1
|
Kujirai T, Echigoya K, Kishi Y, Saeki M, Ito T, Kato J, Negishi L, Kimura H, Masumoto H, Takizawa Y, Gotoh Y, Kurumizaka H. Structural insights into how DEK nucleosome binding facilitates H3K27 trimethylation in chromatin. Nat Struct Mol Biol 2025:10.1038/s41594-025-01493-w. [PMID: 39984731 DOI: 10.1038/s41594-025-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Structural diversity of the nucleosome affects chromatin conformations and regulates eukaryotic genome functions. Here we identify DEK, whose function is unknown, as a nucleosome-binding protein. In embryonic neural progenitor cells, DEK colocalizes with H3 K27 trimethylation (H3K27me3), the facultative heterochromatin mark. DEK stimulates the methyltransferase activity of Polycomb repressive complex 2 (PRC2), which is responsible for H3K27me3 deposition in vitro. Cryo-electron microscopy structures of the DEK-nucleosome complexes reveal that DEK binds the nucleosome by its tripartite DNA-binding mode on the dyad and linker DNAs and interacts with the nucleosomal acidic patch by its newly identified histone-binding region. The DEK-nucleosome interaction mediates linker DNA reorientation and induces chromatin compaction, which may facilitate PRC2 activation. These findings provide mechanistic insights into chromatin structure-mediated gene regulation by DEK.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kenta Echigoya
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Saeki
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ito
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Yang Y, Song L, Yu L, Zhang J, Zhang B. H4K12 lactylation potentiates mitochondrial oxidative stress via the Foxo1 pathway in diabetes-induced cognitive impairment. J Adv Res 2025:S2090-1232(25)00118-3. [PMID: 39965729 DOI: 10.1016/j.jare.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
AIMS To investigate the role and potential mechanisms of H4K12 lactylation modifications in diabetes-related cognitive impairment (DACD). METHODS Behavioral tests, HE staining, and immunohistochemistry were employed to assess cognitive function and the extent of brain tissue injury. Metabolomics and proteomics were applied to profile the metabolic regulatory network. We measured lactic acid and Pan-Kla levels in the brains of T2DM mice and high glucose-treated microglia. CUT&Tag technology was utilized to identify genes regulated by H4K12la. Small interfering RNA (siRNA) sequences and adeno-associated viruses (AAVs) were used to knock down key components in signaling pathways, evaluating the impact of histone lactylation on microglial polarization. RESULTS Lactic acid levels were significantly higher in the brains of T2DM mice and high glucose-treated microglia compared to controls, leading to an increase in pan histone lysine lactylation (Kla). We found that lactate directly induced an increase in H4K12la. CUT&Tag analysis revealed that elevated H4K12la activates the FOXO1/PGC-1α signaling pathway by enhancing binding to the FOXO1 promoter, promoting mitochondrial oxidative stress. CONCLUSION This study demonstrated that elevated H4K12la directly activates the FOXO1 signaling pathway, promoting oxidative stress and contributing to DACD phenotypes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Lulu Song
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Liping Yu
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Jinping Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Wang S, Chen H, Dai B, Zheng K, Zheng J, Zhu Y, Yuan Y, Ding T, Wang Q, Xie L, Feng R, Zhu F, Xiang J, Ding W, Ding H, Li Y, Gu X, Wu K, Yuan Y, Song J, Zhuang D, Zhong H, Wu H, Mao Y, Chen T. Comparison of differences in transcriptional and genetic profiles between intra-central nervous system and extra-central nervous system large B-cell lymphoma. Neoplasia 2025; 60:101119. [PMID: 39733690 PMCID: PMC11743917 DOI: 10.1016/j.neo.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Primary central nervous system diffused large B-cell lymphoma (PCNS-DLBCL) is a rare type of non-Hodgkin lymphoma restricted to the central nervous system (CNS). To explore its specific pathogenesis and therapeutic targets, we performed multi-omics sequencing on tumor samples from patients diagnosed with PCNS-DLBCL, secondary CNS-DLBCL or extracranial (ec) DLBCL.By single-cell RNA sequencing, highly proliferated and dark zone (DZ)-related B cell subclusters, MKI67_B1, PTTG1_B2 and BTG1_B3, were predominant significantly in PCNS-DLBCL. Compared to SCNS-DLBCL and ecDLBCL, an immune-suppressive tumor microenvironment was observed in PCNS-DLBCL by analysis of immune-stimulating/inhibitory ligand‒receptor (L-R) pairs. By performing whole-exome sequencing in 93 patients, mutations enriched in BCR-NFkB and TLR pathways and the cooperation of these two pathways were found to be predominant in PCNS-DLBCL comparing to nonGCB-ecDLBCL. In summary, our study provides comprehensive insights into the transcriptomic and genetic characteristics of PCNS-DLBCL in contrast to ecDLBCL and will help dissect the oncogenic mechanism of this disease.
Collapse
Affiliation(s)
- Shu Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Kang Zheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jiajun Zheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yan Yuan
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Tianling Ding
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Qian Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Liqian Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai 200040, PR China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xiaodong Gu
- Department of Gastrointestinal Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Kunpeng Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai 200040, PR China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, PR China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Haoshu Zhong
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Hanfeng Wu
- Department of Neurosurgery, Shanghai Gamma Hospital, Shanghai 200235, PR China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
4
|
Chen Q, Yang M, Duan X, Zhang J, Shi F, Chen R, Li Y. Linker Histone H1.4 Inhibits the Growth, Migration and EMT Process of Non-Small Cell Lung Cancer by Regulating ERK1/2 Expression. Biochem Genet 2025; 63:576-591. [PMID: 38472566 DOI: 10.1007/s10528-024-10760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
H1.4 is one of the 11 variants of linker histone H1, and is associated with tumorigenesis and development of various cancers. However, it is unclear for the role of histone H1.4 in non-small cell lung cancer (NSCLC). In this study, we found that overexpression of H1.4 significantly inhibited the cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) processes, whereas silencing H1.4 by shRNA knockdown promoted these processes in NSCLC cell lines A549 and H1299. We further showed that H1.4 overexpression reduced ERK1/2 expression or its phosphorylation levels, while H1.4 knockdown increased ERK1/2 expression or phosphorylation levels in NSCLC. Furthermore, we demonstrated that H1.4 bound to the promoter of ERK1/2, and acted as a transcriptional suppressor to inhibit ERK1/2 expression in A549 or H1299 cells. Importantly, we found that ERK ecto-expression can largely recovered the inhibitory effects of H1.4 on cell viability, migration, invasion and EMT processes. In summary, our study reveals that the H1.4-ERK pathway is crucial for cell viability, migration, invasion and EMT of NSCLC and could be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Qian Chen
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Mengqi Yang
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Xinyue Duan
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Jie Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Fan Shi
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Rong Chen
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei, Anhui Province, 230601, PR China.
- Center for Stem Cell and Translational Medicine, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
5
|
Hong ZZ. Review on the o-Aminoaniline Moiety in Peptide and Protein Chemistry. Chembiochem 2025:e202401011. [PMID: 39854053 DOI: 10.1002/cbic.202401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins. In the past decade, the function of o-aminoaniline has been greatly expanded to facilitate the preparation of homogeneously modified peptide and protein samples, where the modifications can include cyclization, C-terminus diversification, etc. Many o-aminoaniline derivatives have also been developed to overcome the inherent limitations of previous versions. In this review, we attempt to summarize the recent developments of different o-aminoaniline derivatives, focusing on their application to the preparation of functional peptide and protein molecules.
Collapse
Affiliation(s)
- Ziyong Z Hong
- School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Wisconsin, USA
| |
Collapse
|
6
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
7
|
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int J Mol Sci 2024; 26:303. [PMID: 39796159 PMCID: PMC11719560 DOI: 10.3390/ijms26010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.
Collapse
Affiliation(s)
| | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.R.); (S.F.)
| |
Collapse
|
8
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
9
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
10
|
Vijayalakshmi P, Gowdham M, Dinesh DC, Sibiya A, Vaseeharan B, Selvaraj C. Unveiling the guardians of the genome: The dynamic role of histones in DNA organization and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:39-68. [PMID: 39843143 DOI: 10.1016/bs.apcsb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair. This review delves into their complex structure and function in DNA assembly, their role in nucleosome assembly, and the higher-order chromatin structures they generate. We look at the five different types of histone proteins: H1, H2A, H2B, H3, H4, and their variations. These histones bind with DNA to produce nucleosomes, the basic units of chromatin that are essential for compacting DNA and controlling its accessibility. Their dynamic control of chromatin accessibility has important implications for genomic stability and cellular activities. We elucidate regulatory mechanisms in both normal and pathological situations by investigating their structural features, diverse interaction mechanisms, and chromatin impact. In addition, we discuss the functions of histone post-translational modifications (PTMs) and their significance in various disorders. These alterations, which include methylation, acetylation, phosphorylation, and ubiquitination, are crucial in regulating histone function and chromatin dynamics. We specifically describe and explore the role of changed histones in the evolution of cancer, neurological disorders, sepsis, autoimmune illnesses, and inflammatory conditions. This comprehensive review emphasizes histone's critical role in genomic integrity and their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Periyasamy Vijayalakshmi
- P.G and Research Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy, Tamil Nadu, India
| | - Manivel Gowdham
- Chemomicrobiomics Laboratory, Department of Biochemistry & Microbiology, KMCH Research Foundation, Coimbatore, Tamil Nadu, India
| | | | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune, India.
| |
Collapse
|
11
|
Arévalo-Jaimes BV, Salinas-Pena M, Ponte I, Jordan A, Roque A, Torrents E. Antimicrobial and antibiofilm activity of human recombinant H1 histones against bacterial infections. mSystems 2024; 9:e0070424. [PMID: 39470247 PMCID: PMC11575268 DOI: 10.1128/msystems.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Histones possess significant antimicrobial potential, yet their activity against biofilms remains underexplored. Moreover, concerns regarding adverse effects limit their clinical implementation. We investigated the antibacterial efficacy of human recombinant histone H1 subtypes against Pseudomonas aeruginosa PAO1, both planktonic and in biofilms. After the in vitro tests, toxicity and efficacy were assessed in a P. aeruginosa PAO1 infection model using Galleria mellonella larvae. Histones were also evaluated in combination with ciprofloxacin (Cpx) and gentamicin (Gm). Our results demonstrate antimicrobial activity of all three histones against P. aeruginosa PAO1, with H1.0 and H1.4 showing efficacy at lower concentrations. The bactericidal effect was associated with a mechanism of membrane disruption. In vitro studies using static and dynamic models showed that H1.4 had antibiofilm potential by reducing cell biomass. Neither H1.0 nor H1.4 showed toxicity in G. mellonella larvae, and both increased larvae survival when infected with P. aeruginosa PAO1. Although in vitro synergism was observed between ciprofloxacin and H1.0, no improvement over the antibiotic alone was noted in vivo. Differences in antibacterial and antibiofilm activity were attributed to sequence and structural variations among histone subtypes. Moreover, the efficacy of H1.0 and H1.4 was influenced by the presence and strength of the extracellular matrix. These findings suggest histones hold promise for combating acute and chronic infections caused by pathogens such as P. aeruginosa.IMPORTANCEThe constant increase of multidrug-resistant bacteria is a critical global concern. The inefficacy of current therapies to treat bacterial infections is attributed to multiple mechanisms of resistance, including the capacity to form biofilms. Therefore, the identification of novel and safe therapeutic strategies is imperative. This study confirms the antimicrobial potential of three histone H1 subtypes against both Gram-negative and Gram-positive bacteria. Furthermore, histones H1.0 and H1.4 demonstrated in vivo efficacy without associated toxicity in an acute infection model of Pseudomonas aeruginosa PAO1 in Galleria mellonella larvae. The bactericidal effect of these proteins also resulted in biomass reduction of P. aeruginosa PAO1 biofilms. Given the clinical significance of this opportunistic pathogen, our research provides a comprehensive initial evaluation of the efficacy, toxicity, and mechanism of action of a potential new therapeutic approach against acute and chronic bacterial infections.
Collapse
Affiliation(s)
- Betsy Verónica Arévalo-Jaimes
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | | | - Inmaculada Ponte
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alicia Roque
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Sarma S, Thakur N, Varshney N, Jha HC, Sarma TK. Chromatin inspired bio-condensation between biomass DNA and guanosine monophosphate produces all-nucleic hydrogel as a hydrotropic drug carrier. Commun Chem 2024; 7:261. [PMID: 39533097 PMCID: PMC11557961 DOI: 10.1038/s42004-024-01353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The integration of biomolecules into supramolecular nanostructures forms the basis of the natural world. Naturally occurring liquid-liquid phase separation resulting in biomolecular condensates has inspired the formation of biomolecule-based smart materials with multi-dimensional applications. A non-covalent bio-condensation between biomass DNA and guanosine monophosphate (GMP) has been described, mimicking chromatin folding and creating a unique "all-nucleic" DNA-GMP condensates. These condensates initiate the formation of G-quadruplex-based superstructures, assembling into super-helical fibres driven by synergistic hydrogen bonding and stacking, which have been thoroughly investigated. This simple, one-step method for the bio-condensation of biomass DNA leads to an "all-nucleic" hydrogel with higher-order self-assembly and excellent mechanical properties. While most of the reported DNA based biomaterials, including hydrogels, require precisely sequenced and molecularly architectured DNA building blocks, we have developed a simple, universal, and facile bio-condensation method that utilizes biomass DNA acquired from any bio-resource to fabricate DNA hydrogels. The hydrogel efficiently encapsulates and sustains the release of both hydrophilic and hydrophobic drugs, demonstrating its competency as a drug carrier. We believe this energy-efficient and low-cost method represents a new technique for using biomass DNA as building blocks for the next generation of soft materials.
Collapse
Affiliation(s)
- Suryakamal Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Neha Thakur
- Developmental Bioengineering, TechMed Centre, University of Twente. Drienerlolaan 5, Enschede, The Netherlands
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
13
|
Quarta A, Quarta MT, Mastromauro C, Chiarelli F, Giannini C. Influence of Nutrition on Growth and Development of Metabolic Syndrome in Children. Nutrients 2024; 16:3801. [PMID: 39599588 PMCID: PMC11597107 DOI: 10.3390/nu16223801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity is currently an increasing public health burden due to its related metabolic and cardiovascular complications. In Western countries, a significant number of people are overweight or obese, and this trend is, unfortunately, becoming increasingly common even among the pediatric population. In this narrative review, we analyzed the role of nutrition during growth and its impact on the risk of developing metabolic syndrome and cardiovascular complications later in life. An impactful role in determining the phenotypic characteristics of the offspring is the parental diet carried out before conception. During intrauterine growth, the main risk factors are represented by an unbalanced maternal diet, excessive gestational weight gain, and impaired glycemic status. Breastfeeding, on the other hand, has many beneficial effects, but at the same time the quality of breast milk may be modified if maternal overweight or obesity subsists. Complementary feeding is likewise pivotal because an early introduction before 4 months of age and a high protein intake contribute to weight gain later. Knowledge of these mechanisms may allow early modification of risk factors by implementing targeted preventive strategies.
Collapse
Affiliation(s)
| | | | | | | | - Cosimo Giannini
- Department of Pediatrics, University of Chieti—Pescara, G. D’Annunzio, 66100 Chieti, Italy; (A.Q.); (M.T.Q.); (C.M.); (F.C.)
| |
Collapse
|
14
|
Chua GNL, Watters JW, Olinares PDB, Begum M, Vostal LE, Luo JA, Chait BT, Liu S. Differential dynamics specify MeCP2 function at nucleosomes and methylated DNA. Nat Struct Mol Biol 2024; 31:1789-1797. [PMID: 39164525 PMCID: PMC11564119 DOI: 10.1038/s41594-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/16/2024] [Indexed: 08/22/2024]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a severe neurological disorder that primarily affects young females. The canonical view of MeCP2 as a DNA methylation-dependent transcriptional repressor has proven insufficient to describe its dynamic interaction with chromatin and multifaceted roles in genome organization and gene expression. Here we used single-molecule correlative force and fluorescence microscopy to directly visualize the dynamics of wild-type and RTT-causing mutant MeCP2 on DNA. We discovered that MeCP2 exhibits distinct one-dimensional diffusion kinetics when bound to unmethylated versus CpG methylated DNA, enabling methylation-specific activities such as co-repressor recruitment. We further found that, on chromatinized DNA, MeCP2 preferentially localizes to nucleosomes and stabilizes them from mechanical perturbation. Our results reveal the multimodal behavior of MeCP2 on chromatin that underlies its DNA methylation- and nucleosome-dependent functions and provide a biophysical framework for dissecting the molecular pathology of RTT mutations.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Masuda Begum
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Lauren E Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Joshua A Luo
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Imre L, Nánási P, Benhamza I, Enyedi KN, Mocsár G, Bosire R, Hegedüs É, Niaki EF, Csóti Á, Darula Z, Csősz É, Póliska S, Scholtz B, Mező G, Bacsó Z, Timmers HTM, Kusakabe M, Balázs M, Vámosi G, Ausio J, Cheung P, Tóth K, Tremethick D, Harata M, Szabó G. Epigenetic modulation via the C-terminal tail of H2A.Z. Nat Commun 2024; 15:9171. [PMID: 39448645 PMCID: PMC11502880 DOI: 10.1038/s41467-024-53514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
H2A.Z-nucleosomes are present in both euchromatin and heterochromatin and it has proven difficult to interpret their disparate roles in the context of their stability features. Using an in situ assay of nucleosome stability and DT40 cells expressing engineered forms of the histone variant we show that native H2A.Z, but not C-terminally truncated H2A.Z (H2A.Z∆C), is released from nucleosomes of peripheral heterochromatin at unusually high salt concentrations. H2A.Z and H3K9me3 landscapes are reorganized in H2A.Z∆C-nuclei and overall sensitivity of chromatin to nucleases is increased. These tail-dependent differences are recapitulated upon treatment of HeLa nuclei with the H2A.Z-tail-peptide (C9), with MNase sensitivity being increased genome-wide. Fluorescence correlation spectroscopy revealed C9 binding to reconstituted nucleosomes. When introduced into live cells, C9 elicited chromatin reorganization, overall nucleosome destabilization and changes in gene expression. Thus, H2A.Z-nucleosomes influence global chromatin architecture in a tail-dependent manner, what can be modulated by introducing the tail-peptide into live cells.
Collapse
Affiliation(s)
- László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ibtissem Benhamza
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kata Nóra Enyedi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE, Supported Research Groups, Research Group of Peptide Chemistry, Budapest, Hungary
| | - Gábor Mocsár
- Damjanovich Cell Analysis Core Facility, Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágota Csóti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
- Core Facility, Proteomics Research Group, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Beáta Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Gábor Mező
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE, Supported Research Groups, Research Group of Peptide Chemistry, Budapest, Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - H T Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ and Medical Center-University of Freiburg and Department of Urology, Medical Center-University of Freiburg, Breisacher Str. 66, Freiburg, Germany
| | - Masayuki Kusakabe
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
16
|
Li T, Chen Y, Li S. The Advances in the Development of Epigenetic Modifications Therapeutic Drugs Delivery Systems. Int J Nanomedicine 2024; 19:10623-10637. [PMID: 39445155 PMCID: PMC11498046 DOI: 10.2147/ijn.s480095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic dysregulation can significantly trigger the onset and progression of various diseases, epigenetic therapy is a new treatment strategy by changing DNA methylation, histone modification, N6-methyladenosine, chromatin modification and other epigenetic modifications to regulate gene expression levels for therapeutic purposes. However, small-molecule epigenetic drugs face challenges in disease treatment, such as lack of selectivity, limited therapeutic efficacy, and insufficient safety. Nanomedicine delivery systems offer significant advantages in addressing these issues by enhancing drug targeting, improving bioavailability, and reducing nonspecific distribution. This help minimize side effects while increasing both therapeutic effectiveness and safety of epigenetic drugs. In this review, we focus on the mechanism and role of epigenetic regulatory factors in diseases, as well as the challenges faced by small molecule inhibitors in treatment strategies, especially the research advancements in epigenetic drug delivery systems, review and discuss the therapeutic potential and challenges of using nanotechnology to develop epigenetic drug delivery systems.
Collapse
Affiliation(s)
- Tingyi Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
17
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
18
|
Rutowicz K, Lüthi J, de Groot R, Holtackers R, Yakimovich Y, Pazmiño DM, Gandrillon O, Pelkmans L, Baroux C. Multiscale chromatin dynamics and high entropy in plant iPSC ancestors. J Cell Sci 2024; 137:jcs261703. [PMID: 38738286 PMCID: PMC11234377 DOI: 10.1242/jcs.261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Joel Lüthi
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Reinoud de Groot
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - René Holtackers
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Yauhen Yakimovich
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Diana M. Pazmiño
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, University of Lyon, ENS de Lyon,69342 Lyon, France
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Célia Baroux
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
19
|
Angelico G, Mazzucchelli M, Attanasio G, Tinnirello G, Farina J, Zanelli M, Palicelli A, Bisagni A, Barbagallo GMV, Certo F, Zizzo M, Koufopoulos N, Magro G, Caltabiano R, Broggi G. H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2024; 16:3451. [PMID: 39456545 PMCID: PMC11506073 DOI: 10.3390/cancers16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giulio Attanasio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | | | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (G.M.V.B.); (F.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece;
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
20
|
Smith JR, Arellano AA, Avgousti DC. Viral imitation is the sincerest form of epigenetic flattery. Mol Biol Cell 2024; 35:pe3. [PMID: 39302431 PMCID: PMC11481696 DOI: 10.1091/mbc.e23-04-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Viruses use multiple strategies to successfully generate progeny and overcome host defenses. In recent years, it has become increasingly evident that epigenetic mechanisms of host gene regulation are vulnerable to viral manipulation. In the form of histone mimicry, viral invasion of host chromatin is a striking example of how viruses have evolved to invade every aspect of cellular function for viral benefit. In this perspective, we will review how three viruses-influenza A, SARS-CoV-2, and Cotesia plutellae bracovirus-use histone mimicry to promote viral success through immune evasion. These examples highlight the importance of this burgeoning field and point toward the wealth of knowledge we have yet to uncover.
Collapse
Affiliation(s)
- Julian R. Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Angela A. Arellano
- Molecular, Cellular, and Developmental Biology at the University of California, Santa Barbara, Goleta, CA
| | | |
Collapse
|
21
|
Martins FRB, Beltrami VA, Zenóbio IC, Martins DG, da Silva Gurgel IL, de Assis Rabelo Ribeiro N, Queiroz-Junior CM, Bonaventura D, Rezende BM, Teixeira MM, Pinho V, Oliveira NL, Soriani FM. Chronic ethanol exposure decreases H3K27me3 in the Il6 promoter region of macrophages and generates persistent dysfunction on neutrophils during fungal infection. Inflamm Res 2024; 73:1747-1763. [PMID: 39127870 DOI: 10.1007/s00011-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the effects of ethanol exposure on epigenetic markers in bone marrow (BM) and their impact on inflammatory response during Aspergillus fumigatus infection. RESULTS Chronic ethanol exposure decreased H3K27me3 enrichment in the Il6 promoter region while increased H3K4me3 enrichment in Tnf. Chimeric mice were generated by transplanting BM from mice exposed to ethanol or water. Infection of ethanol-chimeric mice culminated in higher clinical scores, although there was no effect on mortality. However, previous chronic exposure to ethanol affects persistently the inflammatory response in lung tissue, demonstrated by increased lung damage, neutrophil accumulation and IL-6, TNF and CXCL2 production in ethanol-chimeric mice, resulting in a decreased neutrophil infiltration into the alveolar space. Neutrophil killing and phagocytosis were also significantly lower. Moreover, BM derived macrophages (BMDM) from ethanol-chimeric mice stimulated with A. fumigatus conidia exhibited higher levels of TNF, CXCL2 and IL-6 release and a higher killing activity. The Il6 promoter of BMDM from ethanol-chimeric mice exhibited a reduction in H3K27me3 enrichment, a finding also observed in BM donors exposed to ethanol. CONCLUSIONS These evidences demonstrate that prior chronic alcohol exposure of bone-marrow modify immune effector cells functions impairing the inflammatory response during A. fumigatus infection. These findings highlight the persistent impact of chronic ethanol exposure on infectious disease outcomes.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Amorim Beltrami
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Cruz Zenóbio
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luísa da Silva Gurgel
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Luisa Oliveira
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
22
|
Guo J, He XJ. Composition and function of plant chromatin remodeling complexes. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102613. [PMID: 39116678 DOI: 10.1016/j.pbi.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
ATP-dependent chromatin remodelers play a crucial role in modifying chromatin configuration by utilizing the energy of ATP hydrolysis. They are involved in various processes, including transcription, DNA replication, and maintaining genome stability. These remodeling remodelers usually form multi-subunit chromatin remodeling complexes in eukaryotes. In plants, chromatin remodeling complexes have diverse functions in regulating plant development and stress response. Recent studies have conducted extensive research on plant chromatin remodeling complexes. This review focuses on recent advances in the classification and composition of plant chromatin remodeling complexes, the protein-protein interactions within the complexes, their impact on chromatin configuration, and their interactions with chromatin modifications and transcription factors.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
23
|
Li W, Hu J, Song F, Yu J, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang H, Zhou Z, Zhang H, Bai Y, Zhou JQ, Li W, Li G, Zhu P. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res 2024; 34:707-724. [PMID: 39103524 PMCID: PMC11442585 DOI: 10.1038/s41422-024-01009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchical packaging of chromatin fibers plays a critical role in gene regulation. The 30-nm chromatin fibers, a central-level structure bridging nucleosomal arrays to higher-order organizations, function as the first level of transcriptional dormant chromatin. The dynamics of 30-nm chromatin fiber play a crucial role in biological processes related to DNA. Here, we report a 3.6-angstrom resolution cryogenic electron microscopy structure of H5-bound dodecanucleosome, i.e., the chromatin fiber reconstituted in the presence of linker histone H5, which shows a two-start left-handed double helical structure twisted by tetranucleosomal units. An atomic structural model of the H5-bound chromatin fiber, including an intact chromatosome, is built, which provides structural details of the full-length linker histone H5, including its N-terminal domain and an HMG-motif-like C-terminal domain. The chromatosome structure shows that H5 binds the nucleosome off-dyad through a three-contact mode in the chromatin fiber. More importantly, the H5-chromatin structure provides a fine molecular basis for the intra-tetranucleosomal and inter-tetranucleosomal interactions. In addition, we systematically validated the physiological functions and structural characteristics of the tetranucleosomal unit through a series of genetic and genomic studies in Saccharomyces cerevisiae and in vitro biophysical experiments. Furthermore, our structure reveals that multiple structural asymmetries of histone tails confer a polarity to the chromatin fiber. These findings provide structural and mechanistic insights into how a nucleosomal array folds into a higher-order chromatin fiber with a polarity in vitro and in vivo.
Collapse
Affiliation(s)
- Wenyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Song
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shangdong, China
| | - Juan Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Peng
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuming Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Lin Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingli Hu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wei
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongyu Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linchang Dai
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongjun Mou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haonan Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Zhou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Ping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Bian Y, Lv F, Pan H, Ren W, Zhang W, Wang Y, Cao Y, Li W, Wang W. Fusion Dynamics and Size-Dependence of Droplet Microstructure in ssDNA-Mediated Protein Phase Separation. JACS AU 2024; 4:3690-3704. [PMID: 39328748 PMCID: PMC11423313 DOI: 10.1021/jacsau.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation involving proteins and nucleic acids has been recognized to play crucial roles in genome organization and transcriptional regulation. However, the biophysical mechanisms underlying the droplet fusion dynamics and microstructure evolution during the early stage of liquid-liquid phase separation (LLPS) remain elusive. In this work, we study the phase separation of linker histone H1, which is among the most abundant chromatin proteins, in the presence of single-stranded DNA (ssDNA) capable of forming a G-quadruplex by using molecular simulations and experimental characterization. We found that droplet fusion is a rather stochastic and kinetically controlled process. Productive fusion events are triggered by the formation of ssDNA-mediated electrostatic bridges within the droplet contacting zone. The droplet microstructure is size-dependent and evolves driven by maximizing the number of electrostatic contacts. We also showed that the folding of ssDNA to the G-quadruplex promotes LLPS by increasing the multivalency and strength of protein-DNA interactions. These findings provide deep mechanistic insights into the growth dynamics of biomolecular droplets and highlight the key role of kinetic control during the early stage of ssDNA-protein condensation.
Collapse
Affiliation(s)
- Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Fangyi Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Hai Pan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yi Cao
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Karatepe K, Mafra de Faria B, Zhang J, Chen X, Pinto H, Fyodorov D, Sefik E, Willcockson M, Flavell R, Skoultchi A, Guo S. Linker histone regulates the myeloid versus lymphoid bifurcation of multipotent hematopoietic stem and progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613227. [PMID: 39345411 PMCID: PMC11429722 DOI: 10.1101/2024.09.16.613227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myeloid-biased differentiation of multipotent hematopoietic stem and progenitor cells (HSPCs) occurs with aging or exhaustion. The molecular mechanism(s) responsible for this fate bias remain unclear. Here we report that linker histone regulates HSPC fate choice at the lymphoid versus myeloid bifurcation. HSPCs expressing H1.0 from a doxycycline (dox) inducible transgene favor the lymphoid fate, display strengthened nucleosome organization and reduced chromatin accessibility at genomic regions hosting key myeloid fate drivers. The transcription factor Hlf is located in one of such regions, where chromatin accessibility and gene expression is reduced in H1.0 high HSPCs. Furthermore, H1.0 protein in HSPCs decreases in an aspartyl protease dependent manner, a process enhanced in response to interferon alpha (IFNα) signaling. Aspartyl protease inhibitors preserve endogenous H1.0 levels and promote the lymphoid fate of wild type HSPCs. Thus, our work uncovers a point of intervention to mitigate myeloid skewed hematopoiesis.
Collapse
|
26
|
Bai B, Wise JF, Vodák D, Nakken S, Sharma A, Blaker YN, Brodtkorb M, Hilden V, Trøen G, Ren W, Lorenz S, Lawrence MS, Myklebost O, Kimby E, Pan-Hammarström Q, Steen CB, Meza-Zepeda LA, Beiske K, Smeland EB, Hovig E, Lingjærde OC, Holte H, Myklebust JH. Multi-omics profiling of longitudinal samples reveals early genomic changes in follicular lymphoma. Blood Cancer J 2024; 14:147. [PMID: 39191762 PMCID: PMC11350178 DOI: 10.1038/s41408-024-01124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.
Collapse
Affiliation(s)
- Baoyan Bai
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen),, Akershus University Hospital, Lørenskog, Norway
| | - Jillian F Wise
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, Charlestown, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Daniel Vodák
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yngvild Nuvin Blaker
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne Brodtkorb
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera Hilden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Lorenz
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, Charlestown, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Eva Kimby
- Unit for Hematology and Department of Medicine at Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chloé B Steen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Erlend B Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway.
- Department of Oncology, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.
| | - June Helen Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Saunders HS, Chio US, Moore CM, Ramani V, Cheng Y, Narlikar GJ. HMGB1 restores a dynamic chromatin environment in the presence of linker histone by deforming nucleosomal DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609244. [PMID: 39229246 PMCID: PMC11370580 DOI: 10.1101/2024.08.23.609244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The essential architectural protein HMGB1 increases accessibility of nucleosomal DNA and counteracts the effects of linker histone H1. However, HMGB1 is less abundant than H1 and binds nucleosomes more weakly raising the question of how HMGB1 effectively competes with H1. Here, we show that HMGB1 rescues H1's inhibition of nucleosomal DNA accessibility without displacing H1. HMGB1 also increases the dynamics of condensed, H1-bound chromatin. Cryo-EM shows that HMGB1 binds at internal locations on a nucleosome and locally distorts the DNA. These sites, which are away from the binding site of H1, explain how HMGB1 and H1 co-occupy a nucleosome. Our findings lead to a model where HMGB1 counteracts the activity of H1 by distorting nucleosomal DNA and by contacting the H1 C-terminal tail. Compared to direct competition, nucleosome co-occupancy by HMGB1 and H1 allows a greater diversity of dynamic chromatin states and may be generalizable to other chromatin regulators.
Collapse
Affiliation(s)
- Hayden S. Saunders
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Camille M. Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
28
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
29
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
30
|
Pan W, Tsokos MG, Scherlinger M, Li W, Tsokos GC. The PP2A regulatory subunit PPP2R2A controls NAD + biosynthesis to regulate T cell subset differentiation in systemic autoimmunity. Cell Rep 2024; 43:114379. [PMID: 38889006 PMCID: PMC11414414 DOI: 10.1016/j.celrep.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The protein phosphatase 2A (PP2A) regulatory subunit PPP2R2A is involved in the regulation of immune response. We report that lupus-prone mice with T cells deficient in PPP2R2A display less autoimmunity and nephritis. PPP2R2A deficiency promotes NAD+ biosynthesis through the nicotinamide riboside (NR)-directed salvage pathway in T cells. NR inhibits murine Th17 and promotes Treg cell differentiation, in vitro, by PΑRylating histone H1.2 and causing its reduced occupancy in the Foxp3 loci and increased occupancy in the Il17a loci, leading to increased Foxp3 and decreased Il17a transcription. NR treatment suppresses disease in MRL.lpr mice and restores NAD+-dependent poly [ADP-ribose] polymerase 1 (PARP1) activity in CD4 T cells from patients with systemic lupus erythematosus (SLE), while reducing interferon (IFN)-γ and interleukin (IL)-17 production. We conclude that PPP2R2A controls the level of NAD+ through the NR-directed salvage pathway and promotes systemic autoimmunity. Translationally, NR suppresses lupus nephritis in mice and limits the production of proinflammatory cytokines by SLE T cells.
Collapse
Affiliation(s)
- Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Rheumatology Department, Strasbourg University Hospital of Hautepierre, Strasbourg, France
| | - Wei Li
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
McRae SA, Richards CM, Da Silva DE, Riar I, Yang SS, Zurfluh NE, Gibon J, Klegeris A. Pro-neuroinflammatory and neurotoxic potential of extracellular histones H1 and H3. Neurosci Res 2024; 204:34-45. [PMID: 38278218 DOI: 10.1016/j.neures.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Histones organize DNA within cellular nuclei, but they can be released from damaged cells. In peripheral tissues extracellular histones act as damage-associated molecular patterns (DAMPs) inducing pro-inflammatory activation of immune cells. Limited studies have considered DAMP-like activity of histones in the central nervous system (CNS); therefore, we studied the effects of extracellular histones on microglia, the CNS immunocytes, and on neuronal cells. Both the linker histone H1 and the core histone H3 induced pro-inflammatory activation of microglia-like cells by upregulating their secretion of NO and cytokines, including interferon-γ-inducible protein 10 (IP-10) and tumor necrosis factor-α (TNF). The selective inhibitors MMG-11 and TAK-242 were used to demonstrate involvement of toll-like receptors (TLR) 2 and 4, respectively, in H1-induced NO secretion by BV-2 microglia. H1, but not H3, downregulated the phagocytic activity of BV-2 microglia. H1 was also directly toxic to all neuronal cell types studied. We conclude that H1, and to a lesser extent H3, when released extracellularly, have the potential to act as a CNS DAMPs. Inhibition of the DAMP-like effects of extracellular histones on microglia and their neurotoxic activity represents a potential strategy for combating neurodegenerative diseases that are characterized by the adverse activation of microglia and neuronal death.
Collapse
Affiliation(s)
- Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Dylan E Da Silva
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Ishvin Riar
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Sijie Shirley Yang
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Noah E Zurfluh
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
32
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
33
|
Wu Z, Liu K, Zhang X, Tang Q, Zeng L. CsNYC1a Mediates Chlorophyll Degradation and Albino Trait Formation in the Arbor-Type Tea Plant Camellia nanchuanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38848450 DOI: 10.1021/acs.jafc.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Albino germplasms are prized tea plant mutants with yellow/white leaves. However, understanding of the albino mechanisms in non-Camellia sinensis tea species remains limited. This study elucidated the albino trait formation in Nanchuan Dachashu (C. nanchuanica), an arbor-type tea species, and its association with tea quality. The yellow-leaved albino individual NH1 exhibited abnormal chloroplast ultrastructure and reduced chlorophyll/carotenoid levels compared to green-leaved NL1. Integrating transcriptomics, metabolomics, yeast one-hybrid, and transgenic approaches identified the chlorophyll b reductase gene CsNYC1a as a key regulator, which was significantly up-regulated in NH1, and its overexpression in Arabidopsis recapitulated the albino phenotype. In yeast, histone CsH1.2 binds to the CsNYC1a promoter. These findings suggest that CsH1.2-CsNYC1a-mediated chlorophyll degradation may be a key mechanism underlying albino formation in Nanchuan Dachashu. In addition, as a germplasm with higher polyphenol-to-amino acid ratio than NL1, NH1 offers more possibilities for breeding and application.
Collapse
Affiliation(s)
- Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Portillo-Ledesma S, Schlick T. Regulation of chromatin architecture by protein binding: insights from molecular modeling. Biophys Rev 2024; 16:331-343. [PMID: 39099845 PMCID: PMC11297222 DOI: 10.1007/s12551-024-01195-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/22/2024] [Indexed: 08/06/2024] Open
Abstract
Histone and non-histone proteins play key roles in the activation and repression of genes. In addition to experimental studies of their regulation of gene expression, molecular modeling at the nucleosome, chromatin, and chromosome levels can contribute insights into the molecular mechanisms involved. In this review, we provide an overview for protein-bound chromatin modeling, and describe how our group has integrated protein binding into genome systems across the scales, from all-atom to coarse-grained models, using explicit to implicit descriptions. We describe the associated applications to protein binding effects and biological mechanisms of genome folding and gene regulation. We end by illustrating the application of machine learning tools like AlphaFold2 to proteins relevant to chromatin systems.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 USA
| |
Collapse
|
35
|
Xu H, Chen X, Zeng G, Qin X, Deng Z, Cheng W, Shen X, Hu Y. Unveiling common and specific features of the COMPASS-like complex in sorghum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108709. [PMID: 38744082 DOI: 10.1016/j.plaphy.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The COMPASS-like complex, responsible for depositing H3K4 methylation, exhibits a conserved composition across yeast, plants, and animals, with functional analysis highlighting its crucial roles in plant development and stress response. In this study, we identified nine genes encoding four subunits of the COMPASS-like complex through homologous search. Phylogenetic analysis revealed the presence of two additional ASH2 genes in the sorghum genome, specifically expressed in endosperms, suggesting the formation of a unique COMPASS-like complex in sorghum endosperms. Y2H and BiFC protein-protein interaction tests demonstrated the interaction between SbRbBP5 and SbASH2A/B/C, while the association between other subunits appeared weak, possibly due to sequence variations in SbWDR5 or synergistic interactions among COMPASS-like complex subunits. The interaction between ATX1 and the C-Terminal Domain (CTD) of Pol II, reported in Arabidopsis, was not detected in sorghum. However, we made the novel discovery of transcriptional activation activity in RbBP5, which is conserved in sorghum, rice, and Arabidopsis, providing valuable insights into the mechanism by which the COMPASS-like complex regulates gene expression in plants.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China; Jingchu University of Technology, Jingmen, Hubei, 448000, China
| | - Xiaoliang Chen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Gongjian Zeng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Xiner Qin
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Zhuying Deng
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wenhan Cheng
- Jingchu University of Technology, Jingmen, Hubei, 448000, China
| | - Xiangling Shen
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| | - Yongfeng Hu
- Hubei Engineering Research Center for Three Gorges Regional Plant Breeding/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China.
| |
Collapse
|
36
|
Bujosa P, Reina O, Caballé A, Casas-Lamesa A, Torras-Llort M, Pérez-Roldán J, Nacht AS, Vicent GP, Bernués J, Azorín F. Linker histone H1 regulates homeostasis of heterochromatin-associated cRNAs. Cell Rep 2024; 43:114137. [PMID: 38662543 DOI: 10.1016/j.celrep.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/23/2023] [Accepted: 04/08/2024] [Indexed: 06/01/2024] Open
Abstract
Chromatin-associated RNAs (cRNAs) are a poorly characterized fraction of cellular RNAs that co-purify with chromatin. Their full complexity and the mechanisms regulating their packaging and chromatin association remain poorly understood. Here, we address these questions in Drosophila. We find that cRNAs constitute a heterogeneous group of RNA species that is abundant in heterochromatic transcripts. We show that heterochromatic cRNAs interact with the heterogeneous nuclear ribonucleoproteins (hnRNP) hrp36/hrp48 and that depletion of linker histone dH1 impairs this interaction. dH1 depletion induces the accumulation of RNA::DNA hybrids (R-loops) in heterochromatin and, as a consequence, increases retention of heterochromatic cRNAs. These effects correlate with increased RNA polymerase II (RNAPII) occupancy at heterochromatin. Notably, impairing cRNA assembly by depletion of hrp36/hrp48 mimics heterochromatic R-loop accumulation induced by dH1 depletion. We also show that dH1 depletion alters nucleosome organization, increasing accessibility of heterochromatin. Altogether, these perturbations facilitate annealing of cRNAs to the DNA template, enhancing R-loop formation and cRNA retention at heterochromatin.
Collapse
Affiliation(s)
- Paula Bujosa
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Adrià Caballé
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Anna Casas-Lamesa
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Juan Pérez-Roldán
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ana Silvina Nacht
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillermo P Vicent
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain; Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Murray-Nerger LA, Lozano C, Burton EM, Liao Y, Ungerleider NA, Guo R, Gewurz BE. The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression. Nat Commun 2024; 15:4156. [PMID: 38755141 PMCID: PMC11099029 DOI: 10.1038/s41467-024-48333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Clarisel Lozano
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Eric M Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Medford, MA, 02155, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Program in Virology, Boston, MA, 02115, USA.
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
38
|
He S, Yu Y, Wang L, Zhang J, Bai Z, Li G, Li P, Feng X. Linker histone H1 drives heterochromatin condensation via phase separation in Arabidopsis. THE PLANT CELL 2024; 36:1829-1843. [PMID: 38309957 PMCID: PMC11062459 DOI: 10.1093/plcell/koae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/05/2024]
Abstract
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Liang Wang
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhengyong Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
39
|
Nie H, Kong X, Song X, Guo X, Li Z, Fan C, Zhai B, Yang X, Wang Y. Roles of histone post-translational modifications in meiosis†. Biol Reprod 2024; 110:648-659. [PMID: 38224305 DOI: 10.1093/biolre/ioae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024] Open
Abstract
Histone post-translational modifications, such as phosphorylation, methylation, acetylation, and ubiquitination, play vital roles in various chromatin-based cellular processes. Meiosis is crucial for organisms that depend on sexual reproduction to produce haploid gametes, during which chromatin undergoes intricate conformational changes. An increasing body of evidence is clarifying the essential roles of histone post-translational modifications during meiotic divisions. In this review, we concentrate on the post-translational modifications of H2A, H2B, H3, and H4, as well as the linker histone H1, that are required for meiosis, and summarize recent progress in understanding how these modifications influence diverse meiotic events. Finally, challenges and exciting open questions for future research in this field are discussed. Summary Sentence Diverse histone post-translational modifications exert important effects on the meiotic cell cycle and these "histone codes" in meiosis might lead to the development of novel therapeutic strategies against reproductive diseases.
Collapse
Affiliation(s)
- Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xueyu Kong
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoyu Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Zhanyu Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Cunxian Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
40
|
Oikeh E, Ziebarth J, Dinar MAM, Kirchhoff D, Aronova A, Dziubla TD, Wang Y, DeRouchey JE. DNA Packaging and Polycation Length Determine DNA Susceptibility to Free Radical Damage in Condensed DNA. J Phys Chem B 2024; 128:3329-3339. [PMID: 38557033 DOI: 10.1021/acs.jpcb.3c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins: histones in somatic nuclei and protamines in sperm chromatin. The extreme, nearly crystalline packaging of DNA by protamines in spermatozoa is thought to be essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species. The protective role of protamines is required in sperm, as they are sensitive to ROS damage due to the progressive loss of DNA repair mechanisms during maturation. The degree to which DNA packaging directly relates to DNA protection in the condensed state, however, is poorly understood. Here, we utilized different polycation condensing agents to achieve varying DNA packaging densities and quantify DNA damage by free radical oxidation within the condensates. Although we see that tighter DNA packaging generally leads to better protection, the length of the polycation also plays a significant role. Molecular dynamics simulations suggest that longer polyarginine chains offer increased protection by occupying more space on the DNA surface and forming more stable interactions. Taken together, our results suggest a complex interplay among polycation properties, DNA packaging density, and DNA protection against free radical damage within condensed states.
Collapse
Affiliation(s)
- Ehigbai Oikeh
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jesse Ziebarth
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Md Abu Monsur Dinar
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel Kirchhoff
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Anastasiia Aronova
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Thomas D Dziubla
- Chemical and Materials Engineering Department, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yongmei Wang
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
41
|
Hu S, Chapski DJ, Gehred ND, Kimball TH, Gromova T, Flores A, Rowat AC, Chen J, Packard RRS, Olszewski E, Davis J, Rau CD, McKinsey TA, Rosa-Garrido M, Vondriska TM. Histone H1.0 couples cellular mechanical behaviors to chromatin structure. NATURE CARDIOVASCULAR RESEARCH 2024; 3:441-459. [PMID: 38765203 PMCID: PMC11101354 DOI: 10.1038/s44161-024-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 03/06/2024] [Indexed: 05/21/2024]
Abstract
Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.
Collapse
Affiliation(s)
- Shuaishuai Hu
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Natalie D. Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Todd H. Kimball
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Angelina Flores
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Junjie Chen
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Christoph D. Rau
- Department of Genetics and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL USA
| | - Thomas M. Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
42
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
43
|
Salinas-Pena M, Rebollo E, Jordan A. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife 2024; 12:RP91306. [PMID: 38530350 DOI: 10.7554/elife.91306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.
Collapse
Affiliation(s)
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
44
|
Sekine SI, Ehara H, Kujirai T, Kurumizaka H. Structural perspectives on transcription in chromatin. Trends Cell Biol 2024; 34:211-224. [PMID: 37596139 DOI: 10.1016/j.tcb.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
In eukaryotes, all genetic processes take place in the cell nucleus, where DNA is packaged as chromatin in 'beads-on-a-string' nucleosome arrays. RNA polymerase II (RNAPII) transcribes protein-coding and many non-coding genes in this chromatin environment. RNAPII elongates RNA while passing through multiple nucleosomes and maintaining the integrity of the chromatin structure. Recent structural studies have shed light on the detailed mechanisms of this process, including how transcribing RNAPII progresses through a nucleosome and reassembles it afterwards, and how transcription elongation factors, chromatin remodelers, and histone chaperones participate in these processes. Other studies have also illuminated the crucial role of nucleosomes in preinitiation complex assembly and transcription initiation. In this review we outline these advances and discuss future perspectives.
Collapse
Affiliation(s)
- Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomoya Kujirai
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
45
|
Salinas-Pena M, Serna-Pujol N, Jordan A. Genomic profiling of six human somatic histone H1 variants denotes that H1X accumulates at recently incorporated transposable elements. Nucleic Acids Res 2024; 52:1793-1813. [PMID: 38261975 PMCID: PMC10899769 DOI: 10.1093/nar/gkae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Histone H1, a vital component in chromatin structure, binds to linker DNA and regulates nuclear processes. We have investigated the distribution of histone H1 variants in a breast cancer cell line using ChIP-Seq. Two major groups of variants are identified: H1.2, H1.3, H1.5 and H1.0 are abundant in low GC regions (B compartment), while H1.4 and H1X preferentially localize in high GC regions (A compartment). Examining their abundance within transposable elements (TEs) reveals that H1X and H1.4 are enriched in recently-incorporated TEs (SVA and SINE-Alu), while H1.0/H1.2/H1.3/H1.5 are more abundant in older elements. Notably, H1X is particularly enriched in SVA families, while H1.4 shows the highest abundance in young AluY elements. Although low GC variants are generally enriched in LINE, LTR and DNA repeats, H1X and H1.4 are also abundant in a subset of recent LINE-L1 and LTR repeats. H1X enrichment at SVA and Alu is consistent across multiple cell lines. Further, H1X depletion leads to TE derepression, suggesting its role in maintaining TE repression. Overall, this study provides novel insights into the differential distribution of histone H1 variants among repetitive elements, highlighting the potential involvement of H1X in repressing TEs recently incorporated within the human genome.
Collapse
Affiliation(s)
- Mónica Salinas-Pena
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Núria Serna-Pujol
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| |
Collapse
|
46
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
47
|
Deshpande P, Prentice E, Ceballos AV, Casaccia P, Elbaum-Garfinkle S. Modified histone peptides uniquely tune the material properties of HP1α condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579285. [PMID: 38370661 PMCID: PMC10871333 DOI: 10.1101/2024.02.07.579285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates, remains only partially understood. Here, we leverage a reductionist system, comprised of modified and unmodified histone H3 peptides, HP1α and DNA to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, while peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. In addition, inspired by the decreased ratio of nuclear H3K9me3 to HP1α detected in cells exposed to uniaxial strain, using fluorescence microscopy and rheological approaches we demonstrate that H3K9me3 histone peptides modulate the dynamics and network properties of HP1α condensates in a concentration dependent manner. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells in response to mechanostimulation.
Collapse
Affiliation(s)
- Priyasha Deshpande
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY
| | - Emily Prentice
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY
| | | | - Patrizia Casaccia
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY
| | - Shana Elbaum-Garfinkle
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, NY
- Ph.D. Program in Biology, Graduate Center of the City University of New York, NY
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, NY
| |
Collapse
|
48
|
Abu Alhaija AA, Lone IN, Sekeroglu EO, Batur T, Angelov D, Dimitrov S, Hamiche A, Firat Karalar EN, Ercan ME, Yagci T, Alotaibi H, Diril MK. Development of a mouse embryonic stem cell model for investigating the functions of the linker histone H1-4. FEBS Open Bio 2024; 14:309-321. [PMID: 38098212 PMCID: PMC10839353 DOI: 10.1002/2211-5463.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The linker histone H1 C-terminal domain (CTD) plays a pivotal role in chromatin condensation. De novo frameshift mutations within the CTD coding region of H1.4 have recently been reported to be associated with Rahman syndrome, a neurological disease that causes intellectual disability and overgrowth. To investigate the mechanisms and pathogenesis of Rahman syndrome, we developed a cellular model using murine embryonic stem cells (mESCs) and CRISPR/Cas9 genome engineering. Our engineered mES cells facilitate detailed investigations, such as H1-4 dynamics, immunoprecipitation, and nuclear localization; in addition, we tagged the mutant H1-4 with a photoactivatable GFP (PA-GFP) and an HA tag to facilitate pulldown assays. We anticipate that these engineered cells could also be used for the development of a mouse model to study the in vivo role of the H1-4 protein.
Collapse
Affiliation(s)
- Abed Alkarem Abu Alhaija
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
- Izmir Biomedicine and Genome CenterTurkey
| | | | - Esin Ozkuru Sekeroglu
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | | | - Dimitar Angelov
- Izmir Biomedicine and Genome CenterTurkey
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239Université de Lyon, Ecole Normale Supérieure de LyonFrance
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome CenterTurkey
- Roumen Tsanev Institute of Molecular BiologyBulgarian Academy of SciencesSofiaBulgaria
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309Université Grenoble AlpesFrance
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)UdS, CNRS, INSERMStrasbourgFrance
| | | | | | - Tamer Yagci
- Department of Molecular Biology and Genetics, Faculty of Basic SciencesGebze Technical UniversityTurkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
| | - Muhammed Kasim Diril
- Izmir Biomedicine and Genome CenterTurkey
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey
- Department of Medical Biology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
| |
Collapse
|
49
|
Song Y, Li H, Lian R, Dou X, Li S, Xie J, Li X, Feng R, Li Z. Histone H1.2 Inhibited EMCV Replication through Enhancing MDA5-Mediated IFN-β Signaling Pathway. Viruses 2024; 16:174. [PMID: 38399950 PMCID: PMC10892618 DOI: 10.3390/v16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Histone H1.2 is a member of the linker histone family, which plays extensive and crucial roles not only in the regulation of chromatin dynamics, cell cycle, and cell apoptosis, but also in viral diseases and innate immunity response. Recently, it was discovered that H1.2 regulates interferon-β and inhibits influenza virus replication, whereas its role in other viral infections is poorly reported. Here, we first found the up-regulation of H1.2 during Encephalomyocarditis virus (EMCV) infection, implying that H1.2 was involved in EMCV infection. Overexpression of H1.2 inhibited EMCV proliferation, whereas knockdown of H1.2 showed a significant promotion of virus infection in HEK293T cells. Moreover, we demonstrated that overexpression of H1.2 remarkably enhanced the production of EMCV-induced type I interferon, which may be the crucial factor for H1.2 proliferation-inhibitory effects. We further found that H1.2 up-regulated the expression of the proteins of the MDA5 signaling pathway and interacted with MDA5 and IRF3 in EMCV infection. Further, we demonstrated that H1.2 facilitated EMCV-induced phosphorylation and nuclear translocation of IRF3. Briefly, our research uncovers the mechanism of H1.2 negatively regulating EMCV replication and provides new insight into antiviral targets for EMCV.
Collapse
Affiliation(s)
- Yangran Song
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ruiya Lian
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xueer Dou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Shasha Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.S.); (H.L.); (R.L.); (X.D.); (S.L.); (J.X.); (X.L.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhiqiang Li
- Department of Medicine, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
50
|
Saumer P, Scheffner M, Marx A, Stengel F. Interactome of intact chromatosome variants with site-specifically ubiquitylated and acetylated linker histone H1.2. Nucleic Acids Res 2024; 52:101-113. [PMID: 37994785 PMCID: PMC10783519 DOI: 10.1093/nar/gkad1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.
Collapse
Affiliation(s)
- Philip Saumer
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|