1
|
Bareiro FAQ, Carnicero JA, Acha AA, Artalejo CR, Jimenez MCG, Mañas LR, García García FJ. Carotid-femoral pulse wave velocity score, an estimator of cognitive performance in the elderly: results from the Toledo Study for Healthy Aging. GeroScience 2024; 46:5711-5723. [PMID: 38776043 PMCID: PMC11493915 DOI: 10.1007/s11357-024-01189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/30/2024] [Indexed: 10/23/2024] Open
Abstract
Ageing-related changes in the vascular wall influence the function of different organs; for this reason, we assessed how arterial stiffness measured by carotid-femoral pulse wave velocity (cf-PWV) modulates: the basal cognitive performance and the change in cognitive performance over the follow-up time. We developed a prospective, population-based cohort study with 1581 participants aged > 65 years were obtained from the Toledo Study for Healthy Aging. Participants from the second wave (2011-2013) were selected for the cross-sectional analysis. Those who also performed the cognitive assessment in the third wave (2015-2017) were selected for the prospective analysis. Arterial stiffness was evaluated by cf-PWV. Multivariate segmented regression models were used to evaluate the association between cf-PWV scores and basal neuropsychological evaluation scores and change of neuropsychological evaluation scores along follow-up. Cross-sectional analysis showed that as cf-PWV grew within the cf-PWV (5- < 10) category an improvement was observed in 7-min test, free short-term memory, and hole peg test. Furthermore, in the cf-PWV (> 13-18) category a decrease was observed in total short-term memory, free long-term memory, and total long-term memory. Prospective analysis showed a progressive worsening of cognitive function as cf-PWV increases within the cf-PWV (> 13-18) category in 7-min test, object denomination, immediate and short-term memory, and hole peg test, while in the cf-PWV (5- < 10) category, there was observed a decrease in Cumulative Executive Dysfunction Index score and short-term memory. In conclusion, a higher cf-PWV score is associated with worse cognitive performance, and with a worse evolution, reinforcing the need to plan interventions to delay arterial stiffness and its consequences.
Collapse
Affiliation(s)
| | - José A Carnicero
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain.
- Geriatric Research Group at Getafe University Hospital, Ctra. Toledo Km. 12.5, 28905, Getafe, Spain.
| | - Ana Alfaro Acha
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| | - Cristina Rosado Artalejo
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
| | | | - Leocadio Rodriguez Mañas
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Geriatric Department, Hospital Universitario de Getafe, Getafe, Spain
| | - Francisco J García García
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| |
Collapse
|
2
|
Lee JS, Yoon BS, Kim Y, Park CB. LDHB-deficient brain exhibits resistance to ischemic neuronal cell death due to increased vasodilation. Biochem Biophys Res Commun 2024; 734:150766. [PMID: 39368368 DOI: 10.1016/j.bbrc.2024.150766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Ischemic stroke triggers a cascade of metabolic and inflammatory events leading to neuronal death, particularly in the hippocampus. Here, we investigate the role of lactate metabolism in ischemic resistance using LDHB-deficient mice, which exhibit impaired lactate utilization. Contrary to expectations of severe neuronal damage due to metabolic defects, LDHB-deficient mice displayed significantly increased neuronal survival following ischemic insult. Magnetic resonance spectroscopy revealed elevated lactate levels in LDHB-deficient brains, which correlated with enhanced vasodilation of the posterior communicating artery (PComA) and increased extracellular PGE2 levels. These findings suggest that elevated lactate inhibits PGE2 reabsorption, promoting vasodilation and neuronal protection. Our results highlight lactate's potential role in neuroprotection and its therapeutic promise for ischemic stroke.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea
| | - Yihyang Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
3
|
Chen JL, Wang R, Ma PQ, Wang YM, Tang QQ. Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease. World J Psychiatry 2024; 14:1661-1670. [DOI: 10.5498/wjp.v14.i11.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease. A clear understanding of the underlying causes of CSVD remains elusive.
AIM To explore the association between intercellular adhesion molecule-1 (ICAM-1) and blood-brain barrier (BBB) penetration in CSVD.
METHODS This study included patients admitted to Fuyang People’s Hospital and Fuyang Community (Anhui, China) between December 2021 and March 2022. The study population comprised 142 patients, including 80 in the CSVD group and 62 in the control group. Depression was present in 53 out of 80 patients with CSVD. Multisequence magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume, cortical thickness, and cortical area of each brain region. Moreover, neuropsychological tests including the Hamilton depression scale, mini-mental state examination, and Montreal cognitive assessment basic scores were performed.
RESULTS The multivariable analysis showed that age [P = 0.011; odds ratio (OR) = 0.930, 95% confidence interval (CI): 0.880-0.983] and ICAM-1 levels (P = 0.023; OR = 1.007, 95%CI: 1.001-1.013) were associated with CSVD. Two regions of interest (ROIs; ROI3 and ROI4) in the white matter showed significant (both P < 0.001; 95%CI: 0.419-0.837 and 0.366-0.878) differences between the two groups, whereas only ROI1 in the gray matter showed significant difference (P = 0.046; 95%CI: 0.007-0.680) between the two groups. ICAM-1 was significantly correlated (all P < 0.05) with cortical thickness in multiple brain regions in the CSVD group.
CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD. ICAM-1 may be associated with cortical thickness in the brain, predominantly in the white matter, and a significant increase in BBB permeability, proposing the involvement of ICAM-1 in BBB destruction.
Collapse
Affiliation(s)
- Ju-Luo Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Rui Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Pei-Qi Ma
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - You-Meng Wang
- Department of Neurology, Fuyang People’s Hospital, Fuyang 236000, Anhui Province, China
| | - Qi-Qiang Tang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| |
Collapse
|
4
|
Karakaya E, Abdul Y, Edwards J, Jamil S, Albayram O, Ergul A. Complex regulation of tau phosphorylation by the endothelin system in brain microvascular endothelial cells (BMVECs): link to barrier function. Clin Sci (Lond) 2024; 138:1329-1341. [PMID: 39356969 DOI: 10.1042/cs20240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/04/2024]
Abstract
Endothelin-1 (ET-1), the most potent vasoconstrictor identified to date, contributes to cerebrovascular dysfunction. ET-1 levels in postmortem brain specimens from individuals diagnosed with Alzheimer's disease (AD) and related dementias (ADRD) were shown to be related to cerebral hypoxia and disease severity. ET-1-mediated vascular dysfunction and ensuing cognitive deficits have also been reported in experimental models of AD and ADRD. Moreover, studies also showed that ET-1 secreted from brain microvascular endothelial cells (BMVECs) can affect neurovascular unit integrity in an autocrine and paracrine manner. Vascular contributions to cognitive impairment and dementia (VCID) is a leading ADRD cause known to be free of neuronal tau pathology, a hallmark of AD. However, a recent study reported cytotoxic hyperphosphorylated tau (p-tau) accumulation, which fails to bind or stabilize microtubules in BMVECs in VCID. Thus, the study aimed to determine the impact of ET-1 on tau pathology, microtubule organization, and barrier function in BMVECs. Cells were stimulated with 1 μM ET-1 for 24 h in the presence/absence of ETA (BQ123; 20 μM) or ETB (BQ788; 20 μM) receptor antagonists. Cell lysates were assayed for an array of phosphorylation site-specific antibodies and microtubule organization/stabilization markers. ET-1 stimulation increased p-tau Thr231 but decreased p-tau Ser199, Ser262, Ser396, and Ser214 levels only in the presence of ETA or ETB antagonism. ET-1 also impaired barrier function in the presence of ETA antagonism. These novel findings suggest that (1) dysregulation of endothelial tau phosphorylation may contribute to cerebral microvascular dysfunction and (2) the ET system may be an early intervention target to prevent hyperphosphorylated tau-mediated disruption of BMVEC barrier function.
Collapse
Affiliation(s)
- Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Jazlyn Edwards
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| | - Onder Albayram
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, U.S.A
| |
Collapse
|
5
|
Nyúl-Tóth Á, Negri S, Sanford M, Jiang R, Patai R, Budda M, Petersen B, Pinckard J, Chandragiri SS, Shi H, Reyff Z, Ballard C, Gulej R, Csik B, Ferrier J, Balasubramanian P, Yabluchanskiy A, Cleuren A, Conley S, Ungvari Z, Csiszar A, Tarantini S. Novel intravital approaches to quantify deep vascular structure and perfusion in the aging mouse brain using ultrasound localization microscopy (ULM). J Cereb Blood Flow Metab 2024; 44:1378-1396. [PMID: 38867576 DOI: 10.1177/0271678x241260526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Intra-vital visualization of deep cerebrovascular structures and blood flow in the aging brain has been a difficult challenge in the field of neurovascular research, especially when considering the key role played by the cerebrovasculature in the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Traditional imaging methods face difficulties with the thicker skull of older brains, making high-resolution imaging and cerebral blood flow (CBF) assessment challenging. However, functional ultrasound (fUS) imaging, an emerging non-invasive technique, provides real-time CBF insights with notable spatial-temporal resolution. This study introduces an enhanced longitudinal fUS method for aging brains. Using elderly (24-month C57BL/6) mice, we detail replacing the skull with a polymethylpentene window for consistent fUS imaging over extended periods. Ultrasound localization mapping (ULM), involving the injection of a microbubble (<<10 μm) suspension allows for recording of high-resolution microvascular vessels and flows. ULM relies on the localization and tracking of single circulating microbubbles in the blood flow. A FIJI-based analysis interprets these high-quality ULM visuals. Testing on older mouse brains, our method successfully unveils intricate vascular specifics even in-depth, showcasing its utility for longitudinal studies that require ongoing evaluations of CBF and vascular aspects in aging-focused research.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Madison Sanford
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madeline Budda
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin Petersen
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jessica Pinckard
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cade Ballard
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | | | - Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cellular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Hui Z, Wang L, Deng J, Liu F, Cheng L, Li Y, Tian Y, Ma L, Liu X. Joint association of serum sodium and frailty with mild cognitive impairment among hospitalized older adults with chronic diseases: a cross-sectional study. Front Nutr 2024; 11:1467751. [PMID: 39498407 PMCID: PMC11532049 DOI: 10.3389/fnut.2024.1467751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
Background To examine the associations of serum sodium and frailty with the risk of mild cognitive impairment (MCI) among hospitalized older adults with chronic diseases. Methods A cross-sectional study was conducted in 403 hospitalized older adults with chronic diseases. Serum sodium concentration was assessed by the ion-selective electrode method, frailty status was evaluated by the FRAIL scale, and MCI was determined by the Montreal Cognitive Assessment (MoCA). Multiple logistic regression models were used to estimate the associations of serum sodium and frailty with MCI. Results Participants with the lowest tertile of serum sodium had a higher risk of MCI than those in the middle tertile group (OR = 1.75, 95% CI: 1.01-3.04). Below 143 mmol/L, the risk of MCI was 1.38 (95% CI: 1.03-1.84) for per 1 SD decrease in serum sodium. Compared with the robust group, frailty was significantly associated with an increased risk of MCI (OR = 3.94, 95% CI: 1.92-8.10). Moreover, in comparison with participants with the middle tertile of serum sodium and who were robust/prefrail, those with frailty and either the lowest (OR = 5.53, 95% CI: 2.08-14.67) or the highest tertile of serum sodium (OR = 3.48, 95% CI: 1.20-10.05) had higher risks of MCI. Conclusion Both lower and higher serum sodium impose a significantly higher risk for MCI in older adults with frailty. This could inform the design of clinical trials and the development of guidelines and recommendations for correcting serum sodium and frailty in hospitalized older adults with chronic diseases.
Collapse
Affiliation(s)
- Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lina Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Deng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Feng Liu
- Tongchuan People’s Hospital, Tongchuan, China
| | | | - Yajing Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuxin Tian
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
8
|
Jiang-Xie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron 2024:S0896-6273(24)00687-1. [PMID: 39395409 DOI: 10.1016/j.neuron.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Brain health is intimately connected to fluid flow dynamics that cleanse the brain of potentially harmful waste material. This system is regulated by vascular dynamics, the maintenance of perivascular spaces, neural activity during sleep, and lymphatic drainage in the meningeal layers. However, aging can impinge on each of these layers of regulation, leading to impaired brain cleansing and the emergence of various age-associated neurological disorders, including Alzheimer's and Parkinson's diseases. Understanding the intricacies of fluid flow regulation in the brain and how this becomes altered with age could reveal new targets and therapeutic strategies to tackle age-associated neurological decline.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2024; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
10
|
Li X, Wang Q, Wang M, Ma Z, Yuan Y. Low-intensity transcranial ultrasound stimulation modulates neurovascular coupling in mouse models of Alzheimer's disease. Cereb Cortex 2024; 34:bhae413. [PMID: 39393920 DOI: 10.1093/cercor/bhae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Neurovascular coupling plays an important role in the progression of Alzheimer's disease. However, it is unclear how ultrasound stimulation modulates neurovascular coupling in Alzheimer's disease. Here, we found that (i) transcranial ultrasound stimulation modulates the time domain and frequency domain characteristics of cerebral blood oxygen metabolism in Alzheimer's disease mice; (ii) transcranial ultrasound stimulation can significantly modulate the relative power of theta and gamma frequency of local field potential in Alzheimer's disease mice; and (iii) transcranial ultrasound stimulation can significantly modulate the neurovascular coupling in time domain and frequency domain induced by forepaw electrical stimulation in Alzheimer's disease mice. It provides a research basis for the clinical application of transcranial ultrasound stimulation in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Xin Li
- School of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
| | - Qiaoxuan Wang
- School of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
| | - Mengran Wang
- School of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, No. 299, Taihua Street, Shijiazhuang 050000, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No. 438, Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Lin H, Wang Z, Liao Y, Yu Z, Xu H, Qin T, Tang J, Yang X, Chen S, Chen X, Zhang X, Shen Y. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. EBioMedicine 2024; 108:105355. [PMID: 39293213 PMCID: PMC11424966 DOI: 10.1016/j.ebiom.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the β-amyloid (Aβ) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aβ accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Collapse
Affiliation(s)
- Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Zidan Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yingtao Liao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China; Department of Radiation Oncology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Zhifan Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Huiqin Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Ting Qin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
13
|
Sugawara J, Tarumi T, Tomoto T, Pasha E, Cullum CM, Zhang R. Patients with amnestic mild cognitive impairment have higher cerebrovascular impedance than cognitively normal older adults. J Appl Physiol (1985) 2024; 137:848-856. [PMID: 39116348 PMCID: PMC11486476 DOI: 10.1152/japplphysiol.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Brain hypoperfusion is associated with cognitive impairment. Higher cerebrovascular impedance modulus (Z) may contribute to brain hypoperfusion. We tested hypotheses that patients with amnestic mild cognitive impairment (aMCI) (i.e., those who have a high risk of developing Alzheimer's disease) have higher Z than age-matched cognitively normal individuals, and that high Z is correlated with brain hypoperfusion. Fifty-eight patients with aMCI (67 ± 7 yr) and 25 cognitively normal subjects (CN, 65 ± 6 yr) underwent simultaneous measurements of carotid artery pressure (CAP, via applanation tonometry) and middle cerebral arterial blood velocity (CBV, via transcranial Doppler). Z was quantified using cross-spectral and transfer function analyses between dynamic changes in CBV and CAP. Patients with aMCI exhibited higher Z than NC (1.18 ± 0.34 vs. 1.01 ± 0.35 mmHg/cm/s, P = 0.044) in the frequency range from 0.78 to 4.29 Hz. The averaged Z in the frequency range (0.78-3.13 Hz) of high coherence (>0.9) was inversely correlated with total cerebral blood flow measured with 2-D Doppler ultrasonography normalized by the brain tissue mass (via structural MRI) across both patients with aMCI and NC (r = -0.311, P = 0.007), and in patients with aMCI alone (r = -0.306, P = 0.007). Our findings suggest that patients with aMCI have higher cerebrovascular impedance than cognitively normal older adults and that increased cerebrovascular impedance is associated with brain hypoperfusion.NEW & NOTEWORTHY This is the first study to compare cerebrovascular impedance between patients with amnestic mild cognitive impairment (aMCI) and age-matched cognitively normal individuals. Patients with aMCI had higher cerebrovascular impedance modulus than age-matched cognitively normal individuals, which was correlated with brain hypoperfusion. These results suggest the presence of cerebrovascular dysfunction in the dynamic regulation of cerebral blood flow in older adults who have high risks of Alzheimer's disease.
Collapse
Affiliation(s)
- Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Tsubasa Tomoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Evan Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - C Munro Cullum
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
14
|
Ishizawa K, Komori T, Homma T, Sone J, Nakata Y, Nakazato Y, Takahashi K, Yamamoto T, Sasaki A. The predominance of "astrocytic" intranuclear inclusions in neuronal intranuclear inclusion disease manifesting encephalopathy-like symptoms: A case series with brain biopsy. Neuropathology 2024; 44:351-365. [PMID: 38477063 DOI: 10.1111/neup.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder represented by eosinophilic intranuclear inclusions (EIIs) and GGC/CGG repeat expansion in the NOTCH2NLC gene. We report here two adult cases of NIID, genetically confirmed, with manifestation of encephalopathy-like symptoms and address the histopathologic findings obtained by brain biopsies, with a focus on "astrocytic" intranuclear inclusions (AIIs). Case 1 presented with paroxysmal restlessness, vertigo, or fever and was later involved in severe dementia and tetraparesis. Case 2 presented with forgetfulness and then with paroxysmal fever and headache. In both cases, delimited areas with gadolinium enhancement on magnetic resonance imaging and corresponding hyperperfusion were detected, leading to brain biopsies of the cortex. On histology, Case 1 showed an abnormal lamination, where the thickness of layers was different from usual. Both neurons and astrocytes showed some dysmorphologic features. Notably, astrocytes rather than neurons harbored EIIs. Case 2 showed a cortex, where neurons tended to be arrayed in a columnar fashion. Astrocytes showed some dysmorphologic features. Notably, much more astrocytes than neurons harbored EIIs. By a double-labeling immunofluorescence study for p62/NeuN and p62/glial fibrillary acidic protein, the predominance of AIIs was confirmed in both cases. Considering the physiological functions of astrocytes for the development and maintenance of the cortex, the encephalopathy-like symptoms, dynamic change of cerebral blood flow, and cortical dysmorphology can reasonably be explained by the dysfunction of EII-bearing astrocytes rather than EII-bearing neurons. This study suggests the presence of a subtype of NIID where AIIs rather than "neuronal" intranuclear inclusions are likely a key player in the pathogenesis of NIID, particularly in cases with encephalopathy-like symptoms. The importance of AIIs ("gliopathy") should be more appreciated in future studies of NIID.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Saitama, Japan
- Department of Neurology, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Taku Homma
- Department of Laboratory Medicine, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Gao R, Luo H, Yan S, Ba L, Peng S, Bu B, Sun X, Zhang M. Retina as a potential biomarker for the early stage of Alzheimer's disease spectrum. Ann Clin Transl Neurol 2024; 11:2583-2596. [PMID: 39120694 PMCID: PMC11514924 DOI: 10.1002/acn3.52172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To characterize the retinal microvasculature and structure in subjective cognitive decline (SCD) and identify the potential biomarker for the early stage of the Alzheimer's disease (AD) spectrum. METHODS In this study, 35 patients with SCD, 36 with cognitive impairment, and 29 with normal cognition (NC) were enrolled. Optical coherence tomography angiography was employed to assess retinal vascular density, fovea avascular zone area, and retinal thickness. The parameters reflecting retinal perfusion and structure were compared among the three groups. In addition, the association between retinal parameters, cerebral blood flow (CBF), and peripheral blood biomarkers in the SCD stage was analyzed. RESULTS The superficial vascular complex (SVC) vascular density in the macula and retinal nerve fiber layer thickness in the peripapillary were significantly reduced in individuals with SCD compared to NC. Furthermore, there was a positive correlation between macular ganglion cell complex thickness and CBF in SCD. INTERPRETATION The retinal microvasculature and structure exhibit alterations in individuals with SCD. Macular ganglion cell complex thickness demonstrates correlations with cerebral perfusion. The retina holds potential as a novel biomarker for early detection of AD.
Collapse
Affiliation(s)
- Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huan Luo
- Department of Ophthalmology, Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)Chongqing400000China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sirui Peng
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030000China
| |
Collapse
|
16
|
Shadman J, Panahpour H, Alipour MR, Salimi A, Shahabi P, Azar SS. Investigating the therapeutic effects of nimodipine on vasogenic cerebral edema and blood-brain barrier impairment in an ischemic stroke rat model. Neuropharmacology 2024; 257:110054. [PMID: 38950691 DOI: 10.1016/j.neuropharm.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Vasogenic brain edema, a potentially life-threatening consequence following an acute ischemic stroke, is a major clinical problem. This research aims to explore the therapeutic benefits of nimodipine, a calcium channel blocker, in mitigating vasogenic cerebral edema and preserving blood-brain barrier (BBB) function in an ischemic stroke rat model. In this research, animals underwent the induction of ischemic stroke via a 60-min blockage of the middle cerebral artery and treated with a nonhypotensive dose of nimodipine (1 mg/kg/day) for a duration of five days. The wet/dry method was employed to identify cerebral edema, and the Evans blue dye extravasation technique was used to assess the permeability of the BBB. Furthermore, immunofluorescence staining was utilized to assess the protein expression levels of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). The study also examined mitochondrial function by evaluating mitochondrial swelling, succinate dehydrogenase (SDH) activity, the collapse of mitochondrial membrane potential (MMP), and the generation of reactive oxygen species (ROS). Post-stroke administration of nimodipine led to a significant decrease in cerebral edema and maintained the integrity of the BBB. The protective effects observed were associated with a reduction in cell apoptosis as well as decreased expression of MMP-9 and ICAM-1. Furthermore, nimodipine was observed to reduce mitochondrial swelling and ROS levels while simultaneously restoring MMP and SDH activity. These results suggest that nimodipine may reduce cerebral edema and BBB breakdown caused by ischemia/reperfusion. This effect is potentially mediated through the reduction of MMP-9 and ICAM-1 levels and the enhancement of mitochondrial function.
Collapse
Affiliation(s)
- Javad Shadman
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saied Salimpour Azar
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
17
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
18
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
19
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
20
|
Pan X, Lei Z, Chen J, Jia C, Deng J, Liu Y, Luo X, Wang L, Zi D, Wang Z, Li S, Tan J. Blocking α 1 Adrenergic Receptor as a Novel Target for Treating Alzheimer's Disease. ACS Chem Neurosci 2024. [PMID: 39325017 DOI: 10.1021/acschemneuro.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
While amyloidopathy and tauopathy have been recognized as hallmarks in Alzheimer's disease (AD) brain, recently, increasing lines of evidence have supported the pathological roles of cerebrovascular changes in the pathogenesis and progression of AD. Restoring or ameliorating the impaired cerebrovascular function during the early phase of the disease may yield benefits against the cognitive decline in AD. In the present study, we evaluated the potential therapeutic effects of nicergoline [NG, a well-known α1 adrenergic receptor (ADR) blocker and vasodilator] against AD through ameliorating vascular abnormalities. Our in vitro data revealed that NG could reverse β-amyloid1-42 (Aβ1-42)-induced PKC/ERK1/2 activation, the downstream pathway of α1-ADR activation, in α1-ADR-overexpressed N2a cells. NG also blocked Aβ1-42- or phenylephrine-induced constrictions in isolated rat arteries. All these in vitro data may suggest ADR-dependent impacts of Aβ on vascular function and the reversal effect of NG. In addition, the ameliorating impacts of NG treatment on cerebral vasoconstriction, vasoremodeling, and cognitive decline were investigated in vivo in a PSAPP transgenic AD mouse model. Consistent with in vitro findings, the chronic treatment of NG significantly ameliorated the cerebrovascular dysfunctions and Aβ plaque depositions in the brain. Moreover, an improved cognitive performance was also observed. Taken together, our findings supported the beneficial effects of NG on AD through adrenergic-related mechanisms and highlighted the therapeutic potential of α1-adrenergic vasomodulators against AD pathologies.
Collapse
Affiliation(s)
- Xidong Pan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Congcong Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Institute of Brain Science and Brain-Inspired Research, Jinan 271016, China
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xingmei Luo
- Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Likun Wang
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
21
|
Fuller PE, Collis VL, Sharma P, Burkett AM, Wang S, Brown KA, Weir N, Goulbourne CN, Nixon RA, Longden TA, Gould TD, Monteiro MJ. Pathophysiologic abnormalities in transgenic mice carrying the Alzheimer disease PSEN1 Δ440 mutation. Hum Mol Genet 2024:ddae139. [PMID: 39323410 DOI: 10.1093/hmg/ddae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Mutations in PSEN1 were first discovered as a cause of Alzheimer's disease (AD) in 1995, yet the mechanism(s) by which the mutations cause disease still remains unknown. The generation of novel mouse models assessing the effects of different mutations could aid in this endeavor. Here we report on transgenic mouse lines made with the Δ440 PSEN1 mutation that causes AD with parkinsonism:- two expressing the un-tagged human protein and two expressing a HA-tagged version. Detailed characterization of these lines showed that Line 305 in particular, which expresses the untagged protein, develops age-dependent memory deficits and pathologic features, many of which are consistent with features found in AD. Key behavioral and physiological alterations found in the novel 305 line included an age-dependent deficit in spontaneous alternations in the Y-maze, a decrease in exploration of the center of an open field box, a decrease in the latency to fall on a rotarod, a reduction in synaptic strength and pair-pulse facilitation by electrophysiology, and profound alterations to cerebral blood flow regulation. The pathologic alterations found in the line included, significant neuronal loss in the hippocampus and cortex, astrogliosis, and changes in several proteins involved in synaptic and mitochondrial function, Ca2+ regulation, and autophagy. Taken together, these findings suggest that the transgenic lines will be useful for the investigation of AD pathogenesis.
Collapse
Affiliation(s)
- Peyton E Fuller
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Victoria L Collis
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pallavi Sharma
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Angelina M Burkett
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Shaoteng Wang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, 685 W Baltimore Street, Baltimore, MD 21201, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Nick Weir
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood Street, Baltimore, MD 21201, United States
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Thomas A Longden
- Department of Physiology, University of Maryland School of Medicine, 660 W Redwood Street, Baltimore, MD 21201, United States
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Todd D Gould
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Department of Psychiatry, University of Maryland School of Medicine, 685 W Baltimore Street, Baltimore, MD 21201, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
- Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, United States
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, MD 21201, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
22
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Li Q, Zhan J, Liao Z, Li J, Li X. Association of hemoglobin with plasma neurofilament light and white matter hyperintensities in Alzheimer's disease continuum. Heliyon 2024; 10:e37507. [PMID: 39290292 PMCID: PMC11407093 DOI: 10.1016/j.heliyon.2024.e37507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Objective This study aimed to investigate the association of hemoglobin (Hb) with axonal injury marker plasma neurofilament light (PNFL) and brain structure measurements in the Alzheimer's disease (AD) continuum. Methods The data used in this study were collected from the Alzheimer's Disease Neuroimaging Initiative database. Participants with cognitively normal, mild cognitive impairment, and mild dementia were included in the data analyses. All participants had available data on blood tests, PNFL levels, neuropsychological assessments, brain structure measurements (including volumes of white matter hyperintensities [WMH], hippocampus, gray matter, and total brain), and Aβ positron emission tomography standardized uptake value ratio (SUVR) at baseline. Aβ-positive was defined as SUVR threshold value > 1.11. Linear regression, restricted cubic spline, and causal mediation analyses were conducted to investigate the association of Hb concentration with PNFL levels and brain structure measurements. Stratified analyses were also employed to evaluate the association between Hb concentration and PNFL levels across different APOE genotypes and sex. Results In the Aβ-positive group, Hb concentration was associated with PNFL levels (β = -0.022, p = 0.002). Stratified analyses suggested an association between Hb concentration and PNFL in APOE ɛ4 carriers (β = -0.031, p < 0.001) and males (β = -0.030, p < 0.001) but not in non-carriers and females (p > 0.05). Hb concentration was also associated with WMH volume (β = -0.04, p = 0.028), especially in APOE ɛ4 carriers, with mediation analysis revealing that PNFL mediated the association between Hb concentration and WMH volume. The association of Hb concentration with other brain structure measurements was minimal. Conclusion In the AD continuum, Hb was associated with axonal injury marker PNFL and WMH volume, particularly in APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Qin Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Neurology, The First People's Hospital of Yibin, Sichuan, 644000, China
| | - Jiehong Zhan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zixuan Liao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiayu Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaofeng Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
24
|
Liu X, Zhang H, Xiang J, Luo W, Zhang H, Wang P, Xu S. Jiawei Xionggui Decoction promotes meningeal lymphatic vessels clearance of β-amyloid by inhibiting arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156041. [PMID: 39299091 DOI: 10.1016/j.phymed.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is an aging-associated form of dementia characterized by the pathological deposition of toxic misfolded proteins in the central nervous system (CNS), which is closely related to the clearance impairment of meningeal lymphatic vessels (mLVs). Thus, enhancement dural meningeal lymphatic drainage to remove amyloid-β (Aβ) is usually considered as a potential therapeutic target for AD. PURPOSE This study aimed to investigate the mechanisms of Jiawei Xionggui Decoction (JWXG) to attenuate cognitive dificits in APP/PS1 mice with impaired meningeal lymphatic drainage. METHODS Ligation of deep cervical lymph nodes (dcLNs) was performed to establish the mice model of the impaired meningeal lymphatic drainage in APP/PS1 mice. Cognitve behaviors and pathological morphology of mice were assessed. Cerebral blood flow (CBF) of mice was determined using Laser speckle contrast imaging analysis. Serum non-targeted metabolomics analysis was applied to decipher the mechanisms of JWXG in rescuing the impairment of mLVs, and C8-D1A cells were employed to validate in vitro. RESULTS Disruption of mLVs in APP/PS1 mice deteriorated cognitive dysfunction, accelerated Aβ burden and glia activation, accompanied by more severe neuropathological damage, CBF reduction and neuroinflammation exacerbation. Serum non-targeted metabolomics analysis indicates the increase of arachidonic acid (AA) metabolic pathway was the key contributor to the neuropathological exacerbation of dcLNs ligation APP/PS1 mice. Interestingly, clinically equivalent dose of JWXG was sufficient to restore mLVs drainage and rescue cognitive performance by inhibiting neuroinflammation depended by AA metabolic pathway in dcLNs ligation APP/PS1 mice. CONCLUSION Our findings establish a novel mechanism that rescue mLVs by inhibiting AA metabolic pathway to clear brain Aβ, and support JWXG as a feasible treatment strategy for AD by suppressing AA metabolic pathway to improve mLVs drainage efficiency.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Vitali F, Torrandell-Haro G, Branigan G, Arias Aristizabal J, Reiman E, Bedrick EJ, Brinton RD, Weinkauf C. Asymptomatic carotid artery stenosis is associated with increased Alzheimer's disease and non-Alzheimer's disease dementia risk. Stroke Vasc Neurol 2024:svn-2024-003164. [PMID: 39266210 DOI: 10.1136/svn-2024-003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND In the absence of a cerebrovascular accident, whether asymptomatic extracranial carotid atherosclerotic disease (aECAD) affects Alzheimer's disease (AD) and non-AD dementia risk is not clear. Understanding whether aECAD is associated with an increased risk for AD is important as it is present in roughly 10% of the population over 60 and could represent a modifiable risk factor for AD and non-AD dementia. METHODS This retrospective cohort study analysed Mariner insurance claims. Enrolment criteria included patients aged 55 years or older with at least 5 years of data and no initial dementia diagnosis. Subjects with and without aECAD were evaluated for subsequent AD and non-AD dementia diagnoses. Propensity score matching was performed using confounding factors identified by logistic regression. χ2 tests and Kaplan-Meier survival curves were used to evaluate the impact of aECAD diagnosis on AD and non-AD dementia risk over time. RESULTS 767 354 patients met enrolment criteria. After propensity score matching, 62 963 subjects with aECAD and 62 963 subjects without ECAD were followed through data records. The aECAD cohort exhibited an increased relative risk of 1.22 (95% CI 1.15 to 1.29, p<0.001) for AD and 1.48 (95% CI 1.38 to 1.59, p<0.001) for non-AD dementias compared with the propensity score-matched cohort without aECAD. The increased AD risk associated with aECAD was evident in patients younger than 75 years old and was less apparent in patients over 75 years of age. CONCLUSIONS aECAD is associated with an increased risk of developing AD and non-AD dementias. These findings underscore the need for further prospective evaluation of interactions between aECAD and dementia, with potential implications for change of clinical care in both of these large patient populations.
Collapse
Affiliation(s)
- Francesca Vitali
- Neurology, The University of Arizona College of Medicine, Tucson, Arizona, USA
- Center for Innovation In Brain Science, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Georgina Torrandell-Haro
- Center for Innovation In Brain Science, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Gregory Branigan
- The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Juan Arias Aristizabal
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
| | - Edward J Bedrick
- Center for Biomedical Informatics and Biostatistics, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation In Brain Science, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Craig Weinkauf
- Department of Surgery, The University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
26
|
Yin S, Zhang Y, Du B, Cao S, Wang K, Wei Q. Effects of intracranial artery stenosis of anterior circulation on cognition-A CT perfusion-based study. Brain Behav 2024; 14:e3521. [PMID: 39236078 PMCID: PMC11376367 DOI: 10.1002/brb3.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Intracranial atherosclerotic stenosis (ICAS) is one of the most important independent risk factors for stroke that is closely related to the occurrence of cognitive impairment. The relationship between ICAS and vascular cognitive impairment (VCI) remains unclear. Cerebral hemodynamic changes are one of the main causes of cognitive impairment. Computed tomographic perfusion (CTP) imaging can quantitatively analyze cerebral blood perfusion and quantify cerebral hemodynamic changes. Previous research on the relationship between hypoperfusion induced by ICAS and cognitive impairment, as well as its underlying mechanisms, remains relatively insufficient. This study is dedicated to elucidating the characteristics and potential mechanisms of cognitive impairment in ICAS patients with abnormal perfusion, utilizing CTP imaging as our primary investigative tool. METHODS This study recruited 82 patients who suffer from non-disabling ischemic stroke (IS group) and 28 healthy controls. All participants underwent comprehensive neuropsychological assessments both collectively and individually, in addition to CTP imaging. Within the patient group, we further categorized individuals into two subgroups: the ischemic penumbra group (IP, N = 28) and the benign oligemia group (BO, N = 54), based on CTP parameters-Tmax. The correlations between cognitive function and abnormal perfusion were explored. RESULTS The cognitive function, including the overall cognitive, memory, attention, executive functions, and language, was significantly impaired in the IS group compared with that in the control group. Further, there are statistical differences in the stroop color-word test-dot (Stroop-D) and Montreal Cognitive Assessment (MoCA) sub-items (memory + language) between the BO and IP groups. In the BO group, the score of Stroop-D is lower, and the MoCA sub-items are higher than the IP group. There is no correlation between CTP parameters and cognitive function. CONCLUSION Cognitive function is significantly impaired in patients with ICAS, which is related to cerebral perfusion. Executive, memory, and language function were better preserved in ICAS patients without IP. Hence, this study posits that managing hypoperfusion induced by ICAS may play a pivotal role in the development of VCI.
Collapse
Affiliation(s)
- Shanshan Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
| | - Baogen Du
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
| | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| |
Collapse
|
27
|
Awasthi VA, Dhankar V, Singh S. Novel therapeutic targets for reperfusion injury in ischemic stroke: Understanding the role of mitochondria, excitotoxicity and ferroptosis. Vascul Pharmacol 2024; 156:107413. [PMID: 39059676 DOI: 10.1016/j.vph.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Ischemic reperfusion injury (IRI) remains a significant challenge in various clinical settings, including stroke. Despite advances in reperfusion strategies, the restoration of blood flow to ischemic tissues often exacerbates tissue damage through a complex cascade of cellular and molecular events. In recent years, there has been growing interest in identifying novel therapeutic targets to ameliorate the detrimental effects of IRI and improve patient outcomes. This review critically evaluates emerging therapeutic targets and strategies for IRI management, such as R-spondin 3, neurolysin, glial cell gene therapy and inter alpha inhibitors. Diverse pathophysiology involved in IRI stroke such as oxidative stress, inflammation, mitochondrial dysfunction, and ferroptosis are also closely discussed. Additionally, we explored the intricate interplay between inflammation and IRI, focusing on cell-mediated gene therapy approaches and anti-inflammatory agents that hold promise for attenuating tissue damage. Moreover, we delve into novel strategies aimed at preserving endothelial function, promoting tissue repair, and enhancing cellular resilience to ischemic insults. Finally, we discuss challenges, future directions, and translational opportunities for the development of effective therapies targeting ischemic reperfusion injury.
Collapse
Affiliation(s)
- Vidhi Anupam Awasthi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| |
Collapse
|
28
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
29
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
30
|
Munoz CJ, Lucas D, Muller CR, Breton A, Jani V, Savla C, Palmer AF, Cabrales P. Degree of PEGylatation of Lumbricus terrestris Hemoglobin Improves Microcirculatory Blood Flow but Increases the Rate of Auto-Oxidation. ACS APPLIED BIO MATERIALS 2024; 7:5188-5200. [PMID: 38970152 DOI: 10.1021/acsabm.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
INTRODUCTION The demand for red blood cells (RBCs) is on the rise due to the increasing diagnosis of chronic diseases such as sickle cell anemia, malaria, and thalassemia. Despite many commercial attempts, there are no U.S. FDA-approved artificial RBCs for use in humans. Existing RBC substitutes have employed various strategies to transport oxygen, extend the circulation time, and reduce organ toxicity, but none have replicated the natural protective mechanisms of RBCs, which prevent hemoglobin (Hb) dimerization and heme iron oxidation. Lumbricus terrestris (earthworm) erythrocruorin (LtEc) is a naturally occurring extracellular hemoglobin (Hb) with promising attributes: large molecular diameter (30 nm), high molecular weight (3.6 MDa), low auto-oxidation rate, and limited nitric oxide-scavenging properties. These characteristics make LtEc an ideal candidate as an RBC substitute. However, LtEc has a significant drawback, its short circulatory half-life. To address this issue, we explored thiol-mediated surface PEGylation of LtEc (PEG-LtEc) at varying polyethylene glycol (PEG) surface coverages. Increasing PEG surface coverage beyond 40% destabilizes LtEc into smaller subunits that are 1/12th the size of LtEc. Therefore, we evaluated two PEG surface coverage options: PEG-LtEc-0.2 (20% PEGylation) and PEG-LtEc-1.0 (100% PEGylation). METHODS We conducted experiments using golden Syrian hamsters with dorsal window chambers and catheters to assess the efficacy of these solutions. We measured microvascular parameters, organ function, cerebral blood flow, circulation time, mean arterial pressure, heart rate, and blood gases and performed histology to screen for toxicity. CONCLUSION Our findings indicate that both PEG-LtEc molecules offer significant benefits in restoring microvascular parameters, organ function, cerebral blood flow, and circulation time compared to LtEc alone. Notably, PEG-LtEc-1.0 showed superior microvascular perfusion, although it exhibited a higher rate of auto-oxidation compared to PEG-LtEc-0.2. These results underscore the advantages of PEGylation in terms of tissue perfusion and organ health while highlighting its limitations.
Collapse
Affiliation(s)
- Carlos J Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Daniela Lucas
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Cynthia R Muller
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amanda Breton
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Vinay Jani
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
31
|
Chen S, Zhang H, Zhang J, Jiang H, Fan W, Zhang X, Jin Y, Yang X, Mao C, Peng H. Association between vascular aging and cognitive function in Chinese adults. BMC Public Health 2024; 24:2149. [PMID: 39113020 PMCID: PMC11308726 DOI: 10.1186/s12889-024-19700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Vascular health has been associated with cognition but related evidence is limited in Chinese. The objective of this study was to examine the association of vascular aging assessed by arterial stiffness and blood pressure with cognitive function in an unselected Chinese population. METHODS In the Tianning Cohort (N = 5158), indicators of arterial stiffness and blood pressure including carotid-femoral pulse wave velocity (cfPWV), ankle-brachial index (ABI), pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured. Cognitive function was assessed using the Mini Mental State Examination (MMSE) questionnaire. We applied Poisson regression and logistic regression to examine the associations of vascular aging and blood pressure with cognitive function. RESULTS 76 (1.47%) participants had impaired cognitive function diagnosed by a MMSE score of less than 24 points. Participants with a higher level of PP were more likely to have a decreased score of MMSE (β=-0.0121, P < 0.001 for log-transformed pulse pressure) and a higher risk of having impaired cognitive function (OR = 5.95, 95%CI: 2.02-17.79, P < 0.001 for log-transformed PP). Per standard deviation increment in SBP was significantly associated with lower MMSE score (β=-0.0020, P < 0.001) and impaired cognitive function (OR = 1.69, 95%CI: 1.38-2.06, P < 0.001). No significant associations were found regarding other parameters. CONCLUSIONS Blood pressure and hypertension were associated with cognitive function in Chinese adults. PP may be a potential predictor for impaired cognitive function.
Collapse
Affiliation(s)
- Shi Chen
- Department of Nursing, the Second People's Hospital of Kunshan, Suzhou Vocational Health College, Suzhou, China
| | - Hao Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianan Zhang
- Department of Chronic Disease, Taicang Center of Disease Prevention and Control, Suzhou, China
| | - Hai Jiang
- Department of Chronic Disease, Taicang Center of Disease Prevention and Control, Suzhou, China
| | - Wenxiu Fan
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xueyang Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yibing Jin
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangdong Yang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Changqing Mao
- Department of Pharmacy, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China.
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
33
|
Diorio TC, Abderezzai J, Nauman E, Kurt M, Tong Y, Rayz VL. MRI-based quantification of cardiac-driven brain biomechanics for early detection of neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606246. [PMID: 39149257 PMCID: PMC11326150 DOI: 10.1101/2024.08.01.606246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We present a pipeline to quantify biomechanical environment of the brain using solely MRI-derived data in order to elucidate the role of biomechanical factors in neurodegenerative disorders. Neurological disorders, like Alzheimer's and Parkinson's diseases, are associated with physical changes, including the accumulation of amyloid-β and tau proteins, damage to the cerebral vasculature, hypertension, atrophy of the cortical gray matter, and lesions of the periventricular white matter. Alterations in the external mechanical environment of cells can trigger pathological processes, and it is known that AD causes reduced stiffness in the brain tissue during degeneration. However, there appears to be a significant lag time between microscale changes and macroscale obstruction of neurological function in the brain. Here, we present a pipeline to quantify the whole brain biomechanical environment to bridge the gap in understanding how underlying brain changes affect macroscale brain biomechanics. This pipeline enables image-based quantification of subject-specific displacement field of the whole brain to subject-specific strain, strain rate, and stress across 133 labeled functional brain regions. We have focused our development efforts on utilizing solely MRI-derived data to facilitate clinical applicability of our approach and have emphasized automation in all aspects of our methods to reduce operator dependance. Our pipeline has the potential to improve early detection of neurological disorders and facilitate the identification of disease before widespread, irreversible damage has occurred.
Collapse
Affiliation(s)
- Tyler C. Diorio
- Purdue University, (Weldon School of Biomedical Engineering), West Lafayette, (IN), USA
| | - Javid Abderezzai
- University of Washington, (Department of Mechanical Engineering), Seattle, (WA), USA
| | - Eric Nauman
- University of Cincinnati, (Department of Biomedical Engineering), Cincinnati, (OH), USA
| | - Mehmet Kurt
- University of Washington, (Department of Mechanical Engineering), Seattle, (WA), USA
| | - Yunjie Tong
- Purdue University, (Weldon School of Biomedical Engineering), West Lafayette, (IN), USA
| | - Vitaliy L. Rayz
- Purdue University, (Weldon School of Biomedical Engineering), West Lafayette, (IN), USA
| |
Collapse
|
34
|
Owens CD, Pinto CB, Mukli P, Gulej R, Velez FS, Detwiler S, Olay L, Hoffmeister JR, Szarvas Z, Muranyi M, Peterfi A, Pinaffi‐Langley ACDC, Adams C, Sharps J, Kaposzta Z, Prodan CI, Kirkpatrick AC, Tarantini S, Csiszar A, Ungvari Z, Olson AL, Li G, Balasubramanian P, Galvan V, Bauer A, Smith ZA, Dasari TW, Whitehead S, Medapti MR, Elahi FM, Thanou A, Yabluchanskiy A. Neurovascular coupling, functional connectivity, and cerebrovascular endothelial extracellular vesicles as biomarkers of mild cognitive impairment. Alzheimers Dement 2024; 20:5590-5606. [PMID: 38958537 PMCID: PMC11350141 DOI: 10.1002/alz.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors.
Collapse
|
35
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Zhou TD, Zhang Z, Balachandrasekaran A, Raji CA, Becker JT, Kuller LH, Ge Y, Lopez OL, Dai W, Gach HM. Prospective Longitudinal Perfusion in Probable Alzheimer's Disease Correlated with Atrophy in Temporal Lobe. Aging Dis 2024; 15:1855-1871. [PMID: 37196135 PMCID: PMC11272196 DOI: 10.14336/ad.2023.0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Reduced cerebral blood flow (CBF) in the temporoparietal region and gray matter volumes (GMVs) in the temporal lobe were previously reported in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the temporal relationship between reductions in CBF and GMVs requires further investigation. This study sought to determine if reduced CBF is associated with reduced GMVs, or vice versa. Data came from 148 volunteers of the Cardiovascular Health Study Cognition Study (CHS-CS), including 58 normal controls (NC), 50 MCI, and 40 AD who had perfusion and structural MRIs during 2002-2003 (Time 2). Sixty-three of the 148 volunteers had follow-up perfusion and structural MRIs (Time 3). Forty out of the 63 volunteers received prior structural MRIs during 1997-1999 (Time 1). The relationships between GMVs and subsequent CBF changes, and between CBF and subsequent GMV changes were investigated. At Time 2, we observed smaller GMVs (p<0.05) in the temporal pole region in AD compared to NC and MCI. We also found associations between: (1) temporal pole GMVs at Time 2 and subsequent declines in CBF in this region (p=0.0014) and in the temporoparietal region (p=0.0032); (2) hippocampal GMVs at Time 2 and subsequent declines in CBF in the temporoparietal region (p=0.012); and (3) temporal pole CBF at Time 2 and subsequent changes in GMV in this region (p = 0.011). Therefore, hypoperfusion in the temporal pole may be an early event driving its atrophy. Perfusion declines in the temporoparietal and temporal pole follow atrophy in this temporal pole region.
Collapse
Affiliation(s)
- Tony D Zhou
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Zongpai Zhang
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | - Cyrus A Raji
- Departments of Radiology and Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - James T Becker
- Departments of Psychiatry, Psychology, and Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, PA 15260, USA.
| | - Weiying Dai
- Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | - H. Michael Gach
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
- Departments of Radiology and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
37
|
Mooldijk SS, Ikram MA. Cerebral Small Vessel Disease in Population-Based Research: What are We Looking at - and What not? Aging Dis 2024; 15:1438-1446. [PMID: 37450929 PMCID: PMC11272200 DOI: 10.14336/ad.2023.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/23/2023] [Indexed: 07/18/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is considered as one of the main causes of cognitive decline and dementia. However, despite extensive research, the pathogenesis of CSVD and the mechanisms through which CSVD leads to its clinical manifestations remain largely unclear. The challenging in vivo quantification of CSVD hampers progress in further unraveling the pathogenesis and pathophysiology of CSVD. Currently, markers of CSVD are mainly brain abnormalities attributed to CSVD, but these are limited in reflecting morphological and functional changes of the microvasculature. We describe aspects of CSVD that are reflected by currently used techniques and those that are still insufficiently captured.
Collapse
Affiliation(s)
- Sanne S Mooldijk
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
38
|
Tomoto T, Zhang R. Arterial Aging and Cerebrovascular Function: Impact of Aerobic Exercise Training in Older Adults. Aging Dis 2024; 15:1672-1687. [PMID: 38270114 PMCID: PMC11272215 DOI: 10.14336/ad.2023.1109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024] Open
Abstract
Advanced age is the major risk factor for dementia including Alzheimer's disease. The clinical effects of recently developed anti-amyloid therapy for Alzheimer's disease were modest and the long-term outcome is unknown. Thus, an in-depth understanding of the mechanisms of brain aging is essential to develop preventive interventions to maintain cognitive health in late life. Mounting evidence suggests that arterial aging manifested as increases in central arterial stiffness is associated closely with cerebrovascular dysfunction and brain aging while improvement of cerebrovascular function with aerobic exercise training contributes to brain health in older adults. We summarized evidence in this brief review that 1) increases in central arterial stiffness and arterial pulsation with age are associated with increases in cerebrovascular resistance, reduction in cerebral blood flow, and cerebrovascular dysfunction, 2) aerobic exercise training improves cerebral blood flow by modifying arterial aging as indicated by reductions in cerebrovascular resistance, central arterial stiffness, arterial pulsation, and improvement in cerebrovascular function, and 3) improvement in cerebral blood flow and cerebrovascular function with aerobic exercise training may lead to improvement in cognitive function. These findings highlight the associations between arterial aging and cerebrovascular function and the importance of aerobic exercise in maintaining brain health in older adults.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.
- Departments of Neurology,
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.
- Departments of Neurology,
- Internal Medicine, and
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2024:10.1038/s41380-024-02680-9. [PMID: 39043843 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
40
|
Wang M, Hua Y, Bai Y. A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies. Rev Neurosci 2024; 0:revneuro-2024-0046. [PMID: 39029521 DOI: 10.1515/revneuro-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
Collapse
Affiliation(s)
- Man Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai 200040, China
| |
Collapse
|
41
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
42
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Ji F, Wei JLK, Leng S, Zhong L, Tan RS, Gao F, Ng KK, Leong RLF, Pasternak O, Chee MWL, Koh WP, Zhou JH, Koh AS. Heart-brain mapping: Cardiac atrial function is associated with distinct cerebral regions with high free water in older adults. J Cereb Blood Flow Metab 2024; 44:1218-1230. [PMID: 38295860 PMCID: PMC11179607 DOI: 10.1177/0271678x241229581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 06/13/2024]
Abstract
Left atrial (LA) dysfunction has been linked to cognitive impairment and cerebrovascular dysfunction. Higher brain free-water (FW) derived from diffusion-MRI was associated with early and subtle cerebrovascular dysfunction and more severe cognitive impairment. We hypothesized that LA dysfunction would correlate with higher brain free-water (FW) among healthy older adults. 56 community older adults (73.13 ± 3.56 years; 24 female) with normal cognition and without known cardiovascular disease who had undergone cardiac-MRI, brain-MRI, and neuropsychological assessments were included. Whole-brain voxel-level general linear models were constructed to correlate brain FW measures with LA indices. We found lower scores in LA function measures were related to higher grey matter (GM) FW in regions including orbital frontal and right temporal regions (p < 0.01, family-wise error corrected). In parallel, LA dysfunction was associated with higher FW in white matter (WM) fibres including superior longitudinal fasciculus, internal capsule, and superior corona radiata. However, LA dysfunction was not related to WM tissue reduction and GM cortical thinning. Moreover, these cardiac-related higher brain FW were associated with lower executive function and higher serum B-type natriuretic peptide (p < 0.05, Holm-Bonferroni corrected). These findings may have implications for anti-ageing preventive strategies targeting cardiac and cerebral vascular functions to improve heart and brain outcomes.
Collapse
Affiliation(s)
- Fang Ji
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joseph Lim Kai Wei
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth LF Leong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, USA
| | - Michael WL Chee
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
44
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J. Regulation of blood-brain barrier integrity by Dmp1-expressing astrocytes through mitochondrial transfer. SCIENCE ADVANCES 2024; 10:eadk2913. [PMID: 38941455 PMCID: PMC11212732 DOI: 10.1126/sciadv.adk2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
Collapse
Affiliation(s)
- Delin Liu
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Linjing Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - John Papadimitriou
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Pathology, Pathwest, Nedlands, Western Australia 6009, Australia
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jun Yuan
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Peilin Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| |
Collapse
|
45
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
46
|
Chen C, Anqi W, Ling G, Shan W, Liangjun D, Suhang S, Kang H, Fan G, Jingyi W, Qiumin Q, Jin W. Atherosclerosis is associated with plasma Aβ levels in non-hypertension patients. BMC Neurol 2024; 24:218. [PMID: 38918722 PMCID: PMC11197226 DOI: 10.1186/s12883-024-03722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Growing evidence indicated that to develop of atherosclerosis observed more often by people with Alzheimer's disease (AD), but the underlying mechanism is not fully clarified. Considering that amyloid-β (Aβ) deposition in the brain is the key pathophysiology of AD and plasma Aβ is closely relate to Aβ deposition in the brain, in the present study, we investigated the relationships between atherosclerosis and plasma Aβ levels. METHODS This was a population based cross-sectional study. Patients with high risk of atherosclerosis from Qubao Village, Xi'an were underwent carotid ultrasound for assessment of atherosclerosis. Venous blood was collected on empty stomach in the morning and plasma Aβ1-40 and Aβ1-42 levels were measured using ELISA. Multivariate logistic regression analysis was performed to investigate the relationships between carotid atherosclerosis (CAS) and plasma Aβ levels. RESULTS Among 344 patients with high risk of atherosclerosis, 251(73.0%) had CAS. In the univariate analysis, the plasma Aβ levels had no significant differences between CAS group and non-CAS group (Aβ1-40: 53.07 ± 9.24 pg/ml vs. 51.67 ± 9.11pg/ml, p = 0.211; Aβ1-42: 40.10 ± 5.57 pg/ml vs. 40.70 pg/ml ± 6.37pg/ml, p = 0.285). Multivariate logistic analysis showed that plasma Aβ levels were not associated with CAS (Aβ1-40: OR = 1.019, 95%CI: 0.985-1.054, p = 0.270;Aβ1-42: OR = 1.028, 95%CI: 0.980-1.079, p = 0.256) in the total study population. After stratified by hypertension, CAS was associated with plasma Aβ1-40 positively (OR = 1.063, 95%CI: 1.007-1.122, p = 0.028) in the non-hypertension group, but not in hypertensive group. When the plasma Aβ concentrations were classified into four groups according to its quartile, the highest level of plasma Aβ1-40 group was associated with CAS significantly (OR = 4.465, 95%CI: 1.024-19.474, p = 0.046). CONCLUSION Among patients with high risk of atherosclerosis, CAS was associated with higher plasma Aβ1-40 level in non-hypertension group, but not in hypertension group. These indicated that atherosclerosis is associated with plasma Aβ level, but the relationship may be confounded by hypertension.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wang Anqi
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Ling
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Wei Shan
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Dang Liangjun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Shang Suhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Huo Kang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Gao Fan
- Clinical research center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wang Jingyi
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Qu Qiumin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| | - Wang Jin
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
47
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
48
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
49
|
Liu D, Hsueh SC, Tweedie D, Price N, Glotfelty E, Lecca D, Telljohann R, deCabo R, Hoffer BJ, Greig NH. Chronic inflammation with microglia senescence at basal forebrain: impact on cholinergic deficit in Alzheimer's brain haemodynamics. Brain Commun 2024; 6:fcae204. [PMID: 38978722 PMCID: PMC11228546 DOI: 10.1093/braincomms/fcae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/23/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Cholinergic innervation in the brain is involved in modulating neurovascular function including cerebral blood flow haemodynamics in response to neuronal activity. Cholinergic deficit is associated with pathophysiology in Alzheimer's disease, albeit the aetiology remains to be clarified. In the current study, neocortex cerebral blood flow response to acetylcholine was evaluated by Laser-Doppler Flowmetry (LDF) in 3xTgAD Alzheimer's disease model) and wild-type mice of two age groups. The peak of cerebral blood flow to acetylcholine (i.v.) from baseline levels (% ΔrCBF) was higher in young 3xTgAD versus in wild-type mice (48.35; 95% CI:27.03-69.67 versus 22.70; CI:15.5-29.91, P < 0.05); this was reversed in old 3xTgAD mice (21.44; CI:2.52-40.35 versus 23.25; CI:23.25-39). Choline acetyltransferase protein was reduced in neocortex, while cerebrovascular reactivity to acetylcholine was preserved in young 3×TgAD mice. This suggests endogenous acetylcholine deficit and possible cholinergic denervation from selected cholinergic nuclei within the basal forebrain. The early deposition of tauopathy moieties (mutant hTau and pTau181) and its coincidence in cholinergic cell clusters (occasionaly), were observed at the basal forebrain of 3xTgAD mice including substantia innominate, nucleus Basalis of Meynert and nucleus of horizontal limb diagonal band of Broca. A prominent feature was microglia interacting tauopathy and demonstrated a variety of morphology changes particularly when located in proximity to tauopathy. The microglia ramified phenotype was reduced as evaluated by the ramification index and Fractal analysis. Increased microglia senescence, identified as SASP (senescence-associated secretory phenotype), was colocalization with p16Ink4ɑ, a marker of irreversible cell-cycle arrest in old 3xTgAD versus wild-type mice (P = 0.001). The p16Ink4ɑ was also observed in neuronal cells bearing tauopathy within the basal forebrain of 3xTgAD mice. TNF-ɑ, the pro-inflammatory cytokine elevated persistently in microglia (Pearson's correlation coefficient = 0.62) and the loss of cholinergic cells in vulnerable basal forebrain environment, was indicated by image analysis in 3xTgAD mice, which linked to the cholinergic deficits in neocortex rCBF haemodynamics. Our study revealed the early change of CBF haemodynamics to acetylcholine in 3xTgAD model. As a major effector of brain innate immune activation, microglia SASP with age-related disease progression is indicative of immune cell senescence, which contributes to chronic inflammation and cholinergic deficits at the basal forebrain. Targeting neuroinflammation and senescence may mitigate cholinergic pathophysiology in Alzheimer's disease.
Collapse
Affiliation(s)
- Dong Liu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Pediatrics, Columbia University Irving Medical Center, Columbia University Vagelos Physicians & Surgeons College of Medicine, New York City, NY 10032, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nate Price
- Experimental Gerontology Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elliot Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
- Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Shock, Trauma & Anesthesiology Research Center, University of Maryland, Baltimore, MD 21201, USA
| | - Richard Telljohann
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael deCabo
- Department of Pediatrics, Columbia University Irving Medical Center, Columbia University Vagelos Physicians & Surgeons College of Medicine, New York City, NY 10032, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
50
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|