1
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Liu Y, Wu Y, Lv X, Li K, Xiong J, Liu X, Li J, Liu L, Du G, Chen J, Liu Y. Improving Cellular Protein Content of Saccharomyces cerevisiae Based on Adaptive Evolution and Flow Cytometry-Aided High Throughput Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:706-717. [PMID: 39723951 DOI: 10.1021/acs.jafc.4c09632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Enhancing the protein content and production efficiency of Saccharomyces cerevisiae is crucial as an alternative protein source. This study screened nongenetically modified yeast strains with high protein content for food ingredient production and explored the underlying mechanisms. Yeast protein levels were found to correlate with RNA, leading to a high-throughput screening method using RNA fluorescence and flow cytometry. Four mutant libraries (∼200,000 cells) were generated through adaptive laboratory evolution in protein synthesis inhibitors, resulting in the high protein mutant content B1, with a protein content of 65.8 g/100 g dry cell weight in shake flasks. In a 45 L bioreactor using fed-batch fermentation with ethanol below 1.5 g/L, B1's protein content increased to 70.3 g/100 g dry cell weight, an 18.5% rise. Mannan and β-glucan levels in the cell wall decreased by 21.7 and 30.5%, potentially enhancing protein extraction for food production. Transcriptome analysis revealed that increased protein content results from down-regulating the cell cycle and meiosis-related genes. Validation of differentially expressed genes demonstrated that up-regulating SUT1 and down-regulating CNM67 are key for enhancing protein synthesis and accumulation. This study proposes a nongenetic screening method for high protein content S. cerevisiae strains, achieving the highest reported protein content.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Ku Li
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
| | - Jian Xiong
- Angel Yeast Co. Ltd., Chengdong Avenue 168, Yichang 443003, China
| | - Xiao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Yang F, Ge Y, Zhang Y, Cui Z, Lin S, Ni W, Sun Z, Shen D, Zhu J, Liu L, Zhao S, Huang N, Sun F, Lu Y, Shi S, Li J. NIR-Activated Hydrogel with Dual-Enhanced Antibiotic Effectiveness for Thorough Elimination of Antibiotic-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39760335 DOI: 10.1021/acsami.4c16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Antibiotic resistance has become a critical health crisis globally. Traditional strategies using antibiotics can lead to drug-resistance, while inorganic antimicrobial agents can cause severe systemic toxicity. Here, we have developed a dual-antibiotic hydrogel delivery system (PDA-Ag@Levo/CMCS), which can achieve controlled release of clinical antibiotics levofloxacin (Levo) and classic nanoscale antibiotic silver nanoparticles (AgNPs), effectively eliminating drug-resistant P. aeruginosa. Benefiting from the photothermal (PTT) effect of polydopamine (PDA), the local high temperature generated by PDA-Ag@Levo/CMCS can quickly kill bacteria through continuous and responsive release of dual-antibiotics to restore sensitivity to ineffective antibiotics. Moreover, AgNPs could significantly improve the efficiency of traditional antibiotics by disrupting bacterial membranes and reducing their toxicity to healthy tissues. A clever combination of PTT and drug-combination therapy can effectively eliminate biofilms and drug-resistant bacteria. Mechanism studies have shown that PDA-Ag@Levo might eliminate drug-resistant P. aeruginosa by disrupting biofilm formation and protein synthesis, and inhibit the resistance mutation of P. aeruginosa by promoting the expression of related genes, such as rpoS, dinB, and mutS. Collectively, the synergistic effect of this dual-antibiotic hydrogel combined with PTT provides a creative strategy for eliminating drug-resistant bacteria in chronic infection wounds.
Collapse
Affiliation(s)
- Fengjiao Yang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai 200435, China
| | - Yuqi Ge
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai 200435, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Shiyang Lin
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Wenxuan Ni
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Zijiu Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Dandan Shen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Jichao Zhu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou Central Hospital, Huzhou 313000, China
- Affiliated Central Hospital of Huzhou University, Huzhou Central Hospital, Huzhou 313000, China
| | - Li Liu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai 200435, China
| | - Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai 200435, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Shanghai 200435, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Yingying Lu
- Department of Clinical Laboratory, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shuo Shi
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| | - Jinghua Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
4
|
Thaler J, Mitteregger C, Flemmich L, Micura R. A Universal Support for the Solid-Phase Synthesis of Peptidyl-tRNA Mimics. Chembiochem 2025; 26:e202400717. [PMID: 39466664 DOI: 10.1002/cbic.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Hydrolysis-resistant RNA-peptide conjugates that mimic peptidyl-tRNAs are often required for structural and functional studies of protein synthesis at the ribosome. These conjugates can be synthesized by solid-phase chemical synthesis, which allows maximum flexibility in both the peptide and RNA sequence. The commonly used strategy is based on (3'-N-aminoacyl)-3'-amino-3'-deoxyadenosine solid supports, which already contain the first C-terminal amino acid of the target peptidyl chain. This is a limitation in the sense that different individual supports must be synthesized for different C-terminal amino acids. In this study, we demonstrate a solution to this problem by introducing a novel universal support. The key is a free ribose 3'-NH2 group that can be coupled to any amino acid. This is made possible by a photocleavable ether moiety that links the ribose 2'-O to the support, thus avoiding the typical O-to-N migration that occurs when using 2'-O-acyl linked solid supports. Once assembled, the conjugate is readily cleaved by UV irradiation. The structural integrity of the obtained peptidyl-RNA conjugates was verified by mass spectrometry analysis. In conclusion, the new photocleavable solid support makes the synthesis of 3'-peptidyl tRNA mimics of different peptidyl chains significantly more efficient compared to the commonly used approaches.
Collapse
Affiliation(s)
- Julia Thaler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christoph Mitteregger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Laurin Flemmich
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
5
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nat Microbiol 2025; 10:185-201. [PMID: 39672961 DOI: 10.1038/s41564-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Sopić M, Vladimirov S, Munjas J, Mitić T, Hall IF, Jusic A, Ruzic D, Devaux Y. Targeting noncoding RNAs to treat atherosclerosis. Br J Pharmacol 2025; 182:220-245. [PMID: 38720437 DOI: 10.1111/bph.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 12/13/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Miron Sopić
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Tijana Mitić
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ignacio Fernando Hall
- BHF/University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Amela Jusic
- HAYA Therapeutics SA, SuperLab Suisse - Bâtiment Serine, Lausanne, Vaud, Switzerland
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
7
|
Wang C, Kassem S, Rocha REO, Sun P, Nguyen TT, Kloehn J, Liu X, Brusini L, Bonavoglia A, Barua S, Boissier F, Lucia Del Cistia M, Peng H, Tang X, Xie F, Wang Z, Vadas O, Suo X, Hashem Y, Soldati-Favre D, Jia Y. Apicomplexan mitoribosome from highly fragmented rRNAs to a functional machine. Nat Commun 2024; 15:10689. [PMID: 39690155 DOI: 10.1038/s41467-024-55033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
The phylum Apicomplexa comprises eukaryotic parasites that cause fatal diseases affecting millions of people and animals worldwide. Their mitochondrial genomes have been significantly reduced, leaving only three protein-coding genes and highly fragmented mitoribosomal rRNAs, raising challenging questions about mitoribosome composition, assembly and structure. Our study reveals how Toxoplasma gondii assembles over 40 mt-rRNA fragments using exclusively nuclear-encoded mitoribosomal proteins and three lineage-specific families of RNA-binding proteins. Among these are four proteins from the Apetala2/Ethylene Response Factor (AP2/ERF) family, originally known as transcription factors in plants and Apicomplexa, now repurposed as essential mitoribosome components. Cryo-EM analysis of the mitoribosome structure demonstrates how these AP2 proteins function as RNA binders to maintain mitoribosome integrity. The mitoribosome is also decorated with members of lineage-specific RNA-binding proteins belonging to RAP (RNA-binding domain abundant in Apicomplexa) proteins and HPR (heptatricopeptide repeat) families, highlighting the unique adaptations of these parasites. Solving the molecular puzzle of apicomplexan mitoribosome could inform the development of therapeutic strategies targeting organellar translation.
Collapse
Affiliation(s)
- Chaoyue Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sari Kassem
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rafael Eduardo Oliveira Rocha
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France
| | - Pei Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, 510260, China
| | - Tan-Trung Nguyen
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Bonavoglia
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sramona Barua
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France
| | - Mayara Lucia Del Cistia
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health; Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou City, Guangdong Province, 510515, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujie Xie
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zixuan Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, 33607, France.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Yonggen Jia
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
8
|
Xu T, Dai Y, Ge A, Chen X, Gong Y, Lam TH, Lee K, Han X, Ji Y, Shen W, Liu J, Sun L, Xu J, Ma B. Ultrafast Evolution of Bacterial Antimicrobial Resistance by Picoliter-Scale Centrifugal Microfluidics. Anal Chem 2024; 96:18842-18851. [PMID: 39531253 DOI: 10.1021/acs.analchem.4c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Experimental evolution is a powerful approach for scrutinizing and dissecting the development of antimicrobial resistance; nevertheless, it typically demands an extended duration to detect evolutionary changes. Here, a centrifugal microfluidics system is designed to accelerate the process. Through a simple step of on-chip centrifugation, a highly condensed bacterial matrix of ∼1012 cells/mL at the enrichment tip of the chip channel is derived, enabling bacteria encapsulated to survive in antimicrobial concentrations several times higher than the minimum inhibitory concentration (MIC) and rapidly develop resistance in the first 10 h. After 48 h of on-chip evolution, the E. coli strain demonstrated a 64 to 128-fold reduction in sensitivity to disinfectants (triclosan) as well as antibiotics (ciprofloxacin and amikacin), a rate substantially swifter compared to conventional continuous inoculation-based experimental evolution. The speed and simplicity of this microfluidic system suggest its broad application for uncovering resistance mechanisms and identifying targets of biocides and antibiotics.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yajie Dai
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Anle Ge
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Xueqian Chen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yanhai Gong
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Tze Hau Lam
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Kelvin Lee
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Xiao Han
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Yuetong Ji
- Qingdao Single-Cell Biotech. Ltd., Qingdao, Shandong 266100, China
| | - Wei Shen
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
| | - Jiquan Liu
- Procter & Gamble Singapore Innovation Center, Singapore 138668, Singapore
| | - Luyang Sun
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| | - Bo Ma
- Single-Cell Center, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101,China
- Laboratory of Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266101, China
| |
Collapse
|
9
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024; 53:11303-11320. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small Molecule RNA Degraders. Angew Chem Int Ed Engl 2024; 63:e202412925. [PMID: 39162084 DOI: 10.1002/anie.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Tomoaki Maehara
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Benjamin A Craig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
11
|
Luo X, Wu G, Feng J, Zhang J, Fu H, Yu H, Han Z, Nie W, Zhu Z, Liu B, Pan W, Li B, Wang Y, Zhang C, Li T, Zhang W, Wu S. Novel pleuromutilin derivatives conjugated with phenyl-sulfide and boron-containing moieties as potent antibacterial agents against antibiotic-resistant bacteria. Eur J Med Chem 2024; 277:116745. [PMID: 39106659 DOI: 10.1016/j.ejmech.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In response to the escalating threat of microbial resistance, a series of novel pleuromutilin derivatives, conjugated with phenyl-sulfide and boron-containing moieties, were designed and synthesized. Most derivatives, especially 14b and 16b, demonstrated significant efficacy against Gram-positive bacteria, including multidrug-resistant strains, as well as pleuromutilin-resistant strains. Compound 16b showed high stability in the liver microsomes of rats and humans, along with acceptable tolerance in vitro and in vivo. Additionally, compound 16b exhibited promising efficacy in MRSA-infected mouse models. Our data highlight the potential of conjugated pleuromutilin derivatives as valuable agents against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangxu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hengjian Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wansen Nie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
13
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
14
|
Obranić S, Babić F, Močibob M, Maravić-Vlahoviček G. Ribosomal A site binding pattern differs between Arm methyltransferases from clinical pathogens and a natural producer of aminoglycosides. Int J Biol Macromol 2024; 282:137015. [PMID: 39481738 DOI: 10.1016/j.ijbiomac.2024.137015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The extensive use of aminoglycosides to treat bacterial infections has led to significant resistance, posing a global health threat. Recent clinical reports highlight high levels of aminoglycoside resistance due to Arm/Kam methyltransferases, which methylate specific nucleotides in 16S rRNA, preventing antibiotic binding to the ribosome. This study compared the ribosomal A site binding patterns of Arm methyltransferases from clinical pathogens (ArmA, RmtB, RmtC, and RmtD) with those of the Sgm methyltransferase from a natural aminoglycoside producer. We introduced single mutations near the G1405 nucleotide in helix 44 of 16S rRNA to assess their impact on the methylation ability of Arm methyltransferases in E. coli cells with homogeneous mutant ribosomes. We evaluated how these mutations affected bacterial viability in cells with mixed and homogeneous ribosome populations and determined the minimal inhibitory concentration of kanamycin to assess their impact on Arm enzyme activity. Notably, Sgm methyltransferase exhibited a distinct methylation pattern compared to Arm methyltransferases from clinical strains. Structural comparisons of Sgm, RmtB, and RmtC revealed different spatial orientations of key amino acids involved in ribosomal binding, highlighting evolutionary differences. This research enhances understanding of Arm methyltransferases and lays the groundwork for designing inhibitors to combat this potent form of antibiotic resistance.
Collapse
Affiliation(s)
- Sonja Obranić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia; University North, University Centre Varaždin, 104. brigade 1, 42000 Varaždin, Croatia
| | - Fedora Babić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Marko Močibob
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Gordana Maravić-Vlahoviček
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
15
|
Peng YL, Wang SH, Zhang YL, Chen MY, He K, Li Q, Huang WH, Zhang W. Effects of bile acids on the growth, composition and metabolism of gut bacteria. NPJ Biofilms Microbiomes 2024; 10:112. [PMID: 39438471 PMCID: PMC11496524 DOI: 10.1038/s41522-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Bile acids (BAs) exert a profound influence on the body's pathophysiology by intricately shaping the composition of gut bacteria. However, the complex interplay between BAs and gut microbiota has impeded a systematic exploration of their impact on intestinal bacteria. Initially, we investigated the effects of 21 BAs on the growth of 65 gut bacterial strains in vitro. Subsequently, we examined the impact of BAs on the overall composition of intestinal bacteria, both in vivo and in vitro. The results unveiled distinct effects of various BAs on different intestinal strains and their diverse impacts on the composition of gut bacteria. Mechanistically, the inhibition of intestinal strains by BAs occurs through the accumulation of these acids within the strains. The intracellular accumulation of deoxycholic acid (DCA) significantly influenced the growth of intestinal bacteria by impacting ribosome transcription and amino-acid metabolism. The metabolomic analysis underscores the pronounced impact of DCA on amino-acid profiles in both in vivo and in vitro settings. This study not only elucidates the effects of BAs on a diverse range of bacterial strains and their role in shaping the gut microbiota but also reveals underlying mechanisms essential for understanding and maintaining a healthy gut microbiota.
Collapse
Affiliation(s)
- Yi-Lei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Si-Han Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yu-Long Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Kang He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
16
|
Paenilamicins bind to a unique site on the ribosome to inhibit protein synthesis. Nat Chem Biol 2024:10.1038/s41589-024-01753-8. [PMID: 39438731 DOI: 10.1038/s41589-024-01753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
|
17
|
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon 2024; 10:e38079. [PMID: 39386776 PMCID: PMC11462253 DOI: 10.1016/j.heliyon.2024.e38079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) are a critical component of the innate immune system, playing a key role in defending against a variety of pathogenic microorganisms. While many AMPs act primarily on the cell membrane of target pathogens, leading to lysis and subsequent cell death, less is known about their nonlytic membrane activity. This nonlytic activity allows AMPs to target and disrupt bacterial cells without causing lysis, leading to bacterial death through alternative mechanisms.Understanding these nonlytic properties of AMPs is crucial, as they present a promising alternative to traditional antibiotics, which can induce bacterial resistance and have adverse effects on human health and the environment. The mechanisms by which AMPs exhibit nonlytic membrane activity are still being explored. However, it is believed that AMPs penetrate the bacterial membrane and interact directly with internal cellular components such as DNA, RNA, and various enzymes essential for microbial survival and replication. This interaction disrupts metabolic homeostasis, ultimately resulting in bacterial death.The nonlytic activity of AMPs also results in minimal damage to host cells and tissues, making them attractive candidates for the development of new, more effective antibiotics. This review emphasizes the mechanisms by which AMPs nonlytically target cellular components, including DNA, proteins, RNA, and other biomolecules, and discusses their clinical significance. Understanding these mechanisms may pave the way for developing alternatives to conventional antibiotics, offering a solution to the growing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Gagandeep K R
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Ramesh Balenahalli Narasingappa
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
| | - Gatta Vishnu Vyas
- Department of Plant Biotechnology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, Karnataka, 560065, India
- ICAR-AICRP On Post Harvest Engineering and Technology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra, Bengaluru, 560065, India
| |
Collapse
|
18
|
Zhao P, Hou P, Zhang Z, Li X, Quan C, Xue Y, Lei K, Li J, Gao W, Fu F. Microbial-derived peptides with anti-mycobacterial potential. Eur J Med Chem 2024; 276:116687. [PMID: 39047606 DOI: 10.1016/j.ejmech.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pu Hou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhishen Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng University, 044000, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China.
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
19
|
Ma CX, Liu WT, Li XM, Ding J, Liu SM, Xue F, Li Y, Liang JH. Design, synthesis and structure-activity relationships of novel non-ketolides: 9-Oxime clarithromycin featured with seven-to thirteen-atom-length diamine linkers at 3-OH. Eur J Med Chem 2024; 276:116630. [PMID: 38972081 DOI: 10.1016/j.ejmech.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
We report here on the structure-activity relationships of hybrids combining 3-descladinosyl clarithromycin with quinolones linked by extended diamine connectors. Several hybrids, exemplified by 23Bc, 23Be, 23Bf, 26Be, and 30Bc, not only restored potency against inducibly resistant pathogens but also exhibited significantly enhanced activities against constitutively resistant strains of Staphylococcus pneumoniae and Staphylococcus pyogenes, which express high-level resistance independent of clarithromycin or erythromycin induction. Additionally, the novel hybrids showed susceptibility against Gram-negative Haemophilus influenzae. Notably, hybrid 23Be demonstrated dual modes of action by inhibiting both protein synthesis and DNA replication in vitro and in vivo. Given these promising characteristics, 23Be emerges as a potential candidate for the treatment of community-acquired bacterial pneumonia.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xue-Meng Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100034, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
20
|
Zhang N, Liu WT, Cui XY, Liu SM, Ma CX, Liang JH. Design and structure-activity relationships of ether-linked alkylides: Hybrids of 3-O-descladinosyl macrolides and quinolone motifs. Bioorg Chem 2024; 151:107712. [PMID: 39146761 DOI: 10.1016/j.bioorg.2024.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Ketolides (3-keto) such as TE-802 and acylides (3-O-acyl) like TEA0929 are ineffective against constitutively resistant pathogens harboring erythromycin ribosomal methylation (erm) genes. Following our previous work on alkylides (3-O-alkyl), we explored the structure-activity relationships of hybrids combining (R/S) 3-descladinosyl erythromycin with 6/7-quinolone motifs, featuring extended ether-linked spacers, with a focus on their efficacy against pathogens bearing constitutive erm gene resistance. Optimized compounds 17a and 31f not only reinstated efficacy against inducibly resistant pathogens but also demonstrated significantly augmented activities against constitutively resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes, which are typically refractory to existing C-3 modified macrolides. Notably, hybrid 31f (coded ZN-51) represented a pioneering class of agents distinguished by its dual modes of action, with ribosomes as the primary target and topoisomerases as the secondary target. As a novel chemotype of macrolide-quinolone hybrids, alkylide 31f is a valuable addition to our armamentarium against macrolide-resistant bacteria.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Yi Cui
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
21
|
Wang Y, Wu F, Li Y, Wang S, Ren Y, Shi L, van der Mei HC, Liu Y. Ellagic acid-modified gold nanoparticles to combat multi-drug resistant bacterial infections in vitro and in vivo. MATERIALS HORIZONS 2024; 11:4781-4790. [PMID: 39026466 DOI: 10.1039/d4mh00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The overuse of antibiotics has led to the rapid development of multi-drug resistant bacteria, making antibiotics increasingly ineffective against bacterial infections. Consequently, there is an urgent need to develop alternative strategies to combat multi-drug-resistant bacterial infections. In this study, gold nanoparticles modified with ellagic acid (EA-AuNPs) were prepared using a simple and mild one-pot hydrothermal process. EA-AuNPs demonstrated high bactericidal efficacy and broad-spectrum antimicrobial activities against clinical isolates of the antibiotic-resistant ESKAPE pathogens. Furthermore, EA-AuNPs effectively disperse biofilms of multi-drug-resistant bacteria. Additionally, EA-AuNPs mitigated inflammatory responses at the bacterial infection sites. The combined bactericidal and anti-inflammatory treatment with EA-AuNPs resulted in faster curing of peritonitis caused by Staphylococcus aureus in mice compared to treatment with free EA or gentamicin. Moreover, transcriptome analysis revealed that EA-AuNPs exhibited a multi-targeting mechanism, making resistance development in pathogens more challenging than traditional antibiotics that recognize specific cellular targets. Overall, EA-AuNPs emerged as a promising antimicrobial agent against multi-drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yaran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Fan Wu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
| | - Yong Liu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
22
|
Shang Y, Zhang D, Shen Y, Pan Y, Wang J, Wang Y. A Lincomycin-Specific Antibody Was Developed Using Hapten Prediction, and an Immunoassay Was Established to Detect Lincomycin in Pork and Milk. Foods 2024; 13:3118. [PMID: 39410153 PMCID: PMC11476017 DOI: 10.3390/foods13193118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Prolonged consumption of animal-derived foods containing high levels of lincomycin (LIN) residues can adversely impact human health. Therefore, it is essential to develop specific antibodies and immunoassay methods for LIN. This study utilized computational chemistry to predict the efficacy of LIN haptens prior to chemical synthesis, with subsequent confirmation obtained through an immunization experiment. A hybridoma cell line named LIN/1B11 was established, which is specific to LIN. The optimized indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) method exhibited high specificity for detecting LIN residues, with an IC50 value of 0.57 ± 0.03 µg/kg. The method effectively detected LIN residues in pork and milk samples, achieving a limit of detection (LOD) ranging from 0.81 to 1.20 µg/kg and a limit of quantification (LOQ) ranging from 2.09 to 2.29 µg/kg, with recovery rates between 81.9% and 108.8%. This study offers a valuable tool for identifying LIN residues in animal-derived food products. Furthermore, the efficient hapten prediction method presented herein improves antibody preparation efficiency and provides a simple method for researchers in screening haptens.
Collapse
Affiliation(s)
- Yuhan Shang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Dandan Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Yun Shen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| | - Jing Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Institute of Quality Standard and Testing Technology for Agro, Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture Beijing, Beijing 100081, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (Y.S.); (D.Z.); (Y.S.); (Y.P.)
| |
Collapse
|
23
|
Yu T, Zeng F. Chloramphenicol Interferes with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms. Biomolecules 2024; 14:1225. [PMID: 39456158 PMCID: PMC11505724 DOI: 10.3390/biom14101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the 50S ribosomal subunit in Escherichia coli (E. coli). Using label-free quantitative mass spectrometry (LFQ-MS), we observed that CAM treatment also leads to the upregulation of assembly factors. Further cryo-electron microscopy (cryo-EM) analysis of the ribosomal precursors characterized the CAM-treatment-accumulated pre-50S intermediates. Heterogeneous reconstruction identified 26 distinct pre-50S intermediates, which were categorized into nine main states based on their structural features. Our structural analysis highlighted that CAM severely impedes the formation of the central protuberance (CP), H89, and H58 during 50S ribosomal subunit maturation. The ELISA assay further demonstrated the direct binding of CAM to the ribosomal precursors, suggesting that the interference with 50S maturation occurs through a combination of direct and indirect mechanisms. These findings provide new insights into the mechanism of the action of CAM and provide a foundation for a better understanding of the assembly landscapes of the ribosome.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
24
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
25
|
Batool Z, Pavlova JA, Paranjpe MN, Tereshchenkov AG, Lukianov DA, Osterman IA, Bogdanov AA, Sumbatyan NV, Polikanov YS. Berberine analog of chloramphenicol exhibits a distinct mode of action and unveils ribosome plasticity. Structure 2024; 32:1429-1442.e6. [PMID: 39019034 PMCID: PMC11380584 DOI: 10.1016/j.str.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Chloramphenicol (CHL) is an antibiotic targeting the peptidyl transferase center in bacterial ribosomes. We synthesized a new analog, CAM-BER, by substituting the dichloroacetyl moiety of CHL with a positively charged aromatic berberine group. CAM-BER suppresses bacterial cell growth, inhibits protein synthesis in vitro, and binds tightly to the 70S ribosome. Crystal structure analysis reveals that the bulky berberine group folds into the P site of the peptidyl transferase center (PTC), where it competes with the formyl-methionine residue of the initiator tRNA. Our toe-printing data confirm that CAM-BER acts as a translation initiation inhibitor in stark contrast to CHL, a translation elongation inhibitor. Moreover, CAM-BER induces a distinct rearrangement of conformationally restrained nucleotide A2059, suggesting that the 23S rRNA plasticity is significantly higher than previously thought. CAM-BER shows potential in avoiding CHL resistance and presents opportunities for developing novel berberine derivatives of CHL through medicinal chemistry exploration.
Collapse
Affiliation(s)
- Zahra Batool
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Julia A Pavlova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Madhura N Paranjpe
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrey G Tereshchenkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Dmitrii A Lukianov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Alexey A Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia V Sumbatyan
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
26
|
Yuce M, Ates B, Yasar NI, Sungur FA, Kurkcuoglu O. A computational workflow to determine drug candidates alternative to aminoglycosides targeting the decoding center of E. coli ribosome. J Mol Graph Model 2024; 131:108817. [PMID: 38976944 DOI: 10.1016/j.jmgm.2024.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.
Collapse
Affiliation(s)
- Merve Yuce
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Beril Ates
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| | - Nesrin Isil Yasar
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Fethiye Aylin Sungur
- Istanbul Technical University, Computational Science and Engineering Division, Informatics Institute, Istanbul, 34469, Turkey.
| | - Ozge Kurkcuoglu
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, 34469, Turkey.
| |
Collapse
|
27
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
28
|
Chen J, Wang W, Hu X, Yue Y, Lu X, Wang C, Wei B, Zhang H, Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat Prod Rep 2024; 41:1235-1263. [PMID: 38651516 DOI: 10.1039/d4np00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xubin Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Yue
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
29
|
Cueny RR, Voter AF, McKenzie AM, Morgenstern M, Myers KS, Place MM, Peters JM, Coon JJ, Keck JL. Altering translation allows E. coli to overcome chemically stabilized G-quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607615. [PMID: 39185182 PMCID: PMC11343134 DOI: 10.1101/2024.08.12.607615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
G-quadruplex (G4) structures can form in guanine-rich DNA or RNA and have been found to modulate cellular processes including replication, transcription, and translation. Many studies on the cellular roles of G4s have focused on eukaryotic systems, with far fewer probing bacterial G4s. Using a chemical-genetic approach, we identified genes in Escherichia coli that are important for growth in G4-stabilizing conditions. Reducing levels of elongation factor Tu or slowing translation elongation with chloramphenicol suppress the effects of G4 stabilization. In contrast, reducing expression of certain translation termination or ribosome recycling proteins is detrimental to growth in G4-stabilizing conditions. Proteomic and transcriptomic analyses demonstrate that ribosome assembly factors and other proteins involved in translation are less abundant in G4-stabilizing conditions. Our integrated systems approach allowed us to propose a model for how RNA G4s can present barriers to E. coli growth and that reducing the rate of translation can compensate for G4-related stress.
Collapse
Affiliation(s)
- Rachel R Cueny
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew F Voter
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aidan M McKenzie
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcel Morgenstern
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, Madison Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - James L Keck
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
31
|
Wimmer B, Schernthaner J, Edobor G, Friedrich A, Poeltner K, Temaj G, Wimmer M, Kronsteiner E, Pichler M, Gercke H, Huber R, Kaefer N, Rinnerthaler M, Karl T, Krauß J, Mohr T, Gerner C, Hintner H, Breitenbach M, Bauer JW, Rakers C, Kuhn D, von Hagen J, Müller N, Rathner A, Breitenbach-Koller H. RiboScreen TM Technology Delivers a Ribosomal Target and a Small-Molecule Ligand for Ribosome Editing to Boost the Production Levels of Tropoelastin, the Monomeric Unit of Elastin. Int J Mol Sci 2024; 25:8430. [PMID: 39125999 PMCID: PMC11312584 DOI: 10.3390/ijms25158430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.
Collapse
Affiliation(s)
- Bjoern Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Schernthaner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Genevieve Edobor
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Andreas Friedrich
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Katharina Poeltner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Gazmend Temaj
- Human Genetics, Faculty of Pharmacy, College UBT, 10000 Pristina, Kosovo;
| | - Marlies Wimmer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Elli Kronsteiner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mara Pichler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Hanna Gercke
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Ronald Huber
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Niklas Kaefer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Karl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Jan Krauß
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (T.M.); (C.G.)
- Join Metabolome Facility, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Helmut Hintner
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Michael Breitenbach
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria; (H.H.); (J.W.B.)
| | - Christin Rakers
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Daniel Kuhn
- Merck KGaA, Discovery & Development Technologies, Frankfurter Staße 250, 64293 Darmstadt, Germany (D.K.)
| | - Joerg von Hagen
- Merck KGaA Healthcare, Frankfurter Straße 250, 64293 Darmstadt, Germany;
- ryon-Greentech Accelerator, Mainzer Straße 41, 64579 Gernsheim, Germany
| | - Norbert Müller
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
- Department of Chemistry, Faculty of Science, University of South Bohemia in Českých Budějovicích, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Adriana Rathner
- Institute of Biochemistry, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria;
| | - Hannelore Breitenbach-Koller
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (B.W.); (J.S.); (G.E.); (A.F.); (K.P.); (M.W.); (E.K.); (M.P.); (H.G.); (R.H.); (M.R.); (T.K.); (J.K.); (M.B.)
| |
Collapse
|
32
|
Lewis K, Lee RE, Brötz-Oesterhelt H, Hiller S, Rodnina MV, Schneider T, Weingarth M, Wohlgemuth I. Sophisticated natural products as antibiotics. Nature 2024; 632:39-49. [PMID: 39085542 PMCID: PMC11573432 DOI: 10.1038/s41586-024-07530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2024] [Indexed: 08/02/2024]
Abstract
In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by β-lactams that bind covalently to inhibit transpeptidases and β-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed β-strands of darobactins that target the undruggable β-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.
Collapse
Affiliation(s)
- Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, USA.
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tubingen, Germany
- Controlling Microbes to Fight Infection-Cluster of Excellence, Tubingen, Germany
| | | | - Marina V Rodnina
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Markus Weingarth
- Chemistry Department, Utrecht University, Utrecht, the Netherlands
| | - Ingo Wohlgemuth
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| |
Collapse
|
33
|
Azevedo LG, Sosa E, de Queiroz ATL, Barral A, Wheeler RJ, Nicolás MF, Farias LP, Do Porto DF, Ramos PIP. High-throughput prioritization of target proteins for development of new antileishmanial compounds. Int J Parasitol Drugs Drug Resist 2024; 25:100538. [PMID: 38669848 PMCID: PMC11068527 DOI: 10.1016/j.ijpddr.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Leishmaniasis, a vector-borne disease, is caused by the infection of Leishmania spp., obligate intracellular protozoan parasites. Presently, human vaccines are unavailable, and the primary treatment relies heavily on systemic drugs, often presenting with suboptimal formulations and substantial toxicity, making new drugs a high priority for LMIC countries burdened by the disease, but a low priority in the agenda of most pharmaceutical companies due to unattractive profit margins. New ways to accelerate the discovery of new, or the repositioning of existing drugs, are needed. To address this challenge, our study aimed to identify potential protein targets shared among clinically-relevant Leishmania species. We employed a subtractive proteomics and comparative genomics approach, integrating high-throughput multi-omics data to classify these targets based on different druggability metrics. This effort resulted in the ranking of 6502 ortholog groups of protein targets across 14 pathogenic Leishmania species. Among the top 20 highly ranked groups, metabolic processes known to be attractive drug targets, including the ubiquitination pathway, aminoacyl-tRNA synthetases, and purine synthesis, were rediscovered. Additionally, we unveiled novel promising targets such as the nicotinate phosphoribosyltransferase enzyme and dihydrolipoamide succinyltransferases. These groups exhibited appealing druggability features, including less than 40% sequence identity to the human host proteome, predicted essentiality, structural classification as highly druggable or druggable, and expression levels above the 50th percentile in the amastigote form. The resources presented in this work also represent a comprehensive collection of integrated data regarding trypanosomatid biology.
Collapse
Affiliation(s)
- Lucas G Azevedo
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Ezequiel Sosa
- Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Artur T L de Queiroz
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Aldina Barral
- Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Leonardo P Farias
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | | | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| |
Collapse
|
34
|
Ekemezie CL, Melnikov SV. Hibernating ribosomes as drug targets? Front Microbiol 2024; 15:1436579. [PMID: 39135874 PMCID: PMC11317432 DOI: 10.3389/fmicb.2024.1436579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
When ribosome-targeting antibiotics attack actively growing bacteria, they occupy ribosomal active centers, causing the ribosomes to stall or make errors that either halt cellular growth or cause bacterial death. However, emerging research indicates that bacterial ribosomes spend a considerable amount of time in an inactive state known as ribosome hibernation, in which they dissociate from their substrates and bind to specialized proteins called ribosome hibernation factors. Since 60% of microbial biomass exists in a dormant state at any given time, these hibernation factors are likely the most common partners of ribosomes in bacterial cells. Furthermore, some hibernation factors occupy ribosomal drug-binding sites - leading to the question of how ribosome hibernation influences antibiotic efficacy, and vice versa. In this review, we summarize the current state of knowledge on physical and functional interactions between hibernation factors and ribosome-targeting antibiotics and explore the possibility of using antibiotics to target not only active but also hibernating ribosomes. Because ribosome hibernation empowers bacteria to withstand harsh conditions such as starvation, stress, and host immunity, this line of research holds promise for medicine, agriculture, and biotechnology: by learning to regulate ribosome hibernation, we could enhance our capacity to manage the survival of microorganisms in dormancy.
Collapse
Affiliation(s)
- Chinenye L. Ekemezie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Medical School of Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Synthetic macrolides overcoming MLS BK-resistant pathogens. Cell Discov 2024; 10:75. [PMID: 38992047 PMCID: PMC11239830 DOI: 10.1038/s41421-024-00702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Conventional macrolide-lincosamide-streptogramin B-ketolide (MLSBK) antibiotics are unable to counter the growing challenge of antibiotic resistance that is conferred by the constitutive methylation of rRNA base A2058 or its G2058 mutation, while the presence of unmodified A2058 is crucial for high selectivity of traditional MLSBK in targeting pathogens over human cells. The absence of effective modes of action reinforces the prevailing belief that constitutively antibiotic-resistant Staphylococcus aureus remains impervious to existing macrolides including telithromycin. Here, we report the design and synthesis of a novel series of macrolides, featuring the strategic fusion of ketolide and quinolone moieties. Our effort led to the discovery of two potent compounds, MCX-219 and MCX-190, demonstrating enhanced antibacterial efficacy against a broad spectrum of formidable pathogens, including A2058-methylated Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, and notably, the clinical Mycoplasma pneumoniae isolates harboring A2058G mutations which are implicated in the recent pneumonia outbreak in China. Mechanistic studies reveal that the modified quinolone moiety of MCX-190 establishes a distinctive secondary binding site within the nascent peptide exit tunnel. Structure-activity relationship analysis underscores the importance of this secondary binding, maintained by a sandwich-like π-π stacking interaction and a water-magnesium bridge, for effective engagement with A2058-methylated ribosomes rather than topoisomerases targeted by quinolone antibiotics. Our findings not only highlight MCX-219 and MCX-190 as promising candidates for next-generation MLSBK antibiotics to combat antibiotic resistance, but also pave the way for the future rational design of the class of MLSBK antibiotics, offering a strategic framework to overcome the challenges posed by escalating antibiotic resistance.
Collapse
Affiliation(s)
- Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Fei Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiao-Tian Lian
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xie-Peng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bing-Zhi Fan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Li-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jue-Ru Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhao Xue
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Xiao-Tong Pei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Jin-Zhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
36
|
Aleksandrova EV, Wu KJY, Tresco BIC, Syroegin EA, Killeavy EE, Balasanyants SM, Svetlov MS, Gregory ST, Atkinson GC, Myers AG, Polikanov YS. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat Chem Biol 2024; 20:867-876. [PMID: 38238495 PMCID: PMC11325235 DOI: 10.1038/s41589-023-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erin E Killeavy
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Samson M Balasanyants
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maxim S Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gemma C Atkinson
- Department of Experimental Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Li X, Wang M, Denk T, Buschauer R, Li Y, Beckmann R, Cheng J. Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline. Nat Commun 2024; 15:5481. [PMID: 38942792 PMCID: PMC11213857 DOI: 10.1038/s41467-024-49797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
Tigecycline is widely used for treating complicated bacterial infections for which there are no effective drugs. It inhibits bacterial protein translation by blocking the ribosomal A-site. However, even though it is also cytotoxic for human cells, the molecular mechanism of its inhibition remains unclear. Here, we present cryo-EM structures of tigecycline-bound human mitochondrial 55S, 39S, cytoplasmic 80S and yeast cytoplasmic 80S ribosomes. We find that at clinically relevant concentrations, tigecycline effectively targets human 55S mitoribosomes, potentially, by hindering A-site tRNA accommodation and by blocking the peptidyl transfer center. In contrast, tigecycline does not bind to human 80S ribosomes under physiological concentrations. However, at high tigecycline concentrations, in addition to blocking the A-site, both human and yeast 80S ribosomes bind tigecycline at another conserved binding site restricting the movement of the L1 stalk. In conclusion, the observed distinct binding properties of tigecycline may guide new pathways for drug design and therapy.
Collapse
Affiliation(s)
- Xiang Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Timo Denk
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Buschauer
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
39
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
40
|
Lyu Z, Ling Y, van Hoof A, Ling J. Inactivation of the ribosome assembly factor RimP causes streptomycin resistance and impairs motility in Salmonella. Antimicrob Agents Chemother 2024; 68:e0000224. [PMID: 38629858 PMCID: PMC11620500 DOI: 10.1128/aac.00002-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
The ribosome is the central hub for protein synthesis and the target of many antibiotics. Although the majority of ribosome-targeting antibiotics inhibit protein synthesis and are bacteriostatic, aminoglycosides promote protein mistranslation and are bactericidal. Understanding the resistance mechanisms of bacteria against aminoglycosides is not only vital for improving the efficacy of this critically important group of antibiotics but also crucial for studying the molecular basis of translational fidelity. In this work, we analyzed Salmonella mutants evolved in the presence of the aminoglycoside streptomycin (Str) and identified a novel gene rimP to be involved in Str resistance. RimP is a ribosome assembly factor critical for the maturation of the 30S small subunit that binds Str. Deficiency in RimP increases resistance against Str and facilitates the development of even higher resistance. Deleting rimP decreases mistranslation and cellular uptake of Str and further impairs flagellar motility. Our work thus highlights a previously unknown mechanism of aminoglycoside resistance via defective ribosome assembly.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| | - Yunyi Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, USA
| |
Collapse
|
41
|
McLellan JL, Hanson KK. Differential effects of translation inhibitors on Plasmodium berghei liver stage parasites. Life Sci Alliance 2024; 7:e202302540. [PMID: 38575357 PMCID: PMC10994859 DOI: 10.26508/lsa.202302540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Increasing numbers of antimalarial compounds are being identified that converge mechanistically at inhibition of cytoplasmic translation, regardless of the molecular target or mechanism. A deeper understanding of how their effectiveness as liver stage translation inhibitors relates to their chemoprotective potential could prove useful. Here, we probed that relationship using the Plasmodium berghei-HepG2 liver stage infection model. After determining translation inhibition EC50s for five compounds, we tested them at equivalent effective concentrations to compare the parasite response to, and recovery from, a brief period of translation inhibition in early schizogony, followed by parasites to 120 h post-infection to assess antiplasmodial effects of the treatment. We show compound-specific heterogeneity in single parasite and population responses to translation inhibitor treatment, with no single metric strongly correlated to the release of hepatic merozoites for all compounds. We also demonstrate that DDD107498 is capable of exerting antiplasmodial effects on translationally arrested liver stage parasites and uncover unexpected growth dynamics during the liver stage. Our results demonstrate that translation inhibition efficacy does not determine antiplasmodial efficacy for these compounds.
Collapse
Affiliation(s)
- James L McLellan
- Department of Molecular Microbiology and Immunology and STCEID, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kirsten K Hanson
- Department of Molecular Microbiology and Immunology and STCEID, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
42
|
Jednačak T, Mikulandra I, Smokrović K, Hloušek-Kasun A, Kapustić M, Delaš K, Piantanida I, Jurković M, Bertoša B, Zangger K, Novak P. Antimicrobial macrozones interact with biological macromolecules via two-site binding mode of action: Fluorimetric, NMR and docking studies. Bioorg Chem 2024; 147:107338. [PMID: 38583253 DOI: 10.1016/j.bioorg.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Macrozones are novel conjugates of azithromycin and thiosemicarbazones, which exhibit very good in vitro antibacterial activities against susceptible and some resistant bacterial strains thus showing a potential for further development. A combination of spectrometric (fluorimetry, STD and WaterLOGSY NMR) and molecular docking studies provided insights into atomic details of interactions between selected macrozones and biological receptors such as E. coli ribosome and bovine serum albumin. Fluorimetric measurements revealed binding constants in the micro-molar range while NMR experiments provided data on binding epitopes. It has been demonstrated that both STD and WaterLOGSY gave comparable and consistent results unveiling atoms in intimate contacts with biological receptors. Docking studies pointed towards main interactions between macrozones and E. coli ribosome which included specific π - π stacking and hydrogen bonding interactions with thiosemicarbazone part extending down the ribosome exit tunnel. The results of the docking experiments were in fine correlation with those obtained by NMR and fluorimetry. Our investigation pointed towards a two-site binding mechanism of interactions between macrozones and E. coli ribosome which is the most probable reason for their activity against azithromycin-resistant strains. Much better activity of macrozone-nickel coordinated compound against E. coli ribosome compared to other macrozones has been attributed to the higher polarity which enabled better bacterial membrane penetration and binding of the two thiosemicarbazone units thus additionally contributing to the overall binding energy. The knowledge gained in this study should play an important role in anti-infective macrolide design in the future.
Collapse
Affiliation(s)
- Tomislav Jednačak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivana Mikulandra
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Smokrović
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Andrea Hloušek-Kasun
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Monika Kapustić
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Kristina Delaš
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Ivo Piantanida
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia.
| | - Marta Jurković
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54 HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia
| | - Klaus Zangger
- University of Graz, Institute of Chemistry, Organic and Bioorganic Chemistry, Heinrichstraße 28 A-8010 Graz, Austria
| | - Predrag Novak
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a HR-10000 Zagreb, Croatia.
| |
Collapse
|
43
|
Baranchyk Y, Gestels Z, Van den Bossche D, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Effect of erythromycin residuals in food on the development of resistance in Streptococcus pneumoniae: an in vivo study in Galleria mellonella. PeerJ 2024; 12:e17463. [PMID: 38827315 PMCID: PMC11141549 DOI: 10.7717/peerj.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Background The use of antimicrobials to treat food animals may result in antimicrobial residues in foodstuffs of animal origin. The European Medicines Association (EMA) and World Health Organization (WHO) define safe antimicrobial concentrations in food based on acceptable daily intakes (ADIs). It is unknown if ADI doses of antimicrobials in food could influence the antimicrobial susceptibility of human-associated bacteria. Objectives This aim of this study was to evaluate if the consumption of ADI doses of erythromycin could select for erythromycin resistance in a Galleria mellonella model of Streptococcus pneumoniae infection. Methods A chronic model of S. pneumoniae infection in G. mellonella larvae was used for the experiment. Inoculation of larvae with S. pneumoniae was followed by injections of erythromycin ADI doses (0.0875 and 0.012 μg/ml according to EMA and WHO, respectively). Isolation of S. pneumoniae colonies was then performed on selective agar plates. Minimum inhibitory concentrations (MICs) of resistant colonies were measured, and whole genome sequencing (WGS) was performed followed by variant calling to determine the genetic modifications. Results Exposure to single doses of both EMA and WHO ADI doses of erythromycin resulted in the emergence of erythromycin resistance in S. pneumoniae. Emergent resistance to erythromycin was associated with a mutation in rplA, which codes for the L1 ribosomal protein and has been linked to macrolide resistance in previous studies. Conclusion In our in vivo model, even single doses of erythromycin that are classified as acceptable by the WHO and EMA induced significant increases in erythromycin MICs in S. pneumoniae. These results suggest the need to include the induction of antimicrobial resistance (AMR) as a significant criterion for determining ADIs.
Collapse
Affiliation(s)
- Yuliia Baranchyk
- UnivLyon, Université Claude Bernard Lyon 1, Lyon, France
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
44
|
Cole-Osborn LF, McCallan SA, Prifti O, Abu R, Sjoelund V, Lee-Parsons CWT. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:141. [PMID: 38743349 PMCID: PMC11093837 DOI: 10.1007/s00299-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.
Collapse
Affiliation(s)
- Lauren F Cole-Osborn
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Shannon A McCallan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Olga Prifti
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Virginie Sjoelund
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA.
| |
Collapse
|
45
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
46
|
Sarıgül İ, Žukova A, Alparslan E, Remm S, Pihlak M, Kaldalu N, Tenson T, Maiväli Ü. Involvement of Escherichia coli YbeX/CorC in ribosomal metabolism. Mol Microbiol 2024; 121:984-1001. [PMID: 38494741 DOI: 10.1111/mmi.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.
Collapse
Affiliation(s)
- İsmail Sarıgül
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Amata Žukova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Emel Alparslan
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sille Remm
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Margus Pihlak
- Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niilo Kaldalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
47
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
48
|
Saravanakumar K, Li Z, Kim Y, Park S, Keon K, Lee CM, Ahn G, Cho N. Fucoidan-coated cotton dressing functionalized with biomolecules capped silver nanoparticles (LB-Ag NPs-FN-OCG) for rapid healing therapy of infected wounds. ENVIRONMENTAL RESEARCH 2024; 246:118004. [PMID: 38145732 DOI: 10.1016/j.envres.2023.118004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The colonization of pathogenic microbes poses a significant clinical barrier that hinders the physiological wound-healing process. Addressing this challenge, we developed a novel wound dressing using a modified cotton gauze dressing coated with fucoidan and functionalized with silver nanoparticles (LB-Ag NPs-FN-OCG) for the rapid treatment of infected wounds. Firstly, phytochemical-capped LB-Ag NPs were synthesized and characterized using high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), and zeta potential analysis. Secondly, different concentrations of LB-Ag NPs (0.1%-1%) were functionalized into FN-OCG to identify appropriate concentrations that were non-toxic with superior antibacterial activities. Screening assays, including antibacterial, hemolysis, chick chorioallantoic membrane (CAM) assay, and cytotoxicity assay, revealed that LB-Ag NPs (0.5%)-FN-OCG were non-toxic and demonstrated greater efficiency in inhibiting bacterial pathogens (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) and promoting fibroblast cell (NIH3T3) migration. In vivo assays revealed that LB-Ag NPs (0.5%)-FN-OCG treatment exhibited excellent wound healing activity (99.73 ± 0.01%) compared to other treatments by inhibiting bacterial colonization, maintaining the blood parameters, developing granulation tissue, new blood vessels, and collagen deposition. Overall, this study highlights that LB-Ag NPs (0.5%)-FN-OCG serve as a antibacterial wound dressing for infected wound healing applications.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - SeonJu Park
- Seoul Metropolitan Center, Korea Basic Science Institute (KBSI), Seoul, 03759, South Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
49
|
Gomes RMODS, Silva KJGD, Theodoro RC. Group I introns: Structure, splicing and their applications in medical mycology. Genet Mol Biol 2024; 47Suppl 1:e20230228. [PMID: 38525907 DOI: 10.1590/1678-4685-gmb-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/02/2024] [Indexed: 03/26/2024] Open
Abstract
Group I introns are small RNAs (250-500 nt) capable of catalyzing their own splicing from the precursor RNA. They are widely distributed across the tree of life and have intricate relationships with their host genomes. In this work, we review its basic structure, self-splicing and its mechanisms of gene mobility. As they are widely found in unicellular eukaryotes, especially fungi, we gathered information regarding their possible impact on the physiology of fungal cells and the possible application of these introns in medical mycology.
Collapse
Affiliation(s)
| | | | - Raquel Cordeiro Theodoro
- Universidade Federal do Rio Grande do Norte, Instituto de Medicina Tropical do Rio Grande do Norte, Natal, RN, Brazil
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular de Genética, Natal, RN, Brazil
| |
Collapse
|
50
|
Mori T, Abe I. Lincosamide Antibiotics: Structure, Activity, and Biosynthesis. Chembiochem 2024; 25:e202300840. [PMID: 38165257 DOI: 10.1002/cbic.202300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Lincosamides are naturally occurring antibiotics isolated from Streptomyces sp. Currently, lincomycin A and its semisynthetic analogue clindamycin are used as clinical drugs. Due to their unique structures and remarkable biological activities, derivatizations of lincosamides via semi-synthesis and biosynthetic studies have been reported. This review summarizes the structures and biological activities of lincosamides, and the recent studies of lincosamide biosynthetic enzymes.
Collapse
Grants
- JP20H00490 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP22H05126 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP23H00393 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JP23H02641 Ministry of Education, Culture, Sports, Science and Technology, Japan
- JPNP20011 New Energy and Industrial Technology Development Organization
- JP21ak0101164 New Energy and Industrial Technology Development Organization
- JP23ama121027 New Energy and Industrial Technology Development Organization
- JPMJPR20DA Japan Science and Technology Agency
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|