1
|
Folz KE, Siemens N. Streptokinase is dispensable in Streptococcus dysgalactiae subspecies equisimilis infections of human dendritic cells. Sci Rep 2025; 15:2723. [PMID: 39838000 PMCID: PMC11751451 DOI: 10.1038/s41598-025-87404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 01/23/2025] Open
Abstract
In recent years, increased numbers of severe Streptococcus dysgalactiae subsp. equisimilis (SDSE) infections, including necrotizing soft tissue infections (NSTIs), have been reported. One of the main virulence factors of SDSE is streptokinase (Ska). Ska promotes bacterial spread in the tissue through Ska-plasminogen interactions and subsequent activation of plasminogen to plasmin. In this study, the impact of streptokinase on SDSE infections of human monocyte-derived dendritic cells (moDCs) was investigated. MoDCs were infected with SDSE strain S118 and its isogenic mutant lacking streptokinase. All infections were performed with and without human serum to compare direct Ska-mediated as well as plasmin activity-related effects. Intracellular killing kinetics, moDC viability and maturation, as well as the release of pro-inflammatory cytokines were assessed. Irrespective of the strain and experimental conditions, the bacteria were equally phagocytosed and killed. MoDCs remained viable, readily matured and secreted equal amounts of cytokines in response to S118 as well as S118Δska infections. Our data demonstrate that moDCs response to SDSE infections is not affected by Ska or its respective plasminogen activating function.
Collapse
Affiliation(s)
- Katharina E Folz
- Department of Molecular Genetics and Infection Biology, University of Greifswald, 17489, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Wei HJ, Zhang J, Barbon J, Crosbie N, Dominguez E. Cellular effects and orientation of immobilized immunoglobulin are correlated to the charge-mediated influence of the antibody variable region. Biointerphases 2025; 20:011001. [PMID: 39902959 DOI: 10.1116/6.0004169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Ligand binding to a cell receptor often insufficiently triggers cellular immune responses. Receptor clustering through cross-linking occurs when a ligand binds to two or more receptors, amplifying cellular responses. This is required in certain monoclonal antibodies (mAbs), including effector mechanism activation [binding to fragment crystallizable receptors (FcRs)] or acting as agonists for therapeutic signaling. Therefore, immobilized immunoglobulin immunoassays were developed for efficient diagnostic and therapeutic approaches. The immobilized mAb density and orientation influence the sensitivity and accuracy of these assays. Limited evidence shows that different epitope motifs with the same target mAbs affect immobilized density and orientation in the solid-phase state. Here, we developed a series of fully humanized antidendritic cell immunoreceptor (DCIR) mAbs with different epitopes but the same Fc region. Immobilized anti-DCIR mAbs trigger the effector response from FcR through the Fc region and induce inhibitory pathways from the DCIR intracellular immunoreceptor tyrosine-based inhibitory motif through the fragment variable (Fv) region. In the immobilized immunoglobulin immunoassay, the isoelectric points (pI) of the DCIR mAb Fv region, not the total pI, significantly correlate to the surface density and orientation of immobilized mAbs on negatively charged plates. Cytokine production and protein phosphorylation in human monocytes were affected by vary binding abilities of immobilized mAbs to the plate. Methods, such as increasing hydrophobicity or ionic interactions, have improved the surface density and consistent orientation of immobilized anti-DCIR mAbs. Our study highlights the critical relationship between the net charge of the antibody Fv region and its immobilization potential in the solid-phase state.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- AbbVie, Bay Area, 1000 Gateway Blvd., South San Francisco, California 94080
| | - Jun Zhang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Nancy Crosbie
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| | - Eric Dominguez
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605
| |
Collapse
|
3
|
Tomiyasu N, Takahashi M, Toyonaga K, Yamasaki S, Bamba T, Izumi Y. Efficient lipidomic approach for the discovery of lipid ligands for immune receptors by combining LC-HRMS/MS analysis with fractionation and reporter cell assay. Anal Bioanal Chem 2024; 416:5445-5456. [PMID: 38135762 PMCID: PMC11427514 DOI: 10.1007/s00216-023-05111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
C-type lectin receptors (CLRs), which are pattern recognition receptors responsible for triggering innate immune responses, recognize damaged self-components and immunostimulatory lipids from pathogenic bacteria; however, several of their ligands remain unknown. Here, we propose a new analytical platform combining liquid chromatography-high-resolution tandem mass spectrometry with microfractionation capability (LC-FRC-HRMS/MS) and a reporter cell assay for sensitive activity measurements to develop an efficient methodology for searching for lipid ligands of CLR from microbial trace samples (crude cell extracts of approximately 5 mg dry cell/mL). We also developed an in-house lipidomic library containing accurate mass and fragmentation patterns of more than 10,000 lipid molecules predicted in silico for 90 lipid subclasses and 35 acyl side chain fatty acids. Using the developed LC-FRC-HRMS/MS system, the lipid extracts of Helicobacter pylori were separated and fractionated, and HRMS and HRMS/MS spectra were obtained simultaneously. The fractionated lipid extract samples in 96-well plates were thereafter subjected to reporter cell assays using nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing mouse or human macrophage-inducible C-type lectin (Mincle). A total of 102 lipid molecules from all fractions were annotated using an in-house lipidomic library. Furthermore, a fraction that exhibited significant activity in the NFAT-GFP reporter cell assay contained α-cholesteryl glucoside, a type of glycolipid, which was successfully identified as a lipid ligand molecule for Mincle. Our analytical platform has the potential to be a useful tool for efficient discovery of lipid ligands for immunoreceptors.
Collapse
Affiliation(s)
- Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenji Toyonaga
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Zhu R, Yao X, Li W. Langerhans cells and skin immune diseases. Eur J Immunol 2024; 54:e2250280. [PMID: 39030782 DOI: 10.1002/eji.202250280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan, P. R. China
| | - Xu Yao
- Department, of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
6
|
Tunbridge MJ, Luo X, Thomson AW. Negative Vaccination Strategies for Promotion of Transplant Tolerance. Transplantation 2024; 108:1715-1729. [PMID: 38361234 PMCID: PMC11265982 DOI: 10.1097/tp.0000000000004911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Organ transplantation requires the use of immunosuppressive medications that lack antigen specificity, have many adverse side effects, and fail to induce immunological tolerance to the graft. The safe induction of tolerance to allogeneic tissue without compromising host responses to infection or enhancing the risk of malignant disease is a major goal in transplantation. One promising approach to achieve this goal is based on the concept of "negative vaccination." Vaccination (or actively acquired immunity) involves the presentation of both a foreign antigen and immunostimulatory adjuvant to the immune system to induce antigen-specific immunity. By contrast, negative vaccination, in the context of transplantation, involves the delivery of donor antigen before or after transplantation, together with a "negative adjuvant" to selectively inhibit the alloimmune response. This review will explore established and emerging negative vaccination strategies for promotion of organ or pancreatic islet transplant tolerance. These include donor regulatory myeloid cell infusion, which has progressed to early-phase clinical trials, apoptotic donor cell infusion that has advanced to nonhuman primate models, and novel nanoparticle antigen-delivery systems.
Collapse
Affiliation(s)
- Matthew J. Tunbridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Miyahara A, Umeki A, Sato K, Nomura T, Yamamoto H, Miyasaka T, Tanno D, Matsumoto I, Zong T, Kagesawa T, Oniyama A, Kawamura K, Yuan X, Yokoyama R, Kitai Y, Kanno E, Tanno H, Hara H, Yamasaki S, Saijo S, Iwakura Y, Ishii K, Kawakami K. Innate phase production of IFN-γ by memory and effector T cells expressing early activation marker CD69 during infection with Cryptococcus deneoformans in the lungs. Infect Immun 2024; 92:e0002424. [PMID: 38700335 PMCID: PMC11237684 DOI: 10.1128/iai.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.
Collapse
Grants
- 18H02851, 21H02965 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K17920, 21K16314 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19jm0210073, JP20jm0210073, JP21jm0210073 Japan Agency for Medical Research and Development (AMED)
- ID-014 MSD Life Science Foundation, Public Interest Incorporated Foundation (SD Life Science Foundation)
- 20-02, 21-04 medical mycology research center, chiba university
Collapse
Affiliation(s)
- Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomomitsu Miyasaka
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Hsu J, Kim S, Anandasabapathy N. Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity. Viruses 2024; 16:870. [PMID: 38932162 PMCID: PMC11209207 DOI: 10.3390/v16060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.
Collapse
Affiliation(s)
- Joy Hsu
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Suyon Kim
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Helgers LC, Keijzer NCH, van Hamme JL, Sprokholt JK, Geijtenbeek TBH. Dengue Virus Infects Human Skin Langerhans Cells through Langerin for Dissemination to Dendritic Cells. J Invest Dermatol 2024; 144:1099-1111.e3. [PMID: 37979773 DOI: 10.1016/j.jid.2023.09.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 11/20/2023]
Abstract
Dengue virus (DENV) is the most disease-causative flavivirus worldwide. DENV as a mosquito-borne virus infects human hosts through the skin; however, the initial target cells in the skin remain unclear. In this study, we have investigated whether epidermal Langerhans cells (LCs) play a role in DENV acquisition and dissemination. We have used a human epidermal ex vivo infection model as well as isolated LCs to investigate infection by DENV. Notably, both immature and mature LCs were permissive to DENV infection in vitro and ex vivo, and infection was dependent on C-type lectin receptor langerin because blocking antibodies against langerin significantly reduced DENV infection in vitro and ex vivo. DENV-infected LCs efficiently transmitted DENV to target cells such as dendritic cells. Moreover, DENV exposure increased the migration of LCs from epidermal explants. These results strongly suggest that DENV targets epidermal LCs for infection and dissemination in the human host. These findings could provide potential drug targets to combat the early stage of DENV infection.
Collapse
Affiliation(s)
- Leanne C Helgers
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nadia C H Keijzer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. BIOLOGY 2024; 13:210. [PMID: 38666822 PMCID: PMC11048468 DOI: 10.3390/biology13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.
Collapse
Affiliation(s)
- Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30-501 Krakòw, Poland;
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| |
Collapse
|
11
|
Mittelheisser V, Gensbittel V, Bonati L, Li W, Tang L, Goetz JG. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. NATURE NANOTECHNOLOGY 2024; 19:281-297. [PMID: 38286876 DOI: 10.1038/s41565-023-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 01/31/2024]
Abstract
Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
12
|
Kałuża A, Trzęsicka K, Drzyzga D, Ferens-Sieczkowska M. Aberrant Mannosylated and Highly Fucosylated Glycoepitopes of Prostatic Acid Phosphatase as Potential Ligands for Dendritic-Cell Specific ICAM-Grabbing Nonintegrin (DC-SIGN) in Human Seminal Plasma-A Step towards Explaining Idiopathic Infertility. Biomolecules 2023; 14:58. [PMID: 38254658 PMCID: PMC10813591 DOI: 10.3390/biom14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Semen prostatic acid phosphatase (PAP) has been proposed as an endogenous ligand for dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), which plays a critical immuno-modulating role in maintaining homeostasis in the female reproductive tracts. In the current study, we assumed that semen PAP bears a set of fucosylated and mannosylated glycans, which may mediate the efficient binding of PAP to DC-SIGN. To investigate this hypothesis, we developed ELISA assays using Galanthus nivalis and Lotus tetragonolobus lectins capable of binding mannose-containing glycans or LewisX and LewisY motifs, respectively. In our assay with Galanthus nivalis, we detected that the relative reactivity of PAP mannose-presenting glycans in the normozoospermic idiopathic group was significantly higher than in the asthenozoospermic, oligozoospermic and oligoasthenozoospermic groups. Simultaneously, we observed slight differences in the relative reactivities of PAP glycans with Lotus tetragonolobus lectin among groups of patients with abnormal semen parameters. Subsequently, we examined whether DC-SIGN interacts with seminal plasma PAP glycans, and we detected a significantly higher relative reactivity in the normozoospermic group compared to the oligozoospermic group. Finally, we concluded that the significantly aberrant abundance of mannosylated functional groups of PAP among patients with semen disorders can suggest that PAP may thereby be engaged in modulating the immune response and promoting a tolerogenic response to male antigens in the female reproductive system.
Collapse
Affiliation(s)
- Anna Kałuża
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Katarzyna Trzęsicka
- INVICTA, Research and Development Center, Polna 64, 81-740 Sopot, Poland; (K.T.); (D.D.)
| | - Damian Drzyzga
- INVICTA, Research and Development Center, Polna 64, 81-740 Sopot, Poland; (K.T.); (D.D.)
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| |
Collapse
|
13
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
14
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
15
|
Hayes G, Dias-Barbieri B, Yilmaz G, Shattock RJ, Becer CR. Poly(2-oxazoline)/saRNA Polyplexes for Targeted and Nonviral Gene Delivery. Biomacromolecules 2023; 24:5142-5151. [PMID: 37792545 PMCID: PMC10646937 DOI: 10.1021/acs.biomac.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Indexed: 10/06/2023]
Abstract
RNA delivery has been demonstrated to be a potent method of vaccine delivery, as demonstrated by the recent success of the COVID-19 vaccines. Polymers have been shown to be effective vehicles for RNA delivery, with poly(ethylene imine) (PEI) being the current gold standard for delivery. Nonetheless, PEI has toxicity concerns, and so finding alternatives is desirable. Poly(2-oxazoline)s are a promising alternative to PEI, as they are generally biocompatible and offer a high degree of control over the polymer structure. Here, we have synthesized an ionizable primary amine 2-oxazoline and combined it with a double bond containing oxazoline to synthesize a small library of charged statistical and block copolymers. The pendant double bonds were reacted further to decorate the polymers with glucose via a thiol-ene click reaction. All polymers were shown to have excellent cell viability, and the synthesized block polymers showed promising complexation efficiencies for the saRNA, demonstrating a clear structure-property relationship. The polymer transfection potential was tested in various cell lines, and a polymer composition with an amine/glucose ratio of 9:27 has demonstrated the best transfection potential across all cell lines tested. Overall, the results suggest that block polymers with a cationic segment and high levels of glycosylation have the best complexation efficiency and RNA expression levels.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Beatriz Dias-Barbieri
- Department
of Infectious Diseases, Imperial College
London, Norfolk Place, London W21PG, United Kingdom
| | - Gokhan Yilmaz
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Robin J. Shattock
- Department
of Infectious Diseases, Imperial College
London, Norfolk Place, London W21PG, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhang S, Jin S, Zhang C, Hu S, Li H. Beer-gut microbiome alliance: a discussion of beer-mediated immunomodulation via the gut microbiome. Front Nutr 2023; 10:1186927. [PMID: 37560062 PMCID: PMC10408452 DOI: 10.3389/fnut.2023.1186927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
As a long-established fermented beverage, beer is rich in many essential amino acids, vitamins, trace elements, and bioactive substances that are involved in the regulation of many human physiological functions. The polyphenols in the malt and hops of beer are also important active compounds that interact in both directions with the gut microbiome. This review summarizes the mechanisms by which polyphenols, fiber, and other beneficial components of beer are fermentatively broken down by the intestinal microbiome to initiate the mucosal immune barrier and thus participate in immune regulation. Beer degradation products have anti-inflammatory, anticoagulant, antioxidant, and glucolipid metabolism-modulating potential. We have categorized and summarized reported data on changes in disease indicators and in vivo gut microbiota abundance following alcoholic and non-alcoholic beer consumption. The positive effects of bioactive substances in beer in cancer prevention, reduction of cardiovascular events, and modulation of metabolic syndrome make it one of the candidates for microecological modulators.
Collapse
Affiliation(s)
- Silu Zhang
- Department of Microecology, Dalian Medical University, Dalian, China
| | - Shuo Jin
- Department of Microecology, Dalian Medical University, Dalian, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Huajun Li
- Department of Microecology, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Pantazica AM, van Eerde A, Dobrica MO, Caras I, Ionescu I, Costache A, Tucureanu C, Steen H, Lazar C, Heldal I, Haugslien S, Onu A, Stavaru C, Branza-Nichita N, Liu Clarke J. The "humanized" N-glycosylation pathway in CRISPR/Cas9-edited Nicotiana benthamiana significantly enhances the immunogenicity of a S/preS1 Hepatitis B Virus antigen and the virus-neutralizing antibody response in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1176-1190. [PMID: 36779605 DOI: 10.1111/pbi.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.
Collapse
Affiliation(s)
| | - André van Eerde
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Iuliana Caras
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Irina Ionescu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Adriana Costache
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Catalin Tucureanu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Hege Steen
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Catalin Lazar
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Inger Heldal
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Adrian Onu
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | - Crina Stavaru
- "Cantacuzino" Medico-Military National Research Institute, Bucharest, Romania
| | | | | |
Collapse
|
21
|
Adugna A. Antigen Recognition and Immune Response to Acute and Chronic Hepatitis B Virus Infection. J Inflamm Res 2023; 16:2159-2166. [PMID: 37223107 PMCID: PMC10202203 DOI: 10.2147/jir.s411492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The antigen recognition and immune response to acute and chronic hepatitis B virus (HBV) infections are the result of both the innate and adaptive immune response. The innate immune response comprises Dendritic Cells (DCs), which served as professional antigen-presenting cells and a bridge between innate and adaptive immunity, Kupffer cells and inflammatory monocytes for the continuous inflammation of hepatocyte, neutrophils for hepatic tissue damage due to acute inflammation, type I interferons (IFN), which induce an antiviral state on infected cells, directs natural killer (NK) cells to kill virally infected cells, reduces the population of infected cells, and promotes the effective maturation and site recruitment of adaptive immunity through the production of pro-inflammatory cytokines and chemokines. Through stimulating B cells, T-helper, and cytotoxic T cells, the adaptive immune system also protects against hepatitis B infection. During HBV infection, a network of cell types that can either play protective or harmful functions creates the anti-viral adaptive immune response. These many elements, such as Cluster of differentiation four (CD4) T cells (traditionally known as helper T cells), are potent cytokine producers and necessary for the effective maturation of effector cytotoxic cluster of differentiation eight (CD8) T cells and B cell antibody production. By cytolytic and non-cytolytic processes, CD8 T cells are able to eliminate HBV-infected hepatocytes and directly detect virus-infected cells, and circulating CD4+ CD25+ regulatory T cells for the modulation of immune system. In order to avoid reinfection, B cells can produce antibodies that destroy free viral particles. Moreover, by presenting HBV antigens to helper T cells, B cells may also influence how well these cells operate.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Microbiology, Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
22
|
Ananya A, Holden KG, Gu Z, Nettleton D, Mallapragada SK, Wannemuehler MJ, Kohut ML, Narasimhan B. "Just right" combinations of adjuvants with nanoscale carriers activate aged dendritic cells without overt inflammation. Immun Ageing 2023; 20:10. [PMID: 36895007 PMCID: PMC9996592 DOI: 10.1186/s12979-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The loss in age-related immunological markers, known as immunosenescence, is caused by a combination of factors, one of which is inflammaging. Inflammaging is associated with the continuous basal generation of proinflammatory cytokines. Studies have demonstrated that inflammaging reduces the effectiveness of vaccines. Strategies aimed at modifying baseline inflammation are being developed to improve vaccination responses in older adults. Dendritic cells have attracted attention as an age-specific target because of their significance in immunization as antigen presenting cells that stimulate T lymphocytes. RESULTS In this study, bone marrow derived dendritic cells (BMDCs) were generated from aged mice and used to investigate the effects of combinations of adjuvants, including Toll-like receptor, NOD2, and STING agonists with polyanhydride nanoparticles and pentablock copolymer micelles under in vitro conditions. Cellular stimulation was characterized via expression of costimulatory molecules, T cell-activating cytokines, proinflammatory cytokines, and chemokines. Our results indicate that multiple TLR agonists substantially increase costimulatory molecule expression and cytokines associated with T cell activation and inflammation in culture. In contrast, NOD2 and STING agonists had only a moderate effect on BMDC activation, while nanoparticles and micelles had no effect by themselves. However, when nanoparticles and micelles were combined with a TLR9 agonist, a reduction in the production of proinflammatory cytokines was observed while maintaining increased production of T cell activating cytokines and enhancing cell surface marker expression. Additionally, combining nanoparticles and micelles with a STING agonist resulted in a synergistic impact on the upregulation of costimulatory molecules and an increase in cytokine secretion from BMDCs linked with T cell activation without excessive secretion of proinflammatory cytokines. CONCLUSIONS These studies provide new insights into rational adjuvant selection for vaccines for older adults. Combining appropriate adjuvants with nanoparticles and micelles may lead to balanced immune activation characterized by low inflammation, setting the stage for designing next generation vaccines that can induce mucosal immunity in older adults.
Collapse
Affiliation(s)
- Ananya Ananya
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Zhiling Gu
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Kinesiology, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
23
|
Blöchl C, Wang D, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. Transcriptionally imprinted glycomic signatures of acute myeloid leukemia. Cell Biosci 2023; 13:31. [PMID: 36788594 PMCID: PMC9926860 DOI: 10.1186/s13578-023-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically and phenotypically heterogeneous disease that has been suffering from stagnant survival curves for decades. In the endeavor toward improved diagnosis and treatment, cellular glycosylation has emerged as an interesting focus area in AML. While mechanistic insights are still limited, aberrant glycosylation may affect intracellular signaling pathways of AML blasts, their interactions within the microenvironment, and even promote chemoresistance. Here, we performed a meta-omics study to portray the glycomic landscape of AML, thereby screening for potential subtypes and responsible glyco-regulatory networks. RESULTS Initially, by integrating comprehensive N-, O-, and glycosphingolipid (GSL)-glycomics of AML cell lines with transcriptomics from public databases, we were able to pinpoint specific glycosyltransferases (GSTs) and upstream transcription factors (TFs) associated with glycan phenotypes. Intriguingly, subtypes M5 and M6, as classified by the French-American-British (FAB) system, emerged with distinct glycomic features such as high (sialyl) Lewisx/a ((s)Lex/a) and high sialylation, respectively. Exploration of transcriptomics datasets of primary AML cells further substantiated and expanded our findings from cell lines as we observed similar gene expression patterns and regulatory networks that were identified to be involved in shaping AML glycan signatures. CONCLUSIONS Taken together, our data suggest transcriptionally imprinted glycomic signatures of AML, reflecting their differentiation status and FAB classification. This study expands our insights into the emerging field of AML glycosylation and paves the way for studies of FAB class-associated glycan repertoires of AML blasts and their functional implications.
Collapse
Affiliation(s)
- Constantin Blöchl
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Di Wang
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Guinevere S. M. Lageveen-Kammeijer
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
24
|
Srinivasan S, Charan Raja MR, Kar A, Ramasamy A, Jayaraman A, Vadivel V, Kar Mahapatra S. Partial characterization of purified glycoprotein from nutshell of Arachis hypogea L. towards macrophage activation and leishmaniacidal activity. Glycoconj J 2023; 40:1-17. [PMID: 36595117 DOI: 10.1007/s10719-022-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/13/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Arachis hypogea L. protein fraction-2 (AHP-F2) from the Peanut shell was extracted and characterized and its potent immunomodulatory and anti-leishmanial role was determined in this present study. AHP-F2 was found to be a glycoprotein as the presence of carbohydrates were confirmed by the analysis of high-performance liquid chromatography (HPLC) yielded glucose, galactose, mannose, and xylose. AHP-F2 molecular mass was found to be ∼28 kDa as indicated in MALDI-TOF and peptide mass fingerprinting analysis followed by Mascot search. The peptide matches revealed the similarity of the mannose/glucose binding lectin with 71.07% in the BLAST analysis. After that, the 3D structure of the AHP-F2 model was designed and validated by the Ramachandran plot. The immunomodulatory role of AHP-F2 was established in murine peritoneal macrophages as induction of nitric oxide (NO), and stimulation of proinflammatory cytokines (IL-12 and IFN-γ) in a dose-dependent manner was observed. Interestingly, it was also found that AHP-F2 has interacted with the innate immune receptor, toll-like receptors (TLRs) as established in molecular docking as well as mRNA expression. The anti-leishmanial potential of AHP-F2 was revealed with a prominent inhibition of amastigote growth within the murine macrophages with prompt induction of nitrite release. Altogether, the isolated AHP-F2 from Arachis hypogea L. has strong immunomodulatory and anti-leishmanial potential which may disclose a new path to treat leishmaniasis.
Collapse
Affiliation(s)
- Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 600 077, Chennai, India
| | - Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Aishwarya Ramasamy
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Vellingiri Vadivel
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India.
- Department of Paramedical and Allied Health Sciences, Midnapore City College, West Bengal, 721129, Midnapore, India.
| |
Collapse
|
25
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
26
|
Expression of tolerogenic dendritic cells in the small intestinal tissue of patients with celiac disease. Heliyon 2022; 8:e12273. [PMID: 36578401 PMCID: PMC9791365 DOI: 10.1016/j.heliyon.2022.e12273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Tolerogenic dendritic cells (tolCDs) play an important role in the regulation of inflammation in autoimmune diseases such as celiac disease (CeD). Dendritic cells express CD207, CD11c, and CD103 on their surface. In addition to the receptors mentioned above, tolCDs can express the immune-regulating enzyme indoleamine 2,3-dioxygenase (IDO). This study aimed to determine the mRNA and protein expression of CD11c, CD103 and CD207 markers, and also IDO gene expression in intestinal tissues of CeD patients in comparison to the healthy individuals. Duodenal biopsies were collected from 60 CeD patients and 60 controls. Total RNA was extracted and gene expression analysis was performed using Real-time PCR SYBR® Green method. Additionally, biopsy specimens were paraffinized and protein expression was evaluated using immunohistochemistry (IHC) for expression of CD11c+, CD207+and CD103+. Gene expression levels of CD11c (P = 0.045), CD103 (P < 0.001), CD207 (P < 0.001) and IDO (P = 0.01) were significantly increased in CeD patients compared to the control group. However, only CD103 protein expression was found to be significantly higher in CeD patients in comparison to the control group (P < 0.001). The result of this study showed that the expresion levels of CD11c, CD103, CD207 and IDO markers were higher in CeD patients compared to the controls, indicating the effort of dendritic cells to counterbalance the gliadin-triggered abnormal immune responses in CeD patients.
Collapse
|
27
|
Stoitzner P, Romani N, Rademacher C, Probst HC, Mahnke K. Antigen targeting to dendritic cells: Still a place in future immunotherapy? Eur J Immunol 2022; 52:1909-1924. [PMID: 35598160 PMCID: PMC10084009 DOI: 10.1002/eji.202149515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Rademacher
- Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna, Austria.,Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.,Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Makandar AI, Jain M, Yuba E, Sethi G, Gupta RK. Canvassing Prospects of Glyco-Nanovaccines for Developing Cross-Presentation Mediated Anti-Tumor Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10122049. [PMID: 36560459 PMCID: PMC9784904 DOI: 10.3390/vaccines10122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Amina I. Makandar
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| |
Collapse
|
29
|
Chen L, Zhang X, Guo X, Peng W, Zhu Y, Wang Z, Yu X, Shi H, Li Y, Zhang L, Wang L, Wang P, Cheng G. Neighboring mutation-mediated enhancement of dengue virus infectivity and spread. EMBO Rep 2022; 23:e55671. [PMID: 36197120 PMCID: PMC9638853 DOI: 10.15252/embr.202255671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 10/07/2023] Open
Abstract
Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.
Collapse
Affiliation(s)
- Lu Chen
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Xianwen Zhang
- Institute of Infectious DiseasesShenzhen Bay LaboratoryShenzhenChina
| | - Xuan Guo
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Wenyu Peng
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Yibin Zhu
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Zhaoyang Wang
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Xi Yu
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Huicheng Shi
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Yuhan Li
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Liming Zhang
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Lei Wang
- Institute of Infectious DiseasesShenzhen Bay LaboratoryShenzhenChina
| | - Penghua Wang
- Department of Immunology, School of Medicinethe University of Connecticut Health CenterFarmingtonCTUSA
| | - Gong Cheng
- Tsinghua‐Peking Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Institute of Infectious DiseasesShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
30
|
Bellmann L, Strandt H, Zelle‐Rieser C, Ortner D, Tripp CH, Schmid S, Rühl J, Cappellano G, Schaffenrath S, Prokopi A, Spoeck S, Seretis A, Del Frari B, Sigl S, Krapf J, Heufler C, Keler T, Münz C, Romani N, Stoitzner P. Targeted delivery of a vaccine protein to Langerhans cells in the human skin via the C-type lectin receptor Langerin. Eur J Immunol 2022; 52:1829-1841. [PMID: 34932821 PMCID: PMC9788233 DOI: 10.1002/eji.202149670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Human skin is a preferred vaccination site as it harbors multiple dendritic cell (DC) subsets, which display distinct C-type lectin receptors (CLR) that recognize pathogens. Antigens can be delivered to CLR by antibodies or ligands to boost antigen-specific immune responses. This concept has been established in mouse models but detailed insights into the functional consequences of antigen delivery to human skin DC in situ are sparse. In this study, we cloned and produced an anti-human Langerin antibody conjugated to the EBV nuclear antigen 1 (EBNA1). We confirmed specific binding of anti-Langerin-EBNA1 to Langerhans cells (LC). This novel LC-based vaccine was then compared to an existing anti-DEC-205-EBNA1 fusion protein by loading LC in epidermal cell suspensions before coculturing them with autologous T cells. After restimulation with EBNA1-peptides, we detected elevated levels of IFN-γ- and TNF-α-positive CD4+ T cells with both vaccines. When we injected the fusion proteins intradermally into human skin explants, emigrated skin DC targeted via DEC-205-induced cytokine production by T cells, whereas the Langerin-based vaccine failed to do so. In summary, we demonstrate that antibody-targeting approaches via the skin are promising vaccination strategies, however, further optimizations of vaccines are required to induce potent immune responses.
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Helen Strandt
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Ortner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sandra Schmid
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Julia Rühl
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Giuseppe Cappellano
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Department of Health SciencesInterdisciplinary Research Center of Autoimmune DiseasesCenter for Translational Research on Autoimmune and Allergic Disease‐CAADUniversità del Piemonte OrientaleNovaraItaly
| | - Sandra Schaffenrath
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Anastasia Prokopi
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Sarah Spoeck
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Athanasios Seretis
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria,Research Institute for Biomedical Aging ResearchUniversity of InnsbruckAustria
| | - Barbara Del Frari
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Stephan Sigl
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Johanna Krapf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Christine Heufler
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | | | - Christian Münz
- Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
31
|
Chou PY, Lin SY, Wu YN, Shen CY, Sheu MT, Ho HO. Glycosylation of OVA antigen-loaded PLGA nanoparticles enhances DC-targeting for cancer vaccination. J Control Release 2022; 351:970-988. [DOI: 10.1016/j.jconrel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/30/2022]
|
32
|
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, Aspord C. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients. Front Immunol 2022; 13:1040600. [PMID: 36353633 PMCID: PMC9638162 DOI: 10.3389/fimmu.2022.1040600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/15/2023] Open
Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Stephane Mouret
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | | | - Florence de Fraipont
- Medical Unit of Molecular genetic (Hereditary Diseases and Oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, CHU Grenoble Alpes, Grenoble, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laurence Chaperot
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Caroline Aspord
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
33
|
Zhang Y, Hu W, Chen D, Ding M, Wang T, Wang Y, Chi J, Li Z, Li Q, Li C. An allergenic plant calmodulin from Artemisia pollen primes human DCs leads to Th2 polarization. Front Immunol 2022; 13:996427. [PMID: 36248805 PMCID: PMC9556433 DOI: 10.3389/fimmu.2022.996427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia pollen is the major cause of seasonal allergic respiratory diseases in the northern hemisphere. About 28.57% of Artemisia allergic patients’ IgE can recognize ArtCaM, a novel allergenic calmodulin from Artemisia identified in this study. These patients exhibited stronger allergic reactions and a longer duration of allergic symptoms. However, the signaling mechanism that triggers these allergic reactions is not fully understood. In this study, we found that extracellular ArtCaM directly induces the maturation of human dendritic cells (DCs), which is attributed to a series of Ca2+ relevant cascades, including Ca2+/NFAT/CaMKs. ArtCaM alone induces inflammatory response toward Th1, Th17, and Treg. Interestingly, a combination of ArtCaM and anti-ArtCaM IgE led to Th2 polarization. The putative mechanism is that anti-ArtCaM IgE partially blocks the ArtCaM-induced ERK signal, but does not affect Ca2+-dependent cascades. The crosstalk between ERK and Ca2+ signal primes DCs maturation and Th2 polarization. In summary, ArtCaM related to clinical symptoms when combined with anti-ArtCaM IgE, could be a novel allergen to activate DCs and promote Th2 polarization. Such findings provide mechanistic insights into Th2 polarization in allergic sensitization and pave the way for novel preventive and therapeutic strategies for efficient management of such pollen allergic disease.
Collapse
Affiliation(s)
- Yue Zhang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhi Hu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, China
| | - Ming Ding
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Tao Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Yaojun Wang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Jiaoni Chi
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Zhimin Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Qiang Li
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| | - Chengxin Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Chengxin Li, ; Qiang Li,
| |
Collapse
|
34
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
35
|
Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release 2022; 351:284-300. [PMID: 36150579 DOI: 10.1016/j.jconrel.2022.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Adjuvants and vaccine delivery systems are used widely to improve the efficacy of vaccines. Their primary roles are to protect antigen from degradation and allow its delivery and uptake by antigen presenting cells (APCs). Carbohydrates, including various structures/forms of mannose, have been broadly utilized to target carbohydrate binding receptors on APCs. This review summarizes basic functions of the immune system, focusing on the role of mannose receptors in antigen recognition by APCs. The most popular strategies to produce mannosylated vaccines via conjugation and formulation are presented. The efficacy of mannosylated vaccines is discussed in detail, taking into consideration factors, such as valency and number of mannose in mannose ligands, mannose density, length of spacers, special arrangement of mannose ligands, and routes of administration of mannosylated vaccines. The advantages and disadvantages of mannosylation strategy and future directions in the development of mannosylated vaccines are also debated.
Collapse
Affiliation(s)
- Ummey Jannatun Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
36
|
Xia T, Wang N, Tang Y, Gao Y, Gao C, Hao J, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Wang L, Li Y. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol 2022; 13:926279. [PMID: 36159835 PMCID: PMC9499840 DOI: 10.3389/fimmu.2022.926279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|
37
|
Oda T, Yanagisawa H, Shinmori H, Ogawa Y, Kawamura T. Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation. eLife 2022; 11:79990. [PMID: 35758632 PMCID: PMC9259017 DOI: 10.7554/elife.79990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023] Open
Abstract
Langerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 Å resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258–263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Anatomy and Structural Biology, University of Yamanashi, Yamanashi, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, University of Tokyo, Tokyo, Japan
| | - Hideyuki Shinmori
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | | |
Collapse
|
38
|
Zhang H, Daněk O, Makarov D, Rádl S, Kim D, Ledvinka J, Vychodilová K, Hlaváč J, Lefèbre J, Denis M, Rademacher C, Ménová P. Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Med Chem Lett 2022; 13:935-942. [DOI: 10.1021/acsmedchemlett.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Ondřej Daněk
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Dmytro Makarov
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Stanislav Rádl
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
- Zentiva a.s., U Kabelovny 130, 10237 Prague 10, Czech Republic
| | - Dongyoon Kim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Jiří Ledvinka
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
39
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
40
|
Paulikat AD, Tölken LA, Jachmann LH, Burchhardt G, Hammerschmidt S, Siemens N. <b><i>Streptococcus pneumoniae</i></b> Impairs Maturation of Human Dendritic Cells and Consequent Activation of CD4<sup>+</sup> T Cells via Pneumolysin. J Innate Immun 2022; 14:569-580. [PMID: 35249041 PMCID: PMC9485967 DOI: 10.1159/000522339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 01/11/2023] Open
Abstract
Influenza A Virus (IAV), Staphylococcus aureus (staphylococci), and Streptococcus pneumoniae (pneumococci) are leading viral and bacterial causes of pneumonia. Dendritic cells (DCs) are present in the lower respiratory tract. They are characterized by low expression of co-stimulatory molecules, including CD80 and CD86 and high capacity of antigen uptake. Subsequently, DCs upregulate co-stimulatory signals and cytokine secretion to effectively induce T-cell priming. Here, we investigated these processes in response to bacterial and viral single as well as coinfections using human monocyte-derived (mo)DCs. Irrespective of single or coinfections, moDCs matured in response to IAV and/or staphylococcal infections, secreted a wide range of cytokines, and activated CD4<sup>+</sup>, CD8<sup>+</sup> as well as double-negative T cells. In contrast, pneumococcal single and coinfections impaired moDC maturation, which was characterized by low expression of CD80 and CD86, downregulated expression of CD40, and a mild cytokine release resulting in abrogated CD4<sup>+</sup> T-cell activation. These actions were attributed to the cholesterol-dependent cytotoxin pneumolysin (Ply). Infections with a ply-deficient mutant resulted in restored moDC maturation and exclusive CD4<sup>+</sup> T-cell activation. These findings show that Ply has important immunomodulatory functions, supporting further investigations in specific modalities of Ply-DC interplay.
Collapse
|
41
|
Adaptor protein 3BP2 regulates dectin-1-mediated cellular signalling to induce cytokine expression and NF-κB activation. Biochem J 2022; 479:503-523. [PMID: 35129602 DOI: 10.1042/bcj20210707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The adaptor protein c-Abl Src homology 3 domain-binding protein-2 (3BP2) is phosphorylated by spleen tyrosine kinase (Syk), and the phosphorylation of Tyr183 is important in the regulation of immune responses. Recently, we reported that 3BP2 plays important roles in phagocytosis and chemokine expression mediated by the Fc receptor for IgG. Although it is well established that various phagocytic cells express Syk-coupled C-type lectin receptors (CLRs) to induce innate immune responses, the functions of 3BP2 and the physiological relevance of the phosphorylation of Tyr183 remain elusive. In this study, we generated genome-edited mice and observed that 3BP2 influenced the development of bone marrow-derived dendritic cells (BMDCs) induced by granulocyte-macrophage colony-stimulating factor. In addition, we found that 3BP2 was critical for cytokine expression induced by Syk-coupled CLRs-dectin-1 and macrophage-inducible C-type lectin. Immunoblotting analyses revealed that 3BP2 was required for the dectin-1-induced activation of NF-κB p65. The impaired expression of cytokines and activation of NF-κB in 3BP2-mutant cells were restored by wild-type 3BP2, suggesting that 3BP2 was involved in the dectin-1-mediated signalling that led to NF-κB activation. Furthermore, we found that the phosphorylation of Tyr183 is not essential for cytokine expression and that 3BP2 in combination with caspase recruitment domain family member 9 activates NF-κB in HEK-293T cells. Collectively, these results indicate that in addition to the development of BMDCs, 3BP2 plays an important role in the dectin-1-induced activation of NF-κB and cytokine expression.
Collapse
|
42
|
Luo X, Chen J, Yang H, Hu X, Alphonse MP, Shen Y, Kawakami Y, Zhou X, Tu W, Kawakami T, Wan M, Archer NK, Wang H, Gao P. Dendritic cell immunoreceptor drives atopic dermatitis by modulating oxidized CaMKII-involved mast cell activation. JCI Insight 2022; 7:152559. [PMID: 35113811 PMCID: PMC8983143 DOI: 10.1172/jci.insight.152559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Allergens have been identified as potential triggers in patients with atopic dermatitis (AD). AD patients are highly sensitive to cockroach allergen. The underlying mechanism, however, remains undetermined. Here, we established a cockroach allergen-induced AD-like mouse model and demonstrated that repeated exposure to cockroach allergen led to aggravated mouse skin inflammation, characterized by increased type 2 immunity, type 2 innate lymphoid cells (ILC2s), and mast cells. Increased skin mast cells were also observed in AD patients. AD mice with mast cell-deficient mice (kitW-sh/W-sh) showed diminished skin inflammation, suggesting that mast cells are required in allergen-induced skin inflammation. Furthermore, dendritic cell immuno-receptor (DCIR) is up-regulated in skin mast cells of AD patients and mediates allergen binding and uptake. DCIR-/- mice or reconstituted kitW-sh/W-sh mice with DCIR-/- mast cells showed a significant reduction in AD-like inflammation. Both in vitro and in vivo analyses demonstrated that DCIR-/- mast cells had reduced IgE-mediated mast cell activation and passive cutaneous anaphylaxis. Mechanistically, DCIR regulates allergen-induced IgE-mediated mast cell ROS generation and oxidation of calmodulin kinase II (ox-CaMKII). ROS-resistant CaMKII (MM-VVδ) prevents allergen-induced mast cell activation and inflammatory mediator release. Our study reveals a previously unrecognized DCIR-ROS-CaMKII axis that controls allergen-induced mast cell activation and AD-like inflammation.
Collapse
Affiliation(s)
- Xiaoyan Luo
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Jingsi Chen
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Huan Yang
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States of America
| | - Xiaoying Zhou
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, United States of America
| | - Mei Wan
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Hua Wang
- Pediatric Dermatology, Chongqing Medical University, Chongqing, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
43
|
Cysteine Peptidase Cathepsin X as a Therapeutic Target for Simultaneous TLR3/4-mediated Microglia Activation. Mol Neurobiol 2022; 59:2258-2276. [PMID: 35066760 PMCID: PMC9016010 DOI: 10.1007/s12035-021-02694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022]
Abstract
Microglia are resident macrophages in the central nervous system that are involved in immune responses driven by Toll-like receptors (TLRs). Microglia-mediated inflammation can lead to central nervous system disorders, and more than one TLR might be involved in these pathological processes. The cysteine peptidase cathepsin X has been recognized as a pathogenic factor for inflammation-induced neurodegeneration. Here, we hypothesized that simultaneous TLR3 and TLR4 activation induces synergized microglia responses and that these phenotype changes affect cathepsin X expression and activity. Murine microglia BV2 cells and primary murine microglia were exposed to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)) and the TLR4 ligand lipopolysaccharide (LPS), individually and simultaneously. TLR3 and TLR4 co-activation resulted in increased inflammatory responses compared to individual TLR activation, where poly(I:C) and LPS induced distinct patterns of proinflammatory factors together with different patterns of cathepsin X expression and activity. TLR co-activation decreased intracellular cathepsin X activity and increased cathepsin X localization at the plasma membrane with concomitant increased extracellular cathepsin X protein levels and activity. Inhibition of cathepsin X in BV2 cells by AMS36, cathepsin X inhibitor, significantly reduced the poly(I:C)- and LPS-induced production of proinflammatory cytokines as well as apoptosis. Additionally, inhibiting the TLR3 and TLR4 common signaling pathway, PI3K, with LY294002 reduced the inflammatory responses of the poly(I:C)- and LPS-activated microglia and recovered cathepsin X activity. We here provide evidence that microglial cathepsin X strengthens microglia activation and leads to subsequent inflammation-induced neurodegeneration. As such, cathepsin X represents a therapeutic target for treating neurodegenerative diseases related to excess inflammation.
Collapse
|
44
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
45
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
46
|
Kamili NA, Paul A, Wu SC, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Evaluation of the Bactericidal Activity of Galectins. Methods Mol Biol 2022; 2442:517-531. [PMID: 35320543 DOI: 10.1007/978-1-0716-2055-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over a century ago, Karl Landsteiner discovered that blood group antigens could predict the immunological outcome of red blood cell transfusion. While the discovery of ABO(H) blood group antigens revolutionized transfusion medicine, many questions remain regarding the development and regulation of naturally occurring anti-blood group antibody formation. Early studies suggested that blood group antibodies develop following stimulation by bacteria that express blood group antigens. While this may explain the development of anti-blood group antibodies in blood group-negative individuals, how blood group-positive individuals protect themselves against blood group-positive microbes remained unknown. Recent studies suggest that several members of the galectin family specifically target blood group-positive microbes, thereby providing innate immune protection against blood group antigen-positive microbes regardless of the blood group status of an individual. Importantly, subsequent studies suggest that this unique form of immunity may not be limited to blood group expressing microbes, but may reflect a more generalized form of innate immunity against molecular mimicry. As this form of antimicrobial activity represents a unique and unprecedented form of immunity, we will examine important considerations and methodological approaches that can be used when seeking to ascertain the potential antimicrobial activity of various members of the galectin family.
Collapse
Affiliation(s)
- Nourine A Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anu Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Richards SJ, Gibson MI. Toward Glycomaterials with Selectivity as Well as Affinity. JACS AU 2021; 1:2089-2099. [PMID: 34984416 PMCID: PMC8717392 DOI: 10.1021/jacsau.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Multivalent glycosylated materials (polymers, surfaces, and particles) often show high affinity toward carbohydrate binding proteins (e.g., lectins) due to the nonlinear enhancement from the cluster glycoside effect. This affinity gain has potential in applications from diagnostics, biosensors, and targeted delivery to anti-infectives and in an understanding of basic glycobiology. This perspective highlights the question of selectivity, which is less often addressed due to the reductionist nature of glycomaterials and the promiscuity of many lectins. The use of macromolecular features, including architecture, heterogeneous ligand display, and the installation of non-natural glycans, to address this challenge is discussed, and examples of selectivity gains are given.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
48
|
Zhao J, Du G, Sun X. Tumor Antigen-Based Nanovaccines for Cancer Immunotherapy: A Review. J Biomed Nanotechnol 2021; 17:2099-2113. [PMID: 34906272 DOI: 10.1166/jbn.2021.3178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As an important means of tumor immunotherapy, tumor vaccines have achieved exciting results in the past few decades. However, there are still many obstacles that hinder tumor vaccines from achieving maximum efficacy, including lack of tumor antigens, low antigen immunogenicity and poor delivery efficiency. To overcome these challenges, researchers have developed and investigated various new types of tumor antigens with higher antigenic specificity and broader antigen spectrum, such as tumor-specific peptide antigens, tumor lysates, tumor cell membrane, tumor associated exosomes, etc. At the same time, different nanoparticulate delivery platforms have been developed to increase the immunogenicity of the tumor antigens, for example by increasing their targeting efficiency of antigen-presenting cells and lymph nodes, and by co-delivering antigens with adjuvants. In this review, we summarized different types of the tumor antigens that have been reported, and introduced several nanovaccine strategies for increasing the immunogenicity of tumor antigens. The review of recent progress in these fields may provide reference for the follow-up studies of tumor antigen-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Hartweg M, Jiang Y, Yilmaz G, Jarvis CM, Nguyen HVT, Primo GA, Monaco A, Beyer VP, Chen KK, Mohapatra S, Axelrod S, Gómez-Bombarelli R, Kiessling LL, Becer CR, Johnson JA. Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. JACS AU 2021; 1:1621-1630. [PMID: 34723265 PMCID: PMC8549053 DOI: 10.1021/jacsau.1c00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrate-binding proteins (lectins) play vital roles in cell recognition and signaling, including pathogen binding and innate immunity. Thus, targeting lectins, especially those on the surface of immune cells, could advance immunology and drug discovery. Lectins are typically oligomeric; therefore, many of the most potent ligands are multivalent. An effective strategy for lectin targeting is to display multiple copies of a single glycan epitope on a polymer backbone; however, a drawback to such multivalent ligands is they cannot distinguish between lectins that share monosaccharide binding selectivity (e.g., mannose-binding lectins) as they often lack molecular precision. Here, we describe the development of an iterative exponential growth (IEG) synthetic strategy that enables facile access to synthetic glycomacromolecules with precisely defined and tunable sizes up to 22.5 kDa, compositions, topologies, and absolute configurations. Twelve discrete mannosylated "glyco-IEGmers" are synthesized and screened for binding to a panel of mannoside-binding immune lectins (DC-SIGN, DC-SIGNR, MBL, SP-D, langerin, dectin-2, mincle, and DEC-205). In many cases, the glyco-IEGmers had distinct length, stereochemistry, and topology-dependent lectin-binding preferences. To understand these differences, we used molecular dynamics and density functional theory simulations of octameric glyco-IEGmers, which revealed dramatic effects of glyco-IEGmer stereochemistry and topology on solution structure and reveal an interplay between conformational diversity and chiral recognition in selective lectin binding. Ligand function also could be controlled by chemical substitution: by tuning the side chains of glyco-IEGmers that bind DC-SIGN, we could alter their cellular trafficking through alteration of their aggregation state. These results highlight the power of precision synthetic oligomer/polymer synthesis for selective biological targeting, motivating the development of next-generation glycomacromolecules tailored for specific immunological or other therapeutic applications.
Collapse
Affiliation(s)
- Manuel Hartweg
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gokhan Yilmaz
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cassie M. Jarvis
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gastón A. Primo
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United Kingdom
| | - Alessandra Monaco
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Valentin P. Beyer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kathleen K. Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Simon Axelrod
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rafael Gómez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Laura L. Kiessling
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - C. Remzi Becer
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, United Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jeremiah A. Johnson
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Yu J, Wang S, Qi J, Yu Z, Xian Y, Liu W, Wang X, Liu C, Wei M. Mannose-modified liposome designed for epitope peptide drug delivery in cancer immunotherapy. Int Immunopharmacol 2021; 101:108148. [PMID: 34653955 DOI: 10.1016/j.intimp.2021.108148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Based on the interaction between cytotoxic T lymphocyte (CTL) dominant epitopes and dendritic cells (DCs), CD8+T cells are specifically activated into CTL cells. Targeted killing is a type of tumor vaccine for immunotherapy with great development potential. However, because of the disadvantages of poor stability in vivo and low uptake rate of DCs caused by single use of dominant epitope peptide drugs, its use is limited. Here, we investigated the antitumor potential of M-YL/LA-Lipo, a novel liposome drug delivery system. METHODS We assembled mannose on the surface of liposome, which has a highly targeted effect on the mannose receptor on the surface of DCs. The dominant epitope peptide drugs were encapsulated into the liposome using membrane hydration method, and the encapsulation rate, release rate, in vitro stability, and microstructure were characterized using ultrafiltration method, dialysis method, and negative staining transmission electron microscopy. In addition, its targeting ability was verified by in vitro interaction with DCs, and its anticancer effect was verified by animal experiments. RESULTS We have successfully prepared a liposome drug delivery system with stable physical and chemical properties. Moreover, we demonstrated that it was highly uptaken by DCs and promoted DC maturation in vitro. Furthermore, in vivo animal experiments indicated that M-YL/LA-Lipo specific CTL significantly inhibited the hematogenous spread of lung metastasis of triple negative breast cancer. CONCLUSIONS we successfully constructed a new polypeptide liposome drug delivery system by avoiding the disadvantages of single use of dominant epitope peptide drugs and accurate targeted therapy for tumors.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shanshan Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jing Qi
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yunkai Xian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wensi Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiangyi Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Technology R&D Center Co, Ltd., Shenyang 110167, China; Shenyang Kangwei Medical Analysis Laboratory Co, Ltd., Shenyang 110167, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|