1
|
Tan J, Ong CT. Apolipoprotein E elicits target-directed miRNA degradation to maintain neuronal integrity. Neural Regen Res 2025; 20:2577-2578. [PMID: 39503420 PMCID: PMC11801277 DOI: 10.4103/nrr.nrr-d-24-00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
- Jiazi Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Chin-Tong Ong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
2
|
Wen Y, Guo F, Gu T, Zeng Y, Cao X. Transcriptomic Regulation by Astrocytic m6A Methylation in the mPFC. Genes Cells 2025; 30:e70003. [PMID: 39904743 PMCID: PMC11794193 DOI: 10.1111/gtc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Astrocytes, the most prevalent type of glial cells, have been found to play a crucial part in numerous physiological functions. By offering metabolic and structural support, astrocytes are vital for the proper functioning of the brain and regulating information processing and synaptic transmission. Astrocytes located in the medial prefrontal cortex (mPFC) are highly responsive to environmental changes and have been associated with the development of brain disorders. One of the primary mechanisms through which the brain responds to environmental factors is epitranscriptome modification. M6-methyladenosine methylation is the most prevalent internal modification of eukaryotic messenger RNA (mRNA), and it significantly impacts transcript processing and protein synthesis. However, the effects of m6A on astrocyte transcription and function are still not well understood. Our research demonstrates that ALKBH5, an RNA demethylase of m6A found in astrocytes, affects gene expression in the mPFC. These findings suggest that further investigation into the potential role of astrocyte-mediated m6A methylation in the mPFC is warranted.
Collapse
Affiliation(s)
- You‐Lu Wen
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Fang Guo
- Department of Neurobiology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ting‐ting Gu
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Yan‐ping Zeng
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Xiong Cao
- Department of Neurobiology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Wang S, Ma R, Gao C, Tian YN, Hu RG, Zhang H, Li L, Li Y. Unraveling the function of TSC1-TSC2 complex: implications for stem cell fate. Stem Cell Res Ther 2025; 16:38. [PMID: 39901197 PMCID: PMC11792405 DOI: 10.1186/s13287-025-04170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tuberous sclerosis complex is a genetic disorder caused by mutations in the TSC1 or TSC2 genes, affecting multiple systems. These genes produce proteins that regulate mTORC1 activity, essential for cell function and metabolism. While mTOR inhibitors have advanced treatment, maintaining long-term therapeutic success is still challenging. For over 20 years, significant progress has linked TSC1 or TSC2 gene mutations in stem cells to tuberous sclerosis complex symptoms. METHODS A comprehensive review was conducted using databases like Web of Science, Google Scholar, PubMed, and Science Direct, with search terms such as "tuberous sclerosis complex," "TSC1," "TSC2," "stem cell," "proliferation," and "differentiation." Relevant literature was thoroughly analyzed and summarized to present an updated analysis of the TSC1-TSC2 complex's role in stem cell fate determination and its implications for tuberous sclerosis complex. RESULTS The TSC1-TSC2 complex plays a crucial role in various stem cells, such as neural, germline, nephron progenitor, intestinal, hematopoietic, and mesenchymal stem/stromal cells, primarily through the mTOR signaling pathway. CONCLUSIONS This review aims shed light on the role of the TSC1-TSC2 complex in stem cell fate, its impact on health and disease, and potential new treatments for tuberous sclerosis complex.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruishuang Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chong Gao
- School of Medicine, Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yu-Nong Tian
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong-Gui Hu
- State Key Laboratory of Brain-Machine Intelligence, Liangzhu Laboratory, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lan Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
4
|
Xiang W, Zhang X, Dong M, Wan L, Zhang B, Wan F. Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas. Pharmacol Res 2025; 212:107599. [PMID: 39818258 DOI: 10.1016/j.phrs.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells. Epigenetic modulators, including inhibitors of histone deacetylase (HDAC), enhancer of zeste homolog 2 (EZH2), BRG1/BRM-associated factor (BAF) complex, have shown promise in preclinical studies of pHGGs by altering the differentiation program of glioma cells. Although challenges remain in overcoming tumor cell heterogeneity, induced differentiation therapy holds promise for treating these currently incurable pediatric brain cancers.
Collapse
Affiliation(s)
- Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Lijun Wan
- Department of Neurosurgery, The Second Affiliated Hospital of The Third Army Medical University, Chongqing 404100, PR China.
| | - Bin Zhang
- Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
5
|
Tu G, Jiang N, Chen W, Liu L, Hu M, Liao B. The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals. Rev Neurosci 2025; 36:27-51. [PMID: 39083671 DOI: 10.1515/revneuro-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Nan Jiang
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Weizhong Chen
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Lining Liu
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| |
Collapse
|
6
|
Qiao D, Mu C, Chen H, Wen D, Wang Z, Zhang B, Guo F, Wang C, Zhang R, Wang C, Cui H, Li S. Implications of prenatal exposure to hyperandrogen for hippocampal neurodevelopment and autism-like behavior in offspring. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111219. [PMID: 39694316 DOI: 10.1016/j.pnpbp.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that significantly jeopardizes the physical and mental well-being of children. Autism spectrum disorder results from a combination of environmental and genetic factors. Hyperandrogenic exposure during pregnancy increases their risk of developing autism. Nevertheless, the prenatal exposure to androgens affects offspring neurodevelopment and the underlying mechanisms have not been fully elucidated. In the present study, administration of excessive dihydrotestosterone (DHT) to pregnant mice was found to impair neuronal development and dendritic spine formation in offspring, inducing autism-like behaviors. Furthermore, through mRNA transcriptome sequencing technology, the key molecule Nr4a2 was identified during this process of change. Overexpression of Nr4a2 and treatment with amodiaquine (AQ) significantly improved the abnormal phenotypes in offspring caused by prenatal exposure to androgens. Overall, Nr4a2 emerges as a crucial molecule involved in the impairment of offspring neurodevelopment due to prenatal androgen exposure, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Chenyu Mu
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Huan Chen
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Zhao Wang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Bohan Zhang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Fangzhen Guo
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Rong Zhang
- Autism Research Center; Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chongying Wang
- Autism Research Center, School of Sociology, Nankai University, Tianjin 300071, China
| | - Huixian Cui
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Sha Li
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
7
|
Liu ZG, Zhou LY, Sun YQ, Ma YH, Liu CM, Zhang BY. Unlocking the potential for optic nerve regeneration over long distances: a multi-therapeutic intervention. Front Neurol 2025; 15:1526973. [PMID: 39850731 PMCID: PMC11754882 DOI: 10.3389/fneur.2024.1526973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration in vivo through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration. At present, research on promoting optic nerve regeneration remains slow, with most studies unable to achieve axonal growth beyond the optic chiasm or reestablish connections with the brain. Future research priorities include directing axonal growth along correct pathways, facilitating synapse formation and myelination, and modifying the inhibitory microenvironment. These strategies are crucial not only for optic nerve regeneration but also for broader applications in central nervous system repair. In this review, we discuss multifactors therapeutic strategies for optic nerve regeneration, offering insights into advancing nerve regeneration research.
Collapse
Affiliation(s)
- Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yi-Hang Ma
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bo-Yin Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry 2025; 30:296-309. [PMID: 39227433 DOI: 10.1038/s41380-024-02735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antipsychotic medications are essential when treating schizophrenia spectrum and other psychotic disorders, but the efficacy and tolerability of these medications vary from person to person. This interindividual variation is likely mediated, at least in part, by epigenomic processes that have yet to be fully elucidated. Herein, we systematically identified and evaluated 65 studies that examine the influence of antipsychotic drugs on epigenomic changes, including global methylation (9 studies), genome-wide methylation (22 studies), candidate gene methylation (16 studies), and histone modification (18 studies). Our evaluation revealed that haloperidol was consistently associated with increased global hypermethylation, which corroborates with genome-wide analyses, mostly performed by methylation arrays. In contrast, clozapine seems to promote hypomethylation across the epigenome. Candidate-gene methylation studies reveal varying effects post-antipsychotic therapy. Some genes like Glra1 and Drd2 are frequently found to undergo hypermethylation, whereas other genes such as SLC6A4, DUSP6, and DTNBP1 are more likely to exhibit hypomethylation in promoter regions. In examining histone modifications, the literature suggests that clozapine changes histone methylation patterns in the prefrontal cortex, particularly elevating H3K4me3 at the Gad1 gene and affecting the transcription of genes like mGlu2 by modifying histone acetylation and interacting with HDAC2 enzymes. Risperidone and quetiapine, however, exhibit distinct impacts on histone marks across different brain regions and cell types, with risperidone reducing H3K27ac in the striatum and quetiapine modifying global H3K9me2 levels in the prefrontal cortex, suggesting antipsychotics demonstrate selective influence on histone modifications, which demonstrates a complex and targeted mode of action. While this review summarizes current knowledge, the intricate dynamics between antipsychotics and epigenetics clearly warrant more exhaustive exploration with the potential to redefine our understanding and treatment of psychiatric conditions. By deciphering the epigenetic changes associated with drug treatment and therapeutic outcomes, we can move closer to personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Diogo Marques
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nazanin Vaziri
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chad Bousman
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Zhang Y, Hill CM, Leach KA, Grillini L, Deliard S, Offley SR, Gatto M, Picone F, Zucco A, Gardini A. The enhancer module of Integrator controls cell identity and early neural fate commitment. Nat Cell Biol 2025; 27:103-117. [PMID: 39592860 PMCID: PMC11752693 DOI: 10.1038/s41556-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2024] [Indexed: 11/28/2024]
Abstract
Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator's INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator's enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes.
Collapse
Affiliation(s)
| | - Connor M Hill
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey A Leach
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Grillini
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sarah R Offley
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Gatto
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
10
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
11
|
Patranabis S. Recent Advances in the miRNA-Mediated Regulation of Neuronal Differentiation and Death. Neuromolecular Med 2024; 26:52. [PMID: 39648193 DOI: 10.1007/s12017-024-08820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The review aims to focus on the role of miRNA in gene regulation, related to differentiation and apoptosis of neurons, focusing on the array of miRNAs involved in the processes. miRNAs are a known class of small regulatory RNAs, which in association with RNA processing bodies, play major roles in different cellular events, such as neurogenesis and neuronal differentiation. miRNAs function in controlling neuronal events by targeting different important molecules of cellular signalling. The post-translational modification of Ago2 is crucial in modulating the neurons' miRNA-mediated regulation. Thus, understanding the crosstalk between cellular signalling and miRNA activity affecting neuronal events is very important to decipher novel targets and related signalling pathways, involved in neuronal survival and neurodegeneration.
Collapse
|
12
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
13
|
Hao P, Yang Z, So KF, Li X. A core scientific problem in the treatment of central nervous system diseases: newborn neurons. Neural Regen Res 2024; 19:2588-2601. [PMID: 38595278 PMCID: PMC11168522 DOI: 10.4103/nrr.nrr-d-23-01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans'. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.
Collapse
Affiliation(s)
- Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Zhou L, Zhao X, Sun J, Zou K, Huang X, Yu L, Wu M, Wang Y, Li X, Yi W. Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity. Nat Commun 2024; 15:10227. [PMID: 39587091 PMCID: PMC11589143 DOI: 10.1038/s41467-024-54680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers-arginine demethylases-remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific Mina53 deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.
Collapse
Affiliation(s)
- Lixiao Zhou
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Jie Sun
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kun Zou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyang Yu
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yong Wang
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Wen Yi
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Tang S, Liu S, Buchman AS, Bennett DA, De Jager PL, Hu J, Yang J. Integrating spatial transcriptomics and snRNA-seq data enhances differential gene expression analysis results of AD-related phenotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317499. [PMID: 39606364 PMCID: PMC11601696 DOI: 10.1101/2024.11.18.24317499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Spatial transcriptomics ( ST ) data provide spatially-informed gene expression for studying complex diseases such as Alzheimer's disease ( AD ). Existing studies using ST data to identify genes with spatially-informed differential gene expression ( DGE ) of complex diseases have limited power due to small sample sizes. Conversely, single-nucleus RNA sequencing ( snRNA-seq ) data offer larger sample sizes for studying cell-type specific ( CTS ) DGE but lack spatial information. In this study, we integrated ST and snRNA-seq data to enhance the power of spatially-informed CTS DGE analysis of AD-related phenotypes. Method First, we utilized the recently developed deep learning tool CelEry to infer the spatial location of ∼1.5M cells from snRNA-seq data profiled from dorsolateral prefrontal cortex ( DLPFC ) tissue of 436 postmortem brains in the ROS/MAP cohorts. Spatial locations of six cortical layers that have distinct anatomical structures and biological functions were inferred. Second, we conducted cortical-layer specific ( CLS ) and CTS DGE analyses for three quantitative AD-related phenotypes -- β-amyloid, tangle density, and cognitive decline. CLS-CTS DGE analyses were conducted based on linear mixed regression models with pseudo-bulk scRNA-seq data and inferred cortical layer locations. Results We identified 450 potential CLS-CTS significant genes with nominal p-values<10 -4 , including 258 for β-amyloid, 122 for tangle density, and 127 for cognitive decline. Majority of these identified genes, including the ones having known associations with AD (e.g., APOE , KCNIP3 , and CTSD ), cannot be detected by traditional CTS DGE analyses without considering spatial information. We also identified 8 genes shared across all three phenotypes, 21 between β-amyloid and tangle density, 10 between cognitive decline and tangle density, and 10 between β-amyloid and cognitive density. Particularly, Gene Set Enrichment Analyses with the CLS-CTS DGE results of microglia in cortical layer-6 of β-amyloid identified 12 significant AD-related pathways. Conclusion Incorporating spatial information with snRNA-seq data detected significant genes and pathways for AD-related phenotypes that would not be identified by traditional CTS DGE analyses. These identified CLS-CTS significant genes not only help illustrate the pathogenesis of AD, but also provide potential CLS-CTS targets for developing therapeutics of AD.
Collapse
|
16
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
17
|
Zhang F, Zhang B, Cui T, Chen S, Zhang C, Wang Z, Liu X. The novel roles of RNA m6A modification in regulating the development, infection, and oxidative DNA damage repair of Phytophthora sojae. PLoS Pathog 2024; 20:e1012553. [PMID: 39312577 PMCID: PMC11449341 DOI: 10.1371/journal.ppat.1012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
N6-methyladenosine (m6A), a vital post-transcriptional regulator, is among the most prevalent RNA modifications in eukaryotes. Nevertheless, the biological functions of m6A in oomycetes remain poorly understood. Here, we showed that the PsMTA1 and PsMTA2 genes are orthologs of human METTL4, while the PsMET16 gene is an ortholog of human METTL16. These genes are implicated in m6A modification and play a critical role in the production of sporangia and oospores, the release of zoospores, and the virulence of Phytophthora sojae. In P. sojae, m6A modifications are predominantly enriched in the coding sequence and the 3' untranslated region. Notably, the PsMTA1 knockout mutant exhibited reduced virulence, attributed to impaired tolerance to host defense-generated ROS stress. Mechanistically, PsMTA1-mediated m6A modification positively regulates the mRNA lifespan of DNA damage response (DDR) genes in reaction to plant ROS stress during infection. Consequently, the mRNA abundance of the DDR gene PsRCC1 was reduced in the single m6A site mutant ΔRCC1/RCC1A2961C, resulting in compromised DNA damage repair and reduced ROS adaptation-associated virulence in P. sojae. Overall, these results indicate that m6A-mediated RNA metabolism is associated with the development and pathogenicity of P. sojae, underscoring the roles of epigenetic markers in the adaptive flexibility of Phytophthora during infection.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Borui Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tongshan Cui
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanshan Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Vancamp P, Frapin M, Parnet P, Amarger V. Unraveling the Molecular Mechanisms of the Neurodevelopmental Consequences of Fetal Protein Deficiency: Insights From Rodent Models and Public Health Implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100339. [PMID: 39040432 PMCID: PMC11262180 DOI: 10.1016/j.bpsgos.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fetal brain development requires increased maternal protein intake to ensure that offspring reach their optimal cognitive potential in infancy and adulthood. While protein deficiency remains a prevalent issue in developing countries, it is also reemerging in Western societies due to the growing adoption of plant-based diets, some of which are monotonous and may fail to provide sufficient amino acids crucial for the brain's critical developmental phase. Confounding variables in human nutritional research have impeded our understanding of the precise impact of protein deficiency on fetal neurodevelopment, as well as its implications for childhood neurocognitive performance. Moreover, it remains unclear whether such deficiency could predispose to mental health problems in adulthood, mirroring observations in individuals exposed to prenatal famine. In this review, we sought to evaluate mechanistic data derived from rodent models, placing special emphasis on the involvement of neuroendocrine axes, the influence of sex and timing, epigenetic modifications, and cellular metabolism. Despite notable progress, critical knowledge gaps remain, including understanding the long-term reversibility of effects due to fetal protein restriction and the interplay between genetic predisposition and environmental factors. Enhancing our understanding of the precise mechanisms that connect prenatal nutrition to brain development in future research endeavors can be significantly advanced by integrating multiomics approaches and utilizing additional alternative models such as nonhuman primates. Furthermore, it is crucial to investigate potential interventions aimed at alleviating adverse outcomes. Ultimately, this research has profound implications for guiding public health strategies aimed at raising awareness about the crucial role of optimal maternal nutrition in supporting fetal neurodevelopment.
Collapse
Affiliation(s)
- Pieter Vancamp
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patricia Parnet
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Valérie Amarger
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
19
|
Qiu Z, Deng X, Fu Y, Jiang M, Cui X. Exploring the triad: VPS35, neurogenesis, and neurodegenerative diseases. J Neurochem 2024; 168:2363-2378. [PMID: 39022884 DOI: 10.1111/jnc.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Vacuolar protein sorting 35 (VPS35), a critical component of the retromer complex, plays a pivotal role in the pathogenesis of neurodegenerative diseases (NDs). It is involved in protein transmembrane sorting, facilitating the transport from endosomes to the trans-Golgi network (TGN) and plasma membrane. Recent investigations have compellingly associated mutations in the VPS35 gene with neurodegenerative disorders such as Parkinson's and Alzheimer's disease. These genetic alterations are implicated in protein misfolding, disrupted autophagic processes, mitochondrial dysregulation, and synaptic impairment. Furthermore, VPS35 exerts a notable impact on neurogenesis by influencing neuronal functionality, protein conveyance, and synaptic performance. Dysregulation or mutation of VPS35 may escalate the progression of neurodegenerative conditions, underscoring its pivotal role in safeguarding neuronal integrity. This review comprehensively discusses the role of VPS35 and its functional impairments in NDs. Furthermore, we provide an overview of the impact of VPS35 on neurogenesis and further explore the intricate relationship between neurogenesis and NDs. These research advancements offer novel perspectives and valuable insights for identifying potential therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, China
- School of Medicine, Kashi University, Xinjiang, China
| |
Collapse
|
20
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
21
|
Khalil MH. Neurosustainability. Front Hum Neurosci 2024; 18:1436179. [PMID: 39268220 PMCID: PMC11390526 DOI: 10.3389/fnhum.2024.1436179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
While the human brain has evolved extraordinary abilities to dominate nature, modern living has paradoxically trapped it in a contemporary "cage" that stifles neuroplasticity. Within this modern environment lurk unseen natural laws with power to sustain the human brain's adaptive capacities - if consciously orchestrated into the environments we design. For too long our contemporary environments have imposed an unyielding static state, while still neglecting the brain's constant adaptive nature as it evolves to dominate the natural world with increasing sophistication. The theory introduced in this article aims to go back in nature without having to go back in time, introducing and expounding Neurosustainability as a novel paradigm seeing beyond the contemporary confines to architect environments and brains in parallel. Its integrated neuro-evidenced framework proposes four enrichment scopes-spatial, natural, aesthetic, and social-each holding multifaceted attributes promising to sustain regions like the hippocampus, cortex and amygdala. Neurosustainability aims to liberate the quintessential essence of nature to sustain and enhance neuroplastic processes through a cycle that begins with design and extends through epigenetic changes. This paradigm shift aims to foster cognitive health and wellness by addressing issues like stress, depression, anxiety and cognitive decline common in the contemporary era thereby offering a path toward a more neurosustainable era aiming to nurture the evolution of the human brain now and beyond.
Collapse
Affiliation(s)
- Mohamed Hesham Khalil
- Department of Architecture, Faculty of Architecture and History of Art, School of Arts and Humanities, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Wang W, Long P, He M, Luo T, Li Y, Yang L, Zhang Y, Wen X. Pomegranate polyphenol punicalagin as a nutraceutical for mitigating mild cognitive impairment: An overview of beneficial properties. Eur J Pharmacol 2024; 977:176750. [PMID: 38897439 DOI: 10.1016/j.ejphar.2024.176750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yubo Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610059, China.
| |
Collapse
|
23
|
Li C, Chen K, Fang Q, Shi S, Nan J, He J, Yin Y, Li X, Li J, Hou L, Hu X, Kellis M, Han X, Xiong X. Crosstalk between epitranscriptomic and epigenomic modifications and its implication in human diseases. CELL GENOMICS 2024; 4:100605. [PMID: 38981476 PMCID: PMC11406187 DOI: 10.1016/j.xgen.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Qianchen Fang
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Shaohui Shi
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jialin He
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingyun Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lei Hou
- Department of Medicine, Biomedical Genetics Section, Boston University, Boston, MA 02118, USA
| | - Xinyang Hu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xikun Han
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
24
|
Shi Z, Wen K, Zou Z, Fu W, Guo K, Sammudin NH, Ruan X, Sullere S, Wang S, Zhang X, Thinakaran G, He C, Zhuang X. YTHDF1 mediates translational control by m6A mRNA methylation in adaptation to environmental challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607063. [PMID: 39149343 PMCID: PMC11326287 DOI: 10.1101/2024.08.07.607063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kailong Wen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenqin Fu
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Guo
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nabilah H Sammudin
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Pérez RF, Tezanos P, Peñarroya A, González-Ramón A, Urdinguio RG, Gancedo-Verdejo J, Tejedor JR, Santamarina-Ojeda P, Alba-Linares JJ, Sainz-Ledo L, Roberti A, López V, Mangas C, Moro M, Cintado Reyes E, Muela Martínez P, Rodríguez-Santamaría M, Ortea I, Iglesias-Rey R, Castilla-Silgado J, Tomás-Zapico C, Iglesias-Gutiérrez E, Fernández-García B, Sanchez-Mut JV, Trejo JL, Fernández AF, Fraga MF. A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment. Nat Commun 2024; 15:5829. [PMID: 39013876 PMCID: PMC11252340 DOI: 10.1038/s41467-024-49608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging involves the deterioration of organismal function, leading to the emergence of multiple pathologies. Environmental stimuli, including lifestyle, can influence the trajectory of this process and may be used as tools in the pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this context, we have generated bulk tissue and single cell multi-omic maps of the male mouse dorsal hippocampus in young and old animals exposed to environmental stimulation in the form of enriched environments. We present a molecular atlas of the aging process, highlighting two distinct axes, related to inflammation and to the dysregulation of mRNA metabolism, at the functional RNA and protein level. Additionally, we report the alteration of heterochromatin domains, including the loss of bivalent chromatin and the uncovering of a heterochromatin-switch phenomenon whereby constitutive heterochromatin loss is partially mitigated through gains in facultative heterochromatin. Notably, we observed the multi-omic reversal of a great number of aging-associated alterations in the context of environmental enrichment, which was particularly linked to glial and oligodendrocyte pathways. In conclusion, our work describes the epigenomic landscape of environmental stimulation in the context of aging and reveals how lifestyle intervention can lead to the multi-layered reversal of aging-associated decline.
Collapse
Affiliation(s)
- Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Patricia Tezanos
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Alfonso Peñarroya
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Alejandro González-Ramón
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Javier Gancedo-Verdejo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Juan José Alba-Linares
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Lidia Sainz-Ledo
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Annalisa Roberti
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - Virginia López
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Cristina Mangas
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
| | - María Moro
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Elisa Cintado Reyes
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Pablo Muela Martínez
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
- Programa de Doctorado en Neurociencia, Universidad Autónoma de Madrid-Instituto Cajal, 28002, Madrid, Spain
| | - Mar Rodríguez-Santamaría
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain
- Bioterio y unidad de imagen preclínica, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Ignacio Ortea
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Proteomics Unit, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), 33011, Oviedo, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Juan Castilla-Silgado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Jose Vicente Sanchez-Mut
- Laboratory of Functional Epi-Genomics of Aging and Alzheimer's disease, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Alicante, Spain
| | - José Luis Trejo
- Departamento de Neurociencia Translacional, Instituto Cajal-Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002, Madrid, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Centro de Investigación en Nanomateriales y Nanotecnología-Consejo Superior de Investigaciones Científicas (CINN-CSIC), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-FINBA), Universidad de Oviedo, 33011, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33003, Oviedo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- Departamento de Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
26
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Mishra T, Singh S, Singh TG. Therapeutic Implications and Regulations of Protein Post-translational Modifications in Parkinsons Disease. Cell Mol Neurobiol 2024; 44:53. [PMID: 38960968 PMCID: PMC11222187 DOI: 10.1007/s10571-024-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2024] [Indexed: 07/05/2024]
Abstract
Parkinsons disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and alpha-synuclein aggregation. This comprehensive review examines the intricate role of post-translational modifications (PTMs) in PD pathogenesis, focusing on DNA methylation, histone modifications, phosphorylation, SUMOylation, and ubiquitination. Targeted PTM modulation, particularly in key proteins like Parkin, DJ1, and PINK1, emerges as a promising therapeutic strategy for mitigating dopaminergic degeneration in PD. Dysregulated PTMs significantly contribute to the accumulation of toxic protein aggregates and dopaminergic neuronal dysfunction observed in PD. Targeting PTMs, including epigenetic strategies, addressing aberrant phosphorylation events, and modulating SUMOylation processes, provides potential avenues for intervention. The ubiquitin-proteasome system, governed by enzymes like Parkin and Nedd4, offers potential targets for clearing misfolded proteins and developing disease-modifying interventions. Compounds like ginkgolic acid, SUMO E1 enzyme inhibitors, and natural compounds like Indole-3-carbinol illustrate the feasibility of modulating PTMs for therapeutic purposes in PD. This review underscores the therapeutic potential of PTM-targeted interventions in modulating PD-related pathways, emphasizing the need for further research in this promising area of Parkinsons disease therapeutics.
Collapse
Affiliation(s)
- Twinkle Mishra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
28
|
Ong CT, Ngian ZK. Regulation of aging by NELF-A and RNA polymerase II elongation. Neural Regen Res 2024; 19:1415-1416. [PMID: 38051874 PMCID: PMC10883504 DOI: 10.4103/1673-5374.387989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/29/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Chin-Tong Ong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhen-Kai Ngian
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
29
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
30
|
Zhang J, Li H, Niswander LA. m 5C methylated lncRncr3-MeCP2 interaction restricts miR124a-initiated neurogenesis. Nat Commun 2024; 15:5136. [PMID: 38879605 PMCID: PMC11180186 DOI: 10.1038/s41467-024-49368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Huili Li
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
31
|
Liu L, Wu L, Wang Y, Sun Z, Shuang R, Shi Z, Dong Y. Monomeric pilose antler peptide improves depression-like behavior in mice by inhibiting FGFR3 protein expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117973. [PMID: 38403002 DOI: 10.1016/j.jep.2024.117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Lili Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanling Wang
- GuangzhouUniversity of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongwen Sun
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruonan Shuang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
33
|
Girella A, Di Bartolomeo M, Dainese E, Buzzelli V, Trezza V, D'Addario C. Fatty Acid Amide Hydrolase and Cannabinoid Receptor Type 1 Genes Regulation is Modulated by Social Isolation in Rats. Neurochem Res 2024; 49:1278-1290. [PMID: 38368587 DOI: 10.1007/s11064-024-04117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.
Collapse
Affiliation(s)
- Antonio Girella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy
| | | | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Martinez-Feduchi P, Jin P, Yao B. Epigenetic modifications of DNA and RNA in Alzheimer's disease. Front Mol Neurosci 2024; 17:1398026. [PMID: 38726308 PMCID: PMC11079283 DOI: 10.3389/fnmol.2024.1398026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common form of dementia. There are two main types of AD: familial and sporadic. Familial AD is linked to mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2). On the other hand, sporadic AD is the more common form of the disease and has genetic, epigenetic, and environmental components that influence disease onset and progression. Investigating the epigenetic mechanisms associated with AD is essential for increasing understanding of pathology and identifying biomarkers for diagnosis and treatment. Chemical covalent modifications on DNA and RNA can epigenetically regulate gene expression at transcriptional and post-transcriptional levels and play protective or pathological roles in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Broca-Brisson L, Disdier C, Harati R, Hamoudi R, Mabondzo A. Epigenetic alterations in creatine transporter deficiency: a new marker for dodecyl creatine ester therapeutic efficacy monitoring. Front Neurosci 2024; 18:1362497. [PMID: 38694899 PMCID: PMC11062253 DOI: 10.3389/fnins.2024.1362497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Creatine transporter deficiency (CTD) is an X-linked disease caused by mutations in the Slc6a8 gene. The impaired creatine uptake in the brain leads to developmental delays with intellectual disability. We hypothesized that deficient creatine uptake in CTD cerebral cells impact methylation balance leading to alterations of genes and proteins expression by epigenetic mechanism. In this study, we determined the status of nucleic acid methylation in both Slc6a8 knockout mouse model and brain organoids derived from CTD patients' cells. We also investigated the effect of dodecyl creatine ester (DCE), a promising prodrug that increases brain creatine content in the mouse model of CTD. The level of nucleic acid methylation was significantly reduced compared to healthy controls in both in vivo and in vitro CTD models. This hypo-methylation tended to be regulated by DCE treatment in vivo. These results suggest that increased brain creatine after DCE treatment restores normal levels of DNA methylation, unveiling the potential of using DNA methylation as a marker to monitor the drug efficacy.
Collapse
Affiliation(s)
- Léa Broca-Brisson
- Département Médicaments et Technologies pour la Santé, CEA, INRAE, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Clémence Disdier
- Ceres Brain Therapeutics, ICM-Hôpital Pitié-Salpétrière, Paris, France
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Center of Excellence of Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirtes
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
- Center of Excellence of Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - Aloïse Mabondzo
- Département Médicaments et Technologies pour la Santé, CEA, INRAE, SPI, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
36
|
Shastri GG, Sudre G, Ahn K, Jung B, Kolachana B, Auluck PK, Elnitski L, Marenco S, Shaw P. Cortico-striatal differences in the epigenome in attention-deficit/ hyperactivity disorder. Transl Psychiatry 2024; 14:189. [PMID: 38605038 PMCID: PMC11009227 DOI: 10.1038/s41398-024-02896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged. These regions implicated genes involved in developmental processes including neurogenesis and the differentiation of oligodendrocytes and glial cells. We demonstrate a significant association between differentially methylated genes in the caudate and genes implicated by GWAS not only in ADHD but also in autistic spectrum, obsessive compulsive and bipolar affective disorders through GWAS. Using transcriptomic data available on the same subjects, we found modest correlations between the methylation and expression of genes. In conclusion, this study of the cortico-striatal methylome points to gene and gene pathways involved in neurodevelopment, consistent with studies of common and rare genetic variation, as well as the post-mortem transcriptome in ADHD.
Collapse
Affiliation(s)
- Gauri G Shastri
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Gustavo Sudre
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Kwangmi Ahn
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Benjamin Jung
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
37
|
Singh AK, Allington G, Viviano S, McGee S, Kiziltug E, Ma S, Zhao S, Mekbib KY, Shohfi JP, Duy PQ, DeSpenza T, Furey CG, Reeves BC, Smith H, Sousa AMM, Cherskov A, Allocco A, Nelson-Williams C, Haider S, Rizvi SRA, Alper SL, Sestan N, Shimelis H, Walsh LK, Lifton RP, Moreno-De-Luca A, Jin SC, Kruszka P, Deniz E, Kahle KT. A novel SMARCC1 BAFopathy implicates neural progenitor epigenetic dysregulation in human hydrocephalus. Brain 2024; 147:1553-1570. [PMID: 38128548 PMCID: PMC10994532 DOI: 10.1093/brain/awad405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.
Collapse
Affiliation(s)
- Amrita K Singh
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Genetics, Yale University, New Haven, CT 06510, USA
| | - Stephen Viviano
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaojie Ma
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Shujuan Zhao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John P Shohfi
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Adriana Cherskov
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - August Allocco
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | | | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London, WC1H 9RN, UK
| | - Syed R A Rizvi
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Seth L Alper
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nenad Sestan
- Department of Genetics, Yale University, New Haven, CT 06510, USA
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Hermela Shimelis
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Lauren K Walsh
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
- Department of Radiology, Diagnostic Medicine Institute, Geisinger, Danville, PA, 17822, USA
| | - Sheng Chih Jin
- Departments of Genetics and Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | - Engin Deniz
- Department of Pediatrics, Yale University, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
38
|
Chen Z, Ao C, Liu Y, Yang Y, Liu Y, Ming Q, Li C, Zhao H, Ban J, Li J. Manganese induces oxidative damage in the hippocampus by regulating the expression of oxidative stress-related genes via modulation of H3K18 acetylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:2240-2253. [PMID: 38129942 DOI: 10.1002/tox.24102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Prolonged exposure to manganese (Mn) contributes to hippocampal Mn accumulation, which leads to neurodegenerative diseases called manganese poisoning. However, the underlying molecular mechanisms remain unclear and there are no ideal biomarkers. Oxidative stress is the essential mechanisms of Mn-related neurotoxicity. Furthermore, histone acetylation has been identified as being engaged in the onset and development of neurodegenerative diseases. Therefore, the work aims to understand the molecular mechanisms of oxidative damage in the hippocampus due to Mn exposure from the aspect of histone acetylation modification and to assess whether H3K18 acetylation (H3K18ac) modification level in peripheral blood reflect Mn-induced oxidative damage in the hippocampus. Here, we randomly divided 60 male rats into four groups and injected them intraperitoneally with sterile pure water and MnCl2 ⋅4H2 O (5, 10, and 15 mg/kg) for 16 weeks, 5 days a week, once a day. The data confirmed that Mn exposure down-regulated superoxide dismutase activity and glutathione level as well as up-regulated malondialdehyde level in the hippocampus and plasma, and that there was a positive correlation between these indicators in the hippocampus and plasma. Besides, we noted that Mn treatment upregulated H3K18ac modification levels in the hippocampus and peripheral blood and that H3K18ac modification levels correlated with oxidative stress. Further studies demonstrated that Mn treatment decreased the amounts of H3K18ac enrichment in the manganese superoxide dismutase (SOD2) and glutathione transferase omega 1 (GSTO1) gene promoter regions, contributing to oxidative damage in the hippocampus. In short, our results demonstrate that Mn induces oxidative damage in the hippocampus by inhibiting the expression of SOD2 and GSTO1 genes via modulation of H3K18ac. In assessing Mn-induced hippocampal neurotoxicity, oxidative damage in plasma may reflect hippocampal oxidative damage in Mn-exposed groups.
Collapse
Affiliation(s)
- Zhi Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yue Yang
- Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qian Ming
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changzhe Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
39
|
Al-Juhani A, Imran M, Aljaili ZK, Alzhrani MM, Alsalman RA, Ahmed M, Ali DK, Fallatah MI, Yousuf HM, Dajani LM. Beyond the Pump: A Narrative Study Exploring Heart Memory. Cureus 2024; 16:e59385. [PMID: 38694651 PMCID: PMC11061817 DOI: 10.7759/cureus.59385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/04/2024] Open
Abstract
The field of organ transplantation, particularly heart transplantation, has brought to light interesting phenomena challenging traditional understandings of memory, identity, and consciousness. Studies indicate that heart transplant recipients may exhibit preferences, emotions, and memories resembling those of the donors, suggesting a form of memory storage within the transplanted organ. Mechanisms proposed for this memory transfer include cellular memory, epigenetic modifications, and energetic interactions. Moreover, the heart's intricate neural network, often referred to as the "heart brain," communicates bidirectionally with the brain and other organs, supporting the concept of heart-brain connection and its role in memory and personality. Additionally, observations from hemispherectomy procedures highlight the brain's remarkable plasticity and functional preservation beyond expectations, further underscoring the complex interplay between the brain, body, and identity. However, ethical and philosophical questions regarding the implications of these findings, including the definition of death and the nature of personal identity, remain unresolved. Further interdisciplinary research is needed to unravel the intricacies of memory transfer, neuroplasticity, and organ integration, offering insights into both organ transplantation and broader aspects of neuroscience and human identity. Understanding these complexities holds promise for enhancing patient care in organ transplantation and deepens our understanding of fundamental aspects of human experience and existence.
Collapse
Affiliation(s)
| | | | - Zeyad K Aljaili
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | | | - Marwah Ahmed
- College of Medicine, Batterjee Medical College, Jeddah, SAU
| | - Dana K Ali
- College of Medicine, King Khalid University, Abha, SAU
| | - Mutaz I Fallatah
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Hamad M Yousuf
- College of Medicine, Batterjee Medical College, Jeddah, SAU
| | - Leena M Dajani
- College of Medicine, Arabian Gulf University, Manama, BHR
| |
Collapse
|
40
|
Dulka K, Lajkó N, Nacsa K, Gulya K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. EPIGENOMES 2024; 8:11. [PMID: 38534795 DOI: 10.3390/epigenomes8010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kálmán Nacsa
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
41
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Ma K, Yin K, Li J, Ma L, Zhou Q, Lu X, Li B, Li J, Wei G, Zhang G. The Hypothalamic Epigenetic Landscape in Dietary Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306379. [PMID: 38115764 PMCID: PMC10916675 DOI: 10.1002/advs.202306379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The hypothalamus in the brain plays a pivotal role in controlling energy balance in vertebrates. Nutritional excess through high-fat diet (HFD) feeding can dysregulate hypothalamic signaling at multiple levels. Yet, it remains largely unknown in what magnitude HFD feeding may impact epigenetics in this brain region. Here, it is shown that HFD feeding can significantly alter hypothalamic epigenetic events, including posttranslational histone modifications, DNA methylation, and chromatin accessibility. The authors comprehensively analyze the chromatin immunoprecipitation-sequencing (ChIP-seq), methylated DNA immunoprecipitation-sequencing (MeDIP-seq), single nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), and RNA-seq data of the hypothalamus of C57 BL/6 mice fed with a chow or HFD for 1 to 6 months. The chromatins are categorized into 6 states using the obtained ChIP-seq data for H3K4me3, H3K27ac, H3K9me3, H3K27me3, and H3K36me3. A 1-month HFD feeding dysregulates histone modifications and DNA methylation more pronouncedly than that of 3- or 6-month. Besides, HFD feeding differentially impacts chromatin accessibility in hypothalamic cells. Thus, the epigenetic landscape is dysregulated in the hypothalamus of dietary obesity mice.
Collapse
Affiliation(s)
- Kai Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
| | - Kaili Yin
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jiong Li
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li Ma
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Qun Zhou
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Bo Li
- Department of EndocrinologyXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Juxue Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of Sciences (CAS)CASShanghai200031China
| | - Guo Zhang
- Key Laboratory of Environmental HealthMinistry of EducationDepartment of ToxicologySchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Institute for Brain ResearchCollaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Pathophysiology, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Institute of Metabolism and HealthHenan UniversityKaifengHenanChina
- Zhongzhou LaboratoryZhengzhouHenan450046China
| |
Collapse
|
43
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
44
|
Merlo G, Bachtel G, Sugden SG. Gut microbiota, nutrition, and mental health. Front Nutr 2024; 11:1337889. [PMID: 38406183 PMCID: PMC10884323 DOI: 10.3389/fnut.2024.1337889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The human brain remains one of the greatest challenges for modern medicine, yet it is one of the most integral and sometimes overlooked aspects of medicine. The human brain consists of roughly 100 billion neurons, 100 trillion neuronal connections and consumes about 20-25% of the body's energy. Emerging evidence highlights that insufficient or inadequate nutrition is linked to an increased risk of brain health, mental health, and psychological functioning compromise. A core component of this relationship includes the intricate dynamics of the brain-gut-microbiota (BGM) system, which is a progressively recognized factor in the sphere of mental/brain health. The bidirectional relationship between the brain, gut, and gut microbiota along the BGM system not only affects nutrient absorption and utilization, but also it exerts substantial influence on cognitive processes, mood regulation, neuroplasticity, and other indices of mental/brain health. Neuroplasticity is the brain's capacity for adaptation and neural regeneration in response to stimuli. Understanding neuroplasticity and considering interventions that enhance the remarkable ability of the brain to change through experience constitutes a burgeoning area of research that has substantial potential for improving well-being, resilience, and overall brain health through optimal nutrition and lifestyle interventions. The nexus of lifestyle interventions and both academic and clinical perspectives of nutritional neuroscience emerges as a potent tool to enhance patient outcomes, proactively mitigate mental/brain health challenges, and improve the management and treatment of existing mental/brain health conditions by championing health-promoting dietary patterns, rectifying nutritional deficiencies, and seamlessly integrating nutrition-centered strategies into clinical care.
Collapse
Affiliation(s)
- Gia Merlo
- Department of Psychiatry, New York University Grossman School of Medicine and Rory Meyers College of Nursing, New York, NY, United States
| | | | - Steven G. Sugden
- Department of Psychiatry, The University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
45
|
Shi J, Wang Z, Wang Z, Shao G, Li X. Epigenetic regulation in adult neural stem cells. Front Cell Dev Biol 2024; 12:1331074. [PMID: 38357000 PMCID: PMC10864612 DOI: 10.3389/fcell.2024.1331074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Neural stem cells (NSCs) exhibit self-renewing and multipotential properties. Adult NSCs are located in two neurogenic regions of adult brain: the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Maintenance and differentiation of adult NSCs are regulated by both intrinsic and extrinsic signals that may be integrated through expression of some key factors in the adult NSCs. A number of transcription factors have been shown to play essential roles in transcriptional regulation of NSC cell fate transitions in the adult brain. Epigenetic regulators have also emerged as key players in regulation of NSCs, neural progenitor cells and their differentiated progeny via epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling and RNA-mediated transcriptional regulation. This minireview is primarily focused on epigenetic regulations of adult NSCs during adult neurogenesis, in conjunction with transcriptional regulation in these processes.
Collapse
Affiliation(s)
- Jiajia Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zilin Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhijun Wang
- Zhenhai Lianhua Hospital, Ningbo City, Zhejiang, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo City, Zhejiang, China
| | - Xiajun Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
46
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
47
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
48
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
49
|
Takahashi Y, Ojiro R, Yamashita R, Shimizu S, Maeda N, Zou X, Tang Q, Ozawa S, Woo GH, Yoshida T, Shibutani M. Suppression of neurogranin expression by disruption of epigenetic DNA methylation in hippocampal mature granule cells after developmental exposure to neurotoxicants in rats. Toxicol Lett 2023; 390:33-45. [PMID: 37926403 DOI: 10.1016/j.toxlet.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
We previously performed comprehensive analyses of genes hypermethylated promoter regions and downregulated transcripts in the hippocampal dentate gyrus (DG) of rats upon weaning at postnatal day (PND) 21 after developmental exposure to 6-propyl-2-thiouracil (PTU), valproic acid, and glycidol (GLY), all of which are known to show irreversible effects on hippocampal neurogenesis in adulthood on PND 77. Here, we selected neurotransmitter and neurogenesis-related genes for validation analysis of methylation and expression. As a result, Nrgn by GLY and Shisa7, Agtpbp1, and Cyp46a1 by PTU underwent DNA hypermethylation and sustained downregulation. Immunohistochemical analysis of candidate gene products revealed that the number of neurogranin (NRGN)+ granule cells was decreased in the ventral DG by GLY on PND 21 and 77 and by PTU on PND 21. Among the samples of developmental or 28-day young adult-age exposure to known developmental neurotoxicants in humans, i.e., lead acetate, ethanol, and aluminum chloride, a decrease of NRGN+ cells by ethanol was also observed on PND 77 after developmental exposure. Double immunohistochemistry analysis revealed that NRGN was expressed in mature granule cells, and a similar immunoreactive cell distribution was found for phosphorylated calcium/calmodulin-activated protein kinase, a NRGN downstream molecule. After developmental PTU exposure, the number of activity-regulated cytoskeleton-associated protein+ granule cells was also profoundly decreased in the ventral DG in parallel with the decrease in NRGN+ cells on PND 21. These results suggest that NRGN is a potential marker for suppression of synaptic plasticity in mature granule cells in the ventral DG.
Collapse
Affiliation(s)
- Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 27136, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
50
|
Zhang Z, Zhang H, Hu B, Luan Y, Zhu K, Ma B, Zhang Z, Zheng X. R-Loop Defines Neural Stem/Progenitor Cells During Mouse Neurodevelopment. Stem Cells Dev 2023; 32:719-730. [PMID: 37823735 DOI: 10.1089/scd.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are present in the mammalian brain throughout life and are involved in neurodevelopment and central nervous system repair. Although typical epigenetic signatures, including DNA methylation, histone modifications, and microRNAs, play a pivotal role in regulation of NSPCs, several of the epigenetic regulatory mechanisms of NSPCs remain unclear. Thus, defining a novel epigenetic feature of NSPCs is crucial for developing stem cell therapy to address neurologic disorders caused by injury. In this study, we aimed to define the R-loop, a three-stranded nucleic acid structure, as an epigenetic characteristic of NSPCs during neurodevelopment. Our results demonstrated that R-loop levels change dynamically throughout neurodevelopment. Cells with high levels of R-loops consistently decreased and were enriched in the area of neurogenesis. Additionally, these cells costained with SOX2 during neurodevelopment. Furthermore, these cells with high R-loop levels expressed Ki-67 and exhibited a high degree of overlap with the transcriptional activation markers, H3K4me3, ser5, and H3K27ac. These findings suggest that R-loops may serve as an epigenetic feature for transcriptional activation in NSPCs, indicating their role in gene expression regulation and neurogenesis.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kun Zhu
- Department of Neurology, and The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|