1
|
Pressley KR, Schwegman L, De Oca Arena MM, Huizar CC, Zamvil SS, Forsthuber TG. HLA-transgenic mouse models to study autoimmune central nervous system diseases. Autoimmunity 2024; 57:2387414. [PMID: 39167553 PMCID: PMC11470778 DOI: 10.1080/08916934.2024.2387414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
It is known that certain human leukocyte antigen (HLA) genes are associated with autoimmune central nervous system (CNS) diseases, such as multiple sclerosis (MS), but their exact role in disease susceptibility and etiopathogenesis remains unclear. The best studied HLA-associated autoimmune CNS disease is MS, and thus will be the primary focus of this review. Other HLA-associated autoimmune CNS diseases, such as autoimmune encephalitis and neuromyelitis optica will be discussed. The lack of animal models to accurately capture the complex human autoimmune response remains a major challenge. HLA transgenic (tg) mice provide researchers with powerful tools to investigate the underlying mechanisms promoting susceptibility and progression of HLA-associated autoimmune CNS diseases, as well as for elucidating the myelin epitopes potentially targeted by T cells in autoimmune disease patients. We will discuss the potential role(s) of autoimmune disease-associated HLA alleles in autoimmune CNS diseases and highlight information provided by studies using HLA tg mice to investigate the underlying pathological mechanisms and opportunities to use these models for development of novel therapies.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Lance Schwegman
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | | - Carol Chase Huizar
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Scott S. Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Feng Y, Deyanat-Yazdi G, Newburn K, Potter S, Wortinger M, Ramirez M, Truhlar SME, Yachi PP. PD-1 antibody interactions with Fc gamma receptors enable PD-1 agonism to inhibit T cell activation - therapeutic implications for autoimmunity. J Autoimmun 2024; 149:103339. [PMID: 39608214 DOI: 10.1016/j.jaut.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
PD-1 has emerged as a central inhibitory checkpoint receptor in maintaining immune homeostasis and as a target in cancer immunotherapies. However, targeting PD-1 for the treatment of autoimmune diseases has been more challenging. We recently showed in a phase 2a trial that PD-1 could be stimulated with the PD-1 agonist antibody peresolimab to treat rheumatoid arthritis. Here, we demonstrate that PD-1 antibodies can elicit agonism and inhibit T cell activation by co-localization of PD-1 with the T cell receptor via Fcγ receptor (FcγR) engagement. Three PD-1 agonist antibodies with different antigen binding domains, including the clinically validated PD-1 blocking antibody pembrolizumab, suppressed T cell activation to a similar degree; this finding suggests that a specific PD-1-binding epitope is not required for PD-1 agonism. We next explored whether antibody-mediated clustering was an important driver of inhibition of T cell activation; however, we found that a monovalent PD-1 antibody was not inferior to a conventional bivalent antibody in its ability to suppress T cell activation. Importantly, we found that affinity to PD-1 correlated positively with inhibition of T cell activation, with higher affinity antibodies exhibiting higher levels of inhibition. Using a series of human Fc mutants with altered affinities to various FcγRs, we dissected the contributions of FcγRs and found that multiple FcγRs rather than a single receptor contribute to agonist activity. Our work reveals an important role for FcγR binding in the activity of PD-1 antibodies, which has implications for optimizing both PD-1 agonist and antagonist antibodies.
Collapse
MESH Headings
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/drug effects
- Autoimmunity
- Protein Binding
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/therapy
Collapse
Affiliation(s)
- Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Gordafaried Deyanat-Yazdi
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Kristin Newburn
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Scott Potter
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Mark Wortinger
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Miriam Ramirez
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Stephanie M E Truhlar
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Pia P Yachi
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA.
| |
Collapse
|
3
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
4
|
Çorbacı K, Gurleyik MG, Gonultas A, Aker F, Gul MO, Tilki M. Evaluation of prognostic significance of histopathological characteristics and tumor-infiltrating lymphocytes for pancreatic cancer survival. Sci Rep 2024; 14:27392. [PMID: 39521901 PMCID: PMC11550438 DOI: 10.1038/s41598-024-79342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
With a 5-year survival of ˂ 10%, pancreatic cancer is one of the leading causes of cancer-related deaths. Given the role of the distribution of tumor-infiltrating lymphocyte (TILs) subtypes in the tumor and its microenvironment in predicting prognosis, the development of new targeted therapies based on T-cell adaptive response has gained considerable attention. This study aimed to examine the peritumoral spread of TILs and its relationship with other prognostic parameters and survival. This study included 60 patients with pancreatic cancer who had undergone surgery with follow-up between 2011 and 2021. Demographic characteristics, tumor histopathological features, peritumoral TILs counts, and intratumoral programmed cell death protein-1 (PD-1) and programmed death ligand - 1 (PD-L1) positivity were evaluated. Furthermore, overall survival and their efficacy in predicting survival according to TNM stage were analyzed. The number of cluster differentiation-3 positive (CD3 P) TILs increased with advancing pathological T stage. CD3 P and CD8 P TIL counts were higher in patients with peripancreatic fatty tissue invasion. Patients with PD-L1 positivity and higher TIL counts had better survival rates. PD-L1-negative patients with a low CD8 positive/total lymph node count (P/T) ratio had a longer survival. Moreover, patients with poorly differentiated tumors with low CD3 P/T and CD8 P/T ratios had a longer survival. The CD3 P/T and CD8 P/T ratios were compatible with the automatic and manual measurements. Age, tumor differentiation, N stage, and peritumoral TIL count and subtype, when evaluated together with the presence of PD-L1 in the tumor tissue, may have prognostic significance for survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Kadir Çorbacı
- General Surgery, Osmaneli Mustafa Selahattin Çetintaş State Hospital, Bilecik, Turkey.
| | - Meryem Gunay Gurleyik
- Department of General Surgery, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | | | - Fugen Aker
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Onur Gul
- Surgical Oncology, Malatya Training and Research Hospital, Malatya, Turkey
| | - Metin Tilki
- Department of General Surgery, Haydarpasa Numune Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
5
|
Neve-Oz Y, Sherman E, Raveh B. Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns. Front Immunol 2024; 15:1412221. [PMID: 39524449 PMCID: PMC11543436 DOI: 10.3389/fimmu.2024.1412221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
T cells respond swiftly, specifically, sensitively, and robustly to cognate antigens presented on the surface of antigen presenting cells. Existing microscopic models capture various aspects of early T-cell antigen receptor (TCR) signaling at the molecular level. However, none of these models account for the totality of the data, impeding our understanding of early T-cell activation. Here, we study early TCR signaling using Bayesian metamodeling, an approach for systematically integrating multiple partial models into a metamodel of a complex system. We inform the partial models using multiple published super-resolution microscopy datasets. Collectively, these datasets describe the spatiotemporal organization, activity, interactions, and dynamics of TCR, CD45 and Lck signaling molecules in the early-forming immune synapse, and the concurrent membrane alterations. The resulting metamodel accounts for a distinct nanoscale dynamic pattern that could not be accounted for by any of the partial models on their own: a ring of phosphorylated TCR molecules, enriched at the periphery of early T cell contacts and confined by a proximal ring of CD45 molecules. The metamodel suggests this pattern results from limited activity range for the Lck molecules, acting as signaling messengers between kinetically-segregated TCR and CD45 molecules. We assessed the potential effect of Lck activity range on TCR phosphorylation and robust T cell activation for various pMHC:TCR association strengths, in the specific setting of an initial contact. We also inspected the impact of localized Lck inhibition via Csk recruitment to pTCRs, and that of splicing isoforms of CD45 on kinetic segregation. Due to the inherent scalability and adaptability of integrating independent partial models via Bayesian metamodeling, this approach can elucidate additional aspects of cell signaling and decision making.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Wu M, Mao L, Zhai X, Liu J, Wang J, Li L, Duan J, Wang J, Lin S, Li J, Yu S. Microenvironmental alkalization promotes the therapeutic effects of MSLN-CAR-T cells. J Immunother Cancer 2024; 12:e009510. [PMID: 39433427 PMCID: PMC11499857 DOI: 10.1136/jitc-2024-009510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by high invasion, prone metastasis, frequent recurrence and poor prognosis. Unfortunately, the curative effects of current clinical therapies, including surgery, radiotherapy, chemotherapy and immunotherapy, are still limited in patients with TNBC. In this study, we showed that the heterogeneous expression at the protein level and subcellular location of mesothelin (MSLN), a potential target for chimeric antigen receptor-T (CAR-T) cell therapy in TNBC, which is caused by acidification of the tumor microenvironment, may be the main obstacle to therapeutic efficacy. Alkalization culture or sodium bicarbonate administration significantly promoted the membrane expression of MSLN and enhanced the killing efficiency of MSLN-CAR-T cells both in vitro and in vivo, and the same results were also obtained in other cancers with high MSLN expression, such as pancreatic and ovarian cancers. Moreover, mechanistic exploration revealed that the attenuation of autophagy-lysosome function caused by microenvironmental alkalization inhibited the degradation of MSLN. Hence, alkalization of the microenvironment improves the consistency and high expression of the target antigen MSLN and constitutes a routine method for treating diverse solid cancers via MSLN-CAR-T cells.
Collapse
Affiliation(s)
- Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Junhan Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Langhong Li
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jiangjie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| | - Shuang Lin
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Jianjun Li
- Deaprtment of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, Chongqing, China
- Jin-feng Laboratory, Chongqing, Chongqing, China
| |
Collapse
|
7
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Zhang Y, Fu H, Zhao Q. Current status and perspectives of clinical trials for tumor-infiltrating lymphocyte therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03608-z. [PMID: 39078471 DOI: 10.1007/s12094-024-03608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Immunotherapies, mainly immune checkpoint inhibitors (ICIs), have revolutionized cancer treatment strategies over the past decade, but their limitations have limited clinical applications. Tumor-infiltrating lymphocyte (TIL) therapy is a type of adoptive cell therapy (ACT), which collects infiltrating lymphocytes at the tumor site and expands them in vitro to obtain TIL final products cloned by various T-cell receptors, subsequently reinfused TIL into the patient, which is effective for the treatment of solid tumors. The approval of Lifileucel for commercialization marks the success of TIL therapy. This review summarizes the current status of clinical trials of TIL treatment. In addition, it is suggested that the current research trend of TIL should focus on improving the survival time of TIL in vivo, reducing drug toxicity, and searching for prognostic markers. Finally, it is expected that TIL therapy can be applied to a more wide range of clinical treatments.
Collapse
Affiliation(s)
- Yunting Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Hongye Fu
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qiong Zhao
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
10
|
Shi J, Yin W, Chen W. Mathematical models of TCR initial triggering. Front Immunol 2024; 15:1411614. [PMID: 39091495 PMCID: PMC11291225 DOI: 10.3389/fimmu.2024.1411614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly and accurately recognizing foreign and non-self antigens. The process involves multiple molecules and regulatory mechanisms, forming a complex network to achieve effective antigen recognition. Mathematical modeling techniques can help unravel the intricate network of TCR signaling and identify key regulators that govern it. In this review, we introduce and briefly discuss relevant mathematical models of TCR initial triggering, with a focus on kinetic proofreading (KPR) models with different modified structures. We compare the topology structures, biological hypotheses, parameter choices, and simulation performance of each model, and summarize the advantages and limitations of them. Further studies on TCR modeling design, aiming for an optimized balance of specificity and sensitivity, are expected to contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
12
|
Pandey A, Nowakowski P, Ureña Martin C, Abu Ahmad M, Edri A, Toledo E, Tzadka S, Walther J, Le Saux G, Porgador A, Smith AS, Schvartzman M. Membrane Fluctuation Model for Understanding the Effect of Receptor Nanoclustering on the Activation of Natural Killer Cells through Biomechanical Feedback. NANO LETTERS 2024; 24:5395-5402. [PMID: 38684070 DOI: 10.1021/acs.nanolett.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response. We found that ligand density significantly regulated NK cell activation while ligand clustering had an impact only at a specific density threshold. We also rationalized these findings by introducing a theoretical membrane fluctuation model that considers biomechanical feedback between ligand-receptor bonds and the cell membrane. These findings provide important insight into NK cell mechanobiology, which is fundamentally important and essential for designing immunotherapeutic strategies targeting cancer.
Collapse
Affiliation(s)
- Ashish Pandey
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Piotr Nowakowski
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Carlos Ureña Martin
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Muhammad Abu Ahmad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Sivan Tzadka
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Jonas Walther
- PULS Group, Institut für Theoretische Physik, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- PULS Group, Institut für Theoretische Physik, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
13
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Huang X, Meng L, Cao G, Prominski A, Hu Y, Yang C, Chen M, Shi J, Gallagher C, Cao T, Yue J, Huang J, Tian B. Multimodal probing of T-cell recognition with hexapod heterostructures. Nat Methods 2024; 21:857-867. [PMID: 38374262 DOI: 10.1038/s41592-023-02165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
Studies using antigen-presenting systems at the single-cell and ensemble levels can provide complementary insights into T-cell signaling and activation. Although crucial for advancing basic immunology and immunotherapy, there is a notable absence of synthetic material toolkits that examine T cells at both levels, and especially those capable of single-molecule-level manipulation. Here we devise a biomimetic antigen-presenting system (bAPS) for single-cell stimulation and ensemble modulation of T-cell recognition. Our bAPS uses hexapod heterostructures composed of a submicrometer cubic hematite core (α-Fe2O3) and nanostructured silica branches with diverse surface modifications. At single-molecule resolution, we show T-cell activation by a single agonist peptide-loaded major histocompatibility complex; distinct T-cell receptor (TCR) responses to structurally similar peptides that differ by only one amino acid; and the superior antigen recognition sensitivity of TCRs compared with that of chimeric antigen receptors (CARs). We also demonstrate how the magnetic field-induced rotation of hexapods amplifies the immune responses in suspended T and CAR-T cells. In addition, we establish our bAPS as a precise and scalable method for identifying stimulatory antigen-specific TCRs at the single-cell level. Thus, our multimodal bAPS represents a unique biointerface tool for investigating T-cell recognition, signaling and function.
Collapse
Affiliation(s)
- Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Min Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Thao Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
16
|
Ma YH, Zhu Y, Wu H, He Y, Zhang Q, Huang Q, Wang Z, Xing H, Qiu L, Tan W. Domain-Targeted Membrane Partitioning of Specific Proteins with DNA Nanodevices. J Am Chem Soc 2024; 146:7640-7648. [PMID: 38466380 DOI: 10.1021/jacs.3c13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.
Collapse
Affiliation(s)
- Yong-Hao Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yan Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiuling Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Xia J, Phan HV, Vistain L, Chen M, Khan AA, Tay S. Computational prediction of protein interactions in single cells by proximity sequencing. PLoS Comput Biol 2024; 20:e1011915. [PMID: 38483861 PMCID: PMC10939233 DOI: 10.1371/journal.pcbi.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Proximity sequencing (Prox-seq) simultaneously measures gene expression, protein expression and protein complexes on single cells. Using information from dual-antibody binding events, Prox-seq infers surface protein dimers at the single-cell level. Prox-seq provides multi-dimensional phenotyping of single cells in high throughput, and was recently used to track the formation of receptor complexes during cell signaling and discovered a novel interaction between CD9 and CD8 in naïve T cells. The distribution of protein abundance can affect identification of protein complexes in a complicated manner in dual-binding assays like Prox-seq. These effects are difficult to explore with experiments, yet important for accurate quantification of protein complexes. Here, we introduce a physical model of Prox-seq and computationally evaluate several different methods for reducing background noise when quantifying protein complexes. Furthermore, we developed an improved method for analysis of Prox-seq data, which resulted in more accurate and robust quantification of protein complexes. Finally, our Prox-seq model offers a simple way to investigate the behavior of Prox-seq data under various biological conditions and guide users toward selecting the best analysis method for their data.
Collapse
Affiliation(s)
- Junjie Xia
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
| | - Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Aly A. Khan
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Sarlo Davila KM, Boggiatto P, Olsen S, Lippolis JD, Crooker BA, Putz EJ. Effect of selection genotype on immune response to Brucella abortus RB51 in Holstein cattle. Anim Genet 2024; 55:47-54. [PMID: 37946616 DOI: 10.1111/age.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.
Collapse
Affiliation(s)
- Kaitlyn M Sarlo Davila
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Paola Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Brian A Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
19
|
Li C, Guo H, Zhai P, Yan M, Liu C, Wang X, Shi C, Li J, Tong T, Zhang Z, Ma H, Zhang J. Spatial and Single-Cell Transcriptomics Reveal a Cancer-Associated Fibroblast Subset in HNSCC That Restricts Infiltration and Antitumor Activity of CD8+ T Cells. Cancer Res 2024; 84:258-275. [PMID: 37930937 PMCID: PMC10790129 DOI: 10.1158/0008-5472.can-23-1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Although immunotherapy can prolong survival in some patients with head and neck squamous cell carcinoma (HNSCC), the response rate remains low. Clarification of the critical mechanisms regulating CD8+ T-cell infiltration and dysfunction in the tumor microenvironment could help maximize the benefit of immunotherapy for treating HNSCC. Here, we performed spatial transcriptomic analysis of HNSCC specimens with differing immune infiltration and single-cell RNA sequencing of five pairs of tumor and adjacent tissues, revealing specific cancer-associated fibroblast (CAF) subsets related to CD8+ T-cell infiltration restriction and dysfunction. These CAFs exhibited high expression of CXCLs (CXCL9, CXCL10, and CXCL12) and MHC-I and enrichment of galectin-9 (Gal9). The proportion of MHC-IhiGal9+ CAFs was inversely correlated with abundance of a TCF1+GZMK+ subset of CD8+ T cells. Gal9 on CAFs induced CD8+ T-cell dysfunction and decreased the proportion of tumor-infiltrating TCF1+CD8+ T cells. Collectively, the identification of MHC-IhiGal9+ CAFs advances the understanding of the precise role of CAFs in cancer immune evasion and paves the way for more effective immunotherapy for HNSCC. SIGNIFICANCE Spatial analysis identifies IFN-induced MHC-IhiGal9+ CAFs that form a trap for CD8+ T cells, providing insights into the complex networks in the tumor microenvironment that regulate T-cell infiltration and function.
Collapse
Affiliation(s)
- Chuwen Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Xiaoning Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chaoji Shi
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tong Tong
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Hailong Ma
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology, Shanghai, People's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
- Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
21
|
Patel A, Andre V, Eguiguren SB, Barton MI, Burton J, Denham EM, Pettmann J, Mørch AM, Kutuzov MA, Siller-Farfán JA, Dustin ML, van der Merwe PA, Dushek O. Using CombiCells, a platform for titration and combinatorial display of cell surface ligands, to study T-cell antigen sensitivity modulation by accessory receptors. EMBO J 2024; 43:132-150. [PMID: 38177315 PMCID: PMC10897201 DOI: 10.1038/s44318-023-00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Understanding cellular decisions due to receptor-ligand interactions at cell-cell interfaces has been hampered by the difficulty of independently varying the surface density of multiple different ligands. Here, we express the synthetic binder protein SpyCatcher, designed to form spontaneous covalent bonds with interactors carrying a Spytag, on the cell surface. Using this, we show that addition of different concentrations and combinations of native Spytag-fused ligands allows for the combinatorial display of ligands on cells within minutes. We use this combinatorial display of cell surface ligands-called CombiCells-to assess T cell antigen sensitivity and the impact of T cell co-stimulation and co-inhibition receptors. We find that the T cell receptor (TCR) displayed greater sensitivity to peptides on major-histocompatibility complexes (pMHC) than synthetic chimeric antigen receptor (CARs) and bi-specific T cell engager (BiTEs) display to their target antigen, CD19. While TCR sensitivity was greatly enhanced by CD2/CD58 interactions, CAR sensitivity was primarily but more modestly enhanced by LFA-1/ICAM-1 interactions. Lastly, we show that PD-1/PD-L1 engagement inhibited T cell activation triggered solely by TCR/pMHC interactions, as well as the amplified activation induced by CD2 and CD28 co-stimulation. The ability to easily produce cells with different concentrations and combinations of ligands should accelerate the study of receptor-ligand interactions at cell-cell interfaces.
Collapse
Affiliation(s)
- Ashna Patel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Violaine Andre
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Michael I Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jake Burton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Eleanor M Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- EnaraBio Ltd, The Bellhouse Building, Oxford Science Park, Sanders Road, Oxford, OX44GD, UK
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- GlaxoSmithKline Pharmaceuticals, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | - Alexander M Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
22
|
Hajibabaie F, Abedpoor N, Haghjooy Javanmard S, Hasan A, Sharifi M, Rahimmanesh I, Shariati L, Makvandi P. The molecular perspective on the melanoma and genome engineering of T-cells in targeting therapy. ENVIRONMENTAL RESEARCH 2023; 237:116980. [PMID: 37648188 DOI: 10.1016/j.envres.2023.116980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Medical Biotechnology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
23
|
Wang Y, Sun Z, Ping J, Tang J, He B, Chang T, Zhou Q, Yuan S, Tang Z, Li X, Lu Y, He R, He X, Liu Z, Yin L, Wu N. Cell volume controlled by LRRC8A-formed volume-regulated anion channels fine-tunes T cell activation and function. Nat Commun 2023; 14:7075. [PMID: 37925509 PMCID: PMC10625614 DOI: 10.1038/s41467-023-42817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Biosynthesis drives the cell volume increase during T cell activation. However, the contribution of cell volume regulation in TCR signaling during T lymphoblast formation and its underlying mechanisms remain unclear. Here we show that cell volume regulation is required for optimal T cell activation. Inhibition of VRACs (volume-regulated anion channels) and deletion of leucine-rich repeat-containing protein 8A (LRRC8A) channel components impair T cell activation and function, particularly under weak TCR stimulation. Additionally, LRRC8A has distinct influences on mRNA transcriptional profiles, indicating the prominent effects of cell volume regulation for T cell functions. Moreover, cell volume regulation via LRRC8A controls T cell-mediated antiviral immunity and shapes the TCR repertoire in the thymus. Mechanistically, LRRC8A governs stringent cell volume increase via regulated volume decrease (RVD) during T cell blast formation to keep the TCR signaling molecules at an adequate density. Together, our results show a further layer of T cell activation regulation that LRRC8A functions as a cell volume controlling "valve" to facilitate T cell activation.
Collapse
Affiliation(s)
- Yuman Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieming Ping
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Teding Chang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The First Affiliated Hospital of Anhui Medical University, Institute of Clinical Immunology, Anhui Medical University, Hefei, China.
| |
Collapse
|
24
|
Wang Z, Zhang Y, Wu L, Chen J, Xie S, He J, Zhang Q, Chen H, Chen F, Liu Y, Zhang Y, Zhuo Y, Wen N, Qiu L, Tan W. An Aptamer-Functionalized DNA Circuit to Establish an Artificial Interaction between T Cells and Cancer Cells. Angew Chem Int Ed Engl 2023; 62:e202307656. [PMID: 37423897 DOI: 10.1002/anie.202307656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Nongenetic strategies that enable control over the cell-cell interaction network would be highly desired, particularly in T cell-based cancer immunotherapy. In this work, we developed an aptamer-functionalized DNA circuit to modulate the interaction between T cells and cancer cells. This DNA circuit was composed of recognition-then-triggering and aggregation-then-activation modules. Upon recognizing target cancer cells, the triggering strand was released to induce aggregation of immune receptors on the T cell surface, leading to an enhancement of T cell activity for effective cancer eradication. Our results demonstrated the feasibility of this DNA circuit for promoting target cancer cell-directed stimulation of T cells, which, consequently, enhanced their killing effect on cancer cells. This DNA circuit, as a modular strategy to modulate intercellular interactions, could lead to a new paradigm for the development of nongenetic T cell-based immunotherapy.
Collapse
Affiliation(s)
- Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaxuan He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Fengming Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Nachuan Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Abstract
T cell activation is initiated by the recognition of specific antigenic peptides and subsequently accomplished by complex signaling cascades. These aspects have been extensively studied for decades as pivotal factors in the establishment of adaptive immunity. However, how receptors or signaling molecules are organized in the resting state prior to encountering antigens has received less attention. Recent advancements in super-resolution microscopy techniques have revealed topographically controlled pre-formed organization of key molecules involved in antigen recognition and signal transduction on microvillar projections of T cells before activation and substantial effort has been dedicated to characterizing the topological structure of resting T cells over the past decade. This review will summarize our current understanding of how key surface receptors are pre-organized on the T-cell plasma membrane and discuss the potential role of these receptors, which are preassembled prior to ligand binding in the early activation events of T cells.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Nano-Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
26
|
You Y, Jin F, Du Y, Zhu L, Liu D, Zhu M, Du Y, Lang J, Li W, Ji JS, Du YZ. A photo-activable nano-agonist for the two-signal model of T cell in vivo activation. J Control Release 2023; 361:681-693. [PMID: 37595667 DOI: 10.1016/j.jconrel.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
The two-signal model of T cell activation has helped shape our understanding of the adaptive immune response for over four decades. According to the model, activation of T cells requires a stimulus through the T cell receptor/CD3 complex (signal 1) and a costimulatory signal 2. Stimulation of activatory signals via T cell agonists has thus emerged. However, for a robust T cell activation, it necessitates not only the presence of both signal 1 and signal 2, but also a high signaling strength. Herein, we report a photo-activable nano-agonist for the two-signal model of T cell in vivo activation. A UV-crosslinkable polymer is coated onto upconversion nanoparticles with satisfactory NIR-to-UV light conversion efficiency. Then dual signal molecules, i.e., signal 1 and signal 2, are conjugated to the polymer end to yield the photo-activable T cell nano-agonist. In melanoma and breast cancer models, photo-activable nano-agonist could bind onto corresponding activatory receptors on the surface of T cells, but has limited activity without the application of NIR light (absence of photo-crosslinking of receptors and consequently a poor signaling strength). While when the NIR light is switched on locally, T cells in tumor are remarkably activated and kill tumor cells effectively. Moreover, we do not observe any detectable toxicities related to the photo-activable nano-agonist. We believe with two activatory signals being simultaneously strengthened by local photo-switched crosslinking, T cells realize a robust and selective activation in tumor and, consequently contribute to an enhanced and safe tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchan You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Feiyang Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yan Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Luwen Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Di Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Minxia Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yuyin Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jialu Lang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Weishuo Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Jian-Song Ji
- Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Radiology, 289 Kuocang Road, Lishui 323000, PR China.
| | - Yong-Zhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Innovation Center of Transformational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
27
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
28
|
Xia J, Van Phan H, Vistain L, Chen M, Khan AA, Tay S. Computational prediction of protein interactions on single cells by proximity sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550388. [PMID: 37546806 PMCID: PMC10402170 DOI: 10.1101/2023.07.27.550388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Proximity sequencing (Prox-seq) measures gene expression, protein expression, and protein complexes at the single cell level, using information from dual-antibody binding events and a single cell sequencing readout. Prox-seq provides multi-dimensional phenotyping of single cells and was recently used to track the formation of receptor complexes during inflammatory signaling in macrophages and to discover a new interaction between CD9/CD8 proteins on naïve T cells. The distribution of protein abundance affects identification of protein complexes in a complicated manner in dual-binding assays like Prox-seq. These effects are difficult to explore with experiments, yet important for accurate quantification of protein complexes. Here, we introduce a physical model for protein dimer formation on single cells and computationally evaluate several different methods for reducing background noise when quantifying protein complexes. Furthermore, we developed an improved method for analysis of Prox-seq single-cell data, which resulted in more accurate and robust quantification of protein complexes. Finally, our model offers a simple way to investigate the behavior of Prox-seq under various biological conditions and guide users toward selecting the best analysis method for their data.
Collapse
Affiliation(s)
- Junjie Xia
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Present address: Division of Infectious Disease, University of California, San Francisco, CA, 94143, USA
| | - Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Present address: Lymphocyte Biology Section, Laboratory of Immune Systems Biology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Department Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Aly A. Khan
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Du Y, Lyu Y, Lin J, Ma C, Zhang Q, Zhang Y, Qiu L, Tan W. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering. NATURE NANOTECHNOLOGY 2023; 18:818-827. [PMID: 36894782 DOI: 10.1038/s41565-023-01333-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
How the engagement of a T-cell receptor to antigenic peptide-loaded major histocompatibility complex on antigen-presenting cells (APCs) initiates intracellular signalling cascades in T cells is not well understood. In particular, the dimension of the cellular contact zone is regarded as a determinant, but its influence remains controversial. This is due to the need for appropriate strategies for manipulating intermembrane spacing between the APC-T-cell interfaces without involving protein modification. Here we describe a membrane-anchored DNA nanojunction with distinct sizes to extend, maintain and shorten the APC-T-cell interface down to 10 nm. Our results suggest that the axial distance of the contact zone is critical in T-cell activation, presumably by modulating protein reorganization and mechanical force. Notably, we observe the promotion of T-cell signalling by shortening the intermembrane distance.
Collapse
Affiliation(s)
- Yulin Du
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jie Lin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Chunran Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yutong Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Rochussen AM, Lippert AH, Griffiths GM. Imaging the T-cell receptor: new approaches, new insights. Curr Opin Immunol 2023; 82:102309. [PMID: 37011462 DOI: 10.1016/j.coi.2023.102309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
T cells recognize pathogenic antigens via the T-cell antigen receptor (TCR). This protein complex binds to antigen fragments on the surface of antigen-presenting cells. To understand how cellular activation can ensue rapidly from molecular recognition, the localization and distribution of the TCR on the surface of the resting T cell are of particular importance. Conflicting results regarding TCR distribution have emerged from recent studies using a range of imaging techniques, including total internal reflection and single-molecule localization microscopy modalities. Here, we review the differing results and the potential biases inherent in differing imaging approaches. In addition, we review studies showing the impact of differing imaging surfaces on T-cell activation.
Collapse
|
31
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
32
|
Pettmann J, Awada L, Różycki B, Huhn A, Faour S, Kutuzov M, Limozin L, Weikl TR, van der Merwe PA, Robert P, Dushek O. Mechanical forces impair antigen discrimination by reducing differences in T-cell receptor/peptide-MHC off-rates. EMBO J 2023; 42:e111841. [PMID: 36484367 PMCID: PMC10068313 DOI: 10.15252/embj.2022111841] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
T cells use their T-cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity foreign peptide major-histocompatibility-complexes (pMHCs) based on the TCR/pMHC off-rate. It is now appreciated that T cells generate mechanical forces during this process but how force impacts the TCR/pMHC off-rate remains debated. Here, we measured the effect of mechanical force on the off-rate of multiple TCR/pMHC interactions. Unexpectedly, we found that lower-affinity TCR/pMHCs with faster solution off-rates were more resistant to mechanical force (weak slip or catch bonds) than higher-affinity interactions (strong slip bonds). This was confirmed by molecular dynamics simulations. Consistent with these findings, we show that the best-characterized catch bond, involving the OT-I TCR, has a low affinity and an exceptionally fast solution off-rate. Our findings imply that reducing forces on the TCR/pMHC interaction improves antigen discrimination, and we suggest a role for the adhesion receptors CD2 and LFA-1 in force-shielding the TCR/pMHC interaction.
Collapse
Affiliation(s)
| | - Lama Awada
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | | | - Anna Huhn
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Sara Faour
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | - Mikhail Kutuzov
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Laurent Limozin
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
| | - Thomas R Weikl
- Max Planck Institute of Colloids and InterfacesPotsdamGermany
| | | | - Philippe Robert
- Laboratoire Adhesion et InflammationAix Marseille University UM 61, INSERM UMRS 1067, CNRS UMR 7333MarseilleFrance
- Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Omer Dushek
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Jiang Y, Li SC. Deep autoregressive generative models capture the intrinsics embedded in T-cell receptor repertoires. Brief Bioinform 2023; 24:7031156. [PMID: 36752378 DOI: 10.1093/bib/bbad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
T-cell receptors (TCRs) play an essential role in the adaptive immune system. Probabilistic models for TCR repertoires can help decipher the underlying complex sequence patterns and provide novel insights into understanding the adaptive immune system. In this work, we develop TCRpeg, a deep autoregressive generative model to unravel the sequence patterns of TCR repertoires. TCRpeg largely outperforms state-of-the-art methods in estimating the probability distribution of a TCR repertoire, boosting the average accuracy from 0.672 to 0.906 measured by the Pearson correlation coefficient. Furthermore, with promising performance in probability inference, TCRpeg improves on a range of TCR-related tasks: profiling TCR repertoire probabilistically, classifying antigen-specific TCRs, validating previously discovered TCR motifs, generating novel TCRs and augmenting TCR data. Our results and analysis highlight the flexibility and capacity of TCRpeg to extract TCR sequence information, providing a novel approach for deciphering complex immunogenomic repertoires.
Collapse
Affiliation(s)
- Yuepeng Jiang
- Department of Computer science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer science, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
34
|
Rao JS, Pruett TL. Immunology of the transplanted cryopreserved kidney. Cryobiology 2023; 110:1-7. [PMID: 36640932 DOI: 10.1016/j.cryobiol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Transplantation has substituted dysfunctional organs with healthy organs from donors to significantly lower morbidity and mortality associated with end-stage organ disease. Since the advent of transplantation, the promise of functional replacement has attracted an exponential mismatch between organ supply and demand. Theoretical proposals to counter the increasing needs have either been to create a source through genetic engineering of porcine donors for xenotransplantation (with more potent immunosuppression protocols) or recreate one's organ in a pig using interspecies blastocyst complementation for exogenic organ transplantation (without immunosuppression). Another promising avenue has been organ banking through cryopreservation for transplantation. Although ice free preservation and acceptable early function following rewarming is critical for success in transplantation, the immunological response that predominantly defines short- and long-term graft survival has failed to captivate attention to date. It is well sorted that thermal and metabolic stress incurred at 4 °C during recovery and reperfusion of organs for clinical transplantation has varying impact on graft survival. Considering the magnitude of cellular imbalance and injury at sub-zero/ultralow temperatures in addition to the chemical toxicity of cryoprotective agents (CPA), it is essential to assess and address the immunological response associated following transplantation to maximize the success of cryopreservation.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA; Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy L Pruett
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, Kleeff J, Liao Q, Wu W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22:28. [PMID: 36750830 PMCID: PMC9903509 DOI: 10.1186/s12943-023-01735-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
In recent decades, immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy are two milestone achievements in clinical immunotherapy. However, both show limited efficacies in most solid neoplasms, which necessitates the exploration of new immunotherapeutic modalities. The failure of CAR-T and immune checkpoint blockade in several solid neoplasms is attributed to multiple factors, including low antigenicity of tumor cells, low infiltration of effector T cells, and diverse mechanisms of immunosuppression in the tumor microenvironment. New adoptive cell therapies have been attempted for solid neoplasms, including TCR-T, CAR-natural killer cells (CAR-NK), and CAR-macrophages (CAR-M). Compared to CAR-T, these new adoptive cell therapies have certain advantages in treating solid neoplasms. In this review, we summarized the 40-year evolution of adoptive cell therapies, then focused on the advances of TCR-T, CAR-NK, and CAR-M in solid neoplasms and discussed their potential clinical applications.
Collapse
Affiliation(s)
- Qiaofei Liu
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jiayi Li
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Huaijin Zheng
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Sen Yang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Yuze Hua
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Nan Huang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jorg Kleeff
- grid.9018.00000 0001 0679 2801Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
36
|
Li K, Li J, Wei X, Wang J, Geng M, Ai K, Liang W, Zhang J, Li K, Gao H, Yang J. IL-10 Negatively Controls the Primary T Cell Response of Tilapia by Triggering the JAK1/STAT3/SOCS3 Axis That Suppresses NF-κB and MAPK/ERK Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:229-244. [PMID: 36548476 DOI: 10.4049/jimmunol.2200335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
37
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
38
|
Kwak M, Southard KM, Kim WR, Lin A, Kim NH, Gopalappa R, Lee HJ, An M, Choi SH, Jung Y, Noh K, Farlow J, Georgakopoulos A, Robakis NK, Kang MK, Kutys ML, Seo D, Kim HH, Kim YH, Cheon J, Gartner ZJ, Jun YW. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat Cell Biol 2022; 24:1739-1753. [PMID: 36456828 PMCID: PMC10665132 DOI: 10.1038/s41556-022-01031-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kaden M Southard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Woon Ryoung Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Annie Lin
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Nam Hyeong Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Ramu Gopalappa
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Minji An
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Seo Hyun Choi
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yunmin Jung
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Kunwoo Noh
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Anastasios Georgakopoulos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min K Kang
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Hyongbum Henry Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Young-Wook Jun
- Department of Otolaryngology, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Vistain L, Van Phan H, Keisham B, Jordi C, Chen M, Reddy ST, Tay S. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat Methods 2022; 19:1578-1589. [PMID: 36456784 PMCID: PMC11289786 DOI: 10.1038/s41592-022-01684-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022]
Abstract
We present proximity sequencing (Prox-seq) for simultaneous measurement of proteins, protein complexes and mRNAs in thousands of single cells. Prox-seq combines proximity ligation assay with single-cell sequencing to measure proteins and their complexes from all pairwise combinations of targeted proteins, providing quadratically scaled multiplexing. We validate Prox-seq and analyze a mixture of T cells and B cells to show that it accurately identifies these cell types and detects well-known protein complexes. Next, by studying human peripheral blood mononuclear cells, we discover that naïve CD8+ T cells display the protein complex CD8-CD9. Finally, we study protein interactions during Toll-like receptor (TLR) signaling in human macrophages. We observe the formation of signal-specific protein complexes, find CD36 co-receptor activity and additive signal integration under lipopolysaccharide (TLR4) and Pam2CSK4 (TLR2) stimulation, and show that quantification of protein complexes identifies signaling inputs received by macrophages. Prox-seq provides access to an untapped measurement modality for single-cell phenotyping and can discover uncharacterized protein interactions in different cell types.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Christian Jordi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Kashiwakura JI, Oritani K, Matsuda T. The Functional Properties and Physiological Roles of Signal-Transducing Adaptor Protein-2 in the Pathogenesis of Inflammatory and Immune Disorders. Biomedicines 2022; 10:biomedicines10123079. [PMID: 36551835 PMCID: PMC9776019 DOI: 10.3390/biomedicines10123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Adaptor molecules play a crucial role in signal transduction in immune cells. Several adaptor molecules, such as the linker for the activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76), are essential for T cell development and activation following T cell receptor (TCR) aggregation, suggesting that adaptor molecules are good therapeutic targets for T cell-mediated immune disorders, such as autoimmune diseases and allergies. Signal-transducing adaptor protein (STAP)-2 is a member of the STAP family of adaptor proteins. STAP-2 functions as a scaffold for various intracellular proteins, including BRK, signal transducer, and activator of transcription (STAT)3, STAT5, and myeloid differentiation primary response protein (MyD88). In T cells, STAP-2 is involved in stromal cell-derived factor (SDF)-1α-induced migration, integrin-dependent cell adhesion, and Fas-mediated apoptosis. We previously reported the critical function of STAP-2 in TCR-mediated T cell activation and T cell-mediated autoimmune diseases. Here, we review how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases in order to develop novel STAP-2-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Jun-ichi Kashiwakura
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo 0068585, Hokkaido, Japan
- Correspondence: (J.-i.K.); (T.M.); Tel.: +81-11-676-8738 (J.-i.K.); +81-11-706-3243 (T.M.); Fax: +81-11-676-8666 (J.-i.K.); +81-11-706-4990 (T.M.)
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita 2868686, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 0600812, Hokkaido, Japan
- Correspondence: (J.-i.K.); (T.M.); Tel.: +81-11-676-8738 (J.-i.K.); +81-11-706-3243 (T.M.); Fax: +81-11-676-8666 (J.-i.K.); +81-11-706-4990 (T.M.)
| |
Collapse
|
41
|
Morgan J, Pettmann J, Dushek O, Lindsay AE. T cell microvilli simulations show operation near packing limit and impact on antigen recognition. Biophys J 2022; 121:4128-4136. [PMID: 36181267 PMCID: PMC9675027 DOI: 10.1016/j.bpj.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
Abstract
T cells are immune cells that continuously scan for foreign-derived antigens on the surfaces of nearly all cells, termed antigen-presenting cells (APCs). They do this by dynamically extending numerous protrusions called microvilli (MVs) that contain T cell receptors toward the APC surface in order to scan for antigens. The number, size, and dynamics of these MVs, and the complex multiscale topography that results, play a yet unknown role in antigen recognition. We develop an anatomically informed model that confines antigen recognition to small areas representing MVs that can dynamically form and dissolve and use the model to study how MV dynamics impact antigen sensitivity and discrimination. We find that MV surveillance reduces antigen sensitivity compared with a completely flat interface, unless MV are stabilized in an antigen-dependent manner, and observe that MVs have only a modest impact on antigen discrimination. The model highlights that MV contacts optimize the competing demands of fast scanning speeds of the APC surface with antigen sensitivity. Our model predicts an interface packing fraction that corresponds closely to those observed experimentally, indicating that T cells operate their MVs near the limits imposed by anatomical and geometric constraints. Finally, we find that observed MV contact lifetimes can be largely influenced by conditions in the T cell/APC interface, with these lifetimes often being longer than the simulation or experimental observation period. This work highlights the role of MVs in antigen recognition.
Collapse
Affiliation(s)
- Jonathan Morgan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana; Biophysics Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alan E Lindsay
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
42
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
43
|
BAP31 affects macrophage polarization through regulating helper T cells activation. J Mol Histol 2022; 53:843-855. [PMID: 36018529 DOI: 10.1007/s10735-022-10095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Previously, we reported that B cell receptor associated protein 31 (BAP31) is a positive regulator on T-cells activation. Helper T cells [cluster of differentiation 4+ (CD4+) T cells] can regulate macrophage activation in adaptive immune response against pathogens. In this study, we elucidate that M1 and M2 macrophages polarization is significantly suppressed in Lck Cre-BAP31flox/flox mice or the co-culture system of CD4+ T cells from Lck Cre-BAP31flox/flox mice and macrophages from WT mice. It means that BAP31 may affect the regulation of CD4+ T cells on macrophages. Further studies suggest that BAP31 deficiency significantly reduce the expressions of T helper 1 (Th1)/ Th2/ Th17/ Th9/ Th22/ Treg cells-related cytokines and transcription factors. The inhibition of macrophages activation caused by BAP31 knockdown is due to the reduction of IFN-γ and IL-4 secreted by Th1 and Th2 cells. BAP31 also affects the levels of early activation markers (CD69 and CD25) of CD4+ T cells. Moreover, BAP31 deficiency downregulates the expression of TCRαβ-CD3 complex, and the adaptor proteins p-Zap70, p-Lck, and p-Lat in TCR signaling pathway. These results demonstrate that BAP31 deficiency inhibits TCR/CD3-mediated activation in CD4+ T cells and adversely affects macrophages polarization. These findings establish a theoretical foundation for the study of BAP31 in immunotherapy.
Collapse
|
44
|
Cai E, Beppler C, Eichorst J, Marchuk K, Eastman SW, Krummel MF. T cells use distinct topographical and membrane receptor scanning strategies that individually coalesce during receptor recognition. Proc Natl Acad Sci U S A 2022; 119:e2203247119. [PMID: 35914144 PMCID: PMC9372542 DOI: 10.1073/pnas.2203247119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023] Open
Abstract
During immune surveillance, CD8 T cells scan the surface of antigen-presenting cells using dynamic microvillar palpation and movements as well as by having their receptors preconcentrated into patches. Here, we use real-time lattice light-sheet microscopy to demonstrate the independence of microvillar and membrane receptor patch scanning. While T cell receptor (TCR) patches can distribute to microvilli, they do so stochastically and not preferentially as for other receptors such as CD62L. The distinctness of TCR patch movement from microvillar movement extends to many other receptors that form patches that also scan independent of the TCR. An exception to this is the CD8 coreceptor which largely comigrates in patches that overlap with or are closely adjacent to those containing TCRs. Microvilli that assemble into a synapse contain various arrays of the engaged patches, notably of TCRs and the inhibitory receptor PD-1, creating a pastiche of occupancies that vary from microvillar contact to contact. In summary, this work demonstrates that localization of receptor patches within the membrane and on microvillar projections is random prior to antigen detection and that such random variation may play into the generation of many individually composed receptor patch compositions at a single synapse.
Collapse
Affiliation(s)
- En Cai
- Department of Pathology, University of California, San Francisco, CA 94143-0511
| | - Casey Beppler
- Department of Pathology, University of California, San Francisco, CA 94143-0511
| | - John Eichorst
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- Biological Imaging Development CoLab, University of California, San Francisco, CA 94143-0511
| | - Kyle Marchuk
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- Biological Imaging Development CoLab, University of California, San Francisco, CA 94143-0511
- ImmunoX Initiative, University of California, San Francisco, CA 94143-0511
| | - Scott W. Eastman
- Lilly Research Laboratories, Eli Lilly and Company, New York, NY 10016
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143-0511
- ImmunoX Initiative, University of California, San Francisco, CA 94143-0511
| |
Collapse
|
45
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
46
|
Satoh T, Kayano H, Takahashi N, Tsukasaki K, Yasuda M. Diagnostic utility of the aberrant immunohistochemical expression of CD3 molecules for peripheral T-cell lymphomas. Ann Diagn Pathol 2022; 60:152013. [PMID: 35905535 DOI: 10.1016/j.anndiagpath.2022.152013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
The histological diagnosis of peripheral T-cell lymphomas (PTCLs) is often challenging. Flow cytometry (FCM) sometimes shows the loss of pan-T-cell markers for PTCLs, suggesting the neoplastic nature of these cells. Immunohistochemically, the total loss of pan-T-cell markers has been demonstrated in PTCLs. Furthermore, except for the total loss, the aberrant immunohistochemical expressions of pan-T-cell markers have also been empirically observed in PTCLs, but the details remain unexamined. Therefore, the present study semi-quantitatively evaluated the aberrant expression of cytoplasmic CD3ε (cCD3ε), the most common immunohistochemical pan-T-cell marker, in 91 PTCL cases. The expressions of the other CD3 molecules, CD3δ, CD3γ, and CD3ζ were also examined. Frequencies of the total immunohistochemical loss of CD3 molecules and loss of surface CD3ε (sCD3ε) in FCM were analyzed for comparison. The results showed atypical, aberrant expression patterns for immunohistochemical CD3 molecules: perinuclear, cytoplasmic, membranous, and partial negative. The frequency of each molecule was as follows: cCD3ε 40.7 %, CD3δ 26.4 %, CD3γ 53.8 %, and CD3ζ 54.9 %, especially the latter two showed high frequency in peripheral T-cell lymphoma, not otherwise specified, angioimmunoblastic T-cell lymphoma, and adult T-cell lymphoma/leukemia. Immunohistochemical total loss was less than aberrant expression in all CD3 molecules, with the frequency of cCD3ε being the lowest (6.6 %). The loss of sCD3ε in FCM was observed in 43.3 % of cases, with a similar frequency to the aberrant expression of cCD3ε. In conclusion, the aberrant immunohistochemical expression of cCD3ε was a useful finding as is sCD3ε loss in FCM, but CD3γ and CD3ζ were more useful, facilitating the diagnosis of PTCLs.
Collapse
Affiliation(s)
- Tsugumi Satoh
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan.
| | - Hidekazu Kayano
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan; Faculty of Health and Medical Care, School of Medical Technology, Saitama Medical University, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Naoki Takahashi
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Kunihiro Tsukasaki
- Department of Hematopoietic Tumor, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University, International Medical Center, 1397-1, Yamane, Hidaka-shi, Saitama 350-1298, Japan
| |
Collapse
|
47
|
Kogut MH, Genovese KJ, Byrd JA, Swaggerty CL, He H, Farnell Y, Arsenault RJ. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:899395. [PMID: 35846741 PMCID: PMC9279939 DOI: 10.3389/fcimb.2022.899395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Poultry is a major source of human foodborne illness caused by broad host range Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest interventions to reduce these pathogens would be valuable to the industry and consumer. Host responses to infectious agents are often regulated through phosphorylation. However, proteomic mechanisms of Salmonella acute infection biology and host responses to the bacteria have been limited concentrating predominately on the genomic responses of the host to infection. Our recent development of chicken-specific peptide arrays for kinome analysis of host phosphorylation-based cellular signaling responses provided us with the opportunity to develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen interactions during the initial colonization of the cecum by Salmonella. Using the chicken-specific kinomic immune peptide array, biological pathway analysis showed infection with S. Enteritidis increased signaling related to the innate immune response, relative to the non-infected control ceca. Notably, the acute innate immune signaling pathways were characterized by increased peptide phosphorylation (activation) of the Toll-like receptor and NOD-like receptor signaling pathways, the activation of the chemokine signaling pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling pathway demonstrating the initiation of the acquired immune response to Salmonella infection. Based on the individual phosphorylation events altered by the early Salmonella infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized by both TLR and NOD receptors that initiated the innate immune response; (2) activation of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6, IFN-α, and IFN-γ; (3) Salmonella infection targeted the JAK-STAT pathway as a means of evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and (5) the T cell receptor signaling pathway activates the AP-1 and NF-κB transcription factor cascades, but not NFAT.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
- *Correspondence: Michael H. Kogut,
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Haiqi He
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Yuhua Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
48
|
An C, Wang X, Song F, Hu J, Li L. Insights into intercellular receptor-ligand binding kinetics in cell communication. Front Bioeng Biotechnol 2022; 10:953353. [PMID: 35837553 PMCID: PMC9273785 DOI: 10.3389/fbioe.2022.953353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is crucial for cells to sense, respond and adapt to environmental cues and stimuli. The intercellular communication process, which involves multiple length scales, is mediated by the specific binding of membrane-anchored receptors and ligands. Gaining insight into two-dimensional receptor-ligand binding kinetics is of great significance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. To this end, extensive studies have been performed to illuminate the underlying mechanisms that control intercellular receptor-ligand binding kinetics via experiment, theoretical analysis and numerical simulation. It has been well established that the cellular microenvironment where the receptor-ligand interaction occurs plays a vital role. In this review, we focus on the advances regarding the regulatory effects of three factors including 1) protein-membrane interaction, 2) biomechanical force, and 3) bioelectric microenvironment to summarize the relevant experimental observations, underlying mechanisms, as well as their biomedical significances and applications. Meanwhile, we introduce modeling methods together with experiment technologies developed for dealing with issues at different scales. We also outline future directions to advance the field and highlight that building up systematic understandings for the coupling effects of these regulatory factors can greatly help pharmaceutical development.
Collapse
Affiliation(s)
- Chenyi An
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Watson VE, Faniel ML, Kamili NA, Krueger LD, Zhu C. Immune-mediated alopecias and their mechanobiological aspects. Cells Dev 2022; 170:203793. [PMID: 35649504 PMCID: PMC10681075 DOI: 10.1016/j.cdev.2022.203793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Alopecia is a non-specific term for hair loss clinically diagnosed by the hair loss pattern and histological analysis of patient scalp biopsies. The immune-mediated alopecia subtypes, including alopecia areata, lichen planopilaris, frontal fibrosing alopecia, and central centrifugal cicatricial alopecia, are common, significant forms of alopecia subtypes. For example, alopecia areata is the most common autoimmune disease with a lifetime incidence of approximately 2% of the world's population. In this perspective, we discuss major results from studies of immune-mediated alopecia subtypes. These studies suggest the key event in disease onset as the collapse in immune privilege, which alters the hair follicle microenvironment, e.g., upregulation of major histocompatibility complex molecules and increase of cytokine production, and results in immune cell infiltration, inflammatory responses, and damage of hair follicles. We note that previous studies have established that the hair follicle has a complex mechanical microenvironment, which may regulate the function of not only tissue cells but also immune cell infiltrates. This suggests a potential for mechanobiology to contribute to alopecia research by adding new methods, new approaches, and new ways of thinking, which is missing in the existing literature. To fill this a gap in the alopecia research space, we develop a mechanobiological hypothesis that alterations in the hair follicle microenvironment, specifically in the mechanically responsive tissues and cells, partially due to loss of immune privilege, may be contributors to disease pathology. We further focus our discussion on the potential for applying mechanoimmunology to the study of T cell infiltrates in the hair follicle, as they are considered primary contributors to alopecia pathology. To establish the connection between the mechanoimmunological hypothesis and immune-mediated alopecia subtypes, we discuss what is known about the role of T cells in immune-mediated alopecia subtypes, using the most extensively studied AA as our model.
Collapse
Affiliation(s)
- Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Makala L Faniel
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Loren D Krueger
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
50
|
Saigusa R, Roy P, Freuchet A, Gulati R, Ghosheh Y, Suthahar SSA, Durant CP, Hanna DB, Kiosses WB, Orecchioni M, Wen L, Wu R, Kuniholm MH, Landay AL, Anastos K, Tien PC, Gange SJ, Kassaye S, Vallejo J, Hedrick CC, Kwok WW, Sette A, Hodis HN, Kaplan RC, Ley K. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:462-475. [PMID: 35990517 PMCID: PMC9383695 DOI: 10.1038/s44161-022-00063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.
Collapse
Affiliation(s)
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - David B. Hanna
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
| | | | | | - Lai Wen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Runpei Wu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H. Kuniholm
- University at Albany, Department of Epidemiology and Biostatistics, Rensselaer, NY, USA
| | - Alan L. Landay
- Rush University Medical Center, Department of Internal Medicine, Chicago, IL, USA
| | - Kathryn Anastos
- Albert Einstein College of Medicine, Departments of Medicine and Epidemiology & Population Health, Bronx NY, USA
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Stephen J. Gange
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore MD, USA
| | - Seble Kassaye
- Georgetown University, Georgetown University Medical Center, Washington, DC, USA
| | | | | | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Tetramer Core Laboratory, Seattle, WA, USA
| | | | - Howard N. Hodis
- Keck School of Medicine, University of Southern California Departments of Medicine and Population and Public Health Sciences, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Robert C. Kaplan
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, San Diego, CA, USA
| |
Collapse
|