1
|
Woods K, Rants'o TA, Chan AM, Sapre T, Mastin GE, Maguire KM, Ong SE, Golkowski M. diaPASEF-Powered Chemoproteomics Enables Deep Kinome Interaction Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624841. [PMID: 39605566 PMCID: PMC11601655 DOI: 10.1101/2024.11.22.624841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein-protein interactions (PPIs) underlie most biological functions. Devastating human conditions like cancers, neurological disorders, and infections, hijack PPI networks to initiate disease, and to drive disease progression. Understanding precisely how diseases remodel PPI networks can, therefore, help clarify disease mechanisms and identify therapeutic targets. Protein kinases control most cellular processes through protein phosphorylation. The 518 human kinases, known as the kinome, are frequently dysregulated in disease and highly druggable with ATP-competitive inhibitors. Kinase activity, localization, and substrate recognition are regulated by dynamic PPI networks composed of scaffolding and adapter proteins, other signaling enzymes like small GTPases and E3 ligases, and phospho-substrates. Accordingly, mapping kinase PPI networks can help determine kinome activation states, and, in turn, cellular activation states; this information can be used for studying kinase-mediated cell signaling, and for prioritizing kinases for drug discovery. Previously, we have developed a high-throughput method for kinome PPI mapping based on mass spectrometry (MS)-based chemoproteomics that we named kinobead competition and correlation analysis (kiCCA). Here, we introduce 2 nd generation (gen) kiCCA which utilizes data-independent acquisition (dia) with parallel accumulation serial fragmentation (PASEF) MS and a re-designed CCA algorithm with improved selection criteria and the ability to predict multiple kinase interaction partners of the same proteins. Using neuroblastoma cell line models of the noradrenergic-mesenchymal transition (NMT), we demonstrate that 2 nd gen kiCCA (1) identified 6.1-times more kinase PPIs in native cell extracts compared to our 1 st gen approach, (2) determined kinase-mediated signaling pathways that underly the neuroblastoma NMT, and (3) accurately predicted pharmacological targets for manipulating NMT states. Our 2 nd gen kiCCA method is broadly useful for cell signaling research and kinase drug discovery.
Collapse
|
2
|
Mayo P, Pascual J, Crisman E, Domínguez C, López MG, León R. Innovative pathological network-based multitarget approaches for Alzheimer's disease treatment. Med Res Rev 2024; 44:2367-2419. [PMID: 38678582 DOI: 10.1002/med.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.
Collapse
Affiliation(s)
- Paloma Mayo
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Jorge Pascual
- Departamento de desarrollo preclínico, Fundación Teófilo Hernando, Las Rozas, Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Cristina Domínguez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Karati D, Meur S, Roy S, Mukherjee S, Debnath B, Jha SK, Sarkar BK, Naskar S, Ghosh P. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03500-1. [PMID: 39432068 DOI: 10.1007/s00210-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. According to estimates from the World Health Organization (WHO), 18 million individuals worldwide suffer from AD. Major initiatives to identify risk factors, enhance care giving, and conduct basic research to delay the beginning of AD were started by the USA, France, Germany, France, and various other nations. Widely recognized as a key player in the development and subsequent progression of AD pathogenesis, glycogen synthase kinase-3 (GSK-3) controls a number of crucial targets associated with neuronal degeneration. GSK-3 inhibition has been linked to reduced tau hyperphosphorylation, β-amyloid formation, and neuroprotective benefits in Alzheimer's disease. Lithium, the very first inhibitor of GSK-3β that was used therapeutically, has been successfully used for many years with remarkable results. A great variety of structurally varied strong GSK-3β blockers have been identified in recent years. The purpose of this thorough review is to cover the biological and structural elements of glycogen synthase kinase, as well as the medicinal chemistry aspects of GSK inhibitors that have been produced in recent years.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India.
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal, 711316, India
| | - Sajal Kumar Jha
- Department of Pharmaceutical Technology, Bengal College of Pharmaceutical Technology, Dubrajpur, West Bengal, 731123, India
| | | | - Saheli Naskar
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Priya Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| |
Collapse
|
4
|
Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer. Nat Commun 2024; 15:7016. [PMID: 39147754 PMCID: PMC11327265 DOI: 10.1038/s41467-024-51274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method, we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology is benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We apply this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detect 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of phosphorylation events relevant to mitochondrial and brain biology.
Collapse
Affiliation(s)
- Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Fecher
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Smith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Margaret Lea Robinson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas Arp
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Juli Hansen
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Rojas
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | | | | | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA.
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Egilmezer E, Hamilton ST, Lauw G, Follett J, Sonntag E, Schütz M, Marschall M, Rawlinson WD. Human Cytomegalovirus Dysregulates Cellular Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases and Sonic Hedgehog Pathway Proteins in Neural Astrocyte and Placental Models. Viruses 2024; 16:918. [PMID: 38932210 PMCID: PMC11209403 DOI: 10.3390/v16060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Human cytomegalovirus (CMV) infection is the leading non-genetic cause of congenital malformation in developed countries, causing significant fetal injury, and in some cases fetal death. The pathogenetic mechanisms through which this host-specific virus infects then damages both the placenta and the fetal brain are currently ill-defined. We investigated the CMV modulation of key signaling pathway proteins for these organs including dual-specificity tyrosine phosphorylation-regulated kinases (DYRK) and Sonic Hedgehog (SHH) pathway proteins using human first trimester placental trophoblast (TEV-1) cells, primary human astrocyte (NHA) brain cells, and CMV-infected human placental tissue. Immunofluorescence demonstrated the accumulation and re-localization of SHH proteins in CMV-infected TEV-1 cells with Gli2, Ulk3, and Shh re-localizing to the CMV cytoplasmic virion assembly complex (VAC). In CMV-infected NHA cells, DYRK1A re-localized to the VAC and DYRK1B re-localized to the CMV nuclear replication compartments, and the SHH proteins re-localized with a similar pattern as was observed in TEV-1 cells. Western blot analysis in CMV-infected TEV-1 cells showed the upregulated expression of Rb, Ulk3, and Shh, but not Gli2. In CMV-infected NHA cells, there was an upregulation of DYRK1A, DYRK1B, Gli2, Rb, Ulk3, and Shh. These in vitro monoculture findings are consistent with patterns of protein upregulation and re-localization observed in naturally infected placental tissue and CMV-infected ex vivo placental explant histocultures. This study reveals CMV-induced changes in proteins critical for fetal development, and identifies new potential targets for CMV therapeutic development.
Collapse
Affiliation(s)
- Ece Egilmezer
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Stuart T. Hamilton
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
| | - Glen Lauw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Jasmine Follett
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany (M.M.)
| | - William D. Rawlinson
- Serology and Virology Division, Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney 2031, Australia; (E.E.)
- School of Clinical Medicine, University of New South Wales, Kensington 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia
| |
Collapse
|
6
|
Abdelmalek D, Smaoui F, Frikha F, Ben Marzoug R, Msalbi D, Souissi A, Aifa MS. Computational identification of new TKI as potential noncovalent reversible EGFR L858R/T790M inhibitors: VHTS, molecular docking, DFT study and molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:4870-4887. [PMID: 37349947 DOI: 10.1080/07391102.2023.2223663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
The mutations concerned with non-small cell lung cancer involving epidermal growth factor receptor of tyrosine kinase family have primarily targeted. In this study, we employed a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 50.000 Erlotinib-derived compounds as noncovalent reversible EGFRL858R/T790M inhibitors. Our HTVS work flow leverages include HTVS, SP (Standard Precision) and XP (Extra Precision) docking protocol along with its relative binding free energy calculation, cluster analysis study and ADMET properties. Then we used multiple ns-time scale molecular dynamics (MD) simulations and density functional theory (DFT) precise calculation techniques to elucidate how the bound ligand interact with the complexes conformational states involving motions both proximal and distal to the binding site. Based on glide score and protein-ligand interactions, the highest scoring molecule was selected for molecular dynamic simulation providing a complete insight into the conformational stability. A hyperfine analysis of DFT based refinement strategy highly supported their stability by strong intermolecular interactions. Together, our results demonstrate that the virtually screened top retained molecules present the best moieties introduced to Erlotinib. They exhibit interesting pharmacokinetic properties that can act as potent antitumor drug candidates than the lead compound drug and in some extent tackling the drug resistance problem which offer a springboard for further therapeutic experiments and applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorra Abdelmalek
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fahmi Smaoui
- Department of Microbiology, Habib Bourguiba University Hospital/Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dhouha Msalbi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Onohuean H, Onohuean EF, Igbinoba S, Odoma S, Usman I, Ifie JE, Alagbonsi AI, Moyosore AA, Udom GJ, Agu PC, Aja PM, Ezeonwumelu JOC, Al‑Kuraishy HM, Batiha GE, Osuntoki AA. In silico pharmacokinetic and therapeutic evaluation of Musa acuminata peels against aluminium chloride-induced hepatotoxicity in adult BALB/c mice. In Silico Pharmacol 2024; 12:46. [PMID: 38800619 PMCID: PMC11116335 DOI: 10.1007/s40203-024-00216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
East Africa (Musa spp.), notably Musa acuminata, "Matooke" a staple and economically important food in the region. Here, 12 selected M. acuminata peels extract (MAPE) bioactive compounds were studied for hepatoprotective potentials in aluminium chloride-induced hepatoxicity in adult BALB/c mice. GC-MS analysis was used to identify active components of MAPE. In silico estimation of the pharmacokinetic, the GCMS-identified compounds' toxicity profile and molecular docking were compared with the standard (Simvastatin) drug. Hepatotoxicity was induced using aluminium-chloride treated with MAPE, followed by biochemical and histopathological examination. Twelve bioactive compounds 2,2-Dichloroacetophenone (72870), Cyclooctasiloxane 18993663), 7-Hydroxy-6,9a-dimethyl-3-methylene-decahydro-azuleno[4,5-b]furan-2,9-dione (534579), all-trans-alpha-Carotene (4369188), Cyclononasiloxane (53438479), 3-Chloro-5-(4-methoxyphenyl)-6,7a-dimethyl-5,6,7,7a-tetrahydro-4H-furo[2,3-c]pyridin-2-one (536708), Pivalic acid (6417), 10,13-Octadecadienoic acid (54284936), Ethyl Linoleate (5282184), Oleic acid (5363269), Tirucallol (101257), Obtusifoliol (65252) were identified by GC-MS. Of these, seven were successfully docked with the target proteins. The compounds possess drug likeness potentials that do not inhibits CYP450 isoforms biotransformation. All the docked compounds were chemoprotective to AMES toxicity, hERGI, hERGII and hepatotoxicity. The animal model reveals MAPE protective effect on liver marker's function while the histological studies show regeneration of the disoriented layers of bile ducts and ameliorate the cellular/histoarchitecture of the hepatic cells induced by AlCl3. The findings indicate that MAPE improved liver functions and ameliorated the hepatic cells' cellular or histoarchitecture induced by AlCl3. Further studies are necessary to elucidate the mechanism action and toxicological evaluation of MAPE's chronic or intermittent use to ascertain its safety in whole organism systems.
Collapse
Affiliation(s)
- Hope Onohuean
- Biomolecules, Metagenomics, Endocrine, and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Eseohe Fanny Onohuean
- Biomolecules, Metagenomics, Endocrine, and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Sharon Igbinoba
- Biomolecules, Metagenomics, Endocrine, and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State Nigeria
| | - Saidi Odoma
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Ibe Usman
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Josiah Eseoghene Ifie
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Abdullateef Isiaka Alagbonsi
- Department of Clinical Biology (Physiology Unit), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Afodun Adam Moyosore
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Mable, Uganda
| | - Godswill J. Udom
- Biomolecules, Metagenomics, Endocrine, and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, PMB 323, Oye-Ekiti, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - Joseph Obiezu Chukwujekwu Ezeonwumelu
- Biomolecules, Metagenomics, Endocrine, and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Hayder M. Al‑Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Gaber El‑Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Akinniyi A. Osuntoki
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| |
Collapse
|
8
|
Grogan L, Shapiro P. Progress in the development of ERK1/2 inhibitors for treating cancer and other diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:181-207. [PMID: 39034052 DOI: 10.1016/bs.apha.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.
Collapse
Affiliation(s)
- Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
9
|
Jovanović M, Radan M, Čarapić M, Filipović N, Nikolic K, Crevar M. Application of parallel artificial membrane permeability assay technique and chemometric modeling for blood-brain barrier permeability prediction of protein kinase inhibitors. Future Med Chem 2024; 16:873-885. [PMID: 38639375 PMCID: PMC11373572 DOI: 10.4155/fmc-2023-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Aim: This study aims to investigate the passive diffusion of protein kinase inhibitors through the blood-brain barrier (BBB) and to develop a model for their permeability prediction. Materials & methods: We used the parallel artificial membrane permeability assay to obtain logPe values of each of 34 compounds and calculated descriptors for these structures to perform quantitative structure-property relationship modeling, creating different regression models. Results: The logPe values have been calculated for all 34 compounds. Support vector machine regression was considered the most reliable, and CATS2D_09_DA, CATS2D_04_AA, B04[N-S] and F07[C-N] descriptors were identified as the most influential to passive BBB permeability. Conclusion: The quantitative structure-property relationship-support vector machine regression model that has been generated can serve as an efficient method for preliminary screening of BBB permeability of new analogs.
Collapse
Affiliation(s)
- Milan Jovanović
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
- University of Belgrade - "VINCA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Department of Molecular Biology & Endocrinology, Mike Petrovica Alasa 12-14, Vinca, 11351, Belgrade, Serbia
| | - Milica Radan
- Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Košćuška 1, Belgrade, 11000, Serbia
| | - Marija Čarapić
- Medicines & Medical Devices Agency of Serbia, Vojvode Stepe 458, 11000, Belgrade, Serbia
| | - Nenad Filipović
- University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11000, Belgrade, Serbia
| | - Katarina Nikolic
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
| | - Milkica Crevar
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, P.O.Box 146, 11221, Belgrade, Serbia
| |
Collapse
|
10
|
Mueller LG, Slusher BS, Tsukamoto T. Empirical Analysis of Drug Targets for Nervous System Disorders. ACS Chem Neurosci 2024; 15:394-399. [PMID: 38237559 PMCID: PMC10988710 DOI: 10.1021/acschemneuro.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The discovery and development of drugs to treat diseases of the nervous system remains challenging. There is a higher attrition rate in the clinical stage for nervous system experimental drugs compared to other disease areas. In the preclinical stage, additional challenges arise from the considerable effort required to find molecules that penetrate the blood-brain barrier (BBB) coupled with the poor predictive value of many preclinical models of nervous system diseases. In the era of target-based drug discovery, the critical first step of drug discovery projects is the selection of a therapeutic target which is largely driven by its presumed pathogenic involvement. For nervous system diseases, however, the feasibility of identifying potent molecules within the stringent range of molecular properties necessary for BBB penetration should represent another important factor in target selection. To address the latter, the present review analyzes the distribution of human protein targets of FDA-approved drugs for nervous system disorders and compares it with drugs for other disease areas. We observed a substantial difference in the distribution of therapeutic targets across the two clusters. We expanded on this finding by analyzing the physicochemical properties of nervous and non-nervous system drugs in each target class by using the central nervous system multiparameter optimization (CNS MPO) algorithm. These data may serve as useful guidance in making more informed decisions when selecting therapeutic targets for nervous system disorders.
Collapse
Affiliation(s)
- Louis G. Mueller
- Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Abdollahi Z, Nejabat M, Abnous K, Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer's disease: a systematic literature review. Res Pharm Sci 2024; 19:1-12. [PMID: 39006977 PMCID: PMC11244712 DOI: 10.4103/1735-5362.394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 12/23/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a common neurodegenerative disease and the fifth leading cause of death among the elderly. The development of drugs for AD treatment is based on inhibiting cholinesterase (ChE) activity and inhibiting amyloid-beta peptide and tau protein aggregations. Many in vitro findings have demonstrated that thiazole-and thiazolidine-based compounds have a good inhibitory effect on ChE and other elements involved in the AD pathogenicity cascade. Experimental approach In the present review, we collected available documents to verify whether these synthetic compounds can be a step forward in developing new medications for AD. A systematic literature search was performed in major electronic databases in April 2021. Twenty-eight relevant in vitro and in vivo studies were found and used for data extraction. Findings/Results Findings demonstrated that thiazole-and thiazolidine-based compounds could ameliorate AD's pathologic condition by affecting various targets, including inhibition of ChE activity, amyloid-beta, and tau aggregation in addition to cyclin-dependent kinase 5/p25, beta-secretase-1, cyclooxygenase, and glycogen synthase kinase-3β. Conclusion and implications Due to multitarget effects at micromolar concentration, this review demonstrated that these synthetic compounds could be considered promising candidates for developing anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Abd El-Razek MH, Eissa IH, Al-Karmalawy AA, Elrashedy AA, El-Desoky AH, Aboelmagd M, Mohamed TA, Hegazy MEF. epi-Magnolin, a tetrahydrofurofuranoid lignan from the oleo-gum resin of Commiphora wightii, as inhibitor of pancreatic cancer cell proliferation, in-vitro and in-silico study. J Biomol Struct Dyn 2024:1-13. [PMID: 38265952 DOI: 10.1080/07391102.2024.2308767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Five known furofuran lignans, dia-sesamin (1), 5-methoxysesamin (2), epi-magnolin (3), kobusin (4) and yangambin (5) were isolated for the first-time from the oleo-gum resin of Commiphora wightii. This is the first report on the 13C NMR assignments for epi-magnolin (3). Each of the isolated compounds was evaluated for its ability to inhibit MIA PaCa-2 pancreatic cancer cell line. Among them, epi-magnolin (3) displayed potential activity (IC50 = 29 nM) compared to colchicine (IC50 = 56 nM). 3D-flexible alignment revealed that epi-magnolin (3) has great matching with the tubulin polymerization inhibitor, colchicine. Meanwhile, docking studies exhibited that compounds 1-5 displayed good binding free energies against colchicine binding site (CBS) of tubulin with binding modes that were highly comparable to that of colchicine. Compounds 2, 3, and 5 showed superior binding free energies than colchicine (-24.37 kcal/mol). epi-Magnolin (3) showed the highest binding score against CBS. MD simulation studies confirmed the stability of epi-magnolin (3) in the active site for 200 ns. Furthermore, four online servers (Swiss ADME, pkCSM pharmacokinetics, AdmetSAR, and ProTox-II) were utilized to predict the ADMET parameters. The in-silico pharmacokinetics predictions reveled that epi-magnolin (3) has significant oral bioavailability and drug-like capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed H Abd El-Razek
- Chemistry of Natural Compounds Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Ahmed A Elrashedy
- Department of the Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Institute, National Research Centre (NRC), Giza, Egypt
| | - Ahmed H El-Desoky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Mohamed Aboelmagd
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, Institute of Pharmaceutical and Drug Industries Research, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
13
|
Koirala S, Roy R, Samanta S, Mahapatra S, Kar P. Plant derived active compounds of ayurvedic neurological formulation, Saraswatharishta as a potential dual leucine zipper kinase inhibitor: an in-silico study. J Biomol Struct Dyn 2023; 42:11201-11214. [PMID: 37771163 DOI: 10.1080/07391102.2023.2260892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Recent findings have highlighted the essential role of dual leucine zipper kinase (DLK) in neuronal degeneration. Saraswatharishta (SWRT), an ayurvedic formulation utilized in traditional Indian medicine, has demonstrated effectiveness in addressing neurodegenerative diseases. Herein, we aim to delve into the atomistic details of the mode of action of phytochemicals present in SWRT against DLK. Our screening process encompassed over 500 distinct phytochemicals derived from the main ingredients of the SWRT formulation. Through a comparative analysis of docking scores and relative poses, we successfully identified four novel compounds, which underwent further investigation via 2 × 500 ns long molecular dynamics (MD) simulations. Among the top four compounds, CID16066851 sourced from the Acorus calamus displayed the most stable complex with DLK. The molecular mechanics Poisson - Boltzmann surface area (MM-PBSA) calculations highlighted the significance of electrostatic and van der Waals interactions in the binding recognition process. Additionally, we identified key residues, namely Phe192, Leu243, Val139, and Leu141, as hotspots that predominantly govern the DLK-inhibitor interaction. Notably, the leading compounds are sourced from the Acorus calamus, Syzygium aromaticum, Zingiber officinale, and Anethum sowa plants present in the SWRT formulation. Overall, the findings of our study hold promise for future drug development endeavors combating neurodegenerative conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Rajarshi Roy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| |
Collapse
|
14
|
Kurbanova M, Saravanan K, Ahmad S, Sadigova A, Askerov R, Magerramov A, Bakri YE. Computational Binding Analysis of Ethyl 3,3,5,5-Tetracyano-2-Hydroxy-2-Methyl-4,6-Diphenylcyclohexane-1-Carboxylate in Calf Thymus DNA. Appl Biochem Biotechnol 2023; 195:5338-5354. [PMID: 35195835 DOI: 10.1007/s12010-022-03849-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
In the present paper, several computational binding analyses were performed on ethyl 3,3,5,5-tetracyano-2-hydroxy-2-methyl-4,6-diphenylcyclohexane-1-carboxylate which was newly synthesized by three-component condensation of benzaldehyde with ethyl acetoacetate and malononitrile in the presence of trichloroacetic acid, and the structure was finally proved by X-ray analysis. The visualization of molecular interaction was carried out through Hirshfeld surface analysis and ESP. The atomic charges, HOMO, LUMO, and electrostatic potential were also studied to explore the insight of the molecule deeper, and then, natural bonding orbitals (NBO) and non-linear optical properties (NLO) were calculated to reveal the interactions that happen to be between the filled and vacant orbitals. Afterwards, molecular docking studies predicted the compound binding mode fits in the minor groove of DNA and remained interacts via stable bonding as validated by molecular dynamics simulations. The binding energy estimation also affirmed domination van der Waals and electrostatic energies. Lastly, the compound was found as good drug-like molecule and had good pharmacokinetic profile with exception of toxic moieties.
Collapse
Affiliation(s)
- Malahat Kurbanova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan.
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Arzu Sadigova
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan
| | - Rizvan Askerov
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan
| | - Abel Magerramov
- Organic Chemistry Department, Baku State University, Z. Khalilov 23, Baku, AZ, 1148, Azerbaijan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation.
| |
Collapse
|
15
|
Pramio J, Grings M, da Rosa AG, Ribeiro RT, Glanzel NM, Signori MF, Marcuzzo MB, Bobermin LD, Wyse ATS, Quincozes-Santos A, Wajner M, Leipnitz G. Sulfite Impairs Bioenergetics and Redox Status in Neonatal Rat Brain: Insights into the Early Neuropathophysiology of Isolated Sulfite Oxidase and Molybdenum Cofactor Deficiencies. Cell Mol Neurobiol 2023; 43:2895-2907. [PMID: 36862242 DOI: 10.1007/s10571-023-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.
Collapse
Affiliation(s)
- Júlia Pramio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Amanda Gasparin da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Nícolas Manzke Glanzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marian Flores Signori
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
16
|
Moreno R, Recio J, Barber S, Gil C, Martinez A. The emerging role of mixed lineage kinase 3 (MLK3) and its potential as a target for neurodegenerative diseases therapies. Eur J Med Chem 2023; 257:115511. [PMID: 37247505 DOI: 10.1016/j.ejmech.2023.115511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Selective and brain-permeable protein kinase inhibitors are in preclinical development for treating neurodegenerative diseases. Among them, MLK3 inhibitors, with a potent neuroprotective biological action have emerged as valuable agents for the treatment of pathologies such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis. In fact, one MLK3 inhibitor, CEP-1347, reached clinical trials for Parkinson's disease. Additionally, another compound called prostetin/12k, a potent and rather selective MLK3 inhibitor has started clinical development for ALS based on its motor neuron protection in both in vitro and in vivo models. In this review, we will focus on the role of MLK3 in neuron-related cell death processes, neurodegenerative diseases, and the potential advantages of targeting this kinase through pharmacological modulation for neuroprotective treatment.
Collapse
Affiliation(s)
- Ricardo Moreno
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Recio
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Santiago Barber
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
17
|
Jeon KB, Kim J, Lim CM, Park JY, Kim NY, Lee J, Oh DK, Yoon DY. Unsaturated oxidated fatty acid 12(S)-HETE attenuates TNF-α expression in TNF-α/IFN-γ-stimulated human keratinocytes. Int Immunopharmacol 2023; 120:110298. [PMID: 37207444 DOI: 10.1016/j.intimp.2023.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Chronic skin inflammatory diseases are associated with abnormal immune responses characterized by skin barrier dysfunction. Keratinocytes participate in immune homeostasis regulated by immune cells. Immune homeostasis dysfunction contributes to the pathogenesis of skin diseases mediated by pro-inflammatory cytokines and chemokines, such as tumor necrosis factor (TNF)-α, which are produced by activated keratinocytes. 12(S)-Hydroxy eicosatetraenoic acid [12(S)-HETE], an arachidonic acid metabolite, has anti-inflammatory properties. However, the role of 12(S)-HETE in chronic skin inflammatory diseases has not been elucidated yet. In this study, we investigated the effect of 12(S)-HETE on TNF-α/interferon (IFN)-γ-induced pro-inflammatory cytokine and chemokine expression. Our data showed that 12(S)-HETE modulates TNF-α mRNA and protein expression in TNF-α-/IFN-γ-treated human keratinocytes. Molecular docking analyses demonstrated that 12(S)-HETE bound to extracellular signal-regulated kinase (ERK)1/2, thus preventing ERK activation and downregulating phosphorylated ERK expression. We also demonstrated that 12(S)-HETE treatment inhibited IκB and ERK phosphorylation and nuclear factor (NF)-κB, p65/p50, and CCAAT/enhancerbindingproteinβ (C/EBPβ) translocation. Overall, our results showed that 12(S)-HETE attenuated TNF-α expression and secretion by inhibiting the mitogen-activated protein kinase ERK/NF-κB and C/EBPβ signaling pathways. Overall, these results suggest that 12(S)-HETE effectively resolved TNF-α-induced inflammation.
Collapse
Affiliation(s)
- Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Wu Y, Walker JR, Westberg M, Ning L, Monje M, Kirkland TA, Lin MZ, Su Y. Kinase-Modulated Bioluminescent Indicators Enable Noninvasive Imaging of Drug Activity in the Brain. ACS CENTRAL SCIENCE 2023; 9:719-732. [PMID: 37122464 PMCID: PMC10141594 DOI: 10.1021/acscentsci.3c00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 05/03/2023]
Abstract
Aberrant kinase activity contributes to the pathogenesis of brain cancers, neurodegeneration, and neuropsychiatric diseases, but identifying kinase inhibitors that function in the brain is challenging. Drug levels in blood do not predict efficacy in the brain because the blood-brain barrier prevents entry of most compounds. Rather, assessing kinase inhibition in the brain requires tissue dissection and biochemical analysis, a time-consuming and resource-intensive process. Here, we report kinase-modulated bioluminescent indicators (KiMBIs) for noninvasive longitudinal imaging of drug activity in the brain based on a recently optimized luciferase-luciferin system. We develop an ERK KiMBI to report inhibitors of the Ras-Raf-MEK-ERK pathway, for which no bioluminescent indicators previously existed. ERK KiMBI discriminates between brain-penetrant and nonpenetrant MEK inhibitors, reveals blood-tumor barrier leakiness in xenograft models, and reports MEK inhibitor pharmacodynamics in native brain tissues and intracranial xenografts. Finally, we use ERK KiMBI to screen ERK inhibitors for brain efficacy, identifying temuterkib as a promising brain-active ERK inhibitor, a result not predicted from chemical characteristics alone. Thus, KiMBIs enable the rapid identification and pharmacodynamic characterization of kinase inhibitors suitable for treating brain diseases.
Collapse
Affiliation(s)
- Yan Wu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Joel R. Walker
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Westberg
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Lin Ning
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| | - Michelle Monje
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
- Howard Hughes
Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Thomas A. Kirkland
- Promega
Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Michael Z. Lin
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department
of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Yichi Su
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Neurobiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Tran TTV, Tayara H, Chong KT. Recent Studies of Artificial Intelligence on In Silico Drug Distribution Prediction. Int J Mol Sci 2023; 24:1815. [PMID: 36768139 PMCID: PMC9915725 DOI: 10.3390/ijms24031815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Drug distribution is an important process in pharmacokinetics because it has the potential to influence both the amount of medicine reaching the active sites and the effectiveness as well as safety of the drug. The main causes of 90% of drug failures in clinical development are lack of efficacy and uncontrolled toxicity. In recent years, several advances and promising developments in drug distribution property prediction have been achieved, especially in silico, which helped to drastically reduce the time and expense of screening undesired drug candidates. In this study, we provide comprehensive knowledge of drug distribution background, influencing factors, and artificial intelligence-based distribution property prediction models from 2019 to the present. Additionally, we gathered and analyzed public databases and datasets commonly utilized by the scientific community for distribution prediction. The distribution property prediction performance of five large ADMET prediction tools is mentioned as a benchmark for future research. On this basis, we also offer future challenges in drug distribution prediction and research directions. We hope that this review will provide researchers with helpful insight into distribution prediction, thus facilitating the development of innovative approaches for drug discovery.
Collapse
Affiliation(s)
- Thi Tuyet Van Tran
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Information Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University–Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
20
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
21
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
24
|
Sueca-Comes M, Rusu EC, Grabowska AM, Bates DO. Looking Under the Lamppost: The Search for New Cancer Targets in the Human Kinome. Pharmacol Rev 2022; 74:1136-1145. [PMID: 36180110 DOI: 10.1124/pharmrev.121.000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
The number of cancer drugs is increasing as new chemical entities are developed to target molecules, often protein kinases, driving cancer progression. In 2009, Fedorov et al. identified that of the protein kinases in the human kinome, most of the focus has been on a small subset. They highlighted that many poorly investigated protein kinases were cancer drivers, but there was no relationship between publications and involvement in cancer development or progression. Since 2009, there has been a doubling in the number of publications, patents, and drugs targeting the kinome. To determine whether this was an expansion in knowledge of well-studied targets-searching in the light under the lamppost-or an explosion of investigations into previously poorly investigated targets, we searched the literature for publications on each kinase, updating Federov et al.'s assessment of the druggable kinome. The proportion of papers focusing on the 50 most-studied kinases had not changed, and the makeup of those 50 had barely changed. The majority of new drugs (80%) were against the same group of 50 kinases identified as targets 10 years ago, and the proportion of studies investigating previously poorly investigated kinases (<1%) was unchanged. With three exceptions [p38 mitogenactivated protein kinase (p38a), AMP-activated protein kinase catalytic α-subunit 1,2, and B-Raf proto-oncogene (BRAF) serine/threonine kinase], >95% of publications addressing kinases still focused on a relatively small proportion (<50%) of the human kinome independently of their involvement as cancer drivers. There is, therefore, still extensive scope for discovery of therapeutics targeting different protein kinases in cancer and still a bias toward well-characterized targets over the innovative searchlight into the unknown. SIGNIFICANCE STATEMENT: This study presents evidence that drug discovery efforts in cancer are still to some extent focused on a narrow group of well-studied kinases 10 years after the identification of multiple novel cancer targets in the human kinome. This suggests that there is still room for researchers in academia, industry, and the not-for-profit sector to develop new and diverse therapies targeting kinases for cancer.
Collapse
Affiliation(s)
- Mireia Sueca-Comes
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - Elena Cristina Rusu
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - David O Bates
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| |
Collapse
|
25
|
Mah KM, Wu W, Al-Ali H, Sun Y, Han Q, Ding Y, Muñoz M, Xu XM, Lemmon VP, Bixby JL. Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice. Exp Neurol 2022; 355:114117. [PMID: 35588791 PMCID: PMC9443329 DOI: 10.1016/j.expneurol.2022.114117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022]
Abstract
Recovery from spinal cord injury (SCI) and other central nervous system (CNS) trauma is hampered by limits on axonal regeneration in the CNS. Regeneration is restricted by the lack of neuron-intrinsic regenerative capacity and by the repressive microenvironment confronting damaged axons. To address this challenge, we have developed a therapeutic strategy that co-targets kinases involved in both extrinsic and intrinsic regulatory pathways. Prior work identified a kinase inhibitor (RO48) with advantageous polypharmacology (co-inhibition of targets including ROCK2 and S6K1), which promoted CNS axon growth in vitro and corticospinal tract (CST) sprouting in a mouse pyramidotomy model. We now show that RO48 promotes neurite growth from sensory neurons and a variety of CNS neurons in vitro, and promotes CST sprouting and/or regeneration in multiple mouse models of spinal cord injury. Notably, these in vivo effects of RO48 were seen in several independent experimental series performed in distinct laboratories at different times. Finally, in a cervical dorsal hemisection model, RO48 not only promoted growth of CST axons beyond the lesion, but also improved behavioral recovery in the rotarod, gridwalk, and pellet retrieval tasks. Our results provide strong evidence for RO48 as an effective compound to promote axon growth and regeneration. Further, they point to strategies for increasing robustness of interventions in pre-clinical models.
Collapse
Affiliation(s)
- Kar Men Mah
- The Miami Project to Cure Paralysis, Dept of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Wei Wu
- Department of Neurological Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hassan Al-Ali
- The Miami Project to Cure Paralysis, Dept of Neurological Surgery, University of Miami, Miami, FL, USA; Peggy and Harold Katz Family Drug Discovery Center, Dept of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Yan Sun
- Department of Neurological Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Han
- Department of Neurological Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ying Ding
- Department of Neurological Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Muñoz
- The Miami Project to Cure Paralysis, Dept of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Xiao-Ming Xu
- Department of Neurological Surgery, and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, Dept of Neurological Surgery, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Institute for Data Science and Computing, University of Miami, Miami, FL, USA.
| | - John L Bixby
- The Miami Project to Cure Paralysis, Dept of Neurological Surgery, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Dept of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, USA.
| |
Collapse
|
26
|
Thakur G, Kumar V, Lee KW, Won C. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes (Basel) 2022; 13:1426. [PMID: 36011337 PMCID: PMC9408223 DOI: 10.3390/genes13081426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.
Collapse
Affiliation(s)
- Gunjan Thakur
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
27
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
28
|
Abstract
The nitrogen mustards are powerful cytotoxic and lymphoablative agents and have been used for more than 60 years. They are employed in the treatment of cancers, sarcomas, and hematologic malignancies. Cyclophosphamide, the most versatile of the nitrogen mustards, also has a place in stem cell transplantation and the therapy of autoimmune diseases. Adverse effects caused by the nitrogen mustards on the central nervous system, kidney, heart, bladder, and gonads remain important issues. Advances in analytical techniques have facilitated the investigation of the pharmacokinetics of the nitrogen mustards, especially the oxazaphosphorines, which are prodrugs requiring metabolic activation. Enzymes involved in the metabolism of cyclophosphamide and ifosfamide are very polymorphic, but a greater understanding of the pharmacogenomic influences on their activity has not yet translated into a personalized medicine approach. In addition to damaging DNA, the nitrogen mustards can act through other mechanisms, such as antiangiogenesis and immunomodulation. The immunomodulatory properties of cyclophosphamide are an area of current exploration. In particular, cyclophosphamide decreases the number and activity of regulatory T cells, and the interaction between cyclophosphamide and the intestinal microbiome is now recognized as an important factor. New derivatives of the nitrogen mustards continue to be assessed. Oxazaphosphorine analogs have been synthesized in attempts to both improve efficacy and reduce toxicity, with varying degrees of success. Combinations of the nitrogen mustards with monoclonal antibodies and small-molecule targeted agents are being evaluated. SIGNIFICANCE STATEMENT: The nitrogen mustards are important, well-established therapeutic agents that are used to treat a variety of diseases. Their role is continuing to evolve.
Collapse
Affiliation(s)
- Martin S Highley
- Plymouth Oncology Centre, Derriford Hospital, and Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom (M.S.H.); Department of Animal Physiology and Neurobiology (B.L.) and Laboratory for Experimental Oncology (E.A.D.B.), University of Leuven, Leuven, Belgium; Oncology Department, University Hospital Antwerp, Edegem, Belgium (H.P.); and London Oncology Clinic, London, United Kingdom (P.G.H.)
| | - Bart Landuyt
- Plymouth Oncology Centre, Derriford Hospital, and Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom (M.S.H.); Department of Animal Physiology and Neurobiology (B.L.) and Laboratory for Experimental Oncology (E.A.D.B.), University of Leuven, Leuven, Belgium; Oncology Department, University Hospital Antwerp, Edegem, Belgium (H.P.); and London Oncology Clinic, London, United Kingdom (P.G.H.)
| | - Hans Prenen
- Plymouth Oncology Centre, Derriford Hospital, and Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom (M.S.H.); Department of Animal Physiology and Neurobiology (B.L.) and Laboratory for Experimental Oncology (E.A.D.B.), University of Leuven, Leuven, Belgium; Oncology Department, University Hospital Antwerp, Edegem, Belgium (H.P.); and London Oncology Clinic, London, United Kingdom (P.G.H.)
| | - Peter G Harper
- Plymouth Oncology Centre, Derriford Hospital, and Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom (M.S.H.); Department of Animal Physiology and Neurobiology (B.L.) and Laboratory for Experimental Oncology (E.A.D.B.), University of Leuven, Leuven, Belgium; Oncology Department, University Hospital Antwerp, Edegem, Belgium (H.P.); and London Oncology Clinic, London, United Kingdom (P.G.H.)
| | - Ernst A De Bruijn
- Plymouth Oncology Centre, Derriford Hospital, and Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom (M.S.H.); Department of Animal Physiology and Neurobiology (B.L.) and Laboratory for Experimental Oncology (E.A.D.B.), University of Leuven, Leuven, Belgium; Oncology Department, University Hospital Antwerp, Edegem, Belgium (H.P.); and London Oncology Clinic, London, United Kingdom (P.G.H.)
| |
Collapse
|
29
|
Grignard J, Lamamy V, Vermersch E, Delagrange P, Stephan JP, Dorval T, Fages F. Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design. PLoS Comput Biol 2022; 18:e1010236. [PMID: 35759459 PMCID: PMC9236252 DOI: 10.1371/journal.pcbi.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.
Collapse
Affiliation(s)
- Jeremy Grignard
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - Véronique Lamamy
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Eva Vermersch
- Pole of Activity Cellular Sciences, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Philippe Delagrange
- Therapeutic Area Neuropsychiatry and Immunoinflammation, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Jean-Philippe Stephan
- In Vitro Pharmacology Unit, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
| | - Thierry Dorval
- Pole of Activity Data Sciences and Data Management, Institut de Recherches Servier (IdRS), Croissy-sur-Seine, France
- * E-mail: (JG); (TD); (FF)
| | - François Fages
- Team Project Lifeware, Institut National de Recherche en Informatique et Automatique, Inria Saclay, Palaiseau, France
- * E-mail: (JG); (TD); (FF)
| |
Collapse
|
30
|
Sebastián-Pérez V, Martínez de Iturrate P, Nácher-Vázquez M, Nóvoa L, Pérez C, Campillo NE, Gil C, Rivas L. Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines 2022; 10:biomedicines10051136. [PMID: 35625873 PMCID: PMC9139002 DOI: 10.3390/biomedicines10051136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
More than 1 billion people live in areas endemic for leishmaniasis, which is a relevant threat for public health worldwide. Due to the inadequate treatments, there is an urgent need to develop novel alternative drugs and to validate new targets to fight this disease. One appealing approach is the selective inhibition of protein kinases (PKs), enzymes involved in a wide range of processes along the life cycle of Leishmania. Several PKs, including glycogen synthase kinase 3 (GSK-3), have been validated as essential for this parasite by genetic or pharmacological methods. Recently, novel chemical scaffolds have been uncovered as Leishmania GSK-3 inhibitors with antiparasitic activity. In order to find new inhibitors of this enzyme, a virtual screening of our in-house chemical library was carried out on the structure of the Leishmania GSK-3. The virtual hits identified were experimentally assayed both for leishmanicidal activity and for in vitro inhibition of the enzyme. The best hits have a quinone scaffold. Their optimization through a medicinal chemistry approach led to a set of new compounds, provided a frame to establish biochemical and antiparasitic structure–activity relationships, and delivered molecules with an improved selectivity index. Altogether, this study paves the way for a systemic search of this class of inhibitors for further development as potential leishmanicidal drugs.
Collapse
Affiliation(s)
- Victor Sebastián-Pérez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Paula Martínez de Iturrate
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Montserrat Nácher-Vázquez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Luis Nóvoa
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | | | - Nuria E. Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
- Correspondence: (C.G.); (L.R.)
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain; (V.S.-P.); (P.M.d.I.); (M.N.-V.); (L.N.); (N.E.C.)
- Correspondence: (C.G.); (L.R.)
| |
Collapse
|
31
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci 2022; 13:1526-1546. [PMID: 35282622 PMCID: PMC8827052 DOI: 10.1039/d1sc04471k] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
Collapse
Affiliation(s)
- F I Saldívar-González
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - V D Aldas-Bulos
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| | - J L Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - F Plisson
- CONACYT - Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| |
Collapse
|
33
|
Pathophysiology of neurodegenerative diseases: An interplay among axonal transport failure, oxidative stress, and inflammation? Semin Immunol 2022; 59:101628. [PMID: 35779975 PMCID: PMC9807734 DOI: 10.1016/j.smim.2022.101628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Neurodegenerative diseases (NDs) are heterogeneous neurological disorders characterized by a progressive loss of selected neuronal populations. A significant risk factor for most NDs is aging. Considering the constant increase in life expectancy, NDs represent a global public health burden. Axonal transport (AT) is a central cellular process underlying the generation and maintenance of neuronal architecture and connectivity. Deficits in AT appear to be a common thread for most, if not all, NDs. Neuroinflammation has been notoriously difficult to define in relation to NDs. Inflammation is a complex multifactorial process in the CNS, which varies depending on the disease stage. Several lines of evidence suggest that AT defect, axonopathy and neuroinflammation are tightly interlaced. However, whether these impairments play a causative role in NDs or are merely a downstream effect of neuronal degeneration remains unsettled. We still lack reliable information on the temporal relationship between these pathogenic mechanisms, although several findings suggest that they may occur early during ND pathophysiology. This article will review the latest evidence emerging on whether the interplay between AT perturbations and some aspects of CNS inflammation can participate in ND etiology, analyze their potential as therapeutic targets, and the urge to identify early surrogate biomarkers.
Collapse
|
34
|
Ibrahim MT, Uzairu A, Shallangwa GA, Uba S. Computer-aided design of some quinazoline analogues as epidermal growth factor receptor inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The treatment of epidermal growth factor receptor (EGFR)-muted non-small cell lung cancer (NSCLC) remains among the utmost important unachieved therapeutic need worldwide. Development of EGFR inhibitors to treat NSCLC mutations has been among the difficult tasks faced by researchers in this area. As such, there is a need to discover more EGFR inhibitors. The purpose of this work is to perform computer-aided/structure-based design of novel EGFR inhibitors, elucidate their nature of interactions with their target, and also assess their ADMET properties as well as their drug-likeness, respectively. Compound 17 with a highest binding affinity of −9.5kcal/mol was identified as the template hit compound using molecular docking virtual screening in our previous work. The compound interacted with the active site of the EGFR receptor via hydrogen bond with the following amino acid residues MET793, MET793, THR854, and ASP855 with bond distances of 2.61394 (Å), 2.18464 (Å), 2.57601 (Å), and 2.68794 (Å), respectively. It also interacted with the active site of the EGFR receptor via halogen bond (GLN791), hydrophobic bond (LEU718, CYS797, LYS745, ALA743, ALA743, and VAL726), electrostatic bond (LYS745), and others (MET766), respectively. Furthermore, from our previous study, the following descriptors (ATSC6m, ATSC8e, MATS7m, SpMax3_Bhp, SpMax5_Bhs, and MaxHBint10) contained in the reported model were found to be responsible for the inhibitory activities of the studied compounds. In this research, the template (compound 17) was modified manually by attaching halo-phenyl and halo-phenyl-amino rings on the para position of the flouro-nitro-benzamide moiety of the template compound, respectively.
Results
A computer-aided design/structure-based approach was used to design six new EGFR inhibitors using molecule 17 as the template compound for the design identified in our previously reported work. Molecular docking investigation was performed to elucidate the binding mode of these newly designed EGFR inhibitors with the binding pose of EGFR receptor (pdb code 4ZAU) and found to have better affinities which range from −9.5 to −10.4 kcal/mol than the template compound and gefitinib, the control, respectively. The ADMET property assessment of these newly designed EGFR inhibitors indicated that they were orally bioavailable with good absorption, distribution, metabolism, and excretory properties with no toxicity. And for their drug-likeness, they were seen to have a higher molecular weight which might be as a result of halo-phenyl-amino ring attachments. Based on this finding, halo-phenyl-amino rings might be responsible for the inhibitory activities of these newly designed compounds.
Conclusion
The six newly designed EGFR inhibitors were found to have higher binding affinities toward their target EGFR receptor than the template compound and gefitinib which was used as the control in this research. They were seen to have good ADMET and drug-like properties which indicate that they might be orally bioavailable. Furthermore, according to their synthetic accessibility score, they can be easily synthesized in the laboratory because the values were found to be less than five which fall within the easy portion of the scale. Therefore, this research recommends that these newly designed EGFR inhibitors should be synthesized most especially those with higher binding affinities, good ADMET, and drug-likeness properties than the template compound.
Collapse
|
35
|
Meng F, Xi Y, Huang J, Ayers PW. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data 2021; 8:289. [PMID: 34716354 PMCID: PMC8556334 DOI: 10.1038/s41597-021-01069-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The highly-selective blood-brain barrier (BBB) prevents neurotoxic substances in blood from crossing into the extracellular fluid of the central nervous system (CNS). As such, the BBB has a close relationship with CNS disease development and treatment, so predicting whether a substance crosses the BBB is a key task in lead discovery for CNS drugs. Machine learning (ML) is a promising strategy for predicting the BBB permeability, but existing studies have been limited by small datasets with limited chemical diversity. To mitigate this issue, we present a large benchmark dataset, B3DB, complied from 50 published resources and categorized based on experimental uncertainty. A subset of the molecules in B3DB has numerical log BB values (1058 compounds), while the whole dataset has categorical (BBB+ or BBB-) BBB permeability labels (7807). The dataset is freely available at https://github.com/theochem/B3DB and https://doi.org/10.6084/m9.figshare.15634230.v3 (version 3). We also provide some physicochemical properties of the molecules. By analyzing these properties, we can demonstrate some physiochemical similarities and differences between BBB+ and BBB- compounds.
Collapse
Affiliation(s)
- Fanwang Meng
- grid.25073.330000 0004 1936 8227Department of Chemistry and Chemical Biology, McMaster University, Hamilton, L8S 4L8 Canada
| | - Yang Xi
- grid.25073.330000 0004 1936 8227Department of Chemistry and Chemical Biology, McMaster University, Hamilton, L8S 4L8 Canada
| | - Jinfeng Huang
- grid.25073.330000 0004 1936 8227Department of Chemistry and Chemical Biology, McMaster University, Hamilton, L8S 4L8 Canada
| | - Paul W. Ayers
- grid.25073.330000 0004 1936 8227Department of Chemistry and Chemical Biology, McMaster University, Hamilton, L8S 4L8 Canada
| |
Collapse
|
36
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
37
|
Ibrahim MT, Uzairu A, Uba S, Shallangwa GA. Design of more potent quinazoline derivatives as EGFRWT inhibitors for the treatment of NSCLC: a computational approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lung cancer remains the leading and deadly type of cancer worldwide. It was estimated to account for about 25% of the 7 million people that died as a result of cancer-related issues/mortality every year in the world. Non-small cell lung cancer (NSCLC) is the lethal/deadly class of lung cancer with nearly 1.5 million reported cases and less than 20% survival rate. Therefore, it becomes necessary to explore more effective NSCLC drugs.
Result
A computational approach was employed here to design ten new EGFRWT inhibitors using compound 18 as a template for the design identified with the best binding affinity and good pharmacokinetic properties previously reported in our work. The modeled inhibitory activities of these newly designed EGFRWT inhibitors (range from 7.746966 to 11.09261) were better than that of the hit compound with pIC50 of 7.5639 and gefitinib the positive control with pIC50 of 5.879426. The ligand-binding interaction between these newly designed EGFRWT inhibitors and the EGFR tyrosine kinase receptor as shown in Table 3 was investigated and elucidated using molecular docking protocol. Based on the molecular docking results, the binding affinities of these newly designed EGFRWT inhibitors were found to be between − 8.8 and − 9.5 kcal/mol. The designed compound SFD10 has the highest binding affinity of − 9.5 kcal/mol followed by compound SFD8 (with a binding affinity of − 9.3 kcal/mol), then by compound SFD9 and 4 (each with a binding affinity of − 9.3 kcal/mol). None of them was found to have more than one violation of the filtering criterion used in this study thereby showing good ADMET properties.
Conclusion
The modeled inhibitory activities and binding affinities of these newly designed EGFRWT inhibitors were found to be higher than that of the template compound and the control (gefitinib) used in this research. They were also seen to be non-toxic with good pharmacokinetic properties.
Collapse
|
38
|
Oyinloye BE, Iwaloye O, Ajiboye BO. Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson's disease and Alzheimer's disease. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021; 42:551-565. [PMID: 33958239 DOI: 10.1016/j.tips.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
40
|
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in Applying Computer-Aided Drug Design for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4688. [PMID: 33925236 PMCID: PMC8124449 DOI: 10.3390/ijms22094688] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Zaid Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf 54001, Iraq;
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala 56001, Iraq
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Andrea Loreto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Roslyn M. Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
41
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, Wang L, Xu Z. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer 2021; 20:66. [PMID: 33836754 PMCID: PMC8034133 DOI: 10.1186/s12943-021-01358-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A novel type of noncoding RNA, circRNA has been reported to participate in the occurrence and development of diseases through many mechanisms. The MAPK pathway is a common signal transduction pathway involved in cell proliferation, inflammation and apoptosis and plays a particularly important role in cancers. However, the role of circRNAs related to the MAPK pathway in gastric cancer has not been explored. METHODS A bioinformatics analysis was performed to profile and identify the circRNAs involved in the MAPK pathway in gastric cancer. The tumor-suppressive role of circMAPK1 was confirmed both in vitro and in vivo. Mass spectrometry, Western blot and immunofluorescence staining assays were used to validate the existence and expression of MAPK1-109aa. The molecular mechanism of circMAPK1 was investigated by mass spectrometry and immunoprecipitation analyses. RESULTS In this study, we identified that circMAPK1 (hsa_circ_0004872) was downregulated in gastric cancer tissues compared with adjacent normal tissues. Importantly, lower circMAPK1 expression predicted poor survival in GC patients. CircMAPK1 inhibited the proliferation and invasion of gastric cancer cells in vitro and in vivo. Next, we found that circMAPK1 encoded a novel protein with 109 amino acids in length. Through a series of functional experiments, we confirmed that circMAPK1 exerted a tumor-suppressing effect via the encoded protein MAPK1-109aa. Mechanistically, the tumor suppressor MAPK1-109aa inhibited the phosphorylation of MAPK1 by competitively binding to MEK1, thereby suppressing the activation of MAPK1 and its downstream factors in MAPK pathway. CONCLUSIONS Our study revealed that circMAPK1 inhibits the malignant biological behavior of gastric cancer cells through its encoded protein MAPK1-109aa. More importantly, circMAPK1 is a favorable predictor for gastric cancer patients and may provide a new therapeutic target in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Tianlu Jiang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yiwen Xia
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Jialun Lv
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Bowen Li
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ying Li
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Sen Wang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zhe Xuan
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Li Xie
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Shengkui Qiu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
- Department of General Surgery, The Second Affiliated Hospital of Nantong university, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhongyuan He
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Linjun Wang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zekuan Xu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
42
|
Lapatinib ditosylate rescues memory impairment in D-galactose/ovariectomized rats: Potential repositioning of an anti-cancer drug for the treatment of Alzheimer's disease. Exp Neurol 2021; 341:113697. [PMID: 33727095 DOI: 10.1016/j.expneurol.2021.113697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) signaling plays a substantial role in learning and memory. The upregulation of EGFR has been embroiled in the pathophysiology of Alzheimer's disease (AD). Nevertheless, most of EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have been extensively studied for non-CNS diseases such as cancer and rheumatoid arthritis. TKIs targeting-based research in neurodegenerative disorders sounds to be lagging behind those of other diseases. Hence, this study aims to explore the molecular signaling pathways and the efficacy of treatment with lapatinib ditosylate (LAP), as one of EGFR-TKIs that has not yet been investigated in AD, on cognitive decline induced by ovariectomy (OVX) with chronic administration of D-galactose (D-gal) in female Wistar albino rats. OVX rats were injected with 150 mg/kg/day D-gal ip for 8 weeks to induce AD. Administration of 100 mg/kg/day LAP p.o. for 3 weeks starting after the 8th week of D-gal administration improved memory and debilitated histopathological alterations. LAP decreased the expression of GFAP, p-tau, and Aβ 1-42. Besides, it reduced EGFR, HER-2, TNF-α, NOX-1, GluR-II, p38 MAPK, and p-mTOR. LAP increased nitrite, and neuronal pro-survival transduction proteins; p-PI3K, p-AKT, and p-GSK-3β levels. Taken together, these findings suggest the role of LAP in ameliorating D-gal-induced AD in OVX rats via activating the pro-survival pathway; PI3K-Akt-GSK-3β, while inhibiting p-mTOR, NOX-1, and p38 MAPK pathways. Moreover, this research offered a significant opportunity to advance awareness of the repositioning of TKI anti-cancer drugs for the treatment of AD.
Collapse
|
43
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
44
|
Choi MR, Jin YB, Kim HN, Chai YG, Im CN, Lee SR, Kim DJ. Gene expression in the striatum of cynomolgus monkeys after chronic administration of cocaine and heroin. Basic Clin Pharmacol Toxicol 2021; 128:686-698. [PMID: 33404192 DOI: 10.1111/bcpt.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 01/16/2023]
Abstract
Cocaine and heroin cause impairment of neural plasticity in the brain including striatum. This study aimed to identify genes differentially expressed in the striatum of cynomolgus monkeys in response to cocaine and heroin. After chronic administration of cocaine and heroin in the monkeys, we performed large-scale transcriptome profiling in the striatum using RNA-Seq technology and analysed functional annotation. We found that 547 and 1238 transcripts were more than 1.5-fold up- or down-regulated in cocaine- and heroin-treated groups, respectively, compared to the control group, and 3432 transcripts exhibited differential expression between cocaine- and heroin-treated groups. Functional annotation analysis indicated that genes associated with nervous system development (NAGLU, MOBP and TTL7) and stress granule disassembly (KIF5B and KLC1) were differentially expressed in the cocaine-treated group compared to the control group, whereas gene associated with neuron apoptotic process (ERBB3) was differentially expressed in the heroin-treated group. In addition, IPA network analysis indicated that genes (TRAF6 and TRAF3IP2) associated with inflammation were increased by the chronic administration of cocaine and heroin. These results provide insight into the correlated molecular mechanisms as well as the upregulation and down-regulation of genes in the striatum after chronic exposure to cocaine and heroin.
Collapse
Affiliation(s)
- Mi Ran Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Na Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Chang-Nim Im
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Achieving effective and selective CK1 inhibitors through structure modification. Future Med Chem 2021; 13:505-528. [PMID: 33438471 DOI: 10.4155/fmc-2020-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Casein kinase 1 (CK1) is an extensively expressed serine/threonine kinase family, with six highly conserved isoforms of human CK1. Due to its involvement in many biological processes, CK1 is a promising target for several pathological states, including circadian sleep disorder, neurodegenerative diseases, cancer and inflammation. However, due to the structural similarities between the six CK1 members, the design of CK1 inhibitors is intricate. So far, no effective CK1 inhibitors are reported to reach clinical trials; thus, approaches to obtaining both selective and effective CK1 inhibitors are in great demand. Here we analyze several CK1 inhibitors that provide successful experience for structure-based drug design and rational structure modification, which could provide references for further drug design.
Collapse
|
46
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
47
|
Rajan M, Chandran V, Shahena S, Anie Y, Mathew L. In vitro and in silico inhibition of α-amylase, α-glucosidase, and aldose reductase by the leaf and callus extracts of Vernonia anthelmintica (L.) Willd. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Yokoyama T, Suzuki R, Mizuguchi M. Crystal structure of death-associated protein kinase 1 in complex with the dietary compound resveratrol. IUCRJ 2021; 8:131-138. [PMID: 33520249 PMCID: PMC7792996 DOI: 10.1107/s2052252520015614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Death-associated protein kinase 1 (DAPK1) is a large multidomain protein with an N-terminal serine/threonine protein kinase domain. DAPK1 is considered to be a promising molecular target for the treatment of Alzheimer's disease (AD). In the present study, the inhibitory potency of resveratrol (RSV), a dietary polyphenol found in red wine, against the catalytic activity of DAPK1 was investigated. Kinetic and fluorescent probe competitive binding analyses revealed that RSV directly inhibited the catalytic activity of DAPK1 by binding to the ATP-binding site. Crystallographic analysis of DAPK1 in complex with RSV revealed that the A-ring of RSV occupied the nucleobase-binding position. Determination of the binding mode provided a structural basis for the design of more potent DAPK1 inhibitors. In conclusion, the data here clearly show that RSV is an ATP-competitive inhibitor of DAPK1, encouraging speculation that RSV may be useful for the development of AD inhibitors.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0914, Japan
| | - Ryoya Suzuki
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0914, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0914, Japan
| |
Collapse
|
49
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
50
|
Martínez de Iturrate P, Sebastián-Pérez V, Nácher-Vázquez M, Tremper CS, Smirlis D, Martín J, Martínez A, Campillo NE, Rivas L, Gil C. Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3. J Enzyme Inhib Med Chem 2020; 35:199-210. [PMID: 31752556 PMCID: PMC6882465 DOI: 10.1080/14756366.2019.1693704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/06/2023] Open
Abstract
Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3β inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.
Collapse
Affiliation(s)
| | | | | | | | - Despina Smirlis
- Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Julio Martín
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|