1
|
Tong HX, Ye Y. Insights and future directions in studying intestinal microbiota post-transjugular intrahepatic portosystemic shunt for hepatitis B virus-related portal hypertension. World J Gastroenterol 2024; 30:4855-4858. [DOI: 10.3748/wjg.v30.i45.4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/13/2024] Open
Abstract
The gut microbiota (GM) plays a major role in the progression and treatment response of liver diseases, with diverse compositions based on different etiologies. In China, hepatitis B virus (HBV) infection is the leading cause of cirrhosis and affects the GM composition in patients with cirrhosis-related portal hypertension (PH). However, a few studies have been conducted on GM alterations after transjugular intrahepatic portosystemic shunt (TIPS) in patients with HBV-related PH. A recent study investigated the changes in the GM in these patients after TIPS. This study found an increase in potentially pathogenic bacteria and a decrease in beneficial bacteria post-TIPS, particularly in patients with hepatic encephalopathy (HE), indicating the potential role of the GM in HE prediction and management post-TIPS. Nevertheless, the study had several limitations, including a small sample size, limited follow-up, a single time point for sample collection, and inadequate analysis of the correlation between intestinal flora, HBV infection status, and clinical parameters. Future research should address these limitations by expanding the sample size, prolonging the follow-up duration, collecting samples at multiple time points, and conducting comprehensive analyses to confirm the findings and evaluate the effectiveness of individualized microbiome-based therapies.
Collapse
Affiliation(s)
- Hong-Xuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
2
|
Wang J, Zhang Z, Zhu L, Zhang Q, Zhang S, Pan Y, Liu J, Cao F, Fan T, Xiong Y, Yin S, Yan X, Chen Y, Zhu C, Li J, Liu X, Wu C, Huang R. Association of hepatitis B core antibody level and hepatitis B surface antigen clearance in HBeAg-negative patients with chronic hepatitis B. Virulence 2024; 15:2404965. [PMID: 39317345 PMCID: PMC11423664 DOI: 10.1080/21505594.2024.2404965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Predicting hepatitis B surface antigen (HBsAg) clearance is important for chronic hepatitis B (CHB) patients receiving pegylated interferon-alfa (Peg-IFN) therapy. We aimed to determine the predictive value of serum hepatitis B core antibody (anti-HBc) for HBsAg clearance. A total of 189 HBeAg-negative CHB patients who received Peg-IFN based therapy were retrospectively included and classified into two groups: nucleos(t)ide analogues (NAs) add-on Peg-IFN group (add-on group, n = 94) and Peg-IFN combined with NAs or Peg-IFN monotherapy group (combination or monotherapy group, n = 95). After 48 weeks of treatment, 27.5% (52/189) and 15.9% (30/189) of patients achieved HBsAg clearance and seroconversion, respectively. Patients in the combination or monotherapy group tended to achieve relatively higher HBsAg clearance (31.6% vs. 23.4%, p = 0.208) and seroconversion (21.1% vs. 10.6%, p = 0.050) rates than those in the add-on group. In combination or monotherapy group, anti-HBc levels at week 12 were lower in patients with HBsAg clearance (9.0 S/CO vs. 9.9 S/CO, p < 0.001) and seroconversion (8.8 S/CO vs. 9.8 S/CO, p < 0.001) than those without. Anti-HBc level at week 12 was an independent predictor of HBsAg clearance and seroconversion. Patients with lower anti-HBc levels at week 12 showed a more significant decline in HBsAg levels during treatment. Combination of anti-HBc at week 12 and baseline HBsAg could identify over 70% of patients who achieved HBsAg clearance after 48 weeks of treatment. In addition to HBsAg, anti-HBc level could be used as a promising marker for selecting HBeAg-negative CHB patients who are more likely to respond to Peg-IFN-based therapy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Zhiyi Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qing Zhang
- Department of Infectious Diseases, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Shaoqiu Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yifan Pan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Cao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Fan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ye Xiong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingxiang Liu
- Department of Clinical Laboratory, Huai’an No. 4 People’s Hospital, Huai’an, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ren C, Zhang Z, Dou Y, Sun Y, Fu Z, Wang L, Wang K, Gao C, Fan Y, Sun S, Yue X, Li C, Gao L, Liang X, Ma C, Wu Z. DNA Sensor ABCF1 Phase Separates With cccDNA to Inhibit Hepatitis B Virus Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409485. [PMID: 39498874 DOI: 10.1002/advs.202409485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) contributes to viral persistence and recurrence, however, how the host innate immune system responds to cccDNA is still less known. Here, based on cccDNA-hepatic proteins interaction profiling, DNA sensor ATP-binding cassette subfamily F member 1 (ABCF1) is identified as a novel cccDNA-binding protein and host restriction factor for HBV replication. Mechanistically, ABCF1 recognizes cccDNA by KKx4 motif and forms phase-separated condensates by the poly-glutamine (PolyQ) region of the N-terminal intrinsically disordered low-complexity domain (LCD). Subsequently, ABCF1-cccDNA phase separation not only activates the type I/III interferon (IFN-I/III) pathway but also prevents Pol II accumulation on cccDNA to inhibit HBV transcription. In turn, to sustain viral replication, HBV reduces ABCF1 expression by HBx-mediated ubiquitination and degradation of SRY-box transcription factor 4(SOX4), leading to defects in SOX4-mediated upregulation of ABCF1 transcription. Taken together, the study shows that ABCF1 interacts with cccDNA to form phase separation that dually drives innate immune signaling and HBV transcriptional inhibition. These findings shed new light on the understanding of host defense against cccDNA and provide a novel promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhendong Fu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Kai Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xuetian Yue
- Department of Cellular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Jiao Q, Zhu S, Liao B, Liu H, Guo X, Wu L, Chen C, Peng L, Xie C. An NLR family member X1 mutation (p.Arg707Cys) suppresses hepatitis B virus infection in hepatocytes and favors the interaction of retinoic acid-inducible gene 1 with mitochondrial antiviral signaling protein. Arch Virol 2024; 169:238. [PMID: 39499386 PMCID: PMC11538211 DOI: 10.1007/s00705-024-06133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
NLR family member X1 (NLRX1) is an important member of the NOD-like receptor (NLR) family and plays unique roles in immune system regulation. Patients with hepatitis B virus (HBV) infection are more likely to have the NLRX1 mutation p.Arg707Cys than healthy individuals. It has been reported that NLRX1 increases the infection rate of HBV in HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). However, the role of NLRX1 mutation (p.Arg707Cys) in hepatitis remains unclear. We constructed Huh7 cells that stably overexpressed NTCP, using LV003 lentivirus. First, wild-type (WT) and mutant (MT) NLRX1 overexpression plasmids were constructed. The MT plasmid contained a point mutation at position 707 of the WT overexpression plasmid. Then, Huh7-NTCP cells were transfected with the WT or MT NLRX1 overexpression plasmid, and subsequent NLRX1 expression was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. HBV RNA levels were determined using RT-qPCR. HBsAg and HBcAg levels were confirmed immunohistochemically. Interferon alpha (IFN-α), interleukin 6 (IL-6), and type I interferon beta (IFN-β) levels were determined using enzyme-linked immunosorbent assay kits. p-p65, p-interferon regulatory factor (IRF) 3, and p-IRF7 expression levels were examined using western blot. The interaction of NLRX1 and retinoic acid-inducible gene (RIG)-1/mitochondrial antiviral signaling (MAVS) protein was confirmed by coimmunoprecipitation. The interaction of NLRX1 with IFN-α, IL-6, or IFN-β was analyzed by dual luciferase reporter gene assay. The levels of HBV RNA, HBsAg, and HBcAg in infected cells transfected with the WT NLRX1 or MT NLRX1 expression plasmid were higher than those in the untransfected control group; and these levels were lower in the cells transfected with MT NLRX1 than in those transfected with WT NLRX1. The levels of IFN-α, IFN-β, IL-6, p-p65, p-IRF3, and p-IRF7 were lower in cells transfected with WT NLRX1 or MT NLRX1 than in control cells. The levels of IFN-β, p-p65, p-IRF3, and p-IRF7 were higher in cells transfected with MT NLRX1 than in those transfected with WT NLRX1. Moreover, NLRX1 competitively inhibited RIG1 binding to MAVS, but the mutation in MT NLRX1 reduced this inhibitory effect. In addition, NLRX1 decreased the promoter activity of IFN-α, IFN-β, and IL-6. Our findings revealed that NLRX1 is a regulatory factor that inhibits the anti-HBV ability of hepatocytes and that the mutation p.Arg707Cys in NLRX1 suppresses HBV infection and activates the IFN/nuclear factor κB pathway.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Shu Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Baolin Liao
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Huiyuan Liu
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Xiaoyan Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Lina Wu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, 518112, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District Guangzhou, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
5
|
Angelice GP, Barros TM, Marques VA, Villar LM, Lago BV, Mello FCA. Exploring genetic diversity of hepatitis D virus full-length genome in Brazil: Discovery of a novel HDV-8 subgenotype beyond African borders. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105671. [PMID: 39299539 DOI: 10.1016/j.meegid.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Hepatitis D virus (HDV) is currently classified into 8 genotypes (1 to 8) and several subgenotypes, with distinct distribution worldwide. However, due to the scarcity of complete genome sequences in databases, this classification is constantly being updated and tends to be regularly revisited in upcoming years as more sequence data becomes available. Aiming to increase knowledge about the genetic variability of HDV, this study presents the full-length genomes of 11 HDV samples collected in Brazil in endemic and non-endemic regions, including the first complete genomes of the genotypes 5 and 8 obtained outside Africa. We also determined the co-infecting HBV genotypes to investigate their prevalence among the HDV-infected individuals throughout the country. Whole genome sequencing confirmed our previous findings based on a partial fragment of the HDV genome, in which HDV subgenoypes 3c (9/11; 81.8 %), 5b (1/11; 9.1 %) and one HDV-8 sequence (1/11; 9.1 %) were detected. As previously observed, HDV-8 formed a distinct branch apart from subgenotypes 8a and 8b, a monophyletic clade representing a novel HDV-8 subgenotype, designated as 8c. Among HDV-3 samples, the main co-infecting HBV genotype found was HBV-F (4/8; 50 %), reflecting the higher incidence of this native South American genotype in the endemic Amazon Basin. Both samples infected with HDV-5 and HDV-8 were coinfected with HBV genotype E, also a genotype with African origin. Our findings based on complete genome sequence of HDV corroborated our results based on a partial region of the HDV genome of a novel HDV-8 subgenotype and reinforced the need to use full-length genomes to properly subdivide genotypes with very low intragroup genetic variability, such as HDV-3. The provision of these complete genomes is expected to contribute to the enrichment of sequence databases for future molecular and evolutionary investigations of HDV.
Collapse
Affiliation(s)
- Giovana P Angelice
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Tairine M Barros
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa A Marques
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia M Villar
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara V Lago
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco C A Mello
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mahajan A, Kharawala S, Desai S, Kendrick S, Das J, Gielen V. Association of Hepatitis B Surface Antigen Levels With Long-Term Complications in Chronic Hepatitis B Virus Infection: A Systematic Literature Review. J Viral Hepat 2024; 31:746-759. [PMID: 39150061 DOI: 10.1111/jvh.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a global issue and can lead to cirrhosis and hepatocellular carcinoma (HCC). Hepatitis B surface antigen (HBsAg) is an important marker of HBV infection and HBsAg quantification could be a useful tool in clinical practice. This systematic literature review aimed to explore the association between HBsAg titres and long-term disease outcomes and evaluate the relationship between HBsAg titres, or changes in HBsAg titres, and clinical and treatment characteristics in patients with chronic HBV infection. Structured searches were performed in MEDLINE and Embase (January 2000 to 31 March 2023). Eighty-two studies were included, comprising 51% retrospective cohort studies, mostly conducted in Asia (85%). HBsAg levels were shown to predict the long-term development of cirrhosis and HCC in patients who were untreated prior to and during follow-up; however, these data were inconclusive in mixed and treated populations. HBsAg titres were significantly associated with various virological markers including serum HBV DNA, HBcrAg, HBeAg, HBV RNA levels, intrahepatic covalently closed circular DNA (cccDNA) and intrahepatic HBsAg expression. HBsAg titres generally declined over time; this decline was more pronounced in early (HBeAg-positive) than later disease phases (HBeAg-negative). Higher decline in HBsAg levels was consistently associated with subsequent HBsAg seroclearance and a greater decline in total intrahepatic HBV DNA and cccDNA levels. In conclusion, this review showed that HBsAg levels and rates of decline could inform assessment, management and prediction of outcomes in chronic HBV infection. Further studies in broader, more diverse populations and treated patients are needed.
Collapse
Affiliation(s)
| | | | | | | | - Joyeta Das
- Research and Development, GSK, Brentford, Middlesex, UK
| | - Vera Gielen
- Research and Development, GSK, Brentford, Middlesex, UK
| |
Collapse
|
7
|
Li J, Gao Z, Bai H, Wang W, Li Y, Lian J, Li Y, Feng Y, Wang S. Global, regional, and national total burden related to hepatitis B in children and adolescents from 1990 to 2021. BMC Public Health 2024; 24:2936. [PMID: 39443929 PMCID: PMC11515762 DOI: 10.1186/s12889-024-20462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Hepatitis B remains a significant global health concern with widespread communicability. Nevertheless, data on its burden and trends in children and adolescents were limited. We aim to evaluate the global, regional, and national trends of total burden related to hepatitis B in children and adolescents aged 0-19 years from 1990 to 2021. METHODS The age-standardized incidence, prevalence, mortality, and disability-adjusted life years (DALYs) were calculated by the Global Burden of Disease (GBD) study from 1990 to 2021. These indicators were stratified by sex, age, socio-demographic index (SDI), and disease stage. We calculated the correlation between them and SDI. The temporal trends were examined using the annual average percentage change (AAPC) and joinpoint regression. RESULTS The global age-standardized incidence of hepatitis B in children and adolescents decreased from 1385.20 per 100,000 population in 1990 to 418.68 per 100,000 population in 2021, with an AAPC of -3.76%. Similarly, age-standardized DALYs decreased from 70.78 per 100,000 population to 36.31 per 100,000 population, with an AAPC of -2.13%. The age-standardized prevalence (AAPC - 3.53%) and mortality (AAPC - 2.09%) of hepatitis B also decreased significantly. From 1990 to 2021, the age-standardized incidence and prevalence among males exhibited a higher trend compared to females, although both declined over time. These two indicators also decreased across all age subgroups, with consistently higher rates observed in the 15-19 age group compared to other age groups. The burden of hepatitis B demonstrated a notable reduction in countries with high-middle SDI, while it was highest in countries with low SDI. In 2021, Central sub-Saharan Africa and West sub-Saharan Africa reported the highest age-standardized incidence. For age-standardized DALYs, South Asia was the only region to experience an increase (AAPC 1.09%), while East Asia showed the largest decline (AAPC - 7.58%). Alcohol and drug use remained important risk factors for DALYs among people aged 15-19 years. Furthermore, the impact of drug use on disease burden was increasing, particularly in high-SDI countries. CONCLUSIONS The global burden and trends of hepatitis B decreased significantly in children and adolescents, exhibiting regional and national variations. Management of alcohol and drug use remains a major challenge for people aged 15-19 years.
Collapse
Affiliation(s)
- Jinbo Li
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Ziyi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Hongjing Bai
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Weigang Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Yandi Li
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Jia Lian
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Yaling Li
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
| | - Yongliang Feng
- School of Public Health, Shanxi Medical University, Taiyuan, China.
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
| | - Suping Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China.
- Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Zhang L, Tian J, Xu D, Liu Y, Zhang Z. Trajectory and predictors of adherence to Nucleos(t)ide analogues medication among patients with chronic hepatitis B. Heliyon 2024; 10:e38485. [PMID: 39391516 PMCID: PMC11466648 DOI: 10.1016/j.heliyon.2024.e38485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Objectives To investigate the developmental trajectory of medication adherence and its predictors in chronic hepatitis B (CHB) patients taking nucleos(t)ide analogues. Methods A longitudinal study was conducted. Patients with CHB who met the inclusion criteria were selected using convenience sampling. Follow-ups were conducted at baseline, 3 months, 6 months, 9 months, and 12 months. Medication adherence was assessed using a medication adherence scale. Group-based trajectory modeling (GBTM) was used to explore medication adherence trajectories, and repeated measures ANOVA was used to describe changes in each trajectory. Unordered multinomial logistic regression analysis was used to explore predictive factors. Results A total of 305 patients completed all follow-ups. Medication adherence was categorized into four trajectory groups: low adherence (4.9 %), decreasing adherence (24.3 %), increasing adherence (48.2 %), and high adherence (22.6 %). Multinomial logistic regression results showed that HBV-infected discrimination, depression, self-efficacy, and social support were significantly different among different medication adherence levels (p < 0.05). Conclusions Medication adherence trajectories in patients with CHB exhibit heterogeneity. Healthcare professionals can develop personalized treatment plans based on patients' social and psychological characteristics to improve medication adherence.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Infectious Diseases, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinping Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Di Xu
- Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Yunyue Liu
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenjiang Zhang
- Department of Infectious Diseases, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| |
Collapse
|
9
|
Xu S, Ye XT, Zhang D, Dong P, Wu YH, Pan CW. Predicting clinical outcomes in chronic hepatitis B patients receiving nucleoside analogues and pegylated interferon alpha: a hematochemical and clinical analysis. BMC Infect Dis 2024; 24:1149. [PMID: 39396949 PMCID: PMC11472561 DOI: 10.1186/s12879-024-10057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The best antiviral treatment for chronic hepatitis B (CHB) poses a complex challenge. The treatment effect of the combination of nucleoside analogues (NAs) and pegylated interferon alpha (PegIFN) was still in debate. METHODS We studied patients treated with NAs and PegIFN-2b at our institution from November 2019 to January 2022. Logistic regression identified independent factors influencing clinical cure. The predictive accuracy of the formula was assessed using the Receiver operating characteristic (ROC) curve at different time points (before therapy, 12 weeks, and 24 weeks into treatment). RESULTS A total of 120 patients were enrolled in the final analysis. Among the cohort of patients under study, 71 (59.1%) patients had clinical cure while 49 (40.9%) patients did not. Hepatitis B surface antigen (HBsAg) at baseline and age were the powerful variables predicting the clearance of HBsAg. The area under the ROC (AUC) was 0.907 for pre-treatment predictive model, 0.958 for 12-week predictive model and 0.747 for 24-week predictive model. CONCLUSION This study provided predictive formulas for clinical cure, offering valuable insights for CHB treatment. PegIFN and NAs exhibited efficacy. Future research that explores additional factors, such as HBV genotype, in a larger cohort study is needed.
Collapse
Affiliation(s)
- Shuang Xu
- Department of infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ting Ye
- Department of infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zhang
- Department of infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pu Dong
- Department of infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-He Wu
- Department of infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen-Wei Pan
- Department of infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital, of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Ou Yang WY, Tsai YS, Liu YH, Wang YF, Hsiao CT, Lai KL, Lee YC, Liao YC. Preceding hepatitis B virus infection is highly prevalent in patients with neuromyelitis optica spectrum disorder in Taiwan. Mult Scler Relat Disord 2024; 92:105923. [PMID: 39418777 DOI: 10.1016/j.msard.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system, characterized by pathogenic anti-Aquaporin-4 antibodies (AQP4-Ab). Given that infections can trigger autoimmune responses, we investigated the association between Hepatitis B virus (HBV) infection and NMOSD. METHODS HBV and hepatitis C virus serologies were analyzed in 105 NMOSD patients, 85 multiple sclerosis (MS) patients, and 1,661 healthy Taiwanese controls. Participants were classified into four HBV infection statuses (acute, chronic, resolved, and never infected), and further grouped by vaccination status. Logistic regression was used to estimate odds ratios (OR) for NMOSD development in individuals with chronic or resolved HBV infection. RESULTS Among those born before the Taiwan's universal vaccination program, 63.4 % of NMOSD patients had resolved HBV infection, compared to 30.6 % of MS patients and 16.4 % of controls. Resolved HBV infection was associated with a 2.3-fold increased risk for NMOSD development (95 % CI, 1.4-3.8), but not with MS risk. In the post-vaccination cohort, resolved HBV infection remained more frequent in NMOSD patients (8.7 %) than in MS (0 %) and controls (1.8 %). NMOSD patients with resolved HBV infection had later disease onset by 14.6 years and higher Expanded Disability Status Scale (EDSS) scores compared to those without HBV infection, even after adjusting for age and sex (3.5 ± 1.9 vs. 2.2 ± 1.8, p < 0.001). CONCLUSION Preceding HBV infection is prevalent among Taiwanese NMOSD patients and is associated with increased disease risk, older age at onset, and greater disability. Screening for HBV is essential for NMOSD patients, particularly in endemic regions.
Collapse
Affiliation(s)
- Wen-Yu Ou Yang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hong Liu
- Department of Neurology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
11
|
Chen SL, Shen YJ, Chen GZ. RNA Sequencing Analysis of Patients with Chronic Hepatitis B Treated Using PEGylated Interferon. Int J Gen Med 2024; 17:4465-4474. [PMID: 39372134 PMCID: PMC11453141 DOI: 10.2147/ijgm.s474284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Worldwide, chronic hepatitis B virus (CHB) infection is a public health concern, ultimately leading to liver cirrhosis and hepatocellular carcinoma. Currently, patients with CHB can be treated using polyethylene glycol (PEG)ylated interferon (PEG-IFN) antiviral therapy, which has both immune modulatory and antiviral properties. This study aimed to reveal the mechanism underlying the effect of PEG-IFN therapy, to rationally optimize this therapeutic option. Patients and Methods Ten patients with CHB who were positive for the hepatitis B virus e antigen (HBeAg) and were receiving PEG-IFN treatment were enrolled. Clinical and virological parameters were monitored during 48 weeks of treatment. In addition, peripheral blood mononuclear cells (PBMCs) were collected from the 10 patients at 0, 24, and 36 weeks. RNA sequencing technology was used to analyze the RNA expression profile in the PBMC samples. Results Following PEG-IFN treatment, we identified 217 differentially expressed genes (DEGs), most of which were upregulated. Gene ontology enrichment analysis of the DEGs revealed that they were enriched in 29 clusters, mainly associated with "antiviral defense", "innate immunity", "immunity", "defense response to virus", "response to virus", "type I interferon signaling pathway", "negative regulation of viral genome replication", "innate immune response", and "RNA-binding". Conclusion After PEG-IFN treatment, a certain mRNA expression profile was observed in patients with CHB, providing further mechanistic insights into the antiviral effect of this therapy.
Collapse
Affiliation(s)
- Shao-Long Chen
- Department of Infectious Disease Control and Prevention, Yueqing Center for Disease Control and Prevention, Wenzhou, 325600, People’s Republic of China
| | - Yao-Jie Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| | - Guo-Zhi Chen
- Department of Infectious Disease Control and Prevention, Yueqing Center for Disease Control and Prevention, Wenzhou, 325600, People’s Republic of China
| |
Collapse
|
12
|
Asgharzadeh F, Moradi Binabaj M, Fanoudi S, C. Cho W, Yang YJ, Azarian M, Shafiee Ardestani M, Nasiri N, Ramezani Farani M, Huh YS. Nanomedicine Strategies Utilizing Lipid-Based Nanoparticles for Liver Cancer Therapy: Exploring Signaling Pathways and Therapeutic Modalities. Adv Pharm Bull 2024; 14:513-523. [PMID: 39494254 PMCID: PMC11530870 DOI: 10.34172/apb.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024] Open
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related deaths, following pancreatic cancer. The 5-year overall survival rate for HCC remains relatively low. Currently, there are multiple treatment options available for HCC, including systemic drugs, minimally invasive local therapies such as radiofrequency ablation, transarterial chemoembolization (TACE), and arterial radioembolization (TARE), as well as surgical interventions like liver resection or transplantation. However, the effectiveness of drug delivery to the cancerous liver is hindered by pathophysiological changes in the organ. In order to address this challenge, lipid-based nanoparticles (LNPs) have emerged as promising platforms for delivering a diverse range of therapeutic drugs. LNPs offer various structural configurations that enhance their physical stability and enable them to accommodate different types of cargo with varying mechanical properties and degrees of hydrophobicity. In this article, we provide a comprehensive review of the current applications of LNPs in the development of anti-HCC therapies. By examining the existing research, we aim to shed light on the potential future directions and advancements in this field.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi Binabaj
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Sahar Fanoudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Yu-jeong Yang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Nasiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
13
|
Kim HS, Kim JS, Kim JM, Han JW, Lee SK, Nam H, Sung PS, Kwon JH, Bae SH, Choi JY, Yoon SK, Jang JW. Differential HBV replicative markers and covalently closed circular DNA transcription in immune-active chronic hepatitis B with and without HBeAg. Liver Int 2024; 44:2753-2762. [PMID: 39073214 DOI: 10.1111/liv.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Molecular processes driving immune-active chronic hepatitis B (CHB) with and without hepatitis B e antigen (HBeAg) remain incompletely understood. This study aimed to investigate expression profiles of serum and intrahepatic HBV markers and replicative activity of HBV in CHB patients with or without HBeAg. METHODS This study recruited 111 untreated immune-active CHB (60 HBeAg-positive and 51 HBeAg-negative) patients and quantified intrahepatic covalently closed circular DNA (cccDNA), pre-genomic RNA (pgRNA), total HBV DNA (tDNA), and replicative intermediates as well as serum HBV markers (HBV DNA, hepatitis B surface antigen, hepatitis B core-related antigen). Correlations between HBV markers and clinico-virological factors influencing expression levels of HBV markers were analysed. RESULTS Levels of all serum markers and intrahepatic cccDNA/tDNA as well as cccDNA transcriptional activity and virion productivity were significantly reduced in HBeAg-negative patients compared to those in HBeAg-positive patients. Additionally, correlations between intrahepatic cccDNA/pgRNA and serum markers were impaired in HBeAg-negative individuals. Aminotransferase levels were positively correlated with cccDNA transcriptional activity in HBeAg-positive patients, but not in HBeAg-negative patients. Notably, among HBeAg-positive patients, there was a progressive decline in pgRNA level, transcriptional activity, and serum HBV markers as liver fibrosis advanced, which was not observed in HBeAg-negative patients. CONCLUSIONS HBeAg loss is correlated with diminished intrahepatic HBV reservoirs and cccDNA transcription, leading to decreased serum HBV marker levels. Circulating HBV markers are not reliable indicators of intrahepatic HBV replicative activity for HBeAg-negative patients. Our findings reveal distinct disease phenotypes between immune-active CHB with and without HBeAg, highlighting the need to establish optimal surrogate biomarkers that can accurately mirror intrahepatic viral activity to aid in decision-making for antiviral therapy for immune-active CHB.
Collapse
Affiliation(s)
- Hye Seon Kim
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Seoub Kim
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Min Kim
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon Kyu Lee
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heechul Nam
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, Collage of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Kwok TY, Hui RWH, Mao X, Ling GS, Wong DKH, Huang FY, Fung J, Seto WK, Yuen MF, Mak LY. Cigarette Smoking Is Associated With Lower Chance of Hepatitis B Surface Antigen Seroclearance and Altered Host Immunity. J Viral Hepat 2024. [PMID: 39248338 DOI: 10.1111/jvh.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Cigarette smoking is associated with worse clinical outcomes in patients with chronic hepatitis B (CHB) infection, but the effects on hepatitis B surface antigen (HBsAg) seroclearance are unclear. This study aimed to investigate the effect of active smoking on HBsAg seroclearance (SC) and its impact on peripheral blood lymphocytes in patients with CHB infection. Longitudinal follow-up data was retrieved in 7833 antiviral-treated CHB subjects identified from a centralised electronic patient record database (Part 1). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs) from 27 CHB-infected patients (6 active smokers; 13 with SC) was performed by flow cytometry to assess programmed death-1 (PD-1) expression and proportion of regulatory T cells (CD4+CD25+CD127lo). Effector function of HBV-specific T cells was examined by comparing granzyme B (GZMB) and transforming growth factor beta (TGFβ) production in undepleted PBMCs and Treg-depleted PBMCs after 7 days in vitro stimulation with HBV envelope protein overlapping peptides (Part 2). Over a median follow-up of 5 years, smoking was associated with lower probability of SC (aHR 0.70, 95% CI 0.57-0.87). PD-1 expression was increased in CD4+T cells, CD8+T cells and CD20+B cells among smokers compared to non-smokers and positively correlated with pack years (all p < 0.05). Treg depletion led to partial functional recovery of HBV-specific T cells, with significantly bigger magnitude in smokers (p = 0.0451, mean difference = 4.68%) than non-smokers (p = 0.012, mean difference = 4.2%). Cigarette smoking is associated with lower chance of HBsAg seroclearance, higher PD-1 expression on lymphocytes, and impairment of effector functions of HBV-specific T cells in CHB.
Collapse
Affiliation(s)
- Tsz-Yan Kwok
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - XianHua Mao
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Guang-Sheng Ling
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Danny Ka-Ho Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Fung-Yu Huang
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
16
|
Agarwal K, Buti M, van Bömmel F, Lampertico P, Janczewska E, Bourliere M, Vanwolleghem T, Lenz O, Verbinnen T, Kakuda TN, Mayer C, Jezorwski J, Muenz D, Beumont M, Kalmeijer R, Biermer M, Lonjon-Domanec I. JNJ-73763989 and bersacapavir treatment in nucleos(t)ide analogue-suppressed patients with chronic hepatitis B: REEF-2. J Hepatol 2024; 81:404-414. [PMID: 38583491 DOI: 10.1016/j.jhep.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Functional cure for chronic hepatitis B (CHB) requires finite treatment. Two agents under investigation with the goal of achieving functional cure are the small-interfering RNA JNJ-73763989 (JNJ-3989) and the capsid assembly modulator JNJ-56136379 (JNJ-6379; bersacapavir). METHODS REEF-2, a phase IIb, double-blind, placebo-controlled, randomized study, enrolled 130 nucleos(t)ide analogue (NA)-suppressed hepatitis B e-antigen (HBeAg)-negative patients with CHB who received JNJ-3989 (200 mg subcutaneously every 4 weeks) + JNJ-6379 (250 mg oral daily) + NA (oral daily; active arm) or placebos for JNJ-3989 and JNJ-6379 +active NA (control arm) for 48 weeks followed by 48 weeks off-treatment follow-up. RESULTS At follow-up Week 24, no patients achieved the primary endpoint of functional cure (off-treatment hepatitis B surface antigen [HBsAg] seroclearance). No patients achieved functional cure at follow-up Week 48. There was a pronounced on-treatment reduction in mean HBsAg from baseline at Week 48 in the active arm vs. no decline in the control arm (1.89 vs. 0.06 log10 IU/ml; p = 0.001). At follow-up Week 48, reductions from baseline were >1 log10 IU/ml in 81.5% vs. 12.5% of patients in the active and control arms, respectively, and 38/81 (46.9%) patients in the active arm achieved HBsAg <100 IU/ml vs. 6/40 (15.0%) patients in the control arm. Off-treatment HBV DNA relapse and alanine aminotransferase increases were less frequent in the active arm, with 7/77 (9.1%) and 11/41 (26.8%) patients in the active and control arms, respectively, restarting NAs during follow-up. CONCLUSIONS Finite 48-week treatment with JNJ-3989 + JNJ-6379 + NA resulted in fewer and less severe post-treatment HBV DNA increases and alanine aminotransferase flares, and a higher proportion of patients with off-treatment HBV DNA suppression, with or without HBsAg suppression, but did not result in functional cure. IMPACT AND IMPLICATIONS Achieving a functional cure from chronic hepatitis B (CHB) with finite treatments is a major unmet medical need. The current study assessed the rate of functional cure and clinical outcome after controlled nucleos(t)ide analogue (NA) withdrawal in patients with low levels of HBsAg induced by 48 weeks of treatment with the small-interfering RNA JNJ-3989 and the capsid assembly modulator JNJ-6379 plus NA vs. patients who only received NA treatment. Though functional cure was not achieved by any patient in either arm, the 48-week treatment regimen of JNJ-3989, JNJ-6379, and NA did result in more patients achieving pronounced reductions in HBsAg, with clinically meaningful reductions maintained for up to 48 weeks off all treatments, as well as fewer off-treatment HBV DNA increases and alanine aminotransferase flares. These findings provide valuable insights for future studies investigating potential finite treatment options, while the reported efficacy and safety outcomes may be of interest to healthcare providers making treatment decisions for patients with NA-suppressed HBeAg-negative CHB. CLINICALTRIALS GOV IDENTIFIER NCT04129554.
Collapse
Affiliation(s)
- Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, England.
| | - Maria Buti
- Hospital General Universitari Valle Hebron and CIBER-EHD del Instituto Carlos III, Barcelona, Spain
| | - Florian van Bömmel
- Leipzig University Medical Center, Department of Medicine II, Division of Hepatology, Leipzig, Germany
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A.M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ewa Janczewska
- Faculty of Health Sciences, Medical University of Silesia, Katowice, Poland
| | | | - Thomas Vanwolleghem
- Antwerp University Hospital, Edegem, Belgium; Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - John Jezorwski
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | | | | | |
Collapse
|
17
|
Quan D, Wang P, Wu W, Li J. Investigating the role of GTPase in inhibiting HBV replication and enhancing interferon therapy efficacy in chronic hepatitis B patients. Microb Pathog 2024; 194:106821. [PMID: 39084309 DOI: 10.1016/j.micpath.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Interferon-alpha (IFNα) is a common treatment for chronic hepatitis B virus (HBV) infection, but its efficacy varies widely among patients. GTPASE, an interferon-stimulated gene (ISG), has recently been identified as a factor in antiviral immunity, though its role in HBV infection is not fully understood. OBJECTIVE This study investigates the role of GTPASE in enhancing the antiviral effects of IFNα against HBV and elucidates its mechanism of action. METHODS We analyzed the impact of GTPASE overexpression and silencing on HBV replication and clearance in HBV-infected cells. Molecular docking studies assessed the interaction between GTPASE and HBV surface antigens (HBs). Clinical samples from HBV patients undergoing Peg-IFNα treatment were also evaluated for GTPASE expression and its correlation with treatment efficacy. RESULTS Overexpression of GTPASE led to significant inhibition of HBV replication, increased HBeAg seroconversion, and enhanced HBsAg clearance. GTPASE directly bound to HBs proteins, reducing their levels and affecting viral particle formation. Silencing GTPASE reduced these effects, while combined treatment with Peg-IFNα and GTPASE overexpression further improved antiviral outcomes. Mutational analysis revealed that specific sites in GTPASE are crucial for its antiviral activity. CONCLUSIONS GTPASE acts as a positive regulator in IFNα-induced antiviral immunity against HBV. It enhances the therapeutic efficacy of IFNα by targeting HBs and modulating viral replication. GTPASE levels may serve as a predictive biomarker for response to Peg-IFNα therapy, highlighting its potential for improving individualized treatment strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Dongmei Quan
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Pengfei Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine/Medical Management Office, China
| | - Wei Wu
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Jing Li
- Teaching and Research Section of the Internal Medicine of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
18
|
Jing C, Li J, Yuan C, Hu C, Ma L, Zheng J, Zhang Y. Therapeutic analysis of 632 cases treated by transcatheter arterial chemoembolization combined with ablation in hepatocellular carcinoma: A retrospective study. Eur J Radiol 2024; 178:111619. [PMID: 39024666 DOI: 10.1016/j.ejrad.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES This study aims to analyze the efficacy of transcatheter arterial chemoembolization (TACE) combined with radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation (CA) in hepatocellular carcinoma (HCC). METHODS A retrospective analysis was conducted on 632 patients with HCC at Barcelona Clinic Liver Cancer Staging (BCLC) System stages 0, A, and B from Beijing You'an Hospital affiliated with Capital Medical University. The primary outcomes analyzed were overall survival (OS) and progression-free survival (PFS), while the secondary outcomes included one-, three-, and five-year OS rates among different groups. RESULTS The median follow-up period for 632 cases identified with HCC was 52.1 months (range: 3-162 months), while 127 patients died during follow-up. The one-, three-, and five-year OS rates were 97.1 %, 89.5 %, and 80.4 %, respectively. Moreover, the one-, three-, and five-year PFS rates were 58.1 %, 29.3 %, and 19.8 %, respectively. Multivariate analysis revealed that the BCLC stages and complete ablation were independent predictors of OS and PFS (all p < 0.05). Subgroup analysis showed no difference in OS rate among TACE-RFA, TACE-MWA, and TACE-CA groups, but TACE-CA showed better efficacy in improving the PFS rate (all p < 0.05). CONCLUSIONS The combination of TACE and ablation is effective in early-stage HCC and BCLC stage B. Complete ablation and BCLC stages are significant prognostic factors for PFS and OS. Further research, including randomized controlled trials, is needed to validate these findings.
Collapse
Affiliation(s)
- Changyou Jing
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jianjun Li
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Chunwang Yuan
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Caixia Hu
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Liang Ma
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jiasheng Zheng
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yonghong Zhang
- Hepatic Disease and Tumor Interventional Treatment Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, People's Republic of China.
| |
Collapse
|
19
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
20
|
Simoni C, Barbon E, Muro AF, Cantore A. In vivo liver targeted genome editing as therapeutic approach: progresses and challenges. Front Genome Ed 2024; 6:1458037. [PMID: 39246827 PMCID: PMC11378722 DOI: 10.3389/fgeed.2024.1458037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
The liver is an essential organ of the body that performs several vital functions, including the metabolism of biomolecules, foreign substances, and toxins, and the production of plasma proteins, such as coagulation factors. There are hundreds of genetic disorders affecting liver functions and, for many of them, the only curative option is orthotopic liver transplantation, which nevertheless entails many risks and long-term complications. Some peculiar features of the liver, such as its large blood flow supply and the tolerogenic immune environment, make it an attractive target for in vivo gene therapy approaches. In recent years, several genome-editing tools mainly based on the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system have been successfully exploited in the context of liver-directed preclinical or clinical therapeutic applications. These include gene knock-out, knock-in, activation, interference, or base and prime editing approaches. Despite many achievements, important challenges still need to be addressed to broaden clinical applications, such as the optimization of the delivery methods, the improvement of the editing efficiency, and the risk of on-target or off-target unwanted effects and chromosomal rearrangements. In this review, we highlight the latest progress in the development of in vivo liver-targeted genome editing approaches for the treatment of genetic disorders. We describe the technological advancements that are currently under investigation, the challenges to overcome for clinical applicability, and the future perspectives of this technology.
Collapse
Affiliation(s)
- Chiara Simoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Barbon
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés F Muro
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Zhang L, Zhang F, Ma Z, Jin J. Hepatitis B virus infection, infertility, and assisted reproduction. J Zhejiang Univ Sci B 2024; 25:672-685. [PMID: 39155780 PMCID: PMC11337088 DOI: 10.1631/jzus.b2300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/23/2023] [Indexed: 08/20/2024]
Abstract
BACKGROUND: Hepatitis B virus (HBV) is one of the most widespread viruses worldwide and a major cause of hepatitis, cirrhosis, and hepatocellular carcinoma. Previous studies have revealed the impacts of HBV infection on fertility. An increasing number of infertile couples with chronic hepatitis B (CHB) virus infection choose assisted reproductive technology (ART) to meet their fertility needs. Despite the high prevalence of HBV, the effects of HBV infection on assisted reproduction treatment remain limited and contradictory. OBJECTIVE: The aim of this study was to provide a comprehensive overview of the effect of HBV infection on fertility and discuss its effects on pregnancy outcomes, vertical transmission, pregnancy complications, and viral activity during ART treatment. METHODS: We conducted a literature search in PubMed for studies on HBV infection and ART published from 1996 to 2022. RESULTS: HBV infection negatively affected fertility in both males and females. Existing research shows that HBV infection may increase the risk of pregnancy complications in couples undergoing assisted reproduction treatment. The impact of HBV infection on the pregnancy outcomes of ART is still controversial. Current evidence does not support that ART increases the risk of vertical transmission of HBV, while relevant studies are limited. With the development of ART, the risk of HBV reactivation (HBVr) is increasing, especially due to the wide application of immunosuppressive therapy. CONCLUSIONS: Regular HBV infection screening and HBVr risk stratification and management are essential to prevent HBVr during ART. The determination of optimal strategy and timing of prophylactic anti-HBV therapy during ART still needs further investigation.
Collapse
Affiliation(s)
- Lingjian Zhang
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fangfang Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhiyuan Ma
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
22
|
Li X, Hong L, Ru M, Cai R, Meng Y, Wang B, Diao H, Li L, Wu Z. S100A8/A9-activated IFNγ + NK cells trigger β-cell necroptosis in hepatitis B virus-associated liver cirrhosis. Cell Mol Life Sci 2024; 81:345. [PMID: 39133305 PMCID: PMC11335268 DOI: 10.1007/s00018-024-05365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV)-associated liver cirrhosis (LC), a common condition with high incidence and mortality rates, is often associated with diabetes mellitus (DM). However, the molecular mechanisms underlying impaired glucose regulation during HBV-associated LC remain unclear. METHODS Data from 63 patients with LC and 62 patients with LC-associated DM were analysed. Co-culture of NK cells and islet β cell lines were used to study the glucose regulation mechanism. A mouse model of LC was used to verify the effect of S100A8/A9 on the glucose regulation. RESULTS Higher levels of interferon (IFN)-γ derived from natural killer (NK) cells and lower levels of insulin emerged in the peripheral blood of patients with both LC and DM compared with those from patients with LC only. IFN-γ derived from NK cells facilitated β cell necroptosis and impaired insulin production. Furthermore, S100A8/A9 elevation in patients with both LC and DM was found to upregulate IFN-γ production in NK cells. Consistently, in the mouse model for LC, mice treated with carbon tetrachloride (CCL4) and S100A8/A9 exhibited increased blood glucose, impaired insulin production, increased IFN-γ, and increased β cells necroptosis compared with those treated with CCL4. Mechanistically, S100A8/A9 activated the p38 MAPK pathway to increase IFN-γ production in NK cells. These effects were diminished after blocking RAGE. CONCLUSION Together, the data indicate that IFN-γ produced by NK cells induces β cell necroptosis via the S100A8/A9-RAGE-p38 MAPK axis in patients with LC and DM. Reduced levels of S100A8/A9, NK cells, and IFN-γ could be valuable for the treatment of LC with DM. Accumulation of S100A8/A9 in patients with LC may indicate the emergence of DM.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - MingHui Ru
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Rui Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Baohua Wang
- Department of Ultrasound, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, People's Republic of China.
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
23
|
Peng L, Dou Z, Yu S, Wu X, Zhang J, Li Z, Zhang L. Hepatitis B virus infection and the risk of gynecologic cancers: a systematic review and meta-analysis. Discov Oncol 2024; 15:340. [PMID: 39120631 PMCID: PMC11315852 DOI: 10.1007/s12672-024-01213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES The relationship between hepatitis B virus (HBV) infection and gynecologic cancers is controversial. We aimed to evaluate the risk of gynecologic cancers associated with HBV infection using a meta-analysis. METHODS Two independent reviewers identified publications in the PubMed, Embase and Cochrane Library databases that reported an association between HBV and the risk of gynecologic malignancy from inception to December 31, 2022. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included articles. Pooled odds ratios (ORs) and 95% corresponding confidence intervals (CIs) were calculated using a fixed effects model or random effects model. RESULTS We collected data from 7 studies that met the inclusion criteria, including 2 cohort studies and 5 case-control studies. HBV was significantly associated with the risk of cervical cancer in the general population (OR 1.22, 95% CI 1.09-1.38, P = 0.001), although the same trend was not found in endometrial cancer (OR 1.30, 95% CI 0.95-1.77, P = 0.105) and ovarian cancer (OR 1.03, 95% CI 0.79-1.35, P = 0.813). Subgroup analysis showed that HBV infection was positively associated with the risk of cervical cancer (OR 1.27, 95% CI 1.13-1.44, P = 0.000) in case-control studies. Asian women infected with HBV have a significantly increased risk of cervical cancer (OR 1.24, 95% CI 1.10-1.40, P = 0.001) and endometrial cancer (OR 1.46, 95% CI 1.07-1.99, P = 0.018). Hospital-based studies were found to be associated with an increased risk of cervical cancer (OR 1.30, 95% CI 1.14-1.47, P = 0.000) and endometrial cancer (OR 1.61, 95% CI 1.04-2.49, P = 0.032). The results of Begg's and Egger's tests showed no publication bias. CONCLUSIONS This meta-analysis shows a positive association between HBV infection and cervical cancer. HBV is positively correlated with the risk of cervical cancer and endometrial cancer in Asian women and hospital-based populations. More multicenter prospective studies are required to confirm the findings.
Collapse
Affiliation(s)
- Lan Peng
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, People's Republic of China
| | - Zhongyan Dou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, People's Republic of China
| | - Shuhui Yu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, People's Republic of China
| | - Xingrao Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, People's Republic of China
| | - Jinping Zhang
- Department of Medical Administration, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, China
| | - Lan Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), 519 Kunzhou Road, Kunming, 650118, People's Republic of China.
| |
Collapse
|
24
|
Liang C, Duan X, Gao H, Shahab M, Zheng G. Chemoenzymatic synthesis of (1R,3R)-3-hydroxycyclopentanemethanol: An intermediate of carbocyclic-ddA. J Biosci Bioeng 2024; 138:111-117. [PMID: 38824112 DOI: 10.1016/j.jbiosc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 μM CrS, 40 μM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.
Collapse
Affiliation(s)
- Chaoqun Liang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Bontac Bio-Engineering (Shenzhen) Co., Ltd., Shenzhen, Guangdong 518107, China
| | - Xiuyuan Duan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanzi Gao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
25
|
Moon CM, Heo SH, Jeong YY, Lee YY, Kim SK, Shin SS. In vivo Hyperpolarized Metabolic Imaging to Monitor the Progression of Hepatitis B Virus (HBV)-Related Hepatitis to Liver Fibrosis. Mol Imaging Biol 2024; 26:649-657. [PMID: 38992246 DOI: 10.1007/s11307-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE This study aimed to assess metabolic changes to monitor the progression from normal liver to hepatitis B virus (HBV)-related hepatitis and liver fibrosis using hyperpolarized 13C magnetic resonance imaging (MRI). PROCEDURES Hepatitis was induced in mice (n = 16) via hydrodynamic injection of HBV 1.2 plasmid (25 μg). Among them, liver fibrosis was induced in the mice (n = 8) through weight-adapted administration of thioacetamide with ethanol. Normal control mice (n = 8) were injected with a phosphate buffer solution. Subsequently, a hyperpolarized 13C MRI was performed on the mouse liver in vivo. The level of hepatitis B surface antigen (HBsAg) in blood serum was measured. Statistical analysis involved comparing the differential metabolite ratios, blood biochemistry values, and body weight among the three groups using the Kruskal-Wallis one-way analysis of variance. RESULTS HBsAg was absent in the normal and fibrosis groups, while it was detected in the hepatitis group. The ratios of [1-13C] lactate/pyruvate, [1-13C] alanine/pyruvate, [1-13C] lactate/total carbon, and [1-13C] alanine/total carbon were significantly lower in the normal control group than in the hepatitis and fibrosis groups (p < 0.05). Moreover, these ratios were significantly higher in the fibrosis group than in the hepatitis group (p < 0.05). However, no significant differences were observed in either [1-13C] pyruvate-hydrate/pyruvate or [1-13C] pyruvate-hydrate/total carbon among the three groups. CONCLUSIONS The levels of [1-13C] lactate and [1-13C] alanine in vivo may serve as valuable indicators for differentiating between HBV-related hepatitis, liver fibrosis, and normal liver.
Collapse
Affiliation(s)
- Chung Man Moon
- Research Institute of Medical Sciences, Chonnam National University, 264 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Yun Young Lee
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Radiology, Chonnam National University Hospital, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea.
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
| | - Sang Soo Shin
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
- Department of Radiology, Chonnam National University Hospital, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
26
|
Sun W, Nan J, Xu H, Wang L, Niu J, Zhang J, Yang B. Neural Network Enables High Accuracy for Hepatitis B Surface Antigen Detection with a Plasmonic Platform. NANO LETTERS 2024; 24:8784-8792. [PMID: 38975746 DOI: 10.1021/acs.nanolett.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The detection of hepatitis B surface antigen (HBsAg) is critical in diagnosing hepatitis B virus (HBV) infection. However, existing clinical detection technologies inevitably cause certain inaccuracies, leading to delayed or unwarranted treatment. Here, we introduce a label-free plasmonic biosensing method based on the thickness-sensitive plasmonic coupling, combined with supervised deep learning (DL) using neural networks. The strategy of utilizing neural networks to process output data can reduce the limit of detection (LOD) of the sensor and significantly improve the accuracy (from 93.1%-97.4% to 99%-99.6%). Compared with widely used emerging clinical technologies, our platform achieves accurate decisions with higher sensitivity in a short assay time (∼30 min). The integration of DL models considerably simplifies the readout procedure, resulting in a substantial decrease in processing time. Our findings offer a promising avenue for developing high-precision molecular detection tools for point-of-care (POC) applications.
Collapse
Affiliation(s)
- Weihong Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jingjie Nan
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongqin Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Lei Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
27
|
Liu L, Wang H, Liu L, Cheng F, Aisa HA, Li C, Meng S. Rupestonic Acid Derivative YZH-106 Promotes Lysosomal Degradation of HBV L- and M-HBsAg via Direct Interaction with PreS2 Domain. Viruses 2024; 16:1151. [PMID: 39066313 PMCID: PMC11281537 DOI: 10.3390/v16071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) is not only the biomarker of hepatitis B virus (HBV) infection and expression activity in hepatocytes, but it also contributes to viral specific T cell exhaustion and HBV persistent infection. Therefore, anti-HBV therapies targeting HBsAg to achieve HBsAg loss are key approaches for an HBV functional cure. In this study, we found that YZH-106, a rupestonic acid derivative, inhibited HBsAg secretion and viral replication. Further investigation demonstrated that YZH-106 promoted the lysosomal degradation of viral L- and M-HBs proteins. A mechanistic study using Biacore and docking analysis revealed that YZH-106 bound directly to the PreS2 domain of L- and M-HBsAg, thereby blocking their entry into the endoplasmic reticulum (ER) and promoting their degradation in cytoplasm. Our work thereby provides the basis for the design of a novel compound therapy to target HBsAg against HBV infection.
Collapse
Affiliation(s)
- Lanlan Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Haoyu Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Yasutake Y, Hattori SI, Kumamoto H, Tamura N, Maeda K, Mitsuya H. Deviated binding of anti-HBV nucleoside analog E-CFCP-TP to the reverse transcriptase active site attenuates the effect of drug-resistant mutations. Sci Rep 2024; 14:15742. [PMID: 38977798 PMCID: PMC11231328 DOI: 10.1038/s41598-024-66505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
While certain human hepatitis B virus-targeting nucleoside analogs (NAs) serve as crucial anti-HBV drugs, HBV yet remains to be a major global health threat. E-CFCP is a 4'-modified and fluoromethylenated NA that exhibits potent antiviral activity against both wild-type and drug-resistant HBVs but less potent against human immunodeficiency virus type-1 (HIV-1). Here, we show that HIV-1 with HBV-associated amino acid substitutions introduced into the RT's dNTP-binding site (N-site) is highly susceptible to E-CFCP. We determined the X-ray structures of HBV-associated HIV-1 RT mutants complexed with DNA:E-CFCP-triphosphate (E-CFCP-TP). The structures revealed that exocyclic fluoromethylene pushes the Met184 sidechain backward, and the resultant enlarged hydrophobic pocket accommodates both the fluoromethylene and 4'-cyano moiety of E-CFCP. Structural comparison with the DNA:dGTP/entecavir-triphosphate complex also indicated that the cyclopentene moiety of the bound E-CFCP-TP is slightly skewed and deviated. This positioning partly corresponds to that of the bound dNTP observed in the HIV-1 RT mutant with drug-resistant mutations F160M/M184V, resulting in the attenuation of the structural effects of F160M/M184V substitutions. These results expand our knowledge of the interactions between NAs and the RT N-site and should help further design antiviral NAs against both HIV-1 and HBV.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan.
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, 162-8655, Japan
| | - Hiroki Kumamoto
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, 362-0806, Japan
| | - Noriko Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, 162-8655, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo, 162-8655, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, 860-8556, Japan.
| |
Collapse
|
29
|
Yu H, Ren J, Deng H, Li L, Zhang Z, Cheng S, Guo Z, Huang A, Dang Y, Song K, Wu D, Yao X, Qin Y, Yang Z, Xu K, He X, Chen J. Neuropilin-1 is a novel host factor modulating the entry of hepatitis B virus. J Hepatol 2024:S0168-8278(24)02339-0. [PMID: 38960374 DOI: 10.1016/j.jhep.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND & AIMS Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV. However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs (large hepatitis B surface proteins) and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Linfeng Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengtao Cheng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Kunling Song
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Daiqing Wu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinyan Yao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiping Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhen Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Fujimuro M. The Interactions between Cells and Viruses. Int J Mol Sci 2024; 25:6886. [PMID: 38999995 PMCID: PMC11241451 DOI: 10.3390/ijms25136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many infectious diseases are caused by life-threatening DNA and RNA viruses and have been reported worldwide, including those caused by emerging and re-emerging viruses [...].
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
31
|
Li J, Ma X, Xuan Q, Li Q, Wu M, Shi B, Fang Z, Chen L, Chen J, Wen Y, Zhu C, Zhu L, Zhang X, Yuan Z. Modulation of monocyte activity by hepatocellular MicroRNA delivery through HBsAg particles: Implications for pathobiology of chronic hepatitis B. Hepatology 2024:01515467-990000000-00922. [PMID: 38904485 DOI: 10.1097/hep.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS HBsAg serves as an important immune-modulatory factor in chronic hepatitis B. One aspect of such modulation may act through monocytes, which are the major Ag-presenting cells taking up HBsAg. There is evidence for the encapsulation of hepatocellular microRNAs (miRNAs) by HBsAg particles, while its pathobiological significance is unclear. Here, we characterized the miRNA profile in patients with chronic hepatitis B and probed their association with liver inflammation. APPROACHES AND RESULTS We collected plasma from patients that are treatment-naive with chronic hepatitis B (n = 110) and quantified total/HBsAg-enveloped miRNAs by qRT-PCR and plasma cytokines by ELISA. The biological effects of HBsAg-delivered miRNAs in monocytes were evaluated using multiple approaches. The clinical significance of candidate miRNAs and cytokines was corroborated in patients with HBV-associated advanced liver diseases. The plasma miRNA profile showed 2 major clusters, one significantly associated with HBsAg titer and the other correlated with liver inflammation. Among HBsAg-carried miRNAs, miR-939 displayed the most significant correlation with IL-8. Mechanistically, miR-939 in subviral particles enters monocytes and significantly augments IL-8 production through the mitogen-activated protein kinase (MAPK) p38 signaling pathway. Finally, the findings that miR-939 positively correlated with IL-8 level and inflammation/fibrosis stage in the cohort of HBV-associated advanced liver diseases support its causative role in the progression of liver diseases. CONCLUSIONS HBsAg particles carry hepatocellular miRNAs, including miR-939, which enter monocytes and alter their functional status, such as IL-8 secretion. Our findings demonstrate that the HBsAg-miR-939-IL-8 axis may play a crucial role in HBV-induced hepatic necro-inflammation and the progression of advanced liver diseases.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinkao Xuan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhong Fang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Liang Chen
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Australia
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhang T, Yang J, Gao H, Wu Y, Zhao X, Zhao H, Xie X, Yang L, Li Y, Wu Q. Progress of Infection and Replication Systems of Hepatitis B Virus. ACS Pharmacol Transl Sci 2024; 7:1711-1721. [PMID: 38898948 PMCID: PMC11184603 DOI: 10.1021/acsptsci.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Despite the long-standing availability of effective prophylaxis, chronic hepatitis B virus (HBV) infection remains a formidable public health threat. Antiviral treatments can limit viral propagation, but prolonged therapy is necessary to control HBV replication. Robust in vitro models of HBV infection are indispensable prerequisites for elucidating viral pathogenesis, delineating virus-host interplay and developing novel therapeutic, preventative countermeasures. Buoyed by advances in molecular techniques and tissue culture systems, investigators have engineered numerous in vitro models of the HBV life cycle. However, all current platforms harbor limitations in the recapitulation of natural infection. In this article, we comprehensively review the HBV life cycle, provide an overview of existing in vitro HBV infection and replication systems, and succinctly present the benefits and caveats in each model with the primary objective of constructing refined experimental models that closely mimic native viral infection and offering robust support for the ambitious "elimination of hepatitis by 2030" initiative.
Collapse
Affiliation(s)
- Tiantian Zhang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- National
Health Commission Science and Technology Innovation Platform for Nutrition
and Safety of Microbial Food, Guangdong Provincial Key Laboratory
of Microbial Safety and Health, State Key Laboratory of Applied Microbiology
Southern China, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
33
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
34
|
Zhao W, Liu Y, Zhang M, Cui Z, Qu Z, Li Y, Wan M, Wang W, Chen Y, Shi L, Li J, Ye F. Lipid safety of tenofovir alafenamide during 96-week treatment in treatment-naive chronic hepatitis B patients. Front Med (Lausanne) 2024; 11:1399665. [PMID: 38895186 PMCID: PMC11183333 DOI: 10.3389/fmed.2024.1399665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background This study was aimed at investigating the dynamics of lipids and the effect of TAF on the lipid profile of patients including fatty liver disease in CHB patients. Methods The data of TC, LDL-c, HDL-c, TG, and TC/HDL ratio were collected at baseline, 24 weeks, 48 weeks, 72 weeks, and 96 weeks. CHB patients with fatty liver at baseline were further analyzed in a subgroup. Results A total of 137 CHB patients treated with TAF were enrolled in this study. During 96 weeks of TAF treatment, there was no significant change in TC, LDL-c, HDL-c, and TG level (P > 0.05). The TC/HDL-c ratio was increased with no significant change (+0.24, P > 0.05). In CHB patients with fatty liver (n = 48), TC, LDL-c, and TC/HDL-c ratio increased gradually during TAF treatment, TG levels increased to 146.63 mg/dL at 48 weeks (P = 0.057) and then decreased, but there was still no significant change compared with the baseline level by 96 weeks (P > 0.05). Conclusion TAF treatment had a low effect on the lipid profile of CHB patients over the course of 96 weeks, and it was safe even in patients with fatty liver. Clinical trial registration [https://www.chictr.org.cn/showproj.html?proj=65123], identifier [ChiCTR2000041005].
Collapse
Affiliation(s)
- Wenjuan Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Yi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Mengdi Zhang
- Department of Nutrition, Xian Jiaotong University, Xi’an, China
| | - Zixin Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Zhan Qu
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Yiyang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Meijuan Wan
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Wen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Yunru Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| |
Collapse
|
35
|
Li Y, Luo H, Hu X, Gong J, Tan G, Luo H, Wang R, Pang H, Yu R, Qin B. Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection. Pol J Microbiol 2024; 73:217-235. [PMID: 38905278 PMCID: PMC11192456 DOI: 10.33073/pjm-2024-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Interferon-alpha (IFN-α) is a first-line drug for treating chronic hepatitis B (CHB). Guanylate-binding protein 1 (GBP1) is one of the interferon-stimulating factors, which participates in the innate immunity of the host and plays an antiviral and antibacterial role. In this study, we explored how GBP1 is involved in IFN-α antiviral activity against HBV. Before being gathered, HepG2-NTCP and HepG2 2.15 cells were transfected with the wild-type hGBP1 plasmid or si-GBP1, respectively, and followed by stimulation with Peg-IFNα-2b. We systematically explored the role of GBP1 in regulating HBV infection in cell models. Additionally, we also examined GBP1 levels in CHB patients. GBP1 activity increased, and its half-life was prolonged after HBV infection. Overexpression of GBP1 inhibited the production of HBsAg and HBeAg, as well as HBs protein and HBV total RNA levels, whereas silencing of GBP1 inhibited its ability to block viral infections. Interestingly, overexpressing GBP1 co-treatment with Peg-IFNα-2b further increased the antiviral effect of IFN-α, while GBP1 silencing co-treatment with Peg-IFNα-2b partly restored its inhibitory effect on HBV. Mechanistically, GBP1 mediates the anti-HBV response of Peg-IFNα-2b by targeting HBs. Analysis of clinical samples revealed that GBP1 was elevated in CHB patients and increased with Peg-IFNα-2b treatment, while GBP1 showed good stability in the interferon response group. Our study demonstrates that GBP1 inhibits HBV replication and promotes HBsAg clearance. It is possible to achieve antiviral effects through the regulation of IFN-α induced immune responses in response to HBV.
Collapse
Affiliation(s)
- Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Gong
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Yu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Yin S, Wu S, Huang J, Ren S, Xie W, Peng X. Spatial-temporal analysis of hepatitis B in Fujian Province, China in 2012-2021. INFECTIOUS MEDICINE 2024; 3:100110. [PMID: 38974348 PMCID: PMC11225665 DOI: 10.1016/j.imj.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/17/2023] [Accepted: 04/02/2024] [Indexed: 07/09/2024]
Abstract
Background Fujian Province has one of the highest reported incidences of hepatitis B virus infection in China. This study aimed to provide a theoretical framework for preventing and controlling hepatitis B in Fujian Province, and to assess the trends and the spatial-temporal distribution patterns of hepatitis B in this region. Methods Data on hepatitis B cases were extracted from the National Notifiable Infectious Disease Surveillance System. Spatial autocorrelation analysis, trend surface analysis, and spatial-temporal scanning statistics were used to identify the spatial and aggregation patterns at the county level. The Joinpoint was used to assess the reported incidence trends. Results The average reported incidence of hepatitis B in Fujian from 2012 to 2021 was 14.46/10,000 population, with 583,262 notified cases. The age-adjusted reported incidence of hepatitis B decreased from 17.44/10,000 population in 2012 to 11.88/10,000 population in 2021, with an average reduction in the annual percentage change of 4.5%. There were obvious spatial-temporal aggregation characteristics in hepatitis B cases, and a high-incidence area was located in eastern Fujian. Spatio-temporal scanning statistics revealed four levels of aggregation of hepatitis B reporting rates. The first level of aggregation area included Minhou, Gulou, Jin'an, Taijiang, and nine other districts and counties. Conclusion The incidence of hepatitis B is declining in Fujian Province. Spatial clusters of hepatitis B cases in Fujian Province were identified, and high-risk areas in eastern Fujian still exist. Closely monitoring the general patterns in the occurrence of hepatitis B and implementing focused control and preventative strategies are important.
Collapse
Affiliation(s)
- Shuo Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Shenggen Wu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350122, China
| | - Jingru Huang
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Shutong Ren
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Weijiang Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xian'e Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
37
|
Hou J, Ning Q, Duan Z, Chen Y, Xie Q, Zhang L, Wu S, Tang H, Li J, Lin F, Yang Y, Gong G, Luo Y, Xie S, Wang H, Mateo R, Yazdi T, Abramov F, Yee LJ, Flaherty J, Chen C, Huang Y, Zhang M, Jia J. Five-year Treatment with Tenofovir Alafenamide Achieves High Rates of Viral Suppression, Alanine Aminotransferase Normalization, and Favorable Bone and Renal Safety in Chinese Chronic Hepatitis B Patients. J Clin Transl Hepatol 2024; 12:469-480. [PMID: 38779514 PMCID: PMC11106352 DOI: 10.14218/jcth.2023.00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 02/02/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims After 3-years (144 week) of double-blind treatment in Chinese chronic hepatitis B patients in two ongoing phase 3 studies, tenofovir alafenamide (TAF) showed similar efficacy to tenofovir disoproxil fumarate (TDF), with improved renal and bone safety. In this study, we aimed to report the 5-year results from 2 years into the open-label TAF treatment phase. Methods All participants completing the 144-week double-blind treatment were eligible to receive open-label TAF 25 mg once daily up to week 384. Serial analysis of viral suppression (hepatitis B virus DNA <29 IU/mL), alanine aminotransferase normalization, serological responses, and safety outcomes at year 5 (week 240) was performed. Results The open-label phase included 93% (311/334) of the enrolled participants, which included 212 who switched from double-blind TAF to open-label TAF (TAF-TAF) and 99 who switched from double-blind TDF to open-label TAF (TDF-TAF). Baseline characteristics were comparable. Week 240 viral suppression rates were similar between groups [93.4% vs. 93.9%; difference: -1.5%, (95% CI: -6.4 to -3.5), p=0.857]. Alanine aminotransferase normalization and serological response rates were higher in the TAF-TAF group than in the TDF-TAF group. The frequencies of adverse events and laboratory abnormalities were low and similar between groups. Both groups had similar small numerical declines from baseline in estimated glomerular filtration rate at year 5 (week 240, -2.85 mL/min vs. -3.29 mL/min, p=0.910). The greater declines in renal and bone parameters in the TDF-TAF group through week 144 improved after switching to TAF. Conclusions The 5-year TAF treatment efficacy was high and similar to that of 3-year TDF followed by 2-year TAF in Chinese chronic hepatitis B patients. Favorable effects on bone and renal parameters were sustained with TAF treatment alone and were observed following the switch from TDF to TAF.
Collapse
Affiliation(s)
- Jinlin Hou
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Ning
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongping Duan
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Qing Xie
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunli Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shanming Wu
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Hong Tang
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Lin
- Hainan General Hospital, Haikou, Hainan, China
| | - Yongfeng Yang
- The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guozhong Gong
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | - Chengwei Chen
- The People’s Liberation Army No. 85 Hospital, Shanghai, China
| | - Yan Huang
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingxiang Zhang
- The Sixth People’s Hospital of Shenyang, Shenyang, Liaoning, China
| | - Jidong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Wang L, Liao F, Yang L, Jiang L, Duan L, Wang B, Mu D, Chen J, Huang Y, Hu Q, Chen W. KLRG1-expressing CD8+ T cells are exhausted and polyfunctional in patients with chronic hepatitis B. PLoS One 2024; 19:e0303945. [PMID: 38776335 PMCID: PMC11111010 DOI: 10.1371/journal.pone.0303945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangli Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Kong H, Zheng C, Yi K, Mintz RL, Lao YH, Tao Y, Li M. An antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Nat Commun 2024; 15:4267. [PMID: 38769317 PMCID: PMC11106281 DOI: 10.1038/s41467-024-46533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/01/2024] [Indexed: 05/22/2024] Open
Abstract
The membrane-fusion-based internalization without lysosomal entrapment is advantageous for intracellular delivery over endocytosis. However, protein corona formed on the membrane-fusogenic liposome surface converts its membrane-fusion performance to lysosome-dependent endocytosis, causing poorer delivery efficiency in biological conditions. Herein, we develop an antifouling membrane-fusogenic liposome for effective intracellular delivery in vivo. Leveraging specific lipid composition at an optimized ratio, such antifouling membrane-fusogenic liposome facilitates fusion capacity even in protein-rich conditions, attributed to the copious zwitterionic phosphorylcholine groups for protein-adsorption resistance. Consequently, the antifouling membrane-fusogenic liposome demonstrates robust membrane-fusion-mediated delivery in the medium with up to 38% fetal bovine serum, outclassing two traditional membrane-fusogenic liposomes effective at 4% and 6% concentrations. When injected into mice, antifouling membrane-fusogenic liposomes can keep their membrane-fusion-transportation behaviors, thereby achieving efficient luciferase transfection and enhancing gene-editing-mediated viral inhibition. This study provides a promising tool for effective intracellular delivery under complex physiological environments, enlightening future nanomedicine design.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
40
|
Cai X, Peng S, Xiao X, Huang Z, Zhang P. Serum ApoB/ApoA1 ratio in patients with CHB and the occurrence of HBV related cirrhosis and HBV related hepatocellular carcinoma. Sci Rep 2024; 14:10996. [PMID: 38744926 PMCID: PMC11094140 DOI: 10.1038/s41598-024-61820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Clinical research has suggested that chronic HBV infection exerts a certain effect on the occurrence of cardiovascular disease by regulating cholesterol metabolism in liver cells. High serum apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio plays a certain role in the above regulation, and it serves as a risk factor for cardiovascular disease. However, whether the ApoB/ApoA1 ratio is correlated with chronic HBV infection and its disease progression remains unclear. In accordance with the inclusion and exclusion criteria, all 378 participants administrated at Renmin Hospital of Wuhan University from March 2021 to March 2022, fell into Healthy Control (HC) group (50 participants), Hepatocellular carcinoma (HCC) group (107 patients), liver cirrhosis (LC) group (64 patients), chronic hepatitis B (CHB) group (62 patients), chronic hepatitis C (CHC) group (46 patients) and Hepatitis E Virus (HEV) group (49 patients). Serum ApoA1 and ApoB concentrations were measured at admission, and the ApoB/ApoA1 ratio was determined. The levels of laboratory parameters in the respective group were compared and ApoB/ApoA1 ratios in HCC patients and LC patients with different severity were further analyzed. ROC curves were plotted to analyze the early diagnostic ability of ApoB/ApoA1 ratio for HBV-associated HCC. Logistic regression and restricted cubic spline analysis were used to explore the correlation between ApoB/ApoA1 ratio and LC and HCC risk. A comparison was drawn in terms of ApoB/ApoA1 ratio between the groups, and the result was expressed in descending sequence: HEV group > CHB group > LC group > HCC group > CHC group > HC group, early-stage HCC < middle-stage HCC < advanced-stage HCC, Class A LC < Class B LC < Class C LC. Serum ApoB/ApoA1 ratio combined diagnosis with AFP exhibited the capability of increasing the detection efficacy and specificity of AFP for HCC and AFP-negative HCC. The incidence of LC and HCC in the respective logistic regression model showed a negative correlation with the serum ApoB/ApoA1 ratio in CHB patients (P < 0.05). After all confounding factors covered in this study were regulated, the result of the restricted cubic spline analysis suggested that in a certain range, serum ApoB/ApoA1 ratio showed an inverse correlation with the prevalence of LC or HCC in CHB patients. Serum ApoB/ApoA1 ratio in CHB patients may be conducive to identifying high-risk patients for HCC or LC, such that LC and HCC can be early diagnosed and treated.
Collapse
Affiliation(s)
- Xin Cai
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Shi Peng
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhaoyang Huang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
41
|
Yang NY, Hsieh AYY, Chen Z, Campbell AR, Gadawska I, Kakkar F, Sauve L, Bitnun A, Brophy J, Murray MCM, Pick N, Krajden M, Côté HCF. Chronic and Latent Viral Infections and Leukocyte Telomere Length across the Lifespan of Female and Male Individuals Living with or without HIV. Viruses 2024; 16:755. [PMID: 38793637 PMCID: PMC11125719 DOI: 10.3390/v16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Chronic/latent viral infections may accelerate immunological aging, particularly among people living with HIV (PLWH). We characterized chronic/latent virus infections across their lifespan and investigated their associations with leukocyte telomere length (LTL). METHODS Participants enrolled in the CARMA cohort study were randomly selected to include n = 15 for each decade of age between 0 and >60 y, for each sex, and each HIV status. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), herpes simplex virus 1 (HSV-1), and HSV-2 infection were determined serologically; HIV, hepatitis C (HCV), and hepatitis B (HBV) were self-reported. LTLs were measured using monochrome multiplex qPCR. Associations between the number of viruses, LTL, and sociodemographic factors were assessed using ordinal logistic and linear regression modeling. RESULTS The study included 187 PLWH (105 female/82 male) and 190 HIV-negative participants (105 female/84 male), ranging in age from 0.7 to 76.1 years. Living with HIV, being older, and being female were associated with harbouring a greater number of chronic/latent non-HIV viruses. Having more infections was in turn bivariately associated with a shorter LTL. In multivariable analyses, older age, living with HIV, and the female sex remained independently associated with having more infections, while having 3-4 viruses (vs. 0-2) was associated with a shorter LTL. CONCLUSIONS Our results suggest that persistent viral infections are more prevalent in PLWH and females, and that these may contribute to immunological aging. Whether this is associated with comorbidities later in life remains an important question.
Collapse
Affiliation(s)
- Nancy Yi Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhuo Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Amber R. Campbell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Laura Sauve
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Jason Brophy
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Melanie C. M. Murray
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Neora Pick
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- British Columbia Center for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
| | | |
Collapse
|
42
|
Asandem DA, Segbefia SP, Kusi KA, Bonney JHK. Hepatitis B Virus Infection: A Mini Review. Viruses 2024; 16:724. [PMID: 38793606 PMCID: PMC11125943 DOI: 10.3390/v16050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis B and C viruses (HBV and HCV) are the leading causes of end-stage liver disease worldwide. Although there is a potent vaccine against HBV, many new infections are recorded annually, especially in poorly resourced places which have lax vaccination policies. Again, as HBV has no cure and chronic infection is lifelong, vaccines cannot help those already infected. Studies to thoroughly understand the HBV biology and pathogenesis are limited, leaving much yet to be understood about the genomic features and their role in establishing and maintaining infection. The current knowledge of the impact on disease progression and response to treatment, especially in hyperendemic regions, is inadequate. This calls for in-depth studies on viral biology, mainly for the purposes of coming up with better management strategies for infected people and more effective preventative measures for others. This information could also point us in the direction of a cure. Here, we discuss the progress made in understanding the genomic basis of viral activities leading to the complex interplay of the virus and the host, which determines the outcome of HBV infection as well as the impact of coinfections.
Collapse
Affiliation(s)
- Diana Asema Asandem
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 52, Ghana;
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (S.P.S.); (K.A.K.)
| | - Joseph Humphrey Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| |
Collapse
|
43
|
Qin Y, Zhou W, Zhou X, Li H. Case report: Recombinant human type II tumour necrosis factor receptor-antibody fusion protein induced occult hepatitis B virus reactivation leading to liver failure. J Int Med Res 2024; 52:3000605241252580. [PMID: 38760056 PMCID: PMC11107333 DOI: 10.1177/03000605241252580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Recombinant human type II tumour necrosis factor receptor-antibody fusion protein (rh TNFR:Fc) is an immunosuppressant approved for treating rheumatoid arthritis (RA). This case report describes a case of hepatitis B reactivation in a patient with drug-induced acute-on-chronic liver failure. A 58-year-old woman with a history of RA was treated with rh TNFR:Fc; and then subsequently received 25 mg rh TNFR:Fc, twice a week, as maintenance therapy. No anti-hepatitis B virus (HBV) preventive treatment was administered. Six months later, she was hospitalized with acute jaundice. HBV reactivation was observed, leading to acute-on-chronic liver failure. After active treatment, the patient's condition improved and she recovered well. Following careful diagnosis and treatment protocols are essential when treating RA with rh TNFR:Fc, especially in anti-hepatitis B core antigen antibody-positive patients, even when the HBV surface antigen and the HBV DNA are negative. In the case of HBV reactivation, liver function parameters, HBV surface antigen and HBV DNA should be closely monitored during treatment, and antiviral drugs should be used prophylactically when necessary, as fatal hepatitis B reactivation may occur in rare cases. A comprehensive evaluation and medication should be administered in a timely manner after evaluating the patient's physical condition and closely monitoring the patient.
Collapse
Affiliation(s)
- Yujie Qin
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Wenxiu Zhou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xingnian Zhou
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hong Li
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
44
|
Mooney AH, Draper SL, Burn OK, Anderson RJ, Compton BJ, Tang C, Farrand KJ, Di Lucia P, Ravà M, Fumagalli V, Giustini L, Bono E, Godfrey DI, Heath WR, Yuan W, Chisari FV, Guidotti LG, Iannacone M, Sidney J, Sette A, Gulab SA, Painter GF, Hermans IF. Preclinical evaluation of therapeutic vaccines for chronic hepatitis B that stimulate antiviral activities of T cells and NKT cells. JHEP Rep 2024; 6:101038. [PMID: 38694959 PMCID: PMC11061331 DOI: 10.1016/j.jhepr.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 05/04/2024] Open
Abstract
Background & Aims Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.
Collapse
Affiliation(s)
- Anna H. Mooney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olivia K. Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Chingwen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francis V. Chisari
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shivali A. Gulab
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- Avalia Immunotherapies Limited, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
45
|
Iacob S, Gheorghe L, Onica M, Huiban L, Pop CS, Brisc C, Sirli R, Ester C, Brisc CM, Diaconu S, Rogoveanu I, Sandulescu L, Vuletici D, Trifan A. Prospective study of hepatitis B and D epidemiology and risk factors in Romania: A 10-year update. World J Hepatol 2024; 16:640-649. [PMID: 38689751 PMCID: PMC11056896 DOI: 10.4254/wjh.v16.i4.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/24/2024] Open
Abstract
BACKGROUND The global burden of hepatitis D virus (HDV) infection represents a major medical challenge and a public health crisis worldwide. However, there is a lack of accurate data on the epidemiology and risk factors for HDV. Hepatitis B virus (HBV) and HDV coinfection causes the most severe form of viral hepatitis, leading to a higher cumulative incidence of liver-related events compared with HBV monoinfection, including the need for liver transplantation and death. AIM To investigate the epidemiology, natural history, risk factors and clinical management of HBV and HDV coinfection in Romanian patients. METHODS This prospective study was conducted between January and July 2022 in six tertiary gastroenterology and hepatology referral centres in Romania. All consecutive adults admitted for any gastroenterology diagnosis who were HBV-positive were enrolled. Patients with acute hepatitis or incomplete data were excluded. Of the 25390 individuals who presented with any type of gastroenterology diagnosis during the study period, 963 met the inclusion criteria. Testing for anti-HDV antibodies and HDV RNA was performed for all participants. Demographic and risk factor data were collected by investigators using medical charts and patient questionnaires. All data were stored in an anonymized online database during the study. RESULTS The prevalence of HBV was 3.8%; among these patients, the prevalence of HBV/HDV coinfection was 33.1%. The median age of the study population was 54.0 years, and it consisted of 55.1% men. A higher prevalence of HBV/HDV coinfection was observed in patients 50-69 years old. Patients with HBV/HDV coinfection were significantly older than those with HBV monoinfection (P = 0.03). Multivariate multiple regression analysis identified female gender (P = 0.0006), imprisonment (P < 0.0001), older age at diagnosis (P = 0.01) and sexual contact with persons with known viral hepatitis (P = 0.0003) as significant risk factors for HDV. CONCLUSION This study shows that HDV infection among those with HBV remains endemic in Romania and updates our understanding of HDV epidemiology and associated risk factors. It emphasizes the need for systematic screening for HDV infection and collaborative initiatives for controlling and preventing HBV and HDV infection.
Collapse
Affiliation(s)
- Speranta Iacob
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology and Hepatology, Fundeni Clinical Institute, Bucharest 022328, Romania
| | - Liana Gheorghe
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology and Hepatology, Fundeni Clinical Institute, Bucharest 022328, Romania.
| | - Mirela Onica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology and Hepatology, Fundeni Clinical Institute, Bucharest 022328, Romania
| | - Laura Huiban
- Department of Gastroenterology, Grigore T Popa University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, Saint Spiridon County Hospital, Iasi 700111, Romania
| | - Corina Silvia Pop
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology and Medical Oncology, University Emergency Clinical Hospital, Bucharest 050098, Romania
| | - Ciprian Brisc
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania
- Department of Gastroenterology, Emergency County Hospital, Oradea 410169, Romania
| | - Roxana Sirli
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Gastroenterology and Hepatology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
- Department of Gastroenterology and Hepatology, Timiş County Emergency Clinical Hospital "Pius Branzeu", Timisoara 300723, Romania
| | - Carmen Ester
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology and Hepatology, Fundeni Clinical Institute, Bucharest 022328, Romania
| | - Cristina Mihaela Brisc
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania
- Department of Gastroenterology, Emergency County Hospital, Oradea 410169, Romania
| | - Sorina Diaconu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Internal Medicine II and Gastroenterology, University Emergency Clinical Hospital, Bucharest 050098, Romania
| | - Ion Rogoveanu
- Department of Gastroenterology, University of Medicine and Pharmacy, Craiova 200349, Romania
- Department of Cardiology, Emergency County Hospital, Craiova 200642, Romania
| | - Larisa Sandulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy, Craiova 200349, Romania
- Department of Gastroenterology, Emergency County Hospital, Craiova 200642, Romania
| | - Deiana Vuletici
- Center for Advanced Research in Gastroenterology and Hepatology, Department of Gastroenterology and Hepatology, "Victor Babeş" University of Medicine and Pharmacy, Timisoara 300041, Romania
- Department of Gastroenterology and Hepatology, Timiş County Emergency Clinical Hospital "Pius Branzeu", Timisoara 300723, Romania
| | - Anca Trifan
- Institute of Gastroenterology and Hepatology, Saint Spiridon County Hospital, Iasi 700111, Romania
- Department of Gastroenterology, Faculty of Medicine, Grigore T Popa University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
46
|
Liu H, Chen S, Liu X, Lou J. Effect of S-region mutations on HBsAg in HBsAg-negative HBV-infected patients. Virol J 2024; 21:92. [PMID: 38654327 PMCID: PMC11040738 DOI: 10.1186/s12985-024-02366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Occult HBV infection (OBI) is a special form of hepatitis B virus (HBV) infection that may cause Liver cirrhosis and hepatocellular carcinoma, causing significant harm to patients. Given the insidious nature of OBI, it is usually not easy to be detected. Most of the samples currently studied are concentrated on blood donors, however, patients in this special state have not been fully studied. This project aimed to study the effect of HBV S region mutations on HBsAg in patients with clinical OBI. METHODS Collect 107 HBsAg-/HBV DNA + blood samples from Beijing Youan Hospital, Capital Medical University from August 2022 to April 2023. Next, the successfully extracted and amplified HBV DNA S regions were sequenced. Construct mutant plasmids to verify the cell function of the high-frequency mutation sites and explore the possible molecular mechanism. RESULTS Sixty-eight HBsAg-negative samples were sequenced, revealing high-frequency amino acid substitution sites in the HBV S protein, including immune escape mutations (i.e., sY100C、sK122R、sI126T、sT131P、and sS114T) and TMD (Transmembrane domain) region substitutions (i.e., sT5A、sG10D、sF20S、and sS3N). We constructed a portion of the mutant plasmids and found that sT5A, sF20S, sG10D, sS3N, sI68T, and sI126T single point mutations or combined mutations may decrease HBsAg expression or change the antigenicity of HBsAg leading to detection failure. CONCLUSIONS HBsAg-negative patients may show various mutations and amino acid replacement sites at high frequency in the HBV S-region, and these mutations may lead to undetectable Hepatitis B surface antigen (HBsAg), HBsAg antigenic changes or secretion inhibition.
Collapse
Affiliation(s)
- Hui Liu
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China
| | - Shuxiang Chen
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China
| | - Xin Liu
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China
| | - Jinli Lou
- Clinical Laboratory Center, Beijing Youan Hospital, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
47
|
Biswas S, Kumar R, Shalimar, Acharya SK. Viral hepatitis-induced acute liver failure. Indian J Gastroenterol 2024; 43:312-324. [PMID: 38451383 DOI: 10.1007/s12664-024-01538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 03/08/2024]
Abstract
Viral hepatitis-induced acute liver failure (ALF) is a preventable cause for liver-related mortality worldwide. Viruses are the most common cause for ALF in developing nations in contrast to the west, where acetaminophen is largely responsible. Viruses may be hepatotropic or affect the liver secondary to a systemic infection. In tropical countries, infections such as leptospirosis, scrub typhus and malaria can mimic the symptoms of ALF. Differentiating these ALF mimics is crucial because they require etiology-specific therapy. Treatment of viral hepatitis-induced ALF is two-pronged and directed towards providing supportive care to prevent organ failures and antiviral drugs for some viruses. Liver transplantation (LT) is an effective modality for patients deteriorating despite adequate supportive care. Early referral and correct identification of patients who require a transplant are important. Liver support devices and plasma exchange have evolved into "bridging modalities" for LT. Preventive strategies such as hand hygiene, use of clean and potable water and inclusion of vaccines against viral hepatitis in the national program are simple yet very effective methods focusing on the preventive aspect of this disease.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, 801 507, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| | - Subrat Kumar Acharya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India
- KIIT University, Bhubaneswar, 751 024, India
- Fortis Escorts Digestive and Liver Institute, Okhla, New Delhi, 110 025, India
| |
Collapse
|
48
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
49
|
Yano Y, Sato I, Imanishi T, Yoshida R, Matsuura T, Ueda Y, Kodama Y. Clinical Significance and Remaining Issues of Anti-HBc Antibody and HBV Core-Related Antigen. Diagnostics (Basel) 2024; 14:728. [PMID: 38611641 PMCID: PMC11011781 DOI: 10.3390/diagnostics14070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Currently, hepatitis B virus (HBV) core antibody (anti-HBc antibody) and HBV core-related antigen (HBcrAg) are widely used as serum markers for diagnosis based on the HBV core region. This review focused on anti-HBc antibodies and HBcrAg and aimed to summarize the clinical significance of currently used assay systems and the issues involved. While anti-HBc is very significant for clinical diagnosis, the clinical significance of quantitative assay of anti-HBc antibody has been reevaluated with improvements in diagnostic performance, including its association with clinical stage and prediction of carcinogenesis and reactivation. In addition, concerning the new HBcrAg, a high-sensitivity assay method has recently been established, and its diagnostic significance, including the prediction of reactivation, is being reevaluated. On the other hand, the quantitative level of anti-HBc antibody expressed in different units among assay systems complicates the interpretation of the results. However, it is difficult to standardize assay systems as they vary in advantages, and caution is needed in interpreting the assay results. In conclusion, with the development of highly sensitive HBcrAg and anti-HBc antibody, a rapid and sensitive detection assay system has been developed and used in clinical practice. In the future, it is hoped that a global standard will be created based on the many clinical findings.
Collapse
Affiliation(s)
- Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Itsuko Sato
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Takamitsu Imanishi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Ryutaro Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Takanori Matsuura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| |
Collapse
|
50
|
Xiong Y, Qiao W, Wang Q, Li K, Jin R, Zhang Y. Construction and validation of a machine learning-based nomogram to predict the prognosis of HBV associated hepatocellular carcinoma patients with high levels of hepatitis B surface antigen in primary local treatment: a multicenter study. Front Immunol 2024; 15:1357496. [PMID: 38601167 PMCID: PMC11004323 DOI: 10.3389/fimmu.2024.1357496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hepatitis B surface antigen (HBsAg) clearance is associated with improved long-term outcomes and reduced risk of complications. The aim of our study was to identify the effects of levels of HBsAg in HCC patients undergoing TACE and sequential ablation. In addition, we created a nomogram to predict the prognosis of HCC patients with high levels of HBsAg (≥1000U/L) after local treatment. Method This study retrospectively evaluated 1008 HBV-HCC patients who underwent TACE combined with ablation at Beijing Youan Hospital and Beijing Ditan Hospital from January 2014 to December 2021, including 334 patients with low HBsAg levels and 674 patients with high HBsAg levels. The high HBsAg group was divided into the training cohort (N=385), internal validation cohort (N=168), and external validation cohort (N=121). The clinical and pathological features of patients were collected, and independent risk factors were identified using Lasso-Cox regression analysis for developing a nomogram. The performance of the nomogram was evaluated by C-index, receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) curves in the training and validation cohorts. Patients were classified into high-risk and low-risk groups based on the risk scores of the nomogram. Result After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9 months (18.5-25.4 months) in the low HBsAg level and high HBsAg level groups (P<0.001). The content of the nomogram includes age, BCLC stage, tumor size, globulin, GGT, and bile acids. The C-index (0.682, 0.666, and 0.740) and 1-, 3-, and 5-year AUCs of the training, internal validation, and external validation cohorts proved good discrimination of the nomogram. Calibration curves and DCA curves suggested accuracy and net clinical benefit rates. The nomogram enabled to classification of patients with high HBsAg levels into low-risk and high-risk groups according to the risk of recurrence. There was a statistically significant difference in RFS between the two groups in the training, internal validation, and external validation cohorts (P<0.001). Conclusion High levels of HBsAg were associated with tumor progression. The nomogram developed and validated in the study had good predictive ability for patients with high HBsAg levels.
Collapse
Affiliation(s)
- Yiqi Xiong
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wenying Qiao
- Research Center for Biomedical Resources, Beijing You’an Hospital Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Interventional Radiology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Research Center for Biomedical Resources, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Research Center for Biomedical Resources, Beijing You’an Hospital Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yonghong Zhang
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|