1
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. Adv Healthc Mater 2025:e2404461. [PMID: 39821643 DOI: 10.1002/adhm.202404461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interest in the alterations of the aging breast tissue microenvironment, it is identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, aged animal-generated materials are utilized to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells toward a more invasive phenotype found in the aged environment. Furthermore, the age-mimetic models are utilized for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. 36 potential effective drug targets as well as 34 potential drug targets with different drug responses in different age groups are identified, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
2
|
Jarzebska N, Rodionov RN, Voit-Bak K, Straube R, Mücke A, Tselmin S, Rettig R, Julius U, Siow R, Gräßler J, Passauer J, Kok Y, Mavberg P, Weiss N, Bornstein SR, Aswani A. Neutrophil Extracellular Traps (NETs) as a Potential Target for Anti-Aging: Role of Therapeutic Apheresis. Horm Metab Res 2025. [PMID: 39788160 DOI: 10.1055/a-2444-3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms. Targeting NETs in the elderly as an anti-aging therapy seems to be a very attractive therapeutic approach. Therapeutic apheresis with a specific filter to remove NETs could be a promising strategy worth considering.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Karin Voit-Bak
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Richard Straube
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Anna Mücke
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ronny Rettig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Richard Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Ageing Research at King's (ARK), King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Jürgen Gräßler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jens Passauer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Philip Mavberg
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Norbert Weiss
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
- Santersus AG, Zurich, Switzerland
| |
Collapse
|
3
|
Zou H, Li S, Guo J, Wen L, Lv C, Leng F, Chen Z, Zeng M, Xu J, Li Y, Li X. Pan-cancer analysis reveals age-associated genetic alterations in protein domains. Am J Hum Genet 2025; 112:44-58. [PMID: 39708814 PMCID: PMC11739924 DOI: 10.1016/j.ajhg.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer incidence and mortality differ among individuals of different ages, but the functional consequences of genetic alterations remain largely unknown. We systematically characterized genetic alterations within protein domains stratified by affected individual's age and showed that the mutational effects on domains varied with age. We further identified potential age-associated driver genes with hotspots across 33 cancers. The candidate drivers involved numerous cancer-related genes that participate in various oncogenic pathways and play central roles in human protein-protein interaction (PPI) networks. We found widespread age biases in protein domains and identified the associations between hotspots and age. Age-stratified PPI networks perturbed by hotspots were constructed to illustrate the function of mutations enriched in domains. We found that hotspots in young adults were associated with premature senescence. In summary, we provided a catalog of age-associated hotspots and their perturbed networks, which may facilitate precision diagnostics and treatments for cancer.
Collapse
Affiliation(s)
- Haozhe Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Si Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Feng Leng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zefeng Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Mengqian Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
4
|
Alharbi B, Aldahlawi A, Assidi M, Basingab F, Zaher K, Alrahimi J, Mokhtar S, Al-Maghrabi J, Buhmeida A, Al-Sakkaf K. The Immunohistochemical Prognostic Value of Nuclear and Cytoplasmic Silent Information Regulator 1 Protein Expression in Saudi Patients with Breast Cancer. Biomolecules 2025; 15:50. [PMID: 39858444 PMCID: PMC11764178 DOI: 10.3390/biom15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The mammalian NAD-dependent deacetylase sirtuin-1 family (named also silent information regulator or SIRT family, where NAD stands for "nicotinamide adenine dinucleotide" (NAD)) appears to have a dual role in several human cancers by modulating cell proliferation and death. This study examines how SIRT1 protein levels correlate with clinicopathological characteristics and survival outcomes in patients with breast cancer. METHODS A total of 407 BC formalin-fixed paraffin-embedded (FFPE) samples were collected from King Abdulaziz University Hospital, Saudi Arabia. SIRT1 was stained on tissue microarray slides using automated immunohistochemistry. RESULTS All BC subtypes expressed more nuclear SIRT1 proteins than their cytoplasm counterparts. In luminal A, luminal B, and TNBC, nuclear and cytoplasmic SIRT1 were highly associated (p < 0.001). Kaplan-Meier analysis showed reduced disease-specific survival (DSS) in H2BC with high SIRT1 nuclear expression (p = 0.001, log-rank). Moreover, the cytoplasmic expression of SIRT1 in HER2-positive BC was associated with a larger tumor size (p = 0.036) and lymph node metastasis (p = 0.045). Nuclear SIRT1 expression was also positively associated with lymph node metastasis (LNM) (p = 0.048). As low-grade tumors had a higher frequency of SIRT1 protein expression than other groups, SIRT1 expression was associated with a favorable prognosis in patients with luminal A BC (p < 0.001). CONCLUSIONS SIRT1 expression seems to be involved in different molecular pathways either suppressing or promoting tumor growth depending on the subtype of BC. These molecular functions require further investigations and validation on larger BC cohorts.
Collapse
Affiliation(s)
- Bayan Alharbi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (S.M.)
- Laboratory, King Salman Medical City, Madinah 42319, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (F.B.)
- Immunology Unit, King Fahad for Medical Research, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (F.B.)
- Immunology Unit, King Fahad for Medical Research, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Kawther Zaher
- Immunology Unit, King Fahad for Medical Research, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (F.B.)
- Immunology Unit, King Fahad for Medical Research, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Sara Mokhtar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (S.M.)
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Abdelbaset Buhmeida
- Institute of Genomic Medicine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaltoom Al-Sakkaf
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia (S.M.)
- Immunology Unit, King Fahad for Medical Research, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Xiao J, Cao Y, Li X, Xu L, Wang Z, Huang Z, Mu X, Qu Y, Xu Y. Elucidation of Factors Affecting the Age-Dependent Cancer Occurrence Rates. Int J Mol Sci 2024; 26:275. [PMID: 39796131 PMCID: PMC11720044 DOI: 10.3390/ijms26010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer occurrence rates exhibit diverse age-related patterns, and understanding them may shed new and important light on the drivers of cancer evolution. This study systematically analyzes the age-dependent occurrence rates of 23 carcinoma types, focusing on their age-dependent distribution patterns, the determinants of peak occurrence ages, and the significant difference between the two genders. According to the SEER reports, these cancer types have two types of age-dependent occurrence rate (ADOR) distributions, with most having a unimodal distribution and a few having a bimodal distribution. Our modeling analyses have revealed that (1) the first type can be naturally and simply explained using two age-dependent parameters: the total number of stem cell divisions in an organ from birth to the current age and the availability levels of bloodborne growth factors specifically needed by the cancer (sub)type, and (2) for the second type, the first peak is due to viral infection, while the second peak can be explained as in (1) for each cancer type. Further analyses indicate that (i) the iron level in an organ makes the difference between the male and female cancer occurrence rates, and (ii) the levels of sex hormones are the key determinants in the onset age of multiple cancer types. This analysis deepens our understanding of the dynamics of cancer evolution shared by diverse cancer types and provides new insights that are useful for cancer prevention and therapeutic strategies, thereby addressing critical gaps in the current paradigm of oncological research.
Collapse
Affiliation(s)
- Jun Xiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Yangkun Cao
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Xuan Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Long Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhihang Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Xuechen Mu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Yinwei Qu
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Ying Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| |
Collapse
|
6
|
Bass AJ, Cutler DJ, Epstein MP. A powerful framework for differential co-expression analysis of general risk factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626006. [PMID: 39677786 PMCID: PMC11642831 DOI: 10.1101/2024.11.29.626006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Differential co-expression analysis (DCA) aims to identify genes in a pathway whose shared expression depends on a risk factor. While DCA provides insights into the biological activity of diseases, existing methods are limited to categorical risk factors and/or suffer from bias due to batch and variance-specific effects. We propose a new framework, Kernel-based Differential Co-expression Analysis (KDCA), that harnesses correlation patterns between genes in a pathway to detect differential co-expression arising from general (i.e., continuous, discrete, or categorical) risk factors. Using various simulated pathway architectures, we find that KDCA accounts for common sources of bias to control the type I error rate while substantially increasing the power compared to the standard eigengene approach. We then applied KDCA to The Cancer Genome Atlas thyroid data set and found several differentially co-expressed pathways by age of diagnosis and BRAF mutation status that were undetected by the eigengene method. Collectively, our results demonstrate that KDCA is a powerful testing framework that expands DCA applications in expression studies.
Collapse
Affiliation(s)
- Andrew J. Bass
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David J. Cutler
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
7
|
Kandiyil SP, Jose A, Mohanan C, Illam SP, Raghavamenon AC. Virgin coconut oil mitigates ageing-associated oxidative stress and dyslipidaemia in male Wistar rats. Nutr Metab Cardiovasc Dis 2024; 34:2834-2841. [PMID: 39358108 DOI: 10.1016/j.numecd.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIM Ageing often leads to the deterioration of physiological functions, including a decline in antioxidant defences, which can result in various health complications. Exogenous antioxidants have been recognised for their potential to alleviate these age-related health complications. Virgin coconut oil (VCO), known for its antioxidant, anti-inflammatory and anti-lipidemic efficacies, has gained recognition as a functional food with promising benefits. However, the safety of VCO consumption among individuals of the aged and diseased population remains to be fully established. METHODS AND RESULTS Five experimental groups were established, consisting of one control group and four groups administered either "2 mL" or "4 mL" per kg body weight of "HP-VCO" or "F-VCO" daily for six weeks. Body weight, water, and feed intake were monitored. After six weeks, animals were euthanized, blood and organs were collected for analysis. Oxidative stress and dyslipidemia markers were analysed, and liver tissues underwent histological examination. HP-VCO-administered animals exhibited increased serum total cholesterol and triglycerides, whereas F-VCO-fed animals showed reduced triglyceride levels. LDL-cholesterol levels decreased in all VCO-fed groups, accompanied by increased HDL-cholesterol levels. Additionally, all treated groups showed a slight increase in the HMG Co. A/mevalonate ratio. Both VCO-fed animals displayed elevated reduced glutathione levels and reduced glutathione - S transferase activity. Consistent with these findings, decreased conjugated dienes and thiobarbituric acid reactive substances confirmed the improved redox status. CONCLUSION The study indicated that F-VCO is advantageous over VCO prepared by hot pressing as it offers protection against oxidative stress and related degenerative diseases.
Collapse
Affiliation(s)
- Sruthi Panniyan Kandiyil
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India
| | - Anit Jose
- St. Joseph's College, Irinjalakuda, Thrissur 680661, Kerala, India
| | - Chanjana Mohanan
- Centre for Professional and Advanced Studies (CPAS) School of Medical Education (SME), Kottayam Kerala, India
| | - Soorya Parathodi Illam
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India
| | - Achuthan C Raghavamenon
- Amala Cancer Research Centre (Affiliated to University of Calicut, Thenjhiapalam P O, Malapuram), Amala Nagar P.O., Thrissur 680555, Kerala, India.
| |
Collapse
|
8
|
Chikhaoui A, Zayoud K, Kraoua I, Bouchoucha S, Tebourbi A, Turki I, Yacoub-Youssef H. Supplementation with nicotinamide limits accelerated aging in affected individuals with cockayne syndrome and restores antioxidant defenses. Aging (Albany NY) 2024; 16:13271-13287. [PMID: 39611850 PMCID: PMC11719109 DOI: 10.18632/aging.206160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Cockayne syndrome (CS) is a segmental progeroid syndrome characterized by defects in the DNA excision repair pathway, predisposing to neurodegenerative manifestations. It is a rare genetic disorder and an interesting model for studying premature aging. Oxidative stress and autophagy play an important role in the aging process. The study of these two processes in a model of accelerated aging and the means to counteract them would lead to the identification of relevant biomarkers with therapeutic value for healthy aging. Here we investigated the gene expression profiles of several oxidative stress-related transcripts derived from CS-affected individuals and healthy elderly donors. We also explored the effect of nicotinamide supplementation on several genes related to inflammation and autophagy. Gene expression analysis revealed alterations in two main pathways. This involves the activation of arachidonic acid metabolism and the repression of the NRF2 pathway in affected individuals with CS. The supplementation with nicotinamide adjusted these abnormalities by enhancing autophagy and decreasing inflammation. Furthermore, CSA/CSB-dependent depletion of the mitochondrial DNA polymerase-γ catalytic subunit (POLG1) was restored following nicotinamide supplementation in CS-affected individuals' fibroblasts. This study reveals the link between oxidative stress and accelerated aging in affected individuals with CS and highlights new biomarkers of cellular senescence. However, further analyses are needed to confirm these results, which could not be carried out, mainly due to the unavailability of crucial samples of this rare disease.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Kouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| | - Ichraf Kraoua
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Sami Bouchoucha
- Orthopedics Department, Béchir Hamza Children’s Hospital, Tunis 2092, Tunisia
| | - Anis Tebourbi
- Orthopedic and Trauma Surgery Department, Mongi Slim Hospital, La Marsa 2046, Tunisia
| | - Ilhem Turki
- Department of Neuropediatrics, National Institute of Neurology Mongi Ben Hamida, Tunis 2092, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia
| |
Collapse
|
9
|
Melillo RJ, El Khoury C, Shaver AL, Cunningham M, Benavides N, Lacerda Q, Kim FJ, Leader AE. A student-community partnership to enhance cancer research training. BMC MEDICAL EDUCATION 2024; 24:1164. [PMID: 39420298 PMCID: PMC11488204 DOI: 10.1186/s12909-024-06144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Despite the importance of community involvement in research, little formal training in community outreach and engagement (COE) is offered to cancer research trainees. A collaboration between the Office of COE and the Office of Cancer Research Training and Education Coordination (CRTEC) at the Sidney Kimmel Comprehensive Cancer Center at Jefferson led to the COE-CRTEC Trainee Working Group, a unique program in which trainees in cancer research each created a novel COE initiative. METHODS Four cancer research trainees were selected to serve as COE Program Liaisons (CPLs), each aligned with one of the four cancer center research programs. Each CPL developed, implemented, and evaluated a project that enhanced the bidirectional relationship between their research and the community. Trainees were provided a modest budget, support from the Office of COE, and a requirement to complete the project within one academic year. RESULTS Projects included a cancer education seminar for older adults at a senior center, a prostate cancer education and screening event at a predominantly African American church, a video demonstrating a day in the life of a skin cancer researcher, and a podcast that featured SKCCC investigators answering research questions from community members. CONCLUSION Students who would not typically be exposed to COE training gained experience developing, implementing, and evaluating community-based initiatives. Projects were diverse in topic and approach, reflecting the diversity of the trainees and the community. Allowing trainees, those who are the next generation of cancer researchers, to design community-based research may lead to more patient-centered research in the future.
Collapse
Affiliation(s)
- Rebecca J Melillo
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, United States.
| | - Christiane El Khoury
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, United States
| | - Amy L Shaver
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, United States
| | - Moriah Cunningham
- Department of Urology, Thomas Jefferson University, Philadelphia, United States
| | - Nathalia Benavides
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, United States
| | - Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, United States
| | - Felix J Kim
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, United States
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, United States
| | - Amy E Leader
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, United States
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
10
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616903. [PMID: 39416111 PMCID: PMC11482747 DOI: 10.1101/2024.10.06.616903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interests in the alterations of the aging breast tissue microenvironment, it has been identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, we utilized aged animal-generated materials to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells towards a phenotype found in the aged environment. Furthermore, we utilized the age-mimetic models for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. We identified 36 potential effective drug targets and 34 potential drug targets with different drug responses in different age groups, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
11
|
Wang Q, Li A, Li Q, Li J, Wang Q, Wu S, Meng J, Liu C, Wang D, Chen Y. Carbon monoxide attenuates cellular senescence-mediated pulmonary fibrosis via modulating p53/PAI-1 pathway. Eur J Pharmacol 2024; 980:176843. [PMID: 39068977 DOI: 10.1016/j.ejphar.2024.176843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a fatal progressive condition often requiring lung transplantation. Accelerated senescence of type II alveolar epithelial cells (AECII) plays a crucial role in pulmonary fibrosis progression through the secretion of the senescence-associated secretory phenotype (SASP). Low-dose carbon monoxide (CO) possesses anti-inflammatory, anti-oxidative, and anti-aging properties. This study aims to explore the preventive effects of CO-releasing molecule 2 (CORM2) in a bleomycin-induced pulmonary fibrosis model. METHODS We established an pulmonary fibrosis model in C57BL/6J mice and evaluated the impact of CORM2 on fibrosis pathology using Masson's trichrome staining, fluorescence staining, and pulmonary function tests. Fibrogenic marker expression and SASP secretion in tissues and AECII cells were analyzed using qRT-PCR, Western blot, and ELISA assays both in vivo and in vitro. Additionally, we investigated DNA damage and cellular senescence through immunofluorescence and SA-β-gal staining. RESULTS CORM2 showed a preventive effect on bleomycin-induced lung fibrosis by improving pulmonary function and reducing the expression of fibrosis-related genes, such as TGF-β, α-SMA, Collagen I/III. CORM2 decreased the DNA damage response by inhibiting γ-H2AX, p53, and p21. We identified PAI-1 as a new target gene that was downregulated by CORM2, and which was associated with cellular senescence and fibrosis. CORM2 effectively inhibited cellular senescence and delayed EMT occurrence in AECII cells. CONCLUSION Our study highlights the potential of CORM2 in preventing DNA damage-induced cellular senescence in bleomycin-induced pulmonary fibrosis through modulation of the p53/PAI-1 signaling pathway. These findings underscore the promising prospects of CORM2 in targeting cellular senescence and the p53/PAI-1 pathway as a potential preventive strategy for IPF.
Collapse
Affiliation(s)
- Qianqian Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Aohan Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Qian Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiaxin Li
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Case Statistics Office, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150011, China
| | - Qi Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Siyuan Wu
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Jiaojiao Meng
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Changpeng Liu
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China
| | - Dan Wang
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.
| | - Yingqing Chen
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622, Liaoning, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622, Liaoning, China.
| |
Collapse
|
12
|
Bieuville M, Dujon A, Raven N, Ujvari B, Pujol P, Eslami‐S Z, Alix Panabières C, Capp J, Thomas F. When Do Tumours Develop? Neoplastic Processes Across Different Timescales: Age, Season and Round the Circadian Clock. Evol Appl 2024; 17:e70024. [PMID: 39444444 PMCID: PMC11496201 DOI: 10.1111/eva.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
While it is recognised that most, if not all, multicellular organisms harbour neoplastic processes within their bodies, the timing of when these undesirable cell proliferations are most likely to occur and progress throughout the organism's lifetime remains only partially documented. Due to the different mechanisms implicated in tumourigenesis, it is highly unlikely that this probability remains constant at all times and stages of life. In this article, we summarise what is known about this variation, considering the roles of age, season and circadian rhythm. While most studies requiring that level of detail be done on humans, we also review available evidence in other animal species. For each of these timescales, we identify mechanisms or biological functions shaping the variation. When possible, we show that evolutionary processes likely played a role, either directly to regulate the cancer risk or indirectly through trade-offs. We find that neoplastic risk varies with age in a more complex way than predicted by early epidemiological models: rather than resulting from mutations alone, tumour development is dictated by tissue- and age-specific processes. Similarly, the seasonal cycle can be associated with risk variation in some species with life-history events such as sexual competition or mating being timed according to the season. Lastly, we show that the circadian cycle influences tumourigenesis in physiological, pathological and therapeutic contexts. We also highlight two biological functions at the core of these variations across our three timescales: immunity and metabolism. Finally, we show that our understanding of the entanglement between tumourigenic processes and biological cycles is constrained by the limited number of species for which we have extensive data. Improving our knowledge of the periods of vulnerability to the onset and/or progression of (malignant) tumours is a key issue that deserves further investigation, as it is key to successful cancer prevention strategies.
Collapse
Affiliation(s)
- Margaux Bieuville
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg‐UniversitätMainzGermany
- Institute for Quantitative and Computational Biosciences (IQCB)Johannes Gutenberg‐UniversitätMainzGermany
| | - Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Nynke Raven
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Beata Ujvari
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Pascal Pujol
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Oncogenetic DepartmentUniversity Medical Centre of MontpellierMontpellierFrance
| | - Zahra Eslami‐S
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix Panabières
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH)University Medical Centre of MontpellierMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Jean‐Pascal Capp
- Toulouse Biotechnology InstituteUniversity of Toulouse, INSA, CNRS, INRAEToulouseFrance
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de RecherchesIRD 224‐CNRS 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
13
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
15
|
Wang W, Zhang D, Liang Q, Liu X, Shi J, Zhou F. Global burden, risk factor analysis, and prediction study of leukaemia from 1990 to 2030. J Glob Health 2024; 14:04150. [PMID: 39173170 PMCID: PMC11345035 DOI: 10.7189/jogh.14.04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Background Leukaemia is a devastating disease with an incidence that progressively increases with advancing age. The World Health Organization has designated 2021-30 as the decade of healthy ageing, highlighting the need to address age-related diseases. We estimated the disease burden of leukaemia and forecasted it by 2030. Methods Based on the Global Burden of Disease 2019 database, we systematically analysed the geographical distribution of leukaemia and its subtypes. We used Joinpoint regression and Bayesian age-period-cohort models to evaluate incidence and mortality trends from 1990 to 2019 and projections through 2030. We analysed five leukaemia subtypes and the impact of age, gender, and social development. Decomposition analysis revealed the effects of disease burden on ageing and population growth. We used frontier analysis to illustrate the potential of each country to reduce its burden based on its development levels. Results Globally, the absolute numbers of leukaemia incidence and mortality have increased, while the age-standardised rates (ASRs) have shown a decreasing trend. The disease burden was more pronounced in men, the elderly, and regions with a high socio-demographic index (SDI), where ageing and population growth played varying roles across subtypes. From 2000 to 2006, disease burdens were most effectively controlled. Global ASRs of incidence might stabilise, while ASRs of death are expected to decrease until 2030. Frontier analysis showed that middle and high-middle SDI countries have the most improvement potential. Smoking and high body mass index were the main risk factors for leukaemia-related mortality and disability-adjusted life years. Conclusions The absolute number of leukaemia cases has increased worldwide, but there has been a sharp decline in ASRs over the past decade, primarily driven by population growth and ageing. Countries with middle and high-middle SDI urgently need to take action to address this challenge.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Donglei Zhang
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Liang
- Zhoukou Central Hospital, Zhoukou, China
| | - Xiaoyan Liu
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Shi
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Haematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Liu J, Shao F. "Boosting" tumor immunity in elderly mice by hyperactivating dendritic cells. Cell 2024; 187:3885-3887. [PMID: 39059365 DOI: 10.1016/j.cell.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence poses a significant challenge to tumor immunotherapy in elderly individuals. In this issue of Cell, Zhivaki et al. elucidate that dendritic cells "hyperactivated" by specific adjuvants elicit TH1-skewed CD4+ T cell responses in a manner contingent on the NLRP3 inflammasome, which can eliminate tumors in aged mice.
Collapse
Affiliation(s)
- Jiaqi Liu
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; National Institute of Biological Sciences, Beijing, P.R. China
| | - Feng Shao
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; National Institute of Biological Sciences, Beijing, P.R. China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P.R. China; New Cornerstone Science Laboratory, Shenzhen, P.R. China; Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
17
|
Yang Z, Shen Y, Zhang T, Tang X, Mao R. Associations of biological age accelerations and genetic risk with incident endometrial cancer: a prospective analysis in UK Biobank. Int J Surg 2024; 111:01279778-990000000-01811. [PMID: 39017746 PMCID: PMC11745683 DOI: 10.1097/js9.0000000000001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Endometrial cancer (EC) is one of the gynecologic malignancy cancer with increasing incidence and mortality rates, partly due to aging populations and genetic risks. This study explores the associations between biological age accelerations (BAA) and risk of incident EC and assesses the joint effect of genetic factor and BAA. MATERIALS AND METHODS Based on the UK Biobank cohort, 132,315 women participants were included for primary analysis and 124,119 white participants for genetic risk analysis. Biological age(BA) was calculated using the Klemera-Doubal (KDM) and PhenoAge method based on clinical biomarkers. We calculated two metrics for BAA (including KDM residual and PhenoAge residual) using residual analysis, comparing them against chronological age. The risk of incident EC was evaluated using multivariable Cox proportional-hazards models, adjusting for relevant covariates. Polygenic risk scores (PRS) were computed from known EC-associated SNPs. RESULTS Both KDM and PhenoAge residual, were significantly associated with increased EC risk. In fully adjusted models, the highest tertile of KDM and PhenoAge residual was significantly associated with incident EC compared with the lowest group, with HRs of 1.278 (P=0.0044) and 1.424 (P<0.0001), repectively. The population-attributable fractions were 7.84% for KDM residual (P=0.0044), 9.78% for PhenoAge residual (P=0.0005), and 8.47% for genetic risk (P=0.0005). Additionally, joint associations of BAA and genetic risk with incident EC was evaluated. Compared with low genetic risk and low BAA, high genetic risk and high BAA was significantly associated with the incidence of EC with HRs of up to 2.172 (95% CI 1.592-2.963) for KDM and 2.226 (95% CI 1.640-3.022) for PhenoAge. Overall, higher levels of PhenoAge residual were consistently associated with an increased risk of incident EC, regardless of genetic risk. CONCLUSION BAA and genetics both enhance the risk of incident EC. The effect of the PhenoAge residual is greater than that of the investigated genes, which in turn is greater than that of the KDM residual. These findings highlight the importance of considering both BAA and genetic factors in EC prevention.
Collapse
Affiliation(s)
- Ziye Yang
- Department of Dermatology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
| | - Yufei Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha
| | - Tongtong Zhang
- Medical Research Center, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu
| | - Xiaolin Tang
- Department of Gynecology, The First School of Clinical Medicine, Lanzhou University, Lanzhou
- Department of Gynecology, The Third People’s Hospital of Gansu Province, Lanzhou, People’s Republic of China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University
| |
Collapse
|
18
|
Deng Y, Tsai CW, Chang WS, Xu Y, Huang M, Bau DT, Gu J. The Significant Associations between Epigenetic Clocks and Bladder Cancer Risks. Cancers (Basel) 2024; 16:2357. [PMID: 39001419 PMCID: PMC11240392 DOI: 10.3390/cancers16132357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Bladder cancer is an age-related disease, with over three-quarters of cases occurring in individuals aged 65 years and older. Accelerated biological aging has been linked to elevated cancer risks. Epigenetic clocks serve as excellent predictors of biological age, yet it remains unclear whether they are associated with bladder cancer risk. In this large case-control study, we assessed the associations between four well-established epigenetic clocks-HannumAge, HorvathAge, GrimAge, and PhenoAge-and bladder cancer risk. Utilizing single nucleotide polymorphisms (SNPs), which were identified in a genome-wide association study (GWAS), linked to these clocks as instruments, we constructed a weighted genetic risk score (GRS) for each clock. We discovered that higher HannumAge and HorvathAge GRS were significantly associated with increased bladder cancer risk (OR = 1.69 per SD increase, 95% CI, 1.44-1.98, p = 1.56 × 10-10 and OR = 1.09 per SD increase, 95% CI, 1.00-1.19, p = 0.04, respectively). Employing a summary statistics-based Mendelian randomization (MR) method, inverse-variance weighting (IVW), we found consistent risk estimates for bladder cancer with both HannumAge and HorvathAge. Sensitivity analyses using weighted median analysis and MR-Egger regression further supported the validity of the IVW method. However, GrimAge and PhenoAge were not associated with bladder cancer risk. In conclusion, our data provide the first evidence that accelerated biological aging is associated with elevated bladder cancer risk.
Collapse
Affiliation(s)
- Yang Deng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da-Tian Bau
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Liu T, Gao Y, Li S, Xu S. Exploration and prognostic analysis of two types of high-risk ovarian cancers: clear cell vs. serous carcinoma: a population-based study. J Ovarian Res 2024; 17:119. [PMID: 38824600 PMCID: PMC11143660 DOI: 10.1186/s13048-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/09/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a rare pathological histotype in ovarian cancer, while the survival rate of advanced OCCC (Stage III-IV) is substantially lower than that of the advanced serous ovarian cancer (OSC), which is the most common histotype. The goal of this study was to identify high-risk OCCC by comparing OSC and OCCC, with investigating potential risk and prognosis markers. METHODS Patients diagnosed with ovarian cancer from 2009 to 2018 were identified from the Surveillance, Epidemiology, and End Results (SEER) Program. Logistic and Cox regression models were used to identify risk and prognostic factors in high-risk OCCC patients. Cancer-specific survival (CSS) and overall survival (OS) were assessed using Kaplan-Meier curves. Furthermore, Cox analysis was employed to build a nomogram model. The performance evaluation results were displayed using the C-index, calibration plots, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Immunohistochemically approach was used to identify the expression of the novel target (GPC3). RESULTS In the Cox analysis for advanced OCCC, age (45-65 years), tumor numbers (total number of in situ/malignant tumors for patient), T3-stage, bilateral tumors, and liver metastases could be defined as prognostic variables. Nomogram showed good predictive power and clinical practicality. Compared with OSC, liver metastases had a stronger impact on the prognosis of patients with OCCC. T3-stage, positive distant lymph nodes metastases, and lung metastases were risk factors for developing liver metastases. Chemotherapy was an independent prognostic factor for patient with advanced OCCC, but had no effect on CSS in patients with liver metastases (p = 0.0656), while surgery was significantly related with better CSS in these patients (p < 0.0001) (p = 0.0041). GPC3 expression was detected in all tissue sections, and GPC3 staining was predominantly found in the cytoplasm and membranes. CONCLUSION Advanced OCCC and OCCC with liver metastases are two types of high-risk OCCC. The constructed nomogram exhibited a satisfactory survival prediction for patients with advanced OCCC. GPC3 immunohistochemistry is expected to accumulate preclinical evidence to support the inclusion of GPC3 in OCCC targeted therapy.
Collapse
Affiliation(s)
- Tingwei Liu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yueqing Gao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
20
|
Guerra LHA, Campos SGP, Taboga SR, Vilamaior PSL. Prostatic morphological changes throughout life: Cytochemistry as a tool to reveal tissue aging markers. Microsc Res Tech 2024; 87:1020-1030. [PMID: 38186358 DOI: 10.1002/jemt.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The prostate undergoes normal or pathological morphological changes throughout life. An understanding of these changes is fundamental for the comprehension of aging-related pathological processes such as benign prostatic hyperplasia (BPH) and cancer. In the present study, we show some of these morphological changes, as well as histochemical techniques like Weigert's resorcin-fuchsin method, Picrosirius Red, and Gömöri's reticulin for use as tools in the study of prostate tissue under light microscopy. For this purpose, prostates of the Mongolian gerbil (n = 9), an experimental model that develops BPH spontaneously, were analyzed at three life stages: young (1 month old), adult (3 months old), and old (15 months old). The results showed that fibrillar components such as collagen, and reticular and elastic fibers, change throughout life. In young animals, the prostate has cuboidal epithelium surrounded by thin layers of smooth muscle, continuous collagen fibers, winding reticular fibers, and sporadic elastic fibers. With adulthood, the epithelium becomes columnar, encircled by compacted muscle cells among slender collagen fibers, elongated reticular fibers, and linear elastic fibers. In aging individuals, the prostate's epithelium stratifies, surrounded by thick muscle layers among dense collagen fibers, disordered reticular fibers, and elastic fibers in different planes. We also identified a few accumulations of lipid droplets and lipofuscin granules in adult animals and high accumulation in old animals evidenced by Oil red O and Gömöri-Halmi techniques, respectively. The histochemical techniques presented here have been demonstrated to be useful and accessible tools in prostate studies. RESEARCH HIGHLIGHTS: Cytochemical techniques to study prostate morphology. The prostate changes with age.
Collapse
Affiliation(s)
- Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
21
|
Xu D, Chen X, Wu M, Bi J, Xue H, Chen H. Identification of cellular senescence-associated genes as new biomarkers for predicting the prognosis and immunotherapy response of non-small cell lung cancer and construction of a prognostic model. Heliyon 2024; 10:e28278. [PMID: 38560217 PMCID: PMC10981052 DOI: 10.1016/j.heliyon.2024.e28278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Background Globally, lung carcinoma remains the leading cause of death, with its associated morbidity and mortality rates remaining elevated. Despite the slow advancement of treatment, the outlook remains bleak. Cellular senescence represents a halt in the cell cycle, encompassing a range of physiological and pathological activities, along with diverse phenotypic alterations, including variations in secretory phenotype, macromolecular harm, and metabolic disturbances. Research has revealed its vital function in the formation and growth of tumors. This study aimed to examine cellular senescence-related mRNAs linked to the outlook of non-small cell lung cancer (NSCLC) and to formulate a predictive risk framework for NSCLC. Methods We acquired the NSCLC expression data from The Cancer Genome Atlas (TCGA) to examine mRNAs linked to cellular senescence. Both single-variable and multiple-variable cox proportion risk assessments were utilized to determine the traits of cellular senescence-related mRNAs linked to NSCLC prognosis. Subsequently, the prognostic model for cellular senescence-related mRNAs was integrated with clinical-pathological characteristics to create a prognostic nomogram. Furthermore, the study delved into the risk-oriented predictive model, examining immune infiltration and responses to immunotherapy among both high and low-risk categories. Results Utilizing both univariate and multivariate Cox proportion risk assessments, a risk model comprising 12 mRNAs associated with cellular aging was ultimately developed: IGFBP1, TLR3, WT1, ID1, PTTG1, ERRFI1, HEPACAM, MAP2K3, RAD21, NANOG, PRKCD, SOX5. Univariate analysis and multivariate analysis illustrated that the risk score served as a standalone indicator for prognosis, and the hazard ratio (HR) of the risk score were 1.182 (1.139-1.226) (p < 0.001) and 1.162 (1.119 - 1.206) (p < 0.001), respectively. Individual prognoses were forecasted using nomogram, c-index, and principal component analysis (PCA). Furthermore, the risk-oriented model revealed notable statistical variances in immune infiltration and response to immunotherapy among the high and low risk categories. Conclusions This study shows that mRNAs related to cell senescence associated with prognosis are reliable predictors of NSCLC immunotherapy reaction and prognosis.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiao Chen
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Mingyuan Wu
- Center for Disease Control and Prevention, Songbei District, Harbin, China
| | - Jinfeng Bi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Xue
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Wang L, Hong W, Zhu H, He Q, Yang B, Wang J, Weng Q. Macrophage senescence in health and diseases. Acta Pharm Sin B 2024; 14:1508-1524. [PMID: 38572110 PMCID: PMC10985037 DOI: 10.1016/j.apsb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Macrophage senescence, manifested by the special form of durable cell cycle arrest and chronic low-grade inflammation like senescence-associated secretory phenotype, has long been considered harmful. Persistent senescence of macrophages may lead to maladaptation, immune dysfunction, and finally the development of age-related diseases, infections, autoimmune diseases, and malignancies. However, it is a ubiquitous, multi-factorial, and dynamic complex phenomenon that also plays roles in remodeled processes, including wound repair and embryogenesis. In this review, we summarize some general molecular changes and several specific biomarkers during macrophage senescence, which may bring new sight to recognize senescent macrophages in different conditions. Also, we take an in-depth look at the functional changes in senescent macrophages, including metabolism, autophagy, polarization, phagocytosis, antigen presentation, and infiltration or recruitment. Furthermore, some degenerations and diseases associated with senescent macrophages as well as the mechanisms or relevant genetic regulations of senescent macrophages are integrated, not only emphasizing the possibility of regulating macrophage senescence to benefit age-associated diseases but also has an implication on the finding of potential targets or drugs clinically.
Collapse
Affiliation(s)
- Longling Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Taizhou Institute of Zhejiang University, Taizhou 318000, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
24
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged breast matrix bound vesicles promote breast cancer invasiveness. Biomaterials 2024; 306:122493. [PMID: 38330741 PMCID: PMC11202350 DOI: 10.1016/j.biomaterials.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA.
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
25
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Romadhon YA, Kurniati YP, Jumadi J, Alesheikh AA, Lotfata A. Analyzing socio-environmental determinants of bone and soft tissue cancer in Indonesia. BMC Cancer 2024; 24:206. [PMID: 38350928 PMCID: PMC10865616 DOI: 10.1186/s12885-024-11974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND This study is designed to explore the potential impact of individual and environmental residential factors as risk determinants for bone and soft tissue cancers, with a particular focus on the Indonesian context. While it is widely recognized that our living environment can significantly influence cancer development, there has been a notable scarcity of research into how specific living environment characteristics relate to the risk of bone and soft tissue cancers. METHODS In a cross-sectional study, we analyzed the medical records of oncology patients treated at Prof. Suharso National Referral Orthopedic Hospital. The study aimed to assess tumor malignancy levels and explore the relationships with socio-environmental variables, including gender, distance from the sea, sunrise time, altitude, and population density. Data were gathered in 2020 from diverse sources, including medical records, Google Earth, and local statistical centers. The statistical analyses employed Chi-square and logistic regression techniques with the support of Predictive Analytics SoftWare (PASW) Statistics 18. RESULTS Both bivariate and multivariate analyses revealed two significant factors associated with the occurrence of bone and soft tissue cancer. Age exhibited a statistically significant influence (OR of 5.345 and a p-value of 0.000 < 0.05), indicating a robust connection between cancer development and age. Additionally, residing within a distance of less than 14 km from the sea significantly affected the likelihood of bone and soft tissue cancers OR 5.604 and p-value (0.001 < 0.05). CONCLUSIONS The study underscores the strong association between age and the development of these cancers, emphasizing the need for heightened vigilance and screening measures in older populations. Moreover, proximity to the sea emerges as another noteworthy factor influencing cancer risk, suggesting potential environmental factors at play. These results highlight the multifaceted nature of cancer causation and underscore the importance of considering socio-environmental variables when assessing cancer risk factors. Such insights can inform more targeted prevention and early detection strategies, ultimately contributing to improved cancer management and patient outcomes.
Collapse
Affiliation(s)
- Yusuf Alam Romadhon
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Yuni Prastyo Kurniati
- Faculty of Medicine, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Jumadi Jumadi
- Centre for Chronical Disease, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
- Faculty of Geography, Universitas Muhammadiyah Surakarta, Surakarta, 57162, Indonesia
| | - Ali Asghar Alesheikh
- Department of Geospatial Information Systems, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Aynaz Lotfata
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
27
|
Chen L, Lin J, Wen Y, Lan B, Xiong J, Fu Y, Chen Y, Chen CB. A senescence-related lncRNA signature predicts prognosis and reflects immune landscape in HNSCC. Oral Oncol 2024; 149:106659. [PMID: 38134702 DOI: 10.1016/j.oraloncology.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) regulate cancer cell senescence in many cancers. However, their specific involvement in head and neck squamous cell carcinoma (HNSCC) remains unclear. We are looking for an ingenious prognostic signature that utilizes senescence-related lncRNAs (SRlncRNAs) to predict prognosis and provide insights into the immune landscape in HNSCC. MATERIALS AND METHODS HNSCC clinical and Cellular senescence genes information were collected from The Cancer Genome Atlas and Human Aging Genomic Resources. Then we performed Cox and Lasso regression to locate SRlncRNAs related to the prognosis of HNSCC and built a predictive signature. Further, prognosis assessment, potential mechanisms, and immune status were assessed by Kaplan-Meier analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT, respectively. RESULTS A prognosis prediction model based on sixteen SRlncRNAs was identified and internally validated. Then, patients with high-risk scores suffered an unfavorable overall survival (All p < 0.05). The risk score, age, and stage were independent prognostic parameters (all p < 0.001). Our model has good predictive ability (The AUC (area under the curves) 1-year = 0.707, AUC3-year = 0.748 and AUC5-year = 0.779). Subsequently, GESA revealed SRlncRNAs regulated immune responses. Patients in the high-risk group had higher tumor mutation burden and Tumor Immune Dysfunction and Exclusion but lower levels of 37 immune checkpoint genes, immune scores, and immune cells like CD8 + T cells, follicular helper T cells, and regulatory T cells. CONCLUSIONS A prognostic model based on SRlncRNAs is the potential target for improving immunotherapy outcomes for HNSCC.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yaoming Wen
- Fujian Institute of Microbiology, Fuzhou, Fujian Province, China
| | - Bin Lan
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Chuan-Ben Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China; Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
28
|
Taraszka K, Groha S, King D, Tell R, White K, Ziv E, Zaitlen N, Gusev A. A comprehensive analysis of clinical and polygenic germline influences on somatic mutational burden. Am J Hum Genet 2024; 111:242-258. [PMID: 38211585 PMCID: PMC10870141 DOI: 10.1016/j.ajhg.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.
Collapse
Affiliation(s)
- Kodi Taraszka
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA; Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA 02215, USA.
| | - Stefan Groha
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA 02215, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - David King
- Tempus Labs, Inc, Chicago, IL 60654, USA
| | | | | | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA 02215, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Tao MH, Drake CL, Lin CH. Association of sleep duration, chronotype, social jetlag, and sleep disturbance with phenotypic age acceleration: A cross-sectional analysis. Sleep Health 2024; 10:122-128. [PMID: 38238123 DOI: 10.1016/j.sleh.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Sleep is a critical health-related behavior; research evidence has shown that sleep duration, poor sleep quality and insomnia are associated with aging and relevant age-related diseases. However, the associations between sleep duration, chronotype, sleep disturbance, and biological age have not been comprehensively assessed. This study aimed to examine sleep characteristics with biological age. METHODS The study included 6534 participants aged 20 years and older from the National Health and Nutrition Examination Survey between 2017 and March 2020. Sleep questionnaires were used to collect information on sleep duration and wake behavior on workdays and workfree days and sleep disturbance. Phenotypic age acceleration (PhenoAgeAccel) was estimated as a biological age measure using 9 blood chemistry biomarkers. RESULTS Long sleep (>9 hours) and extremely short sleep (≤4 hours) on workdays were positively associated with PhenoAgeAccel, compared with optimal sleep duration (7-8 hours). Similar positive associations with PhenoAgeAccel were observed for sleep duration on workfree days and across the whole week. Both slightly evening and evening chronotypes were associated with faster PhenoAgeAccel compared to morning chronotype. Social jetlag and sleep disturbance were not associated with PhenoAgeAccel, while long corrected social jetlag was associated with faster PhenoAgeAccel. The associations of sleep duration, chronotype, and corrected social jetlag with PhenoAgeAccel appeared stronger among females than among males. CONCLUSIONS Findings suggest a U-shape relationship between sleep duration and biological aging; slightly evening and evening chronotypes may be risk factors for aging. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Meng-Hua Tao
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA.
| | - Christopher L Drake
- Department of Medicine, Division of Sleep Medicine, Henry Ford Health System, Novi, Michigan, USA
| | - Chun-Hui Lin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
30
|
Wang Y, Deng W, Lee D, Yan L, Lu Y, Dong S, Huntoon K, Antony A, Li X, Ye R, Zhao Y, Zhao F, Schrank BR, Ha J, Kang M, Yang M, Gong P, Lorenzi PL, Tan L, Gallup TD, Tang SK, Yang Z, Li J, Sanford NN, Wang H, Kim BYS, Jiang W. Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics. NATURE NANOTECHNOLOGY 2024; 19:255-263. [PMID: 37723279 DOI: 10.1038/s41565-023-01502-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
Nanomedicines have been approved to treat multiple human diseases. However, clinical adoption of nanoformulated agents is often hindered by concerns about hepatic uptake and clearance, a process that is not fully understood. Here we show that the antitumour efficacy of cancer nanomedicine exhibits an age-associated disparity. Tumour delivery and treatment outcomes are superior in old versus young mice, probably due to an age-related decline in the ability of hepatic phagocytes to take up and remove nanoparticles. Transcriptomic- and protein-level analysis at the single-cell and bulk levels reveals an age-associated decrease in the numbers of hepatic macrophages that express the scavenger receptor MARCO in mice, non-human primates and humans. Therapeutic blockade of MARCO is shown to decrease the phagocytic uptake of nanoparticles and improve the antitumour effect of clinically approved cancer nanotherapeutics in young but not aged mice. Together, these results reveal an age-associated disparity in the phagocytic clearance of nanotherapeutics that affects their antitumour response, thus providing a strong rationale for an age-appropriate approach to cancer nanomedicine.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Lu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Ye
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feiyan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingming Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Gong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Philip L Lorenzi
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas D Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nina N Sanford
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Wang HP, Basisty N, Qu JH, Wang X. Editorial: Multi-omics studies on aging and age-related diseases. Front Cell Dev Biol 2024; 12:1374424. [PMID: 38357003 PMCID: PMC10864650 DOI: 10.3389/fcell.2024.1374424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- He-Ping Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jia-Hua Qu
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Xiaoman Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Hasham MG, Sargent JK, Warner MA, Farley SR, Hoffmann BR, Stodola TJ, Brunton CJ, Munger SC. Methods to study xenografted human cancer in genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576906. [PMID: 38328145 PMCID: PMC10849620 DOI: 10.1101/2024.01.23.576906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.
Collapse
|
33
|
Ishii M, Marume K, Nakai M, Ogata S, Kaichi R, Ikebe S, Mori T, Komaki S, Kusaka H, Toida R, Kurogi K, Ogawa H, Iwanaga Y, Miyamoto Y, Yamamoto N, Tsujita K. Risk Prediction Score for Cancer Development in Patients With Acute Coronary Syndrome. Circ J 2024; 88:234-242. [PMID: 34078839 DOI: 10.1253/circj.cj-21-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cancer is a known prognostic factor in patients with acute coronary syndrome (ACS), but few risk assessments of cancer development after ACS have been established. METHODS AND RESULTS Of the 573 consecutive ACS admissions between January 2015 and March 2018 in Nobeoka City, Japan, 552 were analyzed. Prevalent cancer was defined as a treatment history of cancer, and incident cancer as post-discharge cancer incidence. The primary endpoint was post-discharge cancer incidence, and the secondary endpoint was all-cause death during follow-up. All-cause death occurred in 9 (23.1%) patients with prevalent cancer, and in 17 (3.5%) without cancer. In the multivariable analysis, prevalent cancer was associated with all-cause death. To develop the prediction model for cancer incidence, 21 patients with incident cancer and 492 without cancer were analyzed. We compared the performance of D-dimer with that of the prediction model, which added age (≥65 years), smoking history, and high red blood cell distribution width to albumin ratio (RAR) to D-dimer. The areas under the receiver-operating characteristics curves of D-dimer and the prediction model were 0.619 (95% confidence interval: 0.512-0.725) and 0.774 (0.676-0.873), respectively. Decision curve analysis showed superior net benefits of the prediction model. CONCLUSIONS By adding elderly, smoking, and high RAR to D-dimer to the prediction model it became clinically useful for predicting cancer incidence after ACS.
Collapse
Affiliation(s)
- Masanobu Ishii
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Kyohei Marume
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | | | | | - Ryota Kaichi
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Sou Ikebe
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Takayuki Mori
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Soichi Komaki
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Hiroaki Kusaka
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Reiko Toida
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Kazumasa Kurogi
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | | | | | | | - Nobuyasu Yamamoto
- Department of Cardiovascular Medicine, Miyazaki Prefectural Nobeoka Hospital
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Kumamoto University Hospital
| |
Collapse
|
34
|
Mamudu L, Li J, McEligot AJ, Wood M, Rusmevichientong P, Tetteh-Bator E, Soale AN, Fortenberry JD, Williams F. Cancer worry and its impact on self-reported depressive symptoms among adult males and females in the US: a nationwide sample study. BMC Psychiatry 2024; 24:31. [PMID: 38191340 PMCID: PMC10773041 DOI: 10.1186/s12888-023-05405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE With cancer the second deadliest disease in the world, worry about cancer can have mental health or psychiatric implications. This study examines the prevalence, differences, and influence of cancer worry (CW), its interaction effect with age, and other confounders on self-reported depressive symptoms (SRDS) among adult males and females in the US. METHODS We utilized a nationally representative sample data of 2,950 individuals (males = 1,276; females = 1,674) from Cycle 4 of the Health Information National Trends Survey 5 (HINTS 5) 2020. Using frequencies, bivariate chi-square test, and multivariate logistic regression, we examined the prevalence, difference, and association of CW with SRDS, adjusting for confounders. RESULTS The prevalence rate of SRDS was found to be 32% among females and 23.5% among males. Among individuals with CW, females had a higher prevalence of SRDS compared to males (40.5% vs. 35.1%). However, there was a significant difference in the likelihood of experiencing SRDS between males and females with CW, with males having 84% increased risk compared to females. Across all age groups, the multivariate analysis of the relationship between CW and SRDS revealed that both males and females showed a significantly decreased likelihood of SRDS compared to those aged 18-34 years. However, males aged 35 years or older exhibited an even more pronounced decrease in likelihood compared to females in the same age group. Nonetheless, when examining the interaction of age and CW, we observed a significantly increased likelihood of SRDS across all age groups. Males, in particular, had a higher increased likelihood of SRDS compared to females across all ages, except for those aged 75 years and older. CONCLUSION The findings of this study highlight the significant influence of CW on individuals' SRDS and the modifying effect of age, particularly among males. These results are important for a better understanding of the risk of CW on mental health, which can be a preventive strategy or control mechanism.
Collapse
Affiliation(s)
- Lohuwa Mamudu
- Department of Public Health, California State University, 800 N. State College Boulevard, Fullerton, Fullerton, CA, 92831, USA.
| | - Jinyi Li
- Department of Public Health, University of California Irvine, Irvine, CA, 92967, USA
| | - Archana J McEligot
- Department of Public Health, California State University, 800 N. State College Boulevard, Fullerton, Fullerton, CA, 92831, USA
| | - Michele Wood
- Department of Public Health, California State University, 800 N. State College Boulevard, Fullerton, Fullerton, CA, 92831, USA
| | - Pimbucha Rusmevichientong
- Department of Public Health, California State University, 800 N. State College Boulevard, Fullerton, Fullerton, CA, 92831, USA
| | - Erasmus Tetteh-Bator
- Department of Mathematics and Statistics, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Abdul-Nasah Soale
- Department of Mathematics and Statistics, Applied Mathematics and Statistics, Case Western Reserve University, Yost Hall, 2049 Martin Luther King Jr. Drive, 44106-7058, Cleaveland, OH, USA
| | - James D Fortenberry
- Division of Adolescent Medicine, Indiana University School of Medicine, 410 W 10th St., Room 1001, Indianapolis, IN, 46202, USA
| | - Faustine Williams
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, 11545 Rockville Pike, T-10 C12, Rockville, MD, 20852, USA.
| |
Collapse
|
35
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Zhang S, Zheng M, Tian H, Liu W, Feng Z, Xing S, Han F. Are immune checkpoint inhibitors ineffective in treating patients with head and neck squamous cell carcinoma aged 75 years or Older? A Meta-Analysis. Oral Oncol 2024; 148:106632. [PMID: 38039875 DOI: 10.1016/j.oraloncology.2023.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVES The efficacy of immune checkpoint inhibitors (ICIs) is unclear in patients aged ≥ 75 years with head and neck squamous cell carcinoma (HNSCC). We conducted a systematic review and meta-analysis of randomized trials that compared ICIs with standard-of-care (SOC) therapy for recurrent/metastatic HNSCC. MATERIALS AND METHODS PubMed, EMBASE, Web of Science, and ClinicalTrials.gov were searched for eligible trials. We evaluated the overall survival (OS) benefit of ICIs versus SOC according to patient age (<75 versus ≥ 75 years). The OS benefit was evaluated and compared between the age subgroups using hazard ratios (HRs). Data were pooled using a random-effects model. RESULTS Five phase 3 trials involving 3437 patients were included. In patients aged ≥ 75 years (n = 207), ICIs did not improve OS compared to SOC (HR = 1.30, 95 % confidence interval [CI]: 0.93-1.81, P = 0.127). However, an improvement in OS was observed in patients aged < 75 years (n = 3230, HR = 0.90, 95 % CI: 0.83-0.99, P = 0.025). There is a significant difference in OS benefit between patients aged < 75 and ≥ 75 years (ratio of HR = 0.69, 95 % CI: 0.49-0.98, P = 0.036). Subgroup, meta-regression, and sensitivity analyses supported the reliability of the results. CONCLUSIONS Given the small sample size, our findings showing no improvement in OS suggest a lack of evidence to support the use of ICIs in patients with recurrent/metastatic HNSCC aged ≥ 75 years. Therefore, prospective studies are needed to clarify their efficacy among this age group.
Collapse
Affiliation(s)
- Siqi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Mengge Zheng
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Wenjia Liu
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Zhenbang Feng
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Shasha Xing
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Ave, Changchun, China.
| |
Collapse
|
37
|
Kędzia-Berut R, Berut M, Włodarczyk M, Włodarczyk J, Dziki Ł, Dziki A, Mik M. Colorectal Cancer: Is it Still a Disease of the Elderly? POLISH JOURNAL OF SURGERY 2023; 96:41-45. [PMID: 38348978 DOI: 10.5604/01.3001.0054.0956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
<b><br>Introduction:</b> Colorectal cancer is becoming an increasingly significant health issue, being one of the more commonly diagnosed malignancies. Colorectal tumors account for 10% of all malignant cancers in women and 12% in men. Incidence is higher in the male population, especially among younger individuals. It is commonly believed that colorectal cancer is predominantly associated with advanced age. However, colorectal surgeons, who specialize in the treatment of this type of cancer, are observing a growing number of cases among middle-aged and younger individuals.</br> <b><br>Aim:</b> The aim of our study was to investigate whether colorectal cancer still predominantly affects elderly individuals, how frequently it is diagnosed in younger patients, and whether the location of tumors in the intestines of younger patients aligns with data from elderly individuals.</br> <b><br>Materials and methods:</b> The study was conducted retrospectively and included a cohort of 1771 patients who underwent surgical procedures due to colorectal cancer between 2012 and 2015 at the Department of General and Colorectal Surgery at the Medical University of Łódź and between 2014 and 2017 at the Department of General Surgery with a Division of Surgical Oncology at the District Health Center in Brzeziny. Data were analyzed regarding the frequency of colorectal cancer occurrence by age, tumor location in different age groups, and disease stage according to age. Age groups included <40 years, 41-50 years, 51-70 years, and >70 years.</br> <b><br>Results:</b> The study encompassed a total of 1771 patients, with 988 (55.79%) being males and 783 (44.21%) females. The mean age of the patients was 65.27 11.12 years. The highest number of cases was observed in the age range of 60-70 years and 70-80 years. It was found that colorectal tumors in males more frequently occurred on the left side of the colon and rectum, while in females, they were more commonly located on the right side of the colon, which was statistically significant (P = 0.007). Younger age groups of patients (<40 years, 40-50 years) had a similar male-to-female ratio, whereas in age groups above 50 years, males significantly outnumbered females (P = 0.049). The study revealed that in the group of patients below 40 years of age, an advanced stage of colorectal cancer was significantly more common; stage D occurred over twice as often as in the 51-70 age group and over three times as often as in the >70 age group.</br> <b><br>Conclusions:</b> The incidence of colorectal cancer in Poland is steadily increasing, with a growing number of diagnoses in younger individuals. Research findings demonstrate that males, especially those in younger age groups, are at a higher risk of developing colorectal cancer. A higher disease stage is more frequently observed in younger patients, possibly due to delayed diagnosis and symptomatic treatment. Screening programs should be adjusted to the changing age groups at higher risk. Our study underlines the need to raise public awareness regarding colorectal cancer, particularly among the younger population.</br>.
Collapse
Affiliation(s)
- Renata Kędzia-Berut
- Department of General and Colorectal Surgery, Military Medical Academy Memorial Teaching Hospital, Lodz, Poland
| | - Maciej Berut
- Department of General Surgery with Subdivision of Oncological Surgery, District Health Center in Brzeziny, Poland
| | - Marcin Włodarczyk
- Department of General and Cancer Surgery, Central Clinical Hospital of the Medical University of Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Cancer Surgery, Central Clinical Hospital of the Medical University of Lodz, Poland
| | - Łukasz Dziki
- Department of General and Cancer Surgery, Central Clinical Hospital of the Medical University of Lodz, Poland
| | - Adam Dziki
- Department of General and Colorectal Surgery, Military Medical Academy Memorial Teaching Hospital, Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Military Medical Academy Memorial Teaching Hospital, Lodz, Poland
| |
Collapse
|
38
|
Carels N, Sgariglia D, Junior MGV, Lima CR, Carneiro FRG, da Silva GF, da Silva FAB, Scardini R, Tuszynski JA, de Andrade CV, Monteiro AC, Martins MG, da Silva TG, Ferraz H, Finotelli PV, Balbino TA, Pinto JC. A Strategy Utilizing Protein-Protein Interaction Hubs for the Treatment of Cancer Diseases. Int J Mol Sci 2023; 24:16098. [PMID: 38003288 PMCID: PMC10671768 DOI: 10.3390/ijms242216098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023] Open
Abstract
We describe a strategy for the development of a rational approach of neoplastic disease therapy based on the demonstration that scale-free networks are susceptible to specific attacks directed against its connective hubs. This strategy involves the (i) selection of up-regulated hubs of connectivity in the tumors interactome, (ii) drug repurposing of these hubs, (iii) RNA silencing of non-druggable hubs, (iv) in vitro hub validation, (v) tumor-on-a-chip, (vi) in vivo validation, and (vii) clinical trial. Hubs are protein targets that are assessed as targets for rational therapy of cancer in the context of personalized oncology. We confirmed the existence of a negative correlation between malignant cell aggressivity and the target number needed for specific drugs or RNA interference (RNAi) to maximize the benefit to the patient's overall survival. Interestingly, we found that some additional proteins not generally targeted by drug treatments might justify the addition of inhibitors designed against them in order to improve therapeutic outcomes. However, many proteins are not druggable, or the available pharmacopeia for these targets is limited, which justifies a therapy based on encapsulated RNAi.
Collapse
Affiliation(s)
- Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Domenico Sgariglia
- Engenharia de Sistemas e Computação, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, RJ, Brazil;
| | - Marcos Guilherme Vieira Junior
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Carlyle Ribeiro Lima
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
| | - Gilberto Ferreira da Silva
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Fabricio Alves Barbosa da Silva
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Rafaela Scardini
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-255, RJ, Brazil
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
| | - Cecilia Vianna de Andrade
- Department of Pathology, Instituto Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22250-020, RJ, Brazil;
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro 24210-201, RJ, Brazil;
| | - Marcel Guimarães Martins
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Talita Goulart da Silva
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Helen Ferraz
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Priscilla Vanessa Finotelli
- Laboratório de Nanotecnologia Biofuncional, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Tiago Albertini Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil;
| | - José Carlos Pinto
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| |
Collapse
|
39
|
Dos Santos GA, Chatsirisupachai K, Avelar RA, de Magalhães JP. Transcriptomic analysis reveals a tissue-specific loss of identity during ageing and cancer. BMC Genomics 2023; 24:644. [PMID: 37884865 PMCID: PMC10604446 DOI: 10.1186/s12864-023-09756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
INTRODUCTION Understanding changes in cell identity in cancer and ageing is of great importance. In this work, we analyzed how gene expression changes in human tissues are associated with tissue specificity during cancer and ageing using transcriptome data from TCGA and GTEx. RESULTS We found significant downregulation of tissue-specific genes during ageing in 40% of the tissues analyzed, which suggests loss of tissue identity with age. For most cancer types, we have noted a consistent pattern of downregulation in genes that are specific to the tissue from which the tumor originated. Moreover, we observed in cancer an activation of genes not usually expressed in the tissue of origin as well as an upregulation of genes specific to other tissues. These patterns in cancer were associated with patient survival. The age of the patient, however, did not influence these patterns. CONCLUSION We identified loss of cellular identity in 40% of the tissues analysed during human ageing, and a clear pattern in cancer, where during tumorigenesis cells express genes specific to other organs while suppressing the expression of genes from their original tissue. The loss of cellular identity observed in cancer is associated with prognosis and is not influenced by age, suggesting that it is a crucial stage in carcinogenesis.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2WB, UK
| | - Kasit Chatsirisupachai
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - Roberto A Avelar
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
40
|
Nagamori M, Igarashi T, Kimura N, Fukasawa M, Watanabe T, Hirano K, Tanaka H, Shibuya K, Yoshioka I, Fujii T. Laparoscopic distal pancreatectomy for pancreatic tail cancer in a 100-year-old patient. Clin J Gastroenterol 2023; 16:779-784. [PMID: 37486542 DOI: 10.1007/s12328-023-01834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
We present the case of a 100-year-old man with no specific symptoms. Computed tomography (CT) revealed a 34 mm tumor in the pancreatic tail, which was diagnosed as pancreatic cancer by biopsy. CT and magnetic resonance imaging showed that the tumor was resectable, and there were no noncurative factors on staging laparoscopy (cT3N0M0: cStage IIA). His performance status was good, and hypertension was the only comorbidity. A cardiologist, respiratory physician, and anesthesiologist examined the patient and determined that his condition was suitable for surgery. His postoperative predicted mortality rate was 0.9% using the American College of Surgeons risk calculator. We administered synbiotics and nutrients before surgery and introduced preoperative rehabilitation to improve his activities of daily living (ADL) as well as respiratory training to prevent postoperative pneumonia. Regarding the invasiveness of the surgery, we performed laparoscopic distal pancreatectomy with D1 lymphadenectomy. The patient was discharged on postoperative day 17, without any major complications. When performing pancreatectomy in older adults, it is important to fully assess preoperative tolerance and perioperative risk and prevent worsening of ADL by introducing nutritional therapy and rehabilitation.
Collapse
Affiliation(s)
- Masakazu Nagamori
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takamichi Igarashi
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Nana Kimura
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mina Fukasawa
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Katsuhisa Hirano
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Haruyoshi Tanaka
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazuto Shibuya
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Isaku Yoshioka
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
41
|
He TC, Li JA, Xu ZH, Chen QD, Yin HL, Pu N, Wang WQ, Liu L. Biological and clinical implications of early-onset cancers: A unique subtype. Crit Rev Oncol Hematol 2023; 190:104120. [PMID: 37660930 DOI: 10.1016/j.critrevonc.2023.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, the incidence of cancers is continuously increasing in young adults. Early-onset cancer (EOC) is usually defined as patients with cancers under the age of 50, and may represent a unique subgroup due to its special disease features. Overall, EOCs often initiate at a young age, present as a better physical performance but high degree of malignancy. EOCs also share common epidemiological and hereditary risk factors. In this review, we discuss several representative EOCs which were well studied previously. By revealing their clinical and molecular similarities and differences, we consider the group of EOCs as a unique subtype compared to ordinary cancers. In consideration of EOC as a rising threat to human health, more researches on molecular mechanisms, and large-scale, prospective clinical trials should be carried out to further translate into improved outcomes.
Collapse
Affiliation(s)
- Tao-Chen He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Ang Li
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang-Da Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han-Lin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Rietman EA, Siegelmann HT, Klement GL, Tuszynski JA. Gibbs Energy and Gene Expression Combined as a New Technique for Selecting Drug Targets for Inhibiting Specific Protein-Protein Interactions. Int J Mol Sci 2023; 24:14648. [PMID: 37834096 PMCID: PMC10572529 DOI: 10.3390/ijms241914648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
One of the most important aspects of successful cancer therapy is the identification of a target protein for inhibition interaction. Conventionally, this consists of screening a panel of genes to assess which is mutated and then developing a small molecule to inhibit the interaction of two proteins or to simply inhibit a specific protein from all interactions. In previous work, we have proposed computational methods that analyze protein-protein networks using both topological approaches and thermodynamic quantification provided by Gibbs free energy. In order to make these approaches both easier to implement and free of arbitrary topological filtration criteria, in the present paper, we propose a modification of the topological-thermodynamic analysis, which focuses on the selection of the most thermodynamically stable proteins and their subnetwork interaction partners with the highest expression levels. We illustrate the implementation of the new approach with two specific cases, glioblastoma (glioma brain tumors) and chronic lymphatic leukoma (CLL), based on the publicly available patient-derived datasets. We also discuss how this can be used in clinical practice in connection with the availability of approved and investigational drugs.
Collapse
Affiliation(s)
- Edward A. Rietman
- Manning College of Information and Computer Science, University of Massachusetts, Amherst, MA 01003, USA; (E.A.R.); (H.T.S.)
- Applied Physics, 477 Madison Ave., 6th Floor, New York, NY 10022, USA
| | - Hava T. Siegelmann
- Manning College of Information and Computer Science, University of Massachusetts, Amherst, MA 01003, USA; (E.A.R.); (H.T.S.)
| | | | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, I-10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
43
|
Fisher GJ, Wang B, Cui Y, Shi M, Zhao Y, Quan T, Voorhees JJ. Skin aging from the perspective of dermal fibroblasts: the interplay between the adaptation to the extracellular matrix microenvironment and cell autonomous processes. J Cell Commun Signal 2023; 17:523-529. [PMID: 37067763 PMCID: PMC10409944 DOI: 10.1007/s12079-023-00743-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
This article summarizes important molecular mechanisms that drive aging in human skin from the perspective of dermal fibroblasts. The dermis comprises the bulk of the skin and is largely composed of a collagen-rich extracellular matrix (ECM). The dermal ECM provides mechanical strength, resiliency, and an environment that supports the functions of ibroblasts and other types of dermal cells. Fibroblasts produce the dermal ECM and maintain its homeostasis. Fibroblasts attach to the ECM and this attachment controls their morphology and function. During aging, the ECM undergoes gradual degradation that is nitiated by matrix metalloproteinases (MMPs). This degradation alters mechanical forces within the dermal ECM and disrupts he interactions between fibroblasts and the ECM thereby generating an aged fibroblast phenotype. This aged fibroblast phenotype is characterized by collapsed morphology, altered mechanosignaling, induction of CCN1, and activation of transcription factor AP-1, with consequent upregulation of target genes including MMPs and pro-inflammatory mediators. The TGF-beta pathway coordinately regulates ECM production and turnover. Altered mechanical forces, due to ECM fragmentation, down-regulate the type II TGF-beta receptor, thereby reducing ECM production and further increasing ECM breakdown. Thus, dermal aging involves a feed-forward process that reinforces the aged dermal fibroblast phenotype and promotes age-related dermal ECM deterioration. As discussed in the article, the expression of the aged dermal fibroblast phenotype involves both adaptive and cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Gary J Fisher
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| | - Bo Wang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yilei Cui
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Mai Shi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yi Zhao
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Taihao Quan
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Liu Y, Ji Y, Jiang R, Fang C, Shi G, Cheng L, Zuo Y, Ye Y, Su X, Li J, Wang H, Wang Y, Lin Y, Dai L, Zhang S, Deng H. Reduced smooth muscle-fibroblasts transformation potentially decreases intestinal wound healing and colitis-associated cancer in ageing mice. Signal Transduct Target Ther 2023; 8:294. [PMID: 37553378 PMCID: PMC10409725 DOI: 10.1038/s41392-023-01554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Ruiyi Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lin Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yinan Zuo
- Respiratory Microbiome Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yuan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yi Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
45
|
Wang Z, Gu W, Guo X, Xue F, Zhao J, Han W, Li H, Chen W, Hu Y, Yang C, Zhang L, Wu P, Chen Y, Zhao Y, Du J, Jiang J. Spatial association of surface water quality and human cancer in China. NPJ CLEAN WATER 2023; 6:53. [DOI: 10.1038/s41545-023-00267-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/21/2023] [Indexed: 08/07/2024]
Abstract
AbstractLittle is known about the association between surface water quality and cancer incidence, especially in China. Drinking water quality has been linked to the incidence of several cancers in individual-level studies. However, few studies have attempted to examine multiple pollutants and multiple cancers at population level. This study used water monitoring and population-level cancer data from across China to examine spatial associations between water pollutants and types of cancer. We found a “dose–response” relationship between the number of pollutants present at high levels and cancer incidence. These results provide evidence of a nationwide spatial association between water quality and cancer in China. The precise relationship varies with cancers and pollutants. However, the overall consistency of the “dose–response” relationship suggests that surface water quality is an important factor in cancer incidence. Our findings highlight new issues such as the changing effects when different pollutants co-exist and an increasing number of new cancer cases partially attributable to poor water quality. Our work also points to some ways to deal with these challenges.
Collapse
|
46
|
Mak JKL, McMurran CE, Kuja-Halkola R, Hall P, Czene K, Jylhävä J, Hägg S. Clinical biomarker-based biological aging and risk of cancer in the UK Biobank. Br J Cancer 2023; 129:94-103. [PMID: 37120669 PMCID: PMC10307789 DOI: 10.1038/s41416-023-02288-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Despite a clear link between aging and cancer, there has been inconclusive evidence on how biological age (BA) may be associated with cancer incidence. METHODS We studied 308,156 UK Biobank participants with no history of cancer at enrolment. Using 18 age-associated clinical biomarkers, we computed three BA measures (Klemera-Doubal method [KDM], PhenoAge, homeostatic dysregulation [HD]) and assessed their associations with incidence of any cancer and five common cancers (breast, prostate, lung, colorectal, and melanoma) using Cox proportional-hazards models. RESULTS A total of 35,426 incident cancers were documented during a median follow-up of 10.9 years. Adjusting for common cancer risk factors, 1-standard deviation (SD) increment in the age-adjusted KDM (hazard ratio = 1.04, 95% confidence interval = 1.03-1.05), age-adjusted PhenoAge (1.09, 1.07-1.10), and HD (1.02, 1.01-1.03) was significantly associated with a higher risk of any cancer. All BA measures were also associated with increased risks of lung and colorectal cancers, but only PhenoAge was associated with breast cancer risk. Furthermore, we observed an inverse association between BA measures and prostate cancer, although it was attenuated after removing glycated hemoglobin and serum glucose from the BA algorithms. CONCLUSIONS Advanced BA quantified by clinical biomarkers is associated with increased risks of any cancer, lung cancer, and colorectal cancer.
Collapse
Affiliation(s)
- Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher E McMurran
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), University of Tampere, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
48
|
Grody EI, Abraham A, Shukla V, Goyal Y. Toward a systems-level probing of tumor clonality. iScience 2023; 26:106574. [PMID: 37192968 PMCID: PMC10182304 DOI: 10.1016/j.isci.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Collapse
Affiliation(s)
- Emanuelle I. Grody
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ajay Abraham
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
49
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
50
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged Breast Matrix Bound Vesicles Promote Breast Cancer Invasiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535436. [PMID: 37066396 PMCID: PMC10103978 DOI: 10.1101/2023.04.03.535436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
|