Cell Suspension Cultures Fed with Hydroquinone. Int J Mol Sci 2024; 25:7760. [PMID: 39063002 PMCID: PMC11277349 DOI: 10.3390/ijms25147760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Arbutin and 6'-O-caffeoylarbutin (CA) from Vaccinium dunalianum Wight are known for their ability to inhibit melanin synthesis. To boost the production of arbutin and CA, precursor feeding with hydroquinone (HQ) was studied in V. dunalianum suspension cells. The effect of HQ on the biosynthesis of arbutin and CA in the suspension cells was investigated using high-performance liquid chromatography (HPLC), and possible molecular mechanisms were analyzed using metabolomics and transcriptomics analyses. HPLC analysis only showed that the addition of HQ significantly enhanced arbutin synthesis in cells, peaking at 15.52 ± 0.28 mg·g-1 after 0.5 mmol·L-1 HQ treatment for 12 h. Subsequently, metabolomics identified 78 differential expression metabolites (DEMs), of which arbutin and CA were significantly up-regulated metabolites. Moreover, transcriptomics found a total of 10,628 differential expression genes (DEGs). The integrated transcriptomics and metabolomics revealed that HQ significantly enhanced the expression of two arbutin synthase (AS) genes (Unigene0063512 and Unigene0063513), boosting arbutin synthesis. Additionally, it is speculated that CA was generated from arbutin and 3,4,5-tricaffeoylquinic acid catalyzed by caffeoyl transferase, with Unigene0044545, Unigene0043539, and Unigene0017356 as potentially associated genes with CA synthesis. These findings indicate that the precursor feeding strategy offers a promising approach for the mass production of arbutin and CA in V. dunalianum suspension cells and provides new insights for CA biosynthesis in V. dunalianum.
Collapse
Affiliation(s)
- Churan Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Boxiao Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Weihua Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Xiaoqin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Yun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.D.)
| | - Guolei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Sida Xie
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| | - Yong Ding
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.D.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.D.)
| | - Lihua Zou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (C.L.); (B.W.); (W.W.); (X.Y.); (G.Z.); (S.X.); (Q.J.)
| |
Collapse
|
7
|
Yang W, He Q, Zhang L, Xiao J, Yang J, Che B, Zhang B, Chen H, Li J, Jiang Y. Transcriptomics and metabolomics analyses provide insights into resistance genes of tree ferns. Front Genet 2024; 15:1398534. [PMID: 38915824 PMCID: PMC11194355 DOI: 10.3389/fgene.2024.1398534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/26/2024] Open
Abstract
As ancient organisms, tree ferns play a crucial role as an evolutionary bridge between lower and higher plant species, providing various utilitarian benefits. However, they face challenges such as overexploitation, climate change, adverse environmental conditions, and insect pests, resulting in conservation concerns. In this study, we provide an overview of metabolic and transcriptomic resources of leaves in two typical tree ferns, A. spinulosa and A. metteniana, and explore the resistance genes for the first time. The landscape of metabolome showed that the compound skimmin may hold medicinal significance. A total of 111 differentially accumulated metabolites (DAMs) were detected, with pathway enrichment analysis highlighting 14 significantly enriched pathways, including 2-oxocarboxylic acid metabolism possibly associated with environmental adaptations. A total of 14,639 differentially expressed genes (DEGs) were found, among which 606 were resistance (R) genes. We identified BAM1 as a significantly differentially expressed R gene, which is one of the core genes within the R gene interaction network. Both the maximum-likelihood phylogenetic tree and the PPI network revealed a close relationship between BAM1, FLS2, and TMK. Moreover, BAM1 showed a significant positive correlation with neochlorogenic acid and kaempferol-7-O-glucoside. These metabolites, known for their antioxidant and anti-inflammatory properties, likely play a crucial role in the defense response of tree ferns. This research provides valuable insights into the metabolic and transcriptomic differences between A. spinulosa and A. metteniana, enhancing our understanding of resistance genes in tree ferns.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration, Chishui, China
| | - Lijun Zhang
- Science and Technology Branch, Guizhou Normal University, Guiyang, China
| | - Jiaxing Xiao
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - Jiao Yang
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - BingChen Zhang
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - Handan Chen
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| | - Jiang Li
- Biozeron Shenzhen, Inc., Shenzhen, China
| | - Yu Jiang
- School of Life Sciences, Guizhou Normal University/Institute of Karst Caves, Guizhou Normal University, Guiyang, China
| |
Collapse
|
8
|
Huang S, Luo L, Wen B, Liu X, Yu K, Zhang M. Metabolic signatures of two scleractinian corals from the northern South China sea in response to extreme high temperature events. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106490. [PMID: 38636276 DOI: 10.1016/j.marenvres.2024.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Coral bleaching events are becoming increasingly common worldwide, causing widespread coral mortality. However, not all colonies within the same coral taxa show sensitivity to bleaching events, and the current understanding of the metabolic mechanisms underlying thermal bleaching in corals remains limited. We used untargeted metabolomics to analyze the biochemical processes involved in the survival of two bleaching phenotypes of the common corals Pavona decussata and Acropora pruinosa, during a severe bleaching event in the northern South China Sea in 2020. During thermal bleaching, P. decussata and A. pruinosa significantly accumulated energy products such as succinate and EPA, antioxidants and inflammatory markers, and reduced energy storage substances like glutamate and thymidine. KEGG analysis revealed enrichment of energy production pathways such as ABC transporters, nucleotide metabolism and lipid metabolism, suggesting the occurrence of oxidative stress and energy metabolism disorders in bleached corals. Notably, heat stress exerted distinct effects on metabolic pathways in the two coral species, e.g., P. decussata activating carbohydrate metabolism pathways like glycolysis and the TCA cycle, along with amino acid metabolism pathways, whereas A. pruinosa significantly altered the content of multiple small peptides affected amino acid metabolism. Furthermore, the osmoregulatory potential of corals correlates with their ability to survive in heat-stress environments in the wild. This study provides valuable insights into the metabolic mechanisms linked to thermal tolerance in reef-building corals, contributes to the understanding of corals' adaptive potential to heat stress induced by global warming and lays the foundation for developing targeted conservation strategies in the future.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Li Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Beihua Wen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xurui Liu
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Huang X, Zhu Y, Su W, Song S, Chen R. Widely-targeted metabolomics and transcriptomics identify metabolites associated with flowering regulation of Choy Sum. Sci Rep 2024; 14:10682. [PMID: 38724517 PMCID: PMC11081954 DOI: 10.1038/s41598-024-60801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.
Collapse
Affiliation(s)
- Xinmin Huang
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China
| | - Yunna Zhu
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Wei Su
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shiwei Song
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Riyuan Chen
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Lu H, Zheng S, Ma C, Gao X, Ji J, Luo J, Hua H, Cui J. Integrated Omics Analysis Reveals Key Pathways in Cotton Defense against Mirid Bug ( Adelphocoris suturalis Jakovlev) Feeding. INSECTS 2024; 15:254. [PMID: 38667384 PMCID: PMC11049813 DOI: 10.3390/insects15040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
The recent dominance of Adelphocoris suturalis Jakovlev as the primary cotton field pest in Bt-cotton-cultivated areas has generated significant interest in cotton pest control research. This study addresses the limited understanding of cotton defense mechanisms triggered by A. suturalis feeding. Utilizing LC-QTOF-MS, we analyzed cotton metabolomic changes induced by A. suturalis, and identified 496 differential positive ions (374 upregulated, 122 downregulated) across 11 categories, such as terpenoids, alkaloids, phenylpropanoids, flavonoids, isoflavones, etc. Subsequent iTRAQ-LC-MS/MS analysis of the cotton proteome revealed 1569 differential proteins enriched in 35 metabolic pathways. Integrated metabolome and proteome analysis highlighted significant upregulation of 17 (89%) proteases in the α-linolenic acid (ALA) metabolism pathway, concomitant with a significant increase in 14 (88%) associated metabolites. Conversely, 19 (73%) proteases in the fructose and mannose biosynthesis pathway were downregulated, with 7 (27%) upregulated proteases corresponding to the downregulation of 8 pathway-associated metabolites. Expression analysis of key regulators in the ALA pathway, including allene oxidase synthase (AOS), phospholipase A (PLA), allene oxidative cyclase (AOC), and 12-oxophytodienoate reductase3 (OPR3), demonstrated significant responses to A. suturalis feeding. Finally, this study pioneers the exploration of molecular mechanisms in the plant-insect relationship, thereby offering insights into potential novel control strategies against this cotton pest.
Collapse
Affiliation(s)
- Hui Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Green Agricultural Products Safety and Warning Laboratory, Research Center of Soil Resource Comprehensive Utilization and Ecological Environment in Western Inner Mongolia, Hetao College, Bayannur 015000, China
| | - Shuaichao Zheng
- Henan Institute of Science and Technology, College of Life Science, Hualan St. 90, Xinxiang 453003, China;
| | - Chao Ma
- Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China;
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant, Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Chinese Academy of Agricultural Sciences, No. 38, Huanghe Road, Anyang 455000, China; (H.L.); (J.J.); (J.L.)
| |
Collapse
|
11
|
Zhang M, Li Y, Wang J, Shang S, Wang H, Yang X, Lu C, Wang M, Sun X, Liu X, Wang X, Wei B, Lv W, Mu G. Integrated transcriptomic and metabolomic analyses reveals anthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.). BMC PLANT BIOLOGY 2024; 24:203. [PMID: 38509491 PMCID: PMC10953167 DOI: 10.1186/s12870-024-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.
Collapse
Affiliation(s)
- Min Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Yueyou Li
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Junling Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Shaopu Shang
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Hongxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China
| | - Mei Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xinbo Sun
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoqing Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Xiaoxia Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Boxiang Wei
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, Hebei Province, 050000, P. R. China.
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, The Key Laboratory of Germplasm Resources of Hebei Province, Hebei Agricultural University, Baoding, Hebei Province, 071000, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhangjiakou, Hebei Province, 075000, P. R. China.
- The Quinoa S&T Academy Park of Rural Special Technology Association of China, Zhangjiakou, Hebei Province, 075000, P. R. China.
| |
Collapse
|
12
|
Cajka T, Hricko J, Rakusanova S, Brejchova K, Novakova M, Rudl Kulhava L, Hola V, Paucova M, Fiehn O, Kuda O. Hydrophilic Interaction Liquid Chromatography-Hydrogen/Deuterium Exchange-Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics. Int J Mol Sci 2024; 25:2899. [PMID: 38474147 DOI: 10.3390/ijms25052899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.
Collapse
Affiliation(s)
- Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Jiri Hricko
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Stanislava Rakusanova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Novakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Lucie Rudl Kulhava
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Veronika Hola
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Paucova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| |
Collapse
|
13
|
Li X, Li C, Chen Z, Wang J, Sun J, Yao J, Chen K, Li Z, Ye H. High-resolution mass spectrometry-based non-targeted metabolomics reveals toxicity of naphthalene on tall fescue and intrinsic molecular mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115975. [PMID: 38244514 DOI: 10.1016/j.ecoenv.2024.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.
Collapse
Affiliation(s)
- Xuecheng Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China
| | - Changyi Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Ziyu Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jun Yao
- School of Water Resources & Environment, China University of Geosciences Beijing, Beijing, PR China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| | - Zhenghui Li
- College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China.
| | - Hengpeng Ye
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Wang D, Liu G, Yang J, Shi G, Niu Z, Liu H, Xu N, Wang L. Integrated metabolomics and transcriptomics reveal molecular mechanisms of corolla coloration in Rhododendron dauricum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108438. [PMID: 38367387 DOI: 10.1016/j.plaphy.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Rhododendron dauricum L. is a semi-evergreen shrub of high ornamental and medicinal values in Northeast China. To study the molecular mechanisms of corolla coloration in R. dauricum, integrated metabolomics and transcriptomics were performed in R. dauricum featuring purple flowers and R. dauricum var. album featuring white flowers. Comparative metabolomics revealed 25 differential metabolites in the corolla of the two distinct colors, enriched in flavonoids that are closely related to pigmentation in the flower. Differential analysis of the transcriptomics data revealed enrichment of structural genes for flavonoid biosynthesis (99 up- and 58 down-regulated, respectively, in purple corollas compared to white ones). Significantly, CHS and CHI, key genes in the early stage of anthocyanin synthesis, as well as F3H, F3'H, F3'5'H, DFR, ANS, and UFGT that promote the accumulation of pigments in the late stage of anthocyanin synthesis, were up-regulated in R. dauricum (purple color). In R. dauricum var. album, FLS were key genes determining the accumulation of flavonols. In addition, transcriptome-metabolome correlation analysis identified 16 R2R3 MYB transcription factors (out of 83 MYBs) that are important for corolla coloration. Five negative and four positive MYBs were further identified by integrated transcriptional and metabolic network analysis, revealing a key role of MYBA and MYB12 in regulating anthocyanins and flavonols, respectively. Moreover, we validated the function of RdMYBA by creating stable transgenic plants and found that RdMYBA promotes anthocyanin biosynthesis. In summary, we systematically characterized the transcriptome and metabolome of two R. dauricum cultivars with different flower colors and identified MYBs as key factors in modulating corolla coloration.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Forestry, Heilongjiang Academy of Forestry, Harbin, 150081, China
| | - Guiling Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Juan Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Gongfa Shi
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoqian Niu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Huijun Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Nuo Xu
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China
| | - Ling Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
15
|
Luque-Córdoba D, Calderón-Santiago M, Rangel-Zúñiga OA, Camargo A, López-Miranda J, Priego-Capote F. Comprehensive profiling of ceramides in human serum by liquid chromatography coupled to tandem mass spectrometry combining data independent/dependent acquisition modes. Anal Chim Acta 2024; 1287:342115. [PMID: 38182388 DOI: 10.1016/j.aca.2023.342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Ceramides are sphingolipids with a structural function in the cell membrane and are involved in cell differentiation, proliferation and apoptosis. Recently, these chemical species have been pointed out as potential biomarkers in different diseases, due to their abnormal levels in blood. In this research, we present an overall strategy combining data-independent and dependent acquisitions (DIA and DDA, respectively) for identification, confirmation, and quantitative determination of ceramides in human serum. By application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in DIA mode we identified 49 ceramides including d18:1, d18:0, d18:2, d16:1, d17:1 and t18:0 species. Complementary, quantitative determination of ceramides was based on a high-throughput and fully automated method consisting of solid-phase extraction on-line coupled to LC-MS/MS in DDA to improve analytical features avoiding the errors associated to sample processing. Quantitation limits were at pg mL-1 level, the intra-day and between-days variability were below 20 and 25 %, respectively; and the accuracy, expressed as bias, was always within ±25 %. The proposed method was tested with the CORDIOPREV cohort in order to obtain a qualitative and quantitative profiling of ceramides in human serum. This characterization allowed identifying d18:1 ceramides as the most concentrated with 70.8% of total concentration followed by d18:2 and d18:0 with 13.0 % and 8.8 %, respectively. Less concentrated ceramides, d16:1, d17:1 and t18:0, reported a 7.1 % of the total content. Combination of DIA and DDA LC-MS/MS analysis enabled to profile qualitative and quantitatively ceramides in human serum.
Collapse
Affiliation(s)
- D Luque-Córdoba
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - O A Rangel-Zúñiga
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A Camargo
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J López-Miranda
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain.
| |
Collapse
|
16
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
17
|
Fan Y, Ni Y, Cheng M, Guo W, Gao H, Hu W, Shu C, Ding L. The metabolite profiling of YR-1702 injection in human plasma, urine and feces by HPLC-Q-TOF-MS/MS. Xenobiotica 2023; 53:536-546. [PMID: 37850428 DOI: 10.1080/00498254.2023.2272193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
YR-1702, a hybrid μ/κ/δ receptor agonist, is modified from the traditional opioid analgesic dezocine. It had shown both excellent analgesic effect and lower addiction in phase I clinical trial in China, however, the metabolic pathway of YR-1702 in humans remains unelucidated.The goals of this study are to characterise the metabolism of YR-1702 in human liver microsomes (HLMs) and patients with chronic non-cancer pain by high performance liquid chromatography-coupled with quadrupole-time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS).The results showed that a total of twelve metabolites were identified in HLMs, in which 7, 6 and 5 metabolites were also found in human plasma, urine and feces, respectively. And the major metabolic pathways include mono-hydroxylation, di-hydroxylation, dehydrogenation and glucuronidation. The locations of hydroxylation and dehydrogenation were identified by the signature fragments of the metabolites.The relative contents of the metabolites in human plasma were also evaluated, in which the main metabolite M1 notably accounting for more than 14% of the total drug exposure. This study would contribute to the understanding of the in vivo metabolite profile of YR-1702 injection for future use.
Collapse
Affiliation(s)
- Yuxuan Fan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yufeng Ni
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- Yangtze River Pharmaceutical Group Co., Ltd, Taizhou, China
| | - Minlu Cheng
- Nanjing Clinical Tech Laboratories Inc, Nanjing, China
| | - Wenjing Guo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Huaye Gao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - WenHui Hu
- Nanjing Jiening Pharmaceutical Technology Co., Ltd, Nanjing, China
| | - Chang Shu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Jie H, He P, Zhao L, Ma Y, Jie Y. Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3899. [PMID: 38005796 PMCID: PMC10675582 DOI: 10.3390/plants12223899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage.
Collapse
Affiliation(s)
- Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
- Hunan Provincial Engineering Technology Research Center for Grass Crop Germplasm Innovation and Utilization, Changsha 410128, China
| |
Collapse
|
19
|
Han J, Gong S, Bian X, Qian Y, Wang G, Li N, Wu JL. Polarity-regulated derivatization-assisted LC-MS method for amino-containing metabolites profiling in gastric cancer. J Pharm Anal 2023; 13:1353-1364. [PMID: 38174119 PMCID: PMC10759254 DOI: 10.1016/j.jpha.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 01/05/2024] Open
Abstract
Amino-containing compounds, including amino acids, aliphatic amines, aromatic amines, small peptides and catecholamines, are involved in various biological processes and play vital roles in multiple metabolic pathways. Previous studies indicated that some amino-containing metabolites are significant diagnostic and prognostic biomarkers of gastric cancer. However, the discovery of precise biomarkers for the preoperative diagnosis of gastric cancer is still in an urgent need. Herein, we established a polarity-regulated derivatization method coupled with liquid chromatography-mass spectrometry (LC-MS) for amino-containing metabolites profiling in the serum samples of patients with gastric cancer and healthy controls, based on our newly designed and synthesized derivatization reagent (S)-3-(1-(diisopropoxyphosphoryl) pyrrolidine-2-carboxamido)-N-hydroxysuccinimidyl ester (3-DP-NHS). Enhanced separation efficiency and detection sensitivity for amino-containing metabolites were achieved after derivatization. This method exhibited good linearity, recovery, intra- and inter-day precision and accuracy. Only 5 μL serum is needed for untargeted analysis, enabling 202 amino-containing metabolites to be detected. Statistical analysis revealed altered amino acid metabolisms in patients with gastric cancer. Furthermore, ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS) analysis quantification revealed increased serum levels of tryptamine and decreased concentrations of arginine and tryptophan in patients with gastric cancer. Receiver operating characteristic (ROC) curves indicated that an increased tryptamine/tryptophan ratio could serve as a potential biomarker for gastric cancer diagnosis. This study demostrated the possibility of using serum amino acid biomarkers for gastric cancer diagnosis, providing new avenues for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Yun Qian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
| | - Guilan Wang
- Department of Pediatrics, Zhongshan Boai Hospital, Zhongshan, Guangdong, 528403, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
20
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
21
|
Han N, Sun L, Zhang J, Yuan W, Wang C, Zhao A, Wang D. Transcriptomics integrated with metabolomics to characterize key pigment compounds and genes related to anthocyanin biosynthesis in Zanthoxylum bungeanum peel. PHYSIOLOGIA PLANTARUM 2023; 175:e14031. [PMID: 37882301 DOI: 10.1111/ppl.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
Zanthoxylum bungeanum is an important condiment with high economic value and its peel color is one of the main quality indexes. However, the key pigment compounds and related genes are still unclear affecting the quality control of the plants. In this study, the contents of four types of pigments were measured in Z. bungeanum and flavonoids were identified as the most important pigments. Based on the targeted flavonoid metabolomics of Z. bungeanum peels, 14 key pigment compounds were screened out from 152 flavonoids, among which cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside were the most critical compounds for peel color. They were further verified to be present in nine varieties of Z. bungeanum by HPLC fingerprints. The 14 compounds were all associated with flavonoid and anthocyanin biosynthesis pathways and the 39 differentially expressed genes related to these pathways were annotated and screened based on transcriptomics. The genes ZbDFR, ZbANS, and ZbUFGT were identified as three key genes for anthocyanin synthesis in Z. bungeanum peels. Further qRT-PCR results confirmed the reliability of transcriptomics and the accuracy of gene screening. Subsequent protein induced expression demonstrated that ZbANS and ZbUFGT were expressed after 12 h induced by IPTG while ZbDFR was expressed after 15 h. Further transient and stable transformation analysis confirmed that both anthocyanin content and the expression of ZbDFR were significantly increased in overexpression Z. bungeanum leaves and Nicotiana benthamiana. The functional effect of stable transformation of ZbDFR was more significant than that of transient transformation with a 7.67-fold/1.49-fold difference in total anthocyanin content and a 42.37-fold/12.32-fold difference in the expression of ZbDFR. This study provides new insights into the chemical composition and the molecular mechanisms of Z. bungeanum peel color and lays an effective foundation for the color quality control, multi-purpose utilization of Z. bungeanum and the creation of new germplasm.
Collapse
Affiliation(s)
- Nuan Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Leiwen Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Yuan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongmei Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Qian Y, Chen Z, Wang J, Peng M, Zhang S, Yan X, Han X, Ou X, Sun J, Li S, Chen K. H/D Exchange Coupled with 2H-labeled Stable Isotope-Assisted Metabolomics Discover Transformation Products of Contaminants of Emerging Concern. Anal Chem 2023; 95:12541-12549. [PMID: 37574906 DOI: 10.1021/acs.analchem.3c02833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Stable isotope-assisted metabolomics (SIAM) is a powerful tool for discovering transformation products (TPs) of contaminants. Nevertheless, the high cost or lack of isotope-labeled analytes limits its application. In-house H/D (hydrogen/deuterium) exchange reactions enable direct 2H labeling to target analytes with favorable reaction conditions, providing intuitive and easy-to-handle approaches for environmentally relevant laboratories to obtain cost-effective 2H-labeled contaminants of emerging concern (CECs). We first combined the use of in-house H/D exchange and 2H-SIAM to discover potential TPs of 6PPD (N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine), providing a new strategy for finding TPs of CECs. 6PPD-d9 was obtained by in-house H/D exchange with favorable reaction conditions, and the impurities were carefully studied. Incomplete deuteride, for instance, 6PPD-d8 in this study, constitutes a major part of the impurities. Nevertheless, it has few adverse effects on the 2H-SIAM pipeline in discovering TPs of 6PPD. The 2H-SIAM pipeline annotated 9 TPs of 6PPD, and commercial standards further confirmed the annotated 6PPDQ (2-anilino-5-(4-methylpentan-2-ylamino)cyclohexa-2,5-diene-1,4-dione) and PPPD (N-phenyl-p-phenylenediamine). Additionally, a possible new formation mechanism for 6PPDQ was proposed, highlighting the performance of the strategy. In summary, this study highlighted a new strategy for discovering the TPs of CECs and broadening the application of SIAM in environmental studies.
Collapse
Affiliation(s)
- Yiguang Qian
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ziyu Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Man Peng
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xiaole Han
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaohui Ou
- Ecological and Environmental Monitoring Centre, Guangxi Zhuang Autonomous Region, Nanning 530028, P. R. China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
23
|
Xin J, Che T, Huang X, Yan H, Jiang S. A comprehensive view of metabolic responses to CYP98 perturbation in ancestral plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107793. [PMID: 37276808 DOI: 10.1016/j.plaphy.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 monooxygenase 98 (CYP98) is a critical rate-limiting enzyme of the phenylpropanoid pathway. One of the end-product of the phenylpropanoid pathway is a lignin monomer, although the occurrence of lignin in bryophytes is controversial. Here we investigated the functions of PpCYP98 in Physcomitrium patens by transcriptome and metabolome analyses. We identified 5266 differentially expressed genes (DEGs) and 68 differentially abundant secondary metabolites between wild-type and ΔPpCYP98 gametophores. Of the identified metabolites, 23 phenolic acids were identified, with only one showing upregulation. Among the phenolic acids, 4-coumaroyl tartaric acid and chlorogenic acid showed significant decreases. Declines were also observed in coniferylaldehyde and coniferin, precursor substances and downstream products of the lignin monomer coniferyl alcohol, respectively. Thus, the pre-lignin synthesis pathway already exists in bryophytes, and PpCYP98 plays vital roles in this pathway. Besides, most flavonoids show significant reductions, including eriodyctiol, dihydroquecetin, and dihydromyricetin, whereas naringenin chalone and dihydrokaempferol were increased after PpCYP98 knockout. Therefore, the synthesis of flavonoids shares the core pathway with phenylpropanoids and mainly starts from caffeoyl-CoA, that is the compound of divergence between the two pathways in moss. PpCYP98 showed systemic effects on metabolisms, including carbohydrate, fatty acid, and hormonal signaling transductions, suggesting that PpCYP98 might indirectly regulate carbon influx allocation. Our results demonstrated roles of PpCYP98 were essential for the development of the early landing plant.
Collapse
Affiliation(s)
- Jiankang Xin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Tianmin Che
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550001, China.
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
| | - Shan Jiang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; College of International Education, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
24
|
Lista S, González-Domínguez R, López-Ortiz S, González-Domínguez Á, Menéndez H, Martín-Hernández J, Lucia A, Emanuele E, Centonze D, Imbimbo BP, Triaca V, Lionetto L, Simmaco M, Cuperlovic-Culf M, Mill J, Li L, Mapstone M, Santos-Lozano A, Nisticò R. Integrative metabolomics science in Alzheimer's disease: Relevance and future perspectives. Ageing Res Rev 2023; 89:101987. [PMID: 37343679 DOI: 10.1016/j.arr.2023.101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain.
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Madrid, Spain
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Luana Lionetto
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jericha Mill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
25
|
Ledesma-Escobar CA, Priego-Capote F, Calderón-Santiago M. MetaboMSDIA: A tool for implementing data-independent acquisition in metabolomic-based mass spectrometry analysis. Anal Chim Acta 2023; 1266:341308. [PMID: 37244659 DOI: 10.1016/j.aca.2023.341308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023]
Abstract
Data-dependent acquisition (DDA) is the most widely used mode in untargeted metabolomic analysis despite its limited tandem mass spectrometry (MS2) detection coverage. We present MetaboMSDIA for complete processing of data-independent acquisition (DIA) files by the extraction of multiplexed MS2 spectra and further identification of metabolites in open libraries. In the analysis of polar extracts from lemon and olive fruits, DIA allows one to obtain multiplexed MS2 spectra for 100% of precursor ions compared to 64% of precursor ions from average MS2 acquisition in DDA. MetaboMSDIA is compatible with MS2 repositories and homemade libraries prepared by analysis of standards. An additional option is based on filtering molecular entities by searching for selective fragmentation patterns according to selective neutral losses or product ions to target the annotation of families of metabolites. Combining both options, the applicability of MetaboMSDIA was tested by annotating 50 and 35 metabolites in polar extracts from lemon and olive fruit, respectively. MetaboMSDIA is particularly proposed to increase the acquisition coverage in untargeted metabolomics and to improve spectral quality, which are two critical pillars for the tentative annotation of metabolites. The R script used in MetaboMSDIA workflow is available at github repository (https://github.com/MonicaCalSan/MetaboMSDIA).
Collapse
Affiliation(s)
- Carlos Augusto Ledesma-Escobar
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Spain.
| | - Mónica Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
26
|
Luan A, Zhang W, Yang M, Zhong Z, Wu J, He Y, He J. Unveiling the molecular mechanism involving anthocyanins in pineapple peel discoloration during fruit maturation. Food Chem 2023; 412:135482. [PMID: 36753941 DOI: 10.1016/j.foodchem.2023.135482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Peel color is a key factor that affects the fruit's aesthetic and economic values. Limited knowledge is available on the regulation of pineapple peel discoloration. Here, we report that a decrease in anthocyanin biosynthesis, particularly cyanidin, is predominantly associated with the pineapple peel color change during maturation. The findings suggest that the changes in the expression of key structural genes (early and late biosynthetic genes) of the anthocyanin (cyanidin) biosynthesis pathway are responsible for peel discoloration. Based on a gene co-expression analysis and a transient expression, two transcription factors i.e., AcHOX21 and AcMYB12, were identified, whose' downregulation leads to reduced anthocyanin accumulation with fruit maturation. The endogenous levels of jasmonic acid, gibberellic acid, and auxins are also involved in anthocyanin-content-led peel discoloration. Overall, the discovery of genes regulating anthocyanin biosynthesis in pineapple peel provides a theoretical basis for improving the fruit's aesthetic value through genetic engineering.
Collapse
Affiliation(s)
- Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Wei Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Mingzhe Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ziqin Zhong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China; Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Junhu He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China.
| |
Collapse
|
27
|
Trentin G, Bitencourt TA, Guedes A, Pessoni AM, Brauer VS, Pereira AK, Costa JH, Fill TP, Almeida F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida albicans Extracellular Vesicles. Microorganisms 2023; 11:1669. [PMID: 37512842 PMCID: PMC10383470 DOI: 10.3390/microorganisms11071669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Arthur Guedes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - André M Pessoni
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Veronica S Brauer
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
28
|
Fonseca TH, Von Rekowski CP, Araújo R, Oliveira MC, Justino G, Bento L, Calado CRC. The Impact of the Serum Extraction Protocol on Metabolomic Profiling Using UPLC-MS/MS and FTIR Spectroscopy. ACS OMEGA 2023; 8:20755-20766. [PMID: 37323376 PMCID: PMC10237515 DOI: 10.1021/acsomega.3c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient's survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.
Collapse
Affiliation(s)
- Tiago
A. H. Fonseca
- Instituto
Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Cristiana P. Von Rekowski
- Instituto
Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Rúben Araújo
- Instituto
Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - M. Conceição Oliveira
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Gonçalo
C. Justino
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Luís Bento
- Intensive
Care Department, Centro Hospitalar Universitário
de Lisboa Central (CHULC), Rua José António Serrano, 1150-199 Lisboa, Portugal
- Integrated
Pathophysiological Mechanisms, CHRC, NOVA Medical School, Faculdade
de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Cecília R. C. Calado
- Instituto
Superior de Engenharia de Lisboa (ISEL), Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro
de Investigação em Modelação e Optimização
de Sistemas Multifuncionais (CIMOSM), Instituto Superior de Engenharia
de Lisboa (ISEL), Instituto Politécnico
de Lisboa, Rua Conselheiro
Emídio Navarro 1, 1959-007 Lisboa, Portugal
| |
Collapse
|
29
|
Burton EA, Atkinson B, Salerno J, Khan HN, Prosser RS, Gillis PL. Lethal and Sub-lethal Implications of Sodium Chloride Exposure for Adult Unionid Mussel Species: Eurynia dilatata and Lasmigona costata. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023:10.1007/s00244-023-01006-0. [PMID: 37233741 PMCID: PMC10374710 DOI: 10.1007/s00244-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
The elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.
Collapse
Affiliation(s)
- Erika A Burton
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Brian Atkinson
- Agriculture and Food Laboratory, University of Guelph, Guelph, ON, Canada
| | - Joseph Salerno
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Hufsa N Khan
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada.
| |
Collapse
|
30
|
Chen M, Chang C, Li H, Huang L, Zhou Z, Zhu J, Liu D. Metabolome analysis reveals flavonoid changes during the leaf color transition in Populus × euramericana 'Zhonghuahongye'. FRONTIERS IN PLANT SCIENCE 2023; 14:1162893. [PMID: 37223816 PMCID: PMC10200940 DOI: 10.3389/fpls.2023.1162893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Introduction To investigate the mechanism of leaf color change at different stages in Populus × euramericana 'Zhonghuahongye' ('Zhonghong' poplar). Methods Leaf color phenotypes were determined and a metabolomic analysis was performed on leaves at three stages (R1, R2 and R3). Results The a*, C* and chromatic light values of the leaves decreased by 108.91%, 52.08% and 113.34%, while the brightness L values and chromatic b* values gradually increased by 36.01% and 13.94%, respectively. In the differential metabolite assay, 81 differentially expressed metabolites were detected in the R1 vs. R3 comparison, 45 were detected in the R1 vs. R2 comparison, and 75 were detected in the R2 vs. R3 comparison. Ten metabolites showed significant differences in all comparisons, which were mostly flavonoid metabolites. The metabolites that were upregulated in the three periods were cyanidin 3,5-O-diglucoside, delphinidin, and gallocatechin, with flavonoid metabolites accounting for the largest proportion and malvidin 3- O-galactoside as the primary downregulated metabolite. The color shift of red leaves from a bright purplish red to a brownish green was associated with the downregulation of malvidin 3-O-glucoside, cyanidin, naringenin, and dihydromyricetin. Discussion Here, we analyzed the expression of flavonoid metabolites in the leaves of 'Zhonghong' poplar at three stages and identified key metabolites closely related to leaf color change, providing an important genetic basis for the genetic improvement of this cultivar.
Collapse
Affiliation(s)
- Mengjiao Chen
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong, China
| | - Cuifang Chang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hui Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Lin Huang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Zongshun Zhou
- China Experimental Centre of Subtropical Forestry, Chinese Academy of Forestry, Xinyu, Jiangxi, China
| | - Jingle Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, Shandong, China
| |
Collapse
|
31
|
Bahadori-Moghaddam M, Kargar S, Kanani M, Zamiri MJ, Arefi-Oskouie A, Albenzio M, Caroprese M, Ciliberti MG, Ghaffari MH. Effects of extended transition milk feeding on blood metabolites of female Holstein dairy calves at 3 weeks of age: a liquid chromatography with tandem mass spectrometry-based metabolomics approach. Animal 2023; 17:100844. [PMID: 37263134 DOI: 10.1016/j.animal.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Transition milk (TRM) is a rich source of bioactive components that promotes intestinal development and growth, and reduces the susceptibility to diarrhoea in calves. The objective of this study was to characterise the effects of replacing pasteurised waste milk (none-saleable milk containing antibiotic and/or drug residues) with pasteurised TRM for 3 wk on blood metabolites of dairy calves at 21 d of age. A total of 84 healthy newborn female Holstein calves was blocked by birth order and assigned randomly to four treatment groups with partial replacement of pasteurised waste milk by TRM (second milking after parturition) at 0 (0 L/day TRM + 6 L/day milk), 0.5 (0.5 L/day TRM + 5.5 L/day milk), 1 (1 L/day TRM + 5 L/day milk), or 2 L (2 L/day TRM + 4 L/day milk) for a 21-day period. Serum metabolome was determined by liquid chromatography with tandem mass spectrometry-based metabolomics analysis on a subset of 26 randomly selected individuals from calves fed pasteurised waste milk (CON, 6 L/d milk; n = 13) or TRM (2 L/d TRM + 4 L/d milk; n = 13) at 21 d of age. The identified metabolites (194 out of 265) were categorised according to chemical class and the number of metabolites per class in the serum, amongst which glycerophospholipids 16% (n = 43), fatty acyls 7% (n = 19), organic acids 7% (n = 18), organic heterocyclic compounds 5% (n = 13), benzenoids 5% (n = 12), sphingolipids 5% (n = 12), organic oxygen compounds 4% (n = 11), and nucleic acids 3% (n = 9), were the predominant types. Significant differences in metabolites were determined by the volcano plot. Applying the volcano plot, only two metabolites (ceramide and phosphatidylserine) were significantly different between CON and TRM. Overall, our results suggested that prolonged TRM feeding for 3 wk had little effect on the serum metabolome of the dairy calves. We speculate that the potential effects of feeding TRM for 3 wk compared with waste milk were spatially limited to affect the composition of the local gut microbial community and the growth or function of the intestinal epithelium, not allowing detection of the likely effects in the serum through a metabolomic approach.
Collapse
Affiliation(s)
- M Bahadori-Moghaddam
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - M Kanani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - M J Zamiri
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - A Arefi-Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19716-53313, Iran
| | - M Albenzio
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M Caroprese
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M G Ciliberti
- Department of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
32
|
Xiong X, Xu J, Yan X, Wu S, Ma J, Wang Z, He Q, Gong J, Rao Y. Gut microbiome and serum metabolome analyses identify biomarkers associated with sexual maturity in quails. Poult Sci 2023; 102:102762. [PMID: 37209654 DOI: 10.1016/j.psj.2023.102762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
Increasing evidence indicates that the gut microbiome plays an important role in host aging and sexual maturity. However, the gut microbial taxa associated with sexual maturity in quails are unknown. This study used shotgun metagenomic sequencing to identify bacterial taxa associated with sexual maturity in d 20 and d 70 quails. We found that 17 bacterial species and 67 metagenome-assembled genomes (e.g., Bacteroides spp. and Enterococcus spp.) significantly differed between the d 20 and d 70 groups, including 5 bacterial species (e.g., Enterococcus faecalis) enriched in the d 20 group and 12 bacterial species (e.g., Christensenella massiliensis, Clostridium sp. CAG:217, and Bacteroides neonati) which had high abundances in the d 70 group. The bacterial species enriched in d 20 or d 70 were key biomarkers distinguishing sexual maturity and significantly correlated with the shifts in the functional capacities of the gut microbiome. Untargeted serum metabolome analysis revealed that 5 metabolites (e.g., nicotinamide riboside) were enriched in the d 20 group, and 6 metabolites (e.g., D-ribose, stevioside, and barbituric acid) were enriched in the d 70 group. Furthermore, metabolites with high abundances in the d 20 group were significantly enriched for the KEGG pathways of arginine biosynthesis, nicotinate and nicotinamide metabolism, and lysine degradation. However, glutathione metabolism and valine, leucine and isoleucine biosynthesis were enriched in high-abundance metabolites from the d 70 group. These results provide important insights into the effects of gut microbiome and host metabolism on quail sexual maturity.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China.
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Xiao Yan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Shuoshuo Wu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jinge Ma
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Qin He
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China; Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, 330032, China
| |
Collapse
|
33
|
Feng K, Kan XY, Liu Q, Yan YJ, Sun N, Yang ZY, Zhao SP, Wu P, Li LJ. Metabolomics Analysis Reveals Metabolites and Metabolic Pathways Involved in the Growth and Quality of Water Dropwort [ Oenanthe javanica (Blume) DC.] under Nutrient Solution Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1459. [PMID: 37050085 PMCID: PMC10097307 DOI: 10.3390/plants12071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Water dropwort (Oenanthe javanica (Blume) DC.) is an important vegetable crop. Nutrient liquid culture has become an important cultivation method in the production of water dropwort. However, the effects of different nutrient solution cultivation methods on the growth and quality of water dropwort remains unclear. In this study, to screen the most suitable nutrient solution formula for the cultivation of water dropwort, the effects of different nutrient solution formulas (Hoagland, Cooper, Dutch greenhouse, Garden-style, Yamasaki and SCAU) on plant physiological and quality characteristics are investigated. The plant height, root length, water content (%), distribution rate of dry matter (%), chlorophyll, VC, flavonoid, total phenolic, DPPH and dietary fiber of water dropwort under different nutrient solutions were determined. According to the analytic hierarchy process (AHP) of the growth index and quality index of water dropwort under different nutrient solutions, the Yamazaki nutrient solution was considered to be the most suitable nutrient solution formula for water dropwort. To further confirm the differences of water dropwort under nutrient solution culture and soil culture, the broadly targeted metabolomics were performed. A total of 485 metabolites were detected in water dropwort under optimal nutrient solution and soil cultivation. Metabolomics analysis showed that flavonoids were the most abundant differential accumulated metabolites, and most flavonoids were up-regulated. A qRT-PCR assay indicated that the structural genes of the flavonoid biosynthesis pathway (PAL, C4H, CHS, CHI, F3H, DFR, UFGT) were significantly higher under the Yamasaki nutrient solution treatment. The current study provided a theoretical basis and technical guidance for the nutrient solution cultivation of water dropwort. Meanwhile, this study provides new insights into the study of flavonoids in water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Xia-Yue Kan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Qing Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
34
|
Metabolic Variations among Three New Tea Varieties Cultivated in Shandong, China. Foods 2023; 12:foods12061299. [PMID: 36981225 PMCID: PMC10048610 DOI: 10.3390/foods12061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cultivar identification is a necessary step in tea breeding programs. Rapid identification methods would greatly improve these breeding processes. To preliminarily identify the three new Lucha tea varieties (LC6, LC7, and LC17) cultivated in Shandong, we measured their main agronomic characters and biochemical components. Then, we analyzed the metabolic profiles of these tea varieties and Fuding Dabaicha (FD) using a UPLC-ESI-MS/MS system. Their biochemical components indicated that the Lucha varieties had excellent varietal characteristics, with higher amino acid contents. Furthermore, secondary metabolism changed a lot in the Lucha tea varieties compared with that in the FD, with their accumulations of flavonoids and phenolic acids showing significant differences. These differential flavonoids were dominated by flavones and flavanone, flavonols, flavonoid carbonosides, and flavanols monomer. Flavanols especially, including epicatechin glucoside, epicatechin-3-(3″-O-methyl)gallate, epigallocatechin-3-O-(3,5-O-dimethyl)gallate, and epitheaflavic acid-3-O-Gallate, showed higher levels in the Lucha varieties. The phenolic acids containing caffeoyl groups showed higher levels in the Lucha varieties than those in the FD, while those containing galloyl groups showed a reverse pattern. Nitrogen metabolism, including amino acids, also showed obvious differences between the Lucha varieties and FD. The differential amino acids were mainly higher in the Lucha varieties, including 5-L-glutamyl-L-amino acid, N-monomethyl-L-arginine, and N-α-acetyl-L-ornithine. By using these approaches, we found that LC6, LC7, and LC17 were excellent varieties with a high yield and high quality for making green teas in Shandong.
Collapse
|
35
|
Ren X, Wang S, Wang J, Xu D, Ye Y, Song Y. Widely targeted metabolome profiling of different plateau raspberries and berry parts provides innovative insight into their antioxidant activities. FRONTIERS IN PLANT SCIENCE 2023; 14:1143439. [PMID: 36993862 PMCID: PMC10042140 DOI: 10.3389/fpls.2023.1143439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Raspberries are highly nutritious and have powerful antioxidant properties, making them functional berries with positive effects on physiological functioning. However, there is limited information available on the diversity and variability of metabolites in raspberry and its parts, especially in plateau raspberries. To address this, commercial raspberries and their pulp and seeds from two plateaus in China were subjected to LC-MS/MS-based metabolomics analysis and evaluated for antioxidant activity using four assays. A metabolite-metabolite correlation network was established based on antioxidant activity and correlation analysis. The results showed that 1661 metabolites were identified and classified into 12 categories, with significant variations in composition between the whole berry and its parts from different plateaus. Flavonoids, amino acids and their derivatives, and phenolic acids were found to be up-regulated in Qinghai's raspberry compared to Yunnan's raspberry. The main differently regulated pathways were related to flavonoid, amino acid, and anthocyanin biosynthesis. The antioxidant activity of Qinghai's raspberry was stronger than Yunnan's raspberry, and the order of antioxidant capacity was seed > pulp > berry. The highest FRAP (420.31 µM TE/g DW) values was found in the seed of Qinghai's raspberry. Overall, these findings suggest that the environment in which the berries grow can affect their chemical composition, and comprehensive exploitation and cultivation of whole raspberry and its parts from different plateaus can lead to new opportunities for phytochemical compositions and antioxidant activity.
Collapse
Affiliation(s)
- Xiaoli Ren
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Shulin Wang
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Jinying Wang
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Dan Xu
- Department of Public Health, Medical College, Qinghai University, Xining, China
| | - Ying Ye
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| | - Yangbo Song
- Agriculture and Animal Husbandry College, Qinghai University, Xining, China
| |
Collapse
|
36
|
Wang Y, Sun Z, Wang Q, Xie J, Yu L. Transcriptomics and metabolomics revealed that phosphate improves the cold tolerance of alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1100601. [PMID: 36968379 PMCID: PMC10034057 DOI: 10.3389/fpls.2023.1100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Alfalfa (Medicago sativa L.) is a highly nutritious leguminous forage that plays an essential role in animal husbandry. In the middle and high latitudes of the northern hemisphere, there are problems with its low rates of overwintering and production. The application of phosphate (P) is an important measure to improve the cold resistance and production of alfalfa, but little is known about the mechanism of P in improving the cold resistance of alfalfa. METHODS This study integrated the transcriptome and metabolome to explain the mechanism of alfalfa in response to low-temperature stress under two applications of P (50 and 200 mg kg-1) and a control of none applied. RESULTS The application of P fertilizer improved the root structure and increased the content of soluble sugar and soluble protein in the root crown. In addition, there were 49 differentially expressed genes (DEGs) with 23 upregulated and 24 metabolites with 12 upregulated when 50 mg kg-1 of P was applied. In contrast, there were 224 DEGs with 173 upregulated and 12 metabolites with 6 upregulated in the plants treated with 200 mg kg-1 of P compared with the Control Check (CK). These genes and metabolites were significantly enriched in the biosynthesis of other secondary metabolites and the metabolic pathways of carbohydrates and amino acids. The integration of the transcriptome and metabolome indicated that P affected the biosynthesis of N-acetyl-L-phenylalanine, L-serine, lactose, and isocitrate during the period of increasing cold. It could also affect the expression of related genes that regulate cold tolerance in alfalfa. DISCUSSION Our findings could contribute to a deeper understanding of the mechanism that alfalfa uses to tolerate cold and lay a theoretical foundation for breeding alfalfa that is highly efficient at utilizing phosphorus.
Collapse
Affiliation(s)
- Yuntao Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Zhen Sun
- College of Grassland, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiqi Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Jihong Xie
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Linqing Yu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
37
|
Zhang X, Zhang L, Zhang D, Su D, Li W, Wang X, Chen Q, Cai W, Xu L, Cao F, Zhang D, Yu X, Li Y. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum. BMC PLANT BIOLOGY 2023; 23:133. [PMID: 36882694 PMCID: PMC9993627 DOI: 10.1186/s12870-023-04143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Li Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Damao Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dingding Su
- Institute of Advanced Agricultural Sciences, Peking University, 262041, Weifang, China
| | - Weidong Li
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
- Hunan Key Laboratory of Innovation and Comprehensive Utilization, 410128, Changsha, China
| | - Xiangfei Wang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Qianru Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Wenqi Cai
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Fuxiang Cao
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dongling Zhang
- Department of Horticulture, University of Georgia, 30602, Athens, GA, USA.
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| | - Yanlin Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| |
Collapse
|
38
|
An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules 2023; 28:molecules28041722. [PMID: 36838710 PMCID: PMC9959171 DOI: 10.3390/molecules28041722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin 3,3'-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.
Collapse
|
39
|
Li K, Chen L, Shi W, Hu C, Sha Y, Feng G, Wang E, Chen W, Sui X, Mi G. Impacts of maize hybrids with different nitrogen use efficiency on root-associated microbiota based on distinct rhizosphere soil metabolites. Environ Microbiol 2023; 25:473-492. [PMID: 36451600 DOI: 10.1111/1462-2920.16293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Plant genotypes shape root-associated microbiota that affect plant nutrient acquisition and productivity. It is unclear how maize hybrids modify root-associated microbiota and their functions and relationship with nitrogen use efficiency (NUE) by regulating rhizosphere soil metabolites. Here, two N-efficient (NE) (ZD958, DMY3) and two N-inefficient (NIE) maize hybrids (YD9953, LY99) were used to investigate this issue under low N (60 kg N ha-1 , LN) and high N (180 kg N ha-1 , HN) field conditions. NE hybrids had higher yield than NIE hybrids under LN but not HN. NE and NIE hybrids recruited only distinct root-associated bacterial microbiota in LN. The bacterial network stability was stronger in NE than NIE hybrids. Compared with NIE hybrids, NE hybrids recruited more bacterial taxa that have been described as plant growth-promoting rhizobacteria (PGPR), and less related to denitrification and N competition; this resulted in low N2 O emission and high rhizosphere NO3 - -N accumulation. NE and NIE hybrids had distinct rhizosphere soil metabolite patterns, and their specific metabolites were closely related to microbiota and specific genera under LN. Our findings reveal the relationships among plant NUE, rhizosphere soil metabolites, root-associated microbiota, and soil nutrient cycling, and this information is informative for breeding NE crops.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - La Chen
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjun Shi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Conghui Hu
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ye Sha
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guozhong Feng
- College of Resources and Environmental Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | | | - Xinhua Sui
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
41
|
Wu Z, Guo Y, Zhang J, Deng M, Xian Z, Xiong H, Liu D, Sun B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals (Basel) 2023; 13:ani13030486. [PMID: 36766375 PMCID: PMC9913405 DOI: 10.3390/ani13030486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The aim of this trial was to assess whether the supplementation of vitamin E (VE) in high-concentrate diets could improve the fermentation and blood metabolism in the rumen of dairy cows, thereby modulating the degree of the subacute ruminal acidosis (SARA) response and improving the performance. Seven Holstein cows (four fitted with ruminal cannulas) were fed three diets (total mixed rations) during three successive periods (each lasted for 18 d): (1) the control diet (CON); (2) a high-grain (HG) diet, which was the control diet supplied with a 15% finely ground wheat diet (FGW); and (3) a high-VE diet (HGE), which was the control diet provided with a 15% FGW and 12,000 IU of VE/head per day. The results indicated that VE was able to alleviate the reduction in the dry matter intake (DMI) and milk fat yield in cows caused by HG diets. The supplementation of VE significantly reduced the levels of lipopolysaccharide (LPS), histamine (HIS), and the total volatile fatty acid (TVFA) in the rumen. The supplementation of VE observably increased the antioxidant capacity of the milk and plasma. In addition, VE markedly reduced the plasma levels of endotoxin, HIS, and pro-inflammatory factors. The supplementation of VE significantly enriched the differential metabolites of the purine metabolism, cysteine, methionine metabolism, and ABC transporter synthesis pathway in the serum. The supplementation of VE also significantly increased the relative abundance of Succiniclasticum and decreased the relative abundance of Treponema, thus reducing the production of TVFA in the rumen. In conclusion, considering that the cows in this trial had high ketone levels (BHBA > 2.3 mmol/L), we found that VE could improve the rumen fermentation and blood metabolism by modulating the relative abundance of rumen microorganisms, thereby mitigating a range of adverse effects caused by SARA.
Collapse
|
42
|
Hou Y, Qin X, Qiu H, Li D, Xu N, Zhang S, Fang C, Li H. Metabolite profiling and transcriptome analyses provide insight into the regulatory network of graft incompatibility in litchi. Front Genet 2023; 13:1059333. [PMID: 36685870 PMCID: PMC9849251 DOI: 10.3389/fgene.2022.1059333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Litchi is an important commercial fruit crop widely grown in the world. Graft incompatibility between rootstocks and scions is a major constraint for large-scale cultivation of litchi orchards, popularization of new and excellent litchi varieties, and associated industrial development. Further, the genetic mechanism of graft incompatibility is still unclear in litchi. To reduce the incompatibility problems, this study investigated metabolic and transcriptomic differences between graft compatible and incompatible rootstock-scion combinations of litchi. The result of metabolomics analysis showed that incompatible rootstock-scion interaction modified the profiles of several metabolic substances. However, various compounds of flavonoids, phenolic acids, and lignin predominantly exhibited significantly altered abundance in graft incompatible combinations. Transcriptome analysis identified that graft incompatibility induces dynamic gene differences. The majority of these differentially expressed genes were enriched in biosynthetic pathways of phenylpropanoids. The differential expressions of genes in these pathways could be linked to the differential abundance levels of flavonoids, phenolic acids, and lignin compounds. Integrated metabolomic and transcriptomic analyses revealed a strong relationship between differential genes and differential metabolites identified in this study. In addition, identified hub genes and metabolites were closely associated with graft incompatibility of litchi. This study characterized the abundance of metabolites and genes in graft incompatible combinations and further discussed the genetic mechanism of graft incompatibility in litchi. Our results provide a platform to dissect the molecular mechanisms of graft incompatibility in the litchi fruit.
Collapse
|
43
|
Shen Y, Wang P, Yang X, Chen M, Dong Y, Li J. Untargeted metabolomics unravel serum metabolic alterations in smokers with hypertension. Front Physiol 2023; 14:1127294. [PMID: 36935758 PMCID: PMC10018148 DOI: 10.3389/fphys.2023.1127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cigarette smoking is an important environmental risk factor for cardiovascular events of hypertension (HTN). Existing studies have provided evidence supporting altered gut microbiota by cigarette smoking, especially in hypertensive patients. Metabolic biomarkers play a central role in the functional potentials of the gut microbiome but are poorly characterized in hypertensive smokers. To explore whether serum metabolomics signatures and compositions of HTN patients were varied in smokers, and investigate their connecting relationship to gut microbiota, the serum metabolites were examined in untreated hypertensive patients using untargeted liquid chromatography-mass spectrometry (LC/MS) analysis. Results: A dramatic difference and clear separation in community features of circulating metabolomics members were seen in smoking HTN patients compared with the non-smoking controls, according to partial least squares discrimination analysis (PLS-DA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Serum metabolic profiles and compositions of smoking patients with HTN were significantly distinct from the controls, and were characterized by enrichment of 12-HETE, 7-Ketodeoxycholic acid, Serotonin, N-Stearoyl tyrosine and Deoxycholic acid glycine conjugate, and the depletion of Tetradecanedioic acid, Hippuric acid, Glyceric acid, 20-Hydroxyeicosatetraenoic acid, Phenylpyruvic acid and Capric acid. Additionally, the metabolome displayed prominent functional signatures, with a majority proportion of the metabolites identified to be discriminating between groups distributed in Starch and sucrose metabolism, Caffeine metabolism, Pyruvate metabolism, Glycine, serine and threonine metabolism, and Phenylalanine metabolic pathways. Furthermore, the observation of alterations in metabolites associated with intestinal microbial taxonomy indicated that these metabolic members might mediate the effects of gut microbiome on the smoking host. Indeed, the metabolites specific to smoking HTNs were strongly organized into co-abundance networks, interacting with an array of clinical parameters, including uric acid (UA), low-denstiy lipoprotein cholesterol (LDLC) and smoking index. Conclusions: In conclusion, we demonstrated disparate circulating blood metabolome composition and functional potentials in hypertensive smokers, showing a linkage between specific metabolites in blood and the gut microbiome.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ying Dong, ; Jing Li,
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ying Dong, ; Jing Li,
| |
Collapse
|
44
|
Geng L, Li Q, Jiao L, Xiang Y, Deng Q, Zhou DX, Zhao Y. WOX11 and CRL1 act synergistically to promote crown root development by maintaining cytokinin homeostasis in rice. THE NEW PHYTOLOGIST 2023; 237:204-216. [PMID: 36208055 DOI: 10.1111/nph.18522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Crown root (CR) morphogenesis is critical for normal growth and nutrition absorption in cereals. In rice, WUSCHEL-RELATED HOMEOBOX11 (WOX11) and CROWN ROOTLESS1 (CRL1) play vital roles in controlling CR development. Despite their importance, whether and how the two regulators coordinate CR formation remains unclear. Electrophoretic mobility shift assays, transient expression, and chromatin immunoprecipitation qPCR suggested that WOX11 and CRL1 directly bind to OsCKX4 to regulate its expression during CR development. CRL1 enhances OsCKX4 activation through direct interaction with WOX11 at root emergence and elongation stages. Genetic dissection showed that the wox11/crl1 double mutant exhibits a more severe root phenotype. OsCKX4 knockout plants generated by CRISPR/Cas9 exhibited fewer CRs and higher cytokinin levels in the root meristem. Increased expression of OsCKX4 could partially complement the CR phenotypes of both crl1 and wox11 mutants. Furthermore, cytokinin can promote WOX11 protein accumulation in the root meristem. Together, these findings show that cytokinin accumulation is tightly regulated by the WOX11-CRL1 complex during CR elongation by counteracting the negative regulatory effects of cytokinin on root development. Importantly, these results reveal an intrinsic link between WOX11 protein accumulation and cytokinin to maintain CR growth.
Collapse
Affiliation(s)
- Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lele Jiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiyu Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
45
|
Effects of two contrasting potting media on the leaf development index, photosynthetic rate, and metabolite profile of camphor ( Dryobalanops aromatica) seedlings. Heliyon 2022; 9:e12488. [PMID: 36793954 PMCID: PMC9922924 DOI: 10.1016/j.heliyon.2022.e12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/16/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Camphor (Dryobalanops aromatica C. F. Gaertn.) is a vulnerable tropical tree species that has been exploited for its timber as well as its resin, which is used for medicinal uses. The use of camphor in Indonesia is limited owing to the decreasing size of the species' population in its native habitat. Therefore, replanting programs have been encouraged for this species owing to its adaptability to mineral soils and shallow peatlands. However, experimental evidence of the effect of different growing media on morphology, physiology, and biochemistry is very limited, which is needed to evaluate the replanting program's success. Therefore, this study aimed to determine the responses of camphor (D. aromatica) seedlings grown in two different types of potting media i.e. mineral and peat, for 8 weeks of planting. In particular, the types of bioactive compounds produced in camphor leaves and their levels were assessed by analyzing their metabolite profiles. Leaf growth was evaluated morphologically using the plastochron index, while photosynthetic rates were measured with LI-6800 Portable Photosynthesis System. Metabolites were identified by using liquid chromatography-tandem mass spectrometry. The percentage of LPI of 5 or more was lower in the peat medium at 8% than in the mineral medium at 12%. The photosynthetic rate of camphor seedlings was 1-9 μmol CO2 m⁻2 s⁻1, with a higher rate in the peat medium than in the mineral medium, suggesting that the peat medium was better for growth. Lastly, the metabolomic analysis in the leaf extract revealed the presence of 21 metabolites, which were dominated by flavonoid compounds.
Collapse
|
46
|
Chen L, Wang X, Cui L, Li Y, Liang Y, Wang S, Chen Y, Zhou L, Zhang Y, Li F. Transcriptome and metabolome analyses reveal anthocyanins pathways associated with fruit color changes in plum ( Prunus salicina Lindl.). PeerJ 2022; 10:e14413. [PMID: 36530399 PMCID: PMC9756864 DOI: 10.7717/peerj.14413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Plum (Prunus salicina Lindl.) is one of the most widely cultivated and important fruit trees in temperate and cold regions. Fruit color is a significant trait relating to fruit quality in plum. However, its development mechanism has not been studied from the aspects of transcriptional regulation and metabolomic progress. To reveal the mechanism of fruit color developments in plums, we selected the fruits of two plum cultivars, 'Changli84' (Ch84, red fruit) and 'Dahuangganhe' (D, yellow fruit) as plant materials for transcriptome sequencing and metabolomic analysis were performed. Based on the data of transcriptome and metabolome at three fruit developmental stages, young fruit stage, color-change stage, and maturation stage, we identified 2,492 differentially expressed genes (DEGs) and 54 differential metabolites (DMs). The KEGG analysis indicated that "Flavonoid biosynthesis" was significantly enriched during three fruit development stages. Some DEGs in the "Flavonoid biosynthesis" pathway, had opposite trends between Ch84 and D, including chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS). Also, the genes encoding MYB-bHLH-WD (MBW) protein complexes, especially MYBs and bHLHs, showed a close relationship with plum fruit color. In the current study, DMs like procyanidin B1, cyanidin 3-glucoside, and cyanidin-3-O-alpha-arabinopyranoside were key pigments (or precursors), while the carotene and carotenoids did not show key relationships with fruit color. In conclusion, the anthocyanins dominate the color change of plum fruit. Carotenes and carotenoids might be related to the color of plum fruit, but do not play a dominate role.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Xuesong Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Long Cui
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yuebo Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yinghai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Shanshan Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yubo Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, Jilin Province, China
| | - Yanbo Zhang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Feng Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| |
Collapse
|
47
|
Chen C, Xia X, Wang D. Identification of nutritional components in unripe and ripe Docynia delavayi (Franch.) Schneid fruit by widely targeted metabolomics. PeerJ 2022; 10:e14441. [PMID: 36530411 PMCID: PMC9753743 DOI: 10.7717/peerj.14441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Docynia delavayi (Franch.) Schneid is an evergreen tree with multiple benefits and high development and utilization value. The fruit is consumed as fresh and dry fruit, juices, and other products. However, it is unknown the chemical changes that occur upon fruit maturation. The metabolite content of unripe and ripe fruit was examined using UPLC-MS/MS technology based on a broadly targeted metabolome. We identified 477 metabolites, of which 130 differed between ripe and unripe fruit. These compounds are primarily involved in the biosynthesis of secondary metabolites, such as pantothenic acid, flavonoids, and amino acids. Moreover, in ripe fruit, there are 94 metabolites that are upregulated, particularly flavonoids and terpenoids. In comparison, compounds associated with sour flavors (amino acids, phenolic acids, organic acids) are down-regulated. Remarkably, these metabolites have a strong relationship with the medicinal properties of D. delavayi. This study provides a global perspective of the D. delavayi fruit metabolome and a comprehensive analysis of metabolomic variations during fruit development, thereby increasing the knowledge of the metabolic basis of important fruit quality traits in D. delavayi fruit.
Collapse
Affiliation(s)
- Can Chen
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| | - Xi Xia
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| | - Dawei Wang
- Southwest Forestry University, Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Kunming, China,Southwest Forestry University, Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Kunming, China
| |
Collapse
|
48
|
Cai Y, Zhou Z, Zhu ZJ. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Jaipal N, Ram H, Charan J, Dixit A, Singh G, Singh BP, Kumar A, Panwar A. HMG‐CoA reductase inhibition medicated hypocholesterolemic and antiatherosclerotic potential of phytoconstituents of an aqueous pod extract of
Prosopis cineraria
(L.) Druce: In silico, in vitro, and in vivo studies. EFOOD 2022. [DOI: 10.1002/efd2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Noopur Jaipal
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Heera Ram
- Department of Zoology Jai Narain Vyas University Jodhpur Rajasthan India
| | - Jaykaran Charan
- Department of Pharmacology All India Institute of Medical Sciences Jodhpur Rajasthan India
| | | | - Garima Singh
- Department of Botany Pachhunga University College Aizawl Mizoram India
| | - Bhim P. Singh
- Department of Agriculture & Environmental Sciences (AES) National Institute of Food Technology Entrepreneurship & Management (NIFTEM) Sonepat Haryana India
| | - Ashok Kumar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| | - Anil Panwar
- Centre for Systems Biology and Bioinformatics Panjab University Chandigarh Punjab India
| |
Collapse
|
50
|
Jiao G, Fan X, Wang Y, Weng N, Ouyang L, Wang H, Pan S, Huang D, Han J, Zhang F, Chen W. Dissection of the Active Ingredients and Potential Mechanism of Han-Shi-Yu-Fei-Decoction in Treating COVID-19 Based on In Vivo Substances Profiling and Clinical Symptom-Guided Network Pharmacology. ACS OMEGA 2022; 7:36598-36610. [PMID: 36268464 PMCID: PMC9578366 DOI: 10.1021/acsomega.2c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This work was aimed to elucidate the mechanism of action of Han-Shi-Yu-Fei-decoction (HSYFD) for treating patients with mild coronavirus disease 2019 (COVID-19) based on clinical symptom-guided network pharmacology. Experimentally, an ultra-high performance liquid chromatography technique coupled with quadrupole time-of-flight mass spectrometry method was used to profile the chemical components and the absorbed prototype constituents in rat serum after its oral administration, and 11 out of 108 compounds were identified. Calculatingly, the disease targets of Han-Shi-Yu-Fei symptoms of COVID-19 were constructed through the TCMIP V2.0 database. The subsequent network pharmacology and molecular docking analysis explored the molecular mechanism of the absorbed prototype constituents in the treatment of COVID-19. A total of 42 HSYFD targets oriented by COVID-19 clinical symptom were obtained, with EGFR, TP53, TNF, JAK2, NR3C1, TH, COMT, and DRD2 as the core targets. Enriched pathway analysis yielded multiple COVID-19-related signaling pathways, such as the PI3K/AKT signaling pathway and JAK-STAT pathway. Molecular docking showed that the key compounds, such as 6-gingerol, 10-gingerol, and scopoletin, had high binding activity to the core targets like COMT, JAK2, and NR3C1. Our work also verified the feasibility of clinical symptom-guided network pharmacology analysis of chemical compounds, and provided a possible agreement between the points of views of traditional Chinese medicine and western medicine on the disease.
Collapse
Affiliation(s)
- Guangyang Jiao
- Institute
of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangcheng Fan
- Department
of Pharmacy, Changzheng Hospital, (Second Military Medical University), Naval Medical University, Shanghai 200003, China
- Shanghai
Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Yejian Wang
- Department
of Pharmacology, Anhui University of Chinese
Medicine, Hefei 230012, Anhui, China
| | - Nan Weng
- Department
of Pharmacy, Changzheng Hospital, (Second Military Medical University), Naval Medical University, Shanghai 200003, China
- School
of Traditional Chinese Material, Shenyang
Pharmaceutical University, Shenyang 11001, China
| | - Luolan Ouyang
- School of
Pharmacy, Shanghai University of Chinese
Medicine, Shanghai 201203, China
| | - Haoqian Wang
- School of
Pharmacy, Shanghai University of Chinese
Medicine, Shanghai 201203, China
| | - Sihan Pan
- School of
Pharmacy, Shanghai University of Chinese
Medicine, Shanghai 201203, China
| | - Doudou Huang
- Institute
of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Han
- Department
of Gastroenterology, Changzheng Hospital, (Second Military Medical
University), Naval Medical University, Shanghai 200003, China
| | - Feng Zhang
- Department
of Pharmacy, Changzheng Hospital, (Second Military Medical University), Naval Medical University, Shanghai 200003, China
- Shanghai
Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
- Department
of Pharmacology, Anhui University of Chinese
Medicine, Hefei 230012, Anhui, China
| | - Wansheng Chen
- Institute
of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
- Department
of Pharmacy, Changzheng Hospital, (Second Military Medical University), Naval Medical University, Shanghai 200003, China
- Shanghai
Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| |
Collapse
|