1
|
Perkins AQ, Rich EL. Attention-dependent attribute comparisons underlie multi-attribute decision-making in orbitofrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623291. [PMID: 39605698 PMCID: PMC11601282 DOI: 10.1101/2024.11.12.623291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Economic decisions often require weighing multiple dimensions, or attributes. The orbitofrontal cortex FC) is thought to be important for computing the integrated value of an option from its attributes and comparing lues to make a choice. Although OFC neurons are known to encode integrated values, evidence for value mparison has been limited. Here, we used a multi-attribute choice task for monkeys to investigate how OFC eurons integrate and compare multi-attribute options. Attributes were represented separately and eye tracking as used to measure attention. We found that OFC neurons encode the value of attended attributes, dependent of other attributes in the same option. Encoding was negatively weighted by the value of the same tribute in the other option, consistent with a comparison between the two like attributes. These results indicate at OFC computes comparisons among attributes rather than integrated values, and does so dynamically, ifting with the focus of attention.
Collapse
|
2
|
Frömer R, Nassar MR, Ehinger BV, Shenhav A. Common neural choice signals can emerge artefactually amid multiple distinct value signals. Nat Hum Behav 2024; 8:2194-2208. [PMID: 39242928 PMCID: PMC11576515 DOI: 10.1038/s41562-024-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
Previous work has identified characteristic neural signatures of value-based decision-making, including neural dynamics that closely resemble the ramping evidence accumulation process believed to underpin choice. Here we test whether these signatures of the choice process can be temporally dissociated from additional, choice-'independent' value signals. Indeed, EEG activity during value-based choice revealed distinct spatiotemporal clusters, with a stimulus-locked cluster reflecting affective reactions to choice sets and a response-locked cluster reflecting choice difficulty. Surprisingly, 'neither' of these clusters met the criteria for an evidence accumulation signal. Instead, we found that stimulus-locked activity can 'mimic' an evidence accumulation process when aligned to the response. Re-analysing four previous studies, including three perceptual decision-making studies, we show that response-locked signatures of evidence accumulation disappear when stimulus-locked and response-locked activity are modelled jointly. Collectively, our findings show that neural signatures of value can reflect choice-independent processes and look deceptively like evidence accumulation.
Collapse
Affiliation(s)
- Romy Frömer
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA.
- School of Psychology, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Matthew R Nassar
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Benedikt V Ehinger
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Perkins AQ, Gillis ZS, Rich EL. Multiattribute Decision-making in Macaques Relies on Direct Attribute Comparisons. J Cogn Neurosci 2024; 36:1879-1897. [PMID: 38940740 PMCID: PMC11324248 DOI: 10.1162/jocn_a_02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In value-based decisions, there are frequently multiple attributes, such as cost, quality, or quantity, that contribute to the overall goodness of an option. Because one option may not be better in all attributes at once, the decision process should include a means of weighing relevant attributes. Most decision-making models solve this problem by computing an integrated value, or utility, for each option from a weighted combination of attributes. However, behavioral anomalies in decision-making, such as context effects, indicate that other attribute-specific computations might be taking place. Here, we tested whether rhesus macaques show evidence of attribute-specific processing in a value-based decision-making task. Monkeys made a series of decisions involving choice options comprising a sweetness and probability attribute. Each attribute was represented by a separate bar with one of two mappings between bar size and the magnitude of the attribute (i.e., bigger = better or bigger = worse). We found that translating across different mappings produced selective impairments in decision-making. Choices were less accurate and preferences were more variable when like attributes differed in mapping, suggesting that preventing monkeys from easily making direct attribute comparisons resulted in less accurate choice behavior. This was not the case when mappings of unalike attributes within the same option were different. Likewise, gaze patterns favored transitions between like attributes over transitions between unalike attributes of the same option, so that like attributes were sampled sequentially to support within-attribute comparisons. Together, these data demonstrate that value-based decisions rely, at least in part, on directly comparing like attributes of multiattribute options.
Collapse
Affiliation(s)
| | - Zachary S Gillis
- Icahn School of Medicine at Mount Sinai, NY
- Wake Forest University School of Medicine, NC
| | | |
Collapse
|
4
|
Stoll FM, Rudebeck PH. Preferences reveal dissociable encoding across prefrontal-limbic circuits. Neuron 2024; 112:2241-2256.e8. [PMID: 38640933 PMCID: PMC11223984 DOI: 10.1016/j.neuron.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Combrisson E, Basanisi R, Gueguen MCM, Rheims S, Kahane P, Bastin J, Brovelli A. Neural interactions in the human frontal cortex dissociate reward and punishment learning. eLife 2024; 12:RP92938. [PMID: 38941238 PMCID: PMC11213568 DOI: 10.7554/elife.92938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
How human prefrontal and insular regions interact while maximizing rewards and minimizing punishments is unknown. Capitalizing on human intracranial recordings, we demonstrate that the functional specificity toward reward or punishment learning is better disentangled by interactions compared to local representations. Prefrontal and insular cortices display non-selective neural populations to rewards and punishments. Non-selective responses, however, give rise to context-specific interareal interactions. We identify a reward subsystem with redundant interactions between the orbitofrontal and ventromedial prefrontal cortices, with a driving role of the latter. In addition, we find a punishment subsystem with redundant interactions between the insular and dorsolateral cortices, with a driving role of the insula. Finally, switching between reward and punishment learning is mediated by synergistic interactions between the two subsystems. These results provide a unifying explanation of distributed cortical representations and interactions supporting reward and punishment learning.
Collapse
Affiliation(s)
- Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Maelle CM Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of LyonLyonFrance
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeurosciencesGrenobleFrance
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| |
Collapse
|
6
|
Mallio CA, Buoso A, Stiffi M, Cea L, Vertulli D, Bernetti C, Di Gennaro G, van den Heuvel MP, Beomonte Zobel B. Mapping the Neural Basis of Neuroeconomics with Functional Magnetic Resonance Imaging: A Narrative Literature Review. Brain Sci 2024; 14:511. [PMID: 38790489 PMCID: PMC11120557 DOI: 10.3390/brainsci14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroeconomics merges neuroscience, economics, and psychology to investigate the neural basis of decision making. Decision making involves assessing outcomes with subjective value, shaped by emotions and experiences, which are crucial in economic decisions. Functional MRI (fMRI) reveals key areas of the brain, including the ventro-medial prefrontal cortex, that are involved in subjective value representation. Collaborative interdisciplinary efforts are essential for advancing the field of neuroeconomics, with implications for clinical interventions and policy design. This review explores subjective value in neuroeconomics, highlighting brain regions identified through fMRI studies.
Collapse
Affiliation(s)
- Carlo A. Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Andrea Buoso
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Massimo Stiffi
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Laura Cea
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Daniele Vertulli
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Caterina Bernetti
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, Medical Statistics, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands;
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Bruno Beomonte Zobel
- Fondazione Policlinico Universitario Campus Bio-Medico, 00100 Rome, Italy; (A.B.); (M.S.); (L.C.); (D.V.); (C.B.); (B.B.Z.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00100 Rome, Italy
| |
Collapse
|
7
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard Iii MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. Nat Commun 2024; 15:2162. [PMID: 38461343 PMCID: PMC10924934 DOI: 10.1038/s41467-024-46094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/13/2024] [Indexed: 03/11/2024] Open
Abstract
The value and uncertainty associated with choice alternatives constitute critical features relevant for decisions. However, the manner in which reward and risk representations are temporally organized in the brain remains elusive. Here we leverage the spatiotemporal precision of intracranial electroencephalography, along with a simple card game designed to elicit the unfolding computation of a set of reward and risk variables, to uncover this temporal organization. Reward outcome representations across wide-spread regions follow a sequential order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We further highlight the role of the anterior insula in generalizing between reward prediction error and risk prediction error codes. Together our results emphasize the importance of neural dynamics for understanding value-based decisions under uncertainty.
Collapse
Affiliation(s)
- Vincent Man
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Jeffrey Cockburn
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33606, USA
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Masahiro Sawada
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Matthew A Howard Iii
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - John P O'Doherty
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
8
|
Mulc D, Smilović D, Krsnik Ž, Junaković-Munjas A, Kopić J, Kostović I, Šimić G, Vukšić M. Fetal development of the human amygdala. J Comp Neurol 2024; 532:e25580. [PMID: 38289194 DOI: 10.1002/cne.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024]
Abstract
The intricate development of the human amygdala involves a complex interplay of diverse processes, varying in speed and duration. In humans, transient cytoarchitectural structures deliquesce, leading to the formation of functionally distinct nuclei as a result of multiple interdependent developmental events. This study compares the amygdala's cytoarchitectural development in conjunction with specific antibody reactivity for neuronal, glial, neuropil, and radial glial fibers, synaptic, extracellular matrix, and myelin components in 39 fetal human brains. We recognized that the early fetal period, as a continuation of the embryonic period, is still dominated by relatively uniform histogenetic processes. The typical appearance of ovoid cell clusters in the lateral nucleus during midfetal period is most likely associated with the cell migration and axonal growth processes in the developing human brain. Notably, synaptic markers are firstly detected in the corticomedial group of nuclei, while immunoreactivity for the panaxonal neurofilament marker SMI 312 is found dorsally. The late fetal period is characterized by a protracted migration process evidenced by the presence of doublecortin and SOX-2 immunoreactivity ventrally, in the prospective paralaminar nucleus, reinforced by vimentin immunoreactivity in the last remaining radial glial fibers. Nearing the term period, SMI 99 immunoreactivity indicates that perinatal myelination becomes prominent primarily along major axonal pathways, laying the foundation for more pronounced functional maturation. This study comprehensively elucidates the rate and sequence of maturational events in the amygdala, highlighting the key role of prenatal development in its behavioral, autonomic, and endocrine regulation, with subsequent implications for both normal functioning and psychiatric disorders.
Collapse
Affiliation(s)
- Damir Mulc
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
- Psychiatric Hospital Vrapče, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Alisa Junaković-Munjas
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Hoy CW, Quiroga-Martinez DR, Sandoval E, King-Stephens D, Laxer KD, Weber P, Lin JJ, Knight RT. Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex. Nat Commun 2023; 14:8520. [PMID: 38129440 PMCID: PMC10739882 DOI: 10.1038/s41467-023-44248-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The signed value and unsigned salience of reward prediction errors (RPEs) are critical to understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but conflicting evidence for both signed and unsigned activity has led to multiple proposals for the nature of RPE representations in these brain areas. Recently developed RL models allow neurons to respond differently to positive and negative RPEs. Here, we use intracranially recorded high frequency activity (HFA) to test whether this flexible asymmetric coding strategy captures RPE coding diversity in human INS and dMPFC. At the region level, we found a bias towards positive RPEs in both areas which paralleled behavioral adaptation. At the local level, we found spatially interleaved neural populations responding to unsigned RPE salience and valence-specific positive and negative RPEs. Furthermore, directional connectivity estimates revealed a leading role of INS in communicating positive and unsigned RPEs to dMPFC. These findings support asymmetric coding across distinct but intermingled neural populations as a core principle of RPE processing and inform theories of the role of dMPFC and INS in RL and cognitive control.
Collapse
Affiliation(s)
- Colin W Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - David R Quiroga-Martinez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Aarhus, Denmark
| | - Eduardo Sandoval
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Peter Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
Perkins AQ, Gillis ZS, Rich EL. Multi-attribute decision-making in macaques relies on direct attribute comparisons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563329. [PMID: 37961522 PMCID: PMC10634707 DOI: 10.1101/2023.10.22.563329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In value-based decisions, there are frequently multiple attributes, such as cost, quality, or quantity, that contribute to the overall goodness of an option. Since one option may not be better in all attributes at once, the decision process should include a means of weighing relevant attributes. Most decision-making models solve this problem by computing an integrated value, or utility, for each option from a weighted combination of attributes. However, behavioral anomalies in decision-making, such as context effects, indicate that other attribute-specific computations might be taking place. Here, we tested whether rhesus macaques show evidence of attribute-specific processing in a value-based decision-making task. Monkeys made a series of decisions involving choice options comprising a sweetness and probability attribute. Each attribute was represented by a separate bar with one of two mappings between bar size and the magnitude of the attribute (i.e., bigger=better or bigger=worse). We found that translating across different mappings produced selective impairments in decision-making. When like attributes differed, monkeys were prevented from easily making direct attribute comparisons, and choices were less accurate and preferences were more variable. This was not the case when mappings of unalike attributes within the same option were different. Likewise, gaze patterns favored transitions between like attributes over transitions between unalike attributes of the same option, so that like attributes were sampled sequentially to support within-attribute comparisons. Together, these data demonstrate that value-based decisions rely, at least in part, on directly comparing like attributes of multi-attribute options. Significance Statement Value-based decision-making is a cognitive function impacted by a number of clinical conditions, including substance use disorder and mood disorders. Understanding the neural mechanisms, including online processing steps involved in decision formation, will provide critical insights into decision-making deficits characteristic of human psychiatric disorders. Using rhesus monkeys as a model species capable of complex decision-making, this study shows that decisions involve a process of comparing like features, or attributes, of multi-attribute options. This is contrary to popular models of decision-making in which attributes are first combined into an overall value, or utility, to make a choice. Therefore, these results serve as an important foundation for establishing a more complete understanding of the neural mechanisms involved in forming complex decisions.
Collapse
|
11
|
Proskurin M, Manakov M, Karpova A. ACC neural ensemble dynamics are structured by strategy prevalence. eLife 2023; 12:e84897. [PMID: 37991007 DOI: 10.7554/elife.84897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Medial frontal cortical areas are thought to play a critical role in the brain's ability to flexibly deploy strategies that are effective in complex settings, yet the underlying circuit computations remain unclear. Here, by examining neural ensemble activity in male rats that sample different strategies in a self-guided search for latent task structure, we observe robust tracking during strategy execution of a summary statistic for that strategy in recent behavioral history by the anterior cingulate cortex (ACC), especially by an area homologous to primate area 32D. Using the simplest summary statistic - strategy prevalence in the last 20 choices - we find that its encoding in the ACC during strategy execution is wide-scale, independent of reward delivery, and persists through a substantial ensemble reorganization that accompanies changes in global context. We further demonstrate that the tracking of reward by the ACC ensemble is also strategy-specific, but that reward prevalence is insufficient to explain the observed activity modulation during strategy execution. Our findings argue that ACC ensemble dynamics is structured by a summary statistic of recent behavioral choices, raising the possibility that ACC plays a role in estimating - through statistical learning - which actions promote the occurrence of events in the environment.
Collapse
Affiliation(s)
- Mikhail Proskurin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Maxim Manakov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Alla Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
12
|
Yao YW, Song KR, Schuck NW, Li X, Fang XY, Zhang JT, Heekeren HR, Bruckner R. The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. Neuroimage 2023; 279:120326. [PMID: 37579997 DOI: 10.1016/j.neuroimage.2023.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Decisions that require taking effort costs into account are ubiquitous in real life. The neural common currency theory hypothesizes that a particular neural network integrates different costs (e.g., risk) and rewards into a common scale to facilitate value comparison. Although there has been a surge of interest in the computational and neural basis of effort-related value integration, it is still under debate if effort-based decision-making relies on a domain-general valuation network as implicated in the neural common currency theory. Therefore, we comprehensively compared effort-based and risky decision-making using a combination of computational modeling, univariate and multivariate fMRI analyses, and data from two independent studies. We found that effort-based decision-making can be best described by a power discounting model that accounts for both the discounting rate and effort sensitivity. At the neural level, multivariate decoding analyses indicated that the neural patterns of the dorsomedial prefrontal cortex (dmPFC) represented subjective value across different decision-making tasks including either effort or risk costs, although univariate signals were more diverse. These findings suggest that multivariate dmPFC patterns play a critical role in computing subjective value in a task-independent manner and thus extend the scope of the neural common currency theory.
Collapse
Affiliation(s)
- Yuan-Wei Yao
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany.
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Yi Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Executive University Board, Universität Hamburg, Hamburg, Germany
| | - Rasmus Bruckner
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
13
|
Voloh B, Maisson DJN, Cervera RL, Conover I, Zambre M, Hayden B, Zimmermann J. Hierarchical action encoding in prefrontal cortex of freely moving macaques. Cell Rep 2023; 42:113091. [PMID: 37656619 PMCID: PMC10591875 DOI: 10.1016/j.celrep.2023.113091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Our natural behavioral repertoires include coordinated actions of characteristic types. To better understand how neural activity relates to the expression of actions and action switches, we studied macaques performing a freely moving foraging task in an open environment. We developed a novel analysis pipeline that can identify meaningful units of behavior, corresponding to recognizable actions such as sitting, walking, jumping, and climbing. On the basis of transition probabilities between these actions, we found that behavior is organized in a modular and hierarchical fashion. We found that, after regressing out many potential confounders, actions are associated with specific patterns of firing in each of six prefrontal brain regions and that, overall, encoding of action category is progressively stronger in more dorsal and more caudal prefrontal regions. Together, these results establish a link between selection of units of primate behavior on one hand and neuronal activity in prefrontal regions on the other.
Collapse
Affiliation(s)
- Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Indirah Conover
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Maisson DJN, Cervera RL, Voloh B, Conover I, Zambre M, Zimmermann J, Hayden BY. Widespread coding of navigational variables in prefrontal cortex. Curr Biol 2023; 33:3478-3488.e3. [PMID: 37541250 PMCID: PMC10984098 DOI: 10.1016/j.cub.2023.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
To navigate effectively, we must represent information about our location in the environment. Traditional research highlights the role of the hippocampal complex in this process. Spurred by recent research highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have localized function, we hypothesized that navigational variables would be likewise encoded widely, especially in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that encoding of navigational variables is not localized to the hippocampus and support the hypothesis that navigation is continuous with other forms of flexible cognition in the service of action.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Lopez Cervera
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Voloh
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Indirah Conover
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Fine JM, Maisson DJN, Yoo SBM, Cash-Padgett TV, Wang MZ, Zimmermann J, Hayden BY. Abstract Value Encoding in Neural Populations But Not Single Neurons. J Neurosci 2023; 43:4650-4663. [PMID: 37208178 PMCID: PMC10286943 DOI: 10.1523/jneurosci.1954-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
An important open question in neuroeconomics is how the brain represents the value of offers in a way that is both abstract (allowing for comparison) and concrete (preserving the details of the factors that influence value). Here, we examine neuronal responses to risky and safe options in five brain regions that putatively encode value in male macaques. Surprisingly, we find no detectable overlap in the neural codes used for risky and safe options, even when the options have identical subjective values (as revealed by preference) in any of the regions. Indeed, responses are weakly correlated and occupy distinct (semi-orthogonal) encoding subspaces. Notably, however, these subspaces are linked through a linear transform of their constituent encodings, a property that allows for comparison of dissimilar option types. This encoding scheme allows these regions to multiplex decision related processes: they can encode the detailed factors that influence offer value (here, risky and safety) but also directly compare dissimilar offer types. Together these results suggest a neuronal basis for the qualitatively different psychological properties of risky and safe options and highlight the power of population geometry to resolve outstanding problems in neural coding.SIGNIFICANCE STATEMENT To make economic choices, we must have some mechanism for comparing dissimilar offers. We propose that the brain uses distinct neural codes for risky and safe offers, but that these codes are linearly transformable. This encoding scheme has the dual advantage of allowing for comparison across offer types while preserving information about offer type, which in turn allows for flexibility in changing circumstances. We show that responses to risky and safe offers exhibit these predicted properties in five different reward-sensitive regions. Together, these results highlight the power of population coding principles for solving representation problems in economic choice.
Collapse
Affiliation(s)
- Justin M Fine
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - David J-N Maisson
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Seng Bum Michael Yoo
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tyler V Cash-Padgett
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Maya Zhe Wang
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jan Zimmermann
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Benjamin Y Hayden
- Department of Neuroscience and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Bousseyrol E, Didienne S, Takillah S, Prevost-Solié C, Come M, Ahmed Yahia T, Mondoloni S, Vicq E, Tricoire L, Mourot A, Naudé J, Faure P. Dopaminergic and prefrontal dynamics co-determine mouse decisions in a spatial gambling task. Cell Rep 2023; 42:112523. [PMID: 37200189 DOI: 10.1016/j.celrep.2023.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/28/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
The neural mechanisms by which animals initiate goal-directed actions, choose between options, or explore opportunities remain unknown. Here, we develop a spatial gambling task in which mice, to obtain intracranial self-stimulation rewards, self-determine the initiation, direction, vigor, and pace of their actions based on their knowledge of the outcomes. Using electrophysiological recordings, pharmacology, and optogenetics, we identify a sequence of oscillations and firings in the ventral tegmental area (VTA), orbitofrontal cortex (OFC), and prefrontal cortex (PFC) that co-encodes and co-determines self-initiation and choices. This sequence appeared with learning as an uncued realignment of spontaneous dynamics. Interactions between the structures varied with the reward context, particularly the uncertainty associated with the different options. We suggest that self-generated choices arise from a distributed circuit based on an OFC-VTA core determining whether to wait for or initiate actions, while the PFC is specifically engaged by reward uncertainty in action selection and pace.
Collapse
Affiliation(s)
- Elise Bousseyrol
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Steve Didienne
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Samir Takillah
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Clement Prevost-Solié
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Maxime Come
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tarek Ahmed Yahia
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Eléonore Vicq
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Ludovic Tricoire
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Jérémie Naudé
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; CNRS, Université de Montpellier, INSERM - Institut de Génomique Fonctionnelle, 34094 Montpellier, France.
| | - Philippe Faure
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Brain Plasticity Laboratory, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France.
| |
Collapse
|
17
|
Stoll FM, Rudebeck PH. Preferences reveal separable valuation systems in prefrontal-limbic circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540239. [PMID: 37214895 PMCID: PMC10197711 DOI: 10.1101/2023.05.10.540239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to drive choice behavior. Here we report that instead of a single integrated valuation system in OFC, another separate one is centered in ventrolateral prefrontal cortex (vlPFC) in macaque monkeys. Specifically, we found that OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into these two aspects of subjective valuation. In addition, vlPFC, but not OFC, represented the outcome probability for the two options separately, with the difference between these representations reflecting the degree of preference. Thus, there are at least two separable valuation systems that work in concert to guide choices and that both are biased by preferences.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
18
|
Man V, Cockburn J, Flouty O, Gander PE, Sawada M, Kovach CK, Kawasaki H, Oya H, Howard MA, O'Doherty JP. Temporally organized representations of reward and risk in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539916. [PMID: 37214975 PMCID: PMC10197553 DOI: 10.1101/2023.05.09.539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The value and uncertainty associated with choice alternatives constitute critical features along which decisions are made. While the neural substrates supporting reward and risk processing have been investigated, the temporal organization by which these computations are encoded remains elusive. Here we leverage the high spatiotemporal precision of intracranial electroencephalography (iEEG) to uncover how representations of decision-related computations unfold in time. We present evidence of locally distributed representations of reward and risk variables that are temporally organized across multiple regions of interest. Reward outcome representations across wide-spread regions follow a temporally cascading order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We highlight the role of the anterior insula in generalizing between reward prediction error (RePE) and risk prediction error (RiPE), within which the encoding of RePE in the distributed iEEG signal predicts RiPE. Together our results emphasize the utility of uncovering temporal dynamics in the human brain for understanding how computational processes critical for value-based decisions under uncertainty unfold.
Collapse
|
19
|
Qiu J, Shi M, Li S, Ying Q, Zhang X, Mao X, Shi S, Wu S. Artificial neural network model- and response surface methodology-based optimization of Atractylodis Macrocephalae Rhizoma polysaccharide extraction, kinetic modelling and structural characterization. ULTRASONICS SONOCHEMISTRY 2023; 95:106408. [PMID: 37088027 PMCID: PMC10457599 DOI: 10.1016/j.ultsonch.2023.106408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Atractylodis Macrocephalae Rhizoma (AMR) is the dried rhizome of Atractylodes macrocephala Koidz, which is widely used in the development of health products. AMR contains a large number of polysaccharides, but at present there are fewer applications for these polysaccharides. In this study, the effects of different extraction methods on the Atractylodis Macrocephalae Rhizoma polysaccharide (AMRP) yield were investigated, and the conditions for ultrasound-assisted extraction were optimized by response surface methodology (RSM) and three neural network models (BP neural network, GA-BP neural network and ACO-GA-BP neural network). The best conditions were a liquid-to-solid ratio of 17 mL/g, ultrasonic power of 400 W, extraction temperature of 72 °C, and extraction time of 40 min, which yielded 31.31% AMRP. The kinetic equation of AMRP was determined and compared with the results predicted by three neural network models. It was finally determined that the extraction conditions, kinetic processes and kinetic equation predicted by the GA-ACO-BP neural network were optimal. In addition, AMRP was characterized using SEM, FTIR, HPLC, UV, XRD, and NMR, and the structural study revealed that AMRP has a rough exterior and a porous interior; moreover, it contains high levels of glucose (5.07%), arabinose (0.80%), and galactose (0.74%). AMRP has three crystal structures, consisting of two β-type monosaccharides and one α-type monosaccharide. Additionally, the effectiveness of AMRP as an antioxidant was demonstrated in an in vitro experiment.
Collapse
Affiliation(s)
- Junjie Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Menglin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qianyi Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxin Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Senlin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Suxiang Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
20
|
Perisse E, Miranda M, Trouche S. Modulation of aversive value coding in the vertebrate and invertebrate brain. Curr Opin Neurobiol 2023; 79:102696. [PMID: 36871400 DOI: 10.1016/j.conb.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Avoiding potentially dangerous situations is key for the survival of any organism. Throughout life, animals learn to avoid environments, stimuli or actions that can lead to bodily harm. While the neural bases for appetitive learning, evaluation and value-based decision-making have received much attention, recent studies have revealed more complex computations for aversive signals during learning and decision-making than previously thought. Furthermore, previous experience, internal state and systems level appetitive-aversive interactions seem crucial for learning specific aversive value signals and making appropriate choices. The emergence of novel methodologies (computation analysis coupled with large-scale neuronal recordings, neuronal manipulations at unprecedented resolution offered by genetics, viral strategies and connectomics) has helped to provide novel circuit-based models for aversive (and appetitive) valuation. In this review, we focus on recent vertebrate and invertebrate studies yielding strong evidence that aversive value information can be computed by a multitude of interacting brain regions, and that past experience can modulate future aversive learning and therefore influence value-based decisions.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | - Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| |
Collapse
|
21
|
Kraemer PM, Gluth S. Episodic Memory Retrieval Affects the Onset and Dynamics of Evidence Accumulation during Value-based Decisions. J Cogn Neurosci 2023; 35:692-714. [PMID: 36724395 DOI: 10.1162/jocn_a_01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In neuroeconomics, there is much interest in understanding simple value-based choices where agents choose between visually presented goods, comparable to a shopping scenario in a supermarket. However, many everyday decisions are made in the physical absence of the considered goods, requiring agents to recall information about the goods from memory. Here, we asked whether and how this reliance on an internal memory representation affects the temporal dynamics of decision making on a cognitive and neural level. Participants performed a remember-and-decide task in which they made simple purchasing decisions between money offers and snack items while undergoing EEG. Snack identity was presented either visually (value trials) or had to be recalled from memory (memory trials). Behavioral data indicated comparable choice consistency across both trial types, but considerably longer RTs in memory trials. Drift-diffusion modeling suggested that this RT difference was because of longer nondecision time of decision processes as well as altered evidence accumulation dynamics (lower accumulation rate and higher decision threshold). The nondecision time effect was supported by a delayed onset of the lateralized readiness potential. These results show that both decision and nondecision processes are prolonged when participants need to resort to internal memory representations during value-based decisions.
Collapse
|
22
|
Ye T, Romero-Sosa JL, Rickard A, Aguirre CG, Wikenheiser AM, Blair HT, Izquierdo A. Theta oscillations in anterior cingulate cortex and orbitofrontal cortex differentially modulate accuracy and speed in flexible reward learning. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad005. [PMID: 37456140 PMCID: PMC10348740 DOI: 10.1093/oons/kvad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 07/18/2023]
Abstract
Flexible reward learning relies on frontal cortex, with substantial evidence indicating that anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) subregions play important roles. Recent studies in both rat and macaque suggest theta oscillations (5-10 Hz) may be a spectral signature that coordinates this learning. However, network-level interactions between ACC and OFC in flexible learning remain unclear. We investigated the learning of stimulus-reward associations using a combination of simultaneous in vivo electrophysiology in dorsal ACC and ventral OFC, partnered with bilateral inhibitory DREADDs in ACC. In freely behaving male and female rats and using a within-subject design, we examined accuracy and speed of response across distinct and precisely defined trial epochs during initial visual discrimination learning and subsequent reversal of stimulus-reward contingencies. Following ACC inhibition, there was a propensity for random responding in early reversal learning, with correct vs. incorrect trials distinguished only from OFC, not ACC, theta power differences in the reversal phase. ACC inhibition also hastened incorrect choices during reversal. This same pattern of change in accuracy and speed was not observed in viral control animals. Thus, characteristics of impaired reversal learning following ACC inhibition are poor deliberation and weak theta signaling of accuracy in this region. The present results also point to OFC theta oscillations as a prominent feature of reversal learning, unperturbed by ACC inhibition.
Collapse
Affiliation(s)
- Tony Ye
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Anne Rickard
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | | | - Andrew M Wikenheiser
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Addictions, UCLA, Los Angeles, CA 90095, USA
| | - Hugh T Blair
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
- The Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Addictions, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Hein TP, Gong Z, Ivanova M, Fedele T, Nikulin V, Herrojo Ruiz M. Anterior cingulate and medial prefrontal cortex oscillations underlie learning alterations in trait anxiety in humans. Commun Biol 2023; 6:271. [PMID: 36922553 PMCID: PMC10017780 DOI: 10.1038/s42003-023-04628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Anxiety has been linked to altered belief formation and uncertainty estimation, impacting learning. Identifying the neural processes underlying these changes is important for understanding brain pathology. Here, we show that oscillatory activity in the medial prefrontal, anterior cingulate and orbitofrontal cortex (mPFC, ACC, OFC) explains anxiety-related learning alterations. In a magnetoencephalography experiment, two groups of human participants pre-screened with high and low trait anxiety (HTA, LTA: 39) performed a probabilistic reward-based learning task. HTA undermined learning through an overestimation of volatility, leading to faster belief updating, more stochastic decisions and pronounced lose-shift tendencies. On a neural level, we observed increased gamma activity in the ACC, dmPFC, and OFC during encoding of precision-weighted prediction errors in HTA, accompanied by suppressed ACC alpha/beta activity. Our findings support the association between altered learning and belief updating in anxiety and changes in gamma and alpha/beta activity in the ACC, dmPFC, and OFC.
Collapse
Affiliation(s)
- Thomas P Hein
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK
| | - Zheng Gong
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Marina Ivanova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Tommaso Fedele
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maria Herrojo Ruiz
- Goldsmiths, University of London, Psychology Department, Whitehead Building New Cross, London, SE14 6NW, UK.
| |
Collapse
|
24
|
Abstract
The parcellation of the primate cerebral cortex into numbered regions, based on cytoarchitecture, has greatly helped neuroscientists in our quest to understand how the brain implements cognition. Nonetheless, these maps provide an unnecessarily constraining view of how we should do functional neuroanatomy. It is time to think more broadly. Doing so will help advance the goal of incorporating ideas about emergentist organization and interactional complexity into neuroscience.
Collapse
|
25
|
Bounmy T, Eger E, Meyniel F. A characterization of the neural representation of confidence during probabilistic learning. Neuroimage 2023; 268:119849. [PMID: 36640947 DOI: 10.1016/j.neuroimage.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Learning in a stochastic and changing environment is a difficult task. Models of learning typically postulate that observations that deviate from the learned predictions are surprising and used to update those predictions. Bayesian accounts further posit the existence of a confidence-weighting mechanism: learning should be modulated by the confidence level that accompanies those predictions. However, the neural bases of this confidence are much less known than the ones of surprise. Here, we used a dynamic probability learning task and high-field MRI to identify putative cortical regions involved in the representation of confidence about predictions during human learning. We devised a stringent test based on the conjunction of four criteria. We localized several regions in parietal and frontal cortices whose activity is sensitive to the confidence of an ideal observer, specifically so with respect to potential confounds (surprise and predictability), and in a way that is invariant to which item is predicted. We also tested for functionality in two ways. First, we localized regions whose activity patterns at the subject level showed an effect of both confidence and surprise in qualitative agreement with the confidence-weighting principle. Second, we found neural representations of ideal confidence that also accounted for subjective confidence. Taken together, those results identify a set of cortical regions potentially implicated in the confidence-weighting of learning.
Collapse
Affiliation(s)
- Tiffany Bounmy
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Université de Paris, Paris, France.
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Florent Meyniel
- Cognitive Neuroimaging Unit, CEA DRF/Joliot, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Kohl C, Wong MXM, Wong JJ, Rushworth MFS, Chau BKH. Intraparietal stimulation disrupts negative distractor effects in human multi-alternative decision-making. eLife 2023; 12:e75007. [PMID: 36811348 PMCID: PMC9946441 DOI: 10.7554/elife.75007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2022] [Indexed: 02/24/2023] Open
Abstract
There has been debate about whether addition of an irrelevant distractor option to an otherwise binary decision influences which of the two choices is taken. We show that disparate views on this question are reconciled if distractors exert two opposing but not mutually exclusive effects. Each effect predominates in a different part of decision space: (1) a positive distractor effect predicts high-value distractors improve decision-making; (2) a negative distractor effect, of the type associated with divisive normalisation models, entails decreased accuracy with increased distractor values. Here, we demonstrate both distractor effects coexist in human decision making but in different parts of a decision space defined by the choice values. We show disruption of the medial intraparietal area (MIP) by transcranial magnetic stimulation (TMS) increases positive distractor effects at the expense of negative distractor effects. Furthermore, individuals with larger MIP volumes are also less susceptible to the disruption induced by TMS. These findings also demonstrate a causal link between MIP and the impact of distractors on decision-making via divisive normalisation.
Collapse
Affiliation(s)
- Carmen Kohl
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
- Department Neuroscience, Carney Institute for Brain Sciences, Brown UniversityProvidenceUnited States
| | - Michelle XM Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
| | - Jing Jun Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
| | | | - Bolton KH Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic UniversityHong KongChina
| |
Collapse
|
27
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
28
|
Biondo F, Thunell CN, Xu B, Chu C, Jia T, Ing A, Quinlan EB, Tay N, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Lemaitre H, Nees F, Orfanos DP, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Barker ED, Schumann G. Sex differences in neural correlates of common psychopathological symptoms in early adolescence. Psychol Med 2022; 52:3086-3096. [PMID: 33769238 PMCID: PMC9693717 DOI: 10.1017/s0033291720005140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/18/2020] [Accepted: 12/07/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. METHODS Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). RESULTS We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = -0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = -0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = -0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = -0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. CONCLUSIONS Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.
Collapse
Affiliation(s)
- Francesca Biondo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Charlotte Nymberg Thunell
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Swedish National Board of Health and Welfare, Socialstyrelsen, Stockholm, Sweden
| | - Bing Xu
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Congying Chu
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Tianye Jia
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-inspired Intelligence, Fudan University, Ministry of Education, China
| | - Alex Ing
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Nicole Tay
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 ‘Trajectoires développementales en psychiatrie’, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif sur Yvette, France
| | - Hervé Lemaitre
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Edward D. Barker
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin and Leibniz Institute for Neurobiology, Magdeburg, Germany, and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China
| | | |
Collapse
|
29
|
Li W, Chen X, Luo Y, Luo L, Chen H. Orbitofrontal neural dissociation of healthy and unhealthy food reward sensitivity in normal-weight binge eaters. Psychiatry Res 2022; 316:114736. [PMID: 35932570 DOI: 10.1016/j.psychres.2022.114736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The orbitofrontal cortex (OFC) has been repeatedly found to play an important role in food reward processing and binge eating (BE) episodes. However, most studies have focused mainly on reward-related neural alterations in clinical binge eating patients, with little consideration of preclinical individuals with BE that are more likely to develop from non-clinical individuals to clinical patients in the future. This study aimed to examine whether preclinical binge eaters exhibited OFC-related resting-state functional connectivity (rsFC) in the context of food reward. METHOD Binge eaters (BE group, n = 28) and healthy controls (HCs, n = 28) matched for age and body mass index (BMI) underwent rs-fMRI scans and completed self-reported assessment of BE symptoms. Food reward sensitivity was measured using the modified food incentive delay task. Analysis of covariance was used to assess the between-group differences in the medial and lateral OFC (a priori selected regions of interest) connectivity patterns in the context of food reward, while controlling for age, sex, and BMI. RESULTS Lower unhealthy food (UF) reward sensitivity was significantly associated with stronger inverse OFC-putamen connectivity for HCs, while the BE group showed no association between UF reward sensitivity and the OFC-putamen connectivity. Higher healthy food (HF) reward sensitivity in the BE group was significantly correlated with stronger positive OFC-middle frontal gyrus and OFC-inferior parietal gyrus connectivity, while the opposite was found for HCs. CONCLUSIONS Binge eaters showed less functional synchrony within reward regions contributing to the UF reward sensitivity, but enhanced neural interactions between reward and inhibitory control regions correlated with the HF reward sensitivity. These novel findings may demonstrate the potential orbitofrontal neural dissociation of unhealthy and healthy food reward sensitivity in normal-weight binge eaters.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Lin Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Chongqing 400715, China.
| |
Collapse
|
30
|
Yu LQ, Dana J, Kable JW. Individuals with ventromedial frontal damage display unstable but transitive preferences during decision making. Nat Commun 2022; 13:4758. [PMID: 35963856 PMCID: PMC9376076 DOI: 10.1038/s41467-022-32511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The ventromedial frontal lobe (VMF) is important for decision-making, but the precise causal role of the VMF in the decision process has not been fully established. Previous studies have suggested that individuals with VMF damage violate transitivity, a hallmark axiom of rational decisions. However, these prior studies cannot properly distinguish whether individuals with VMF damage are truly prone to choosing irrationally from whether their preferences are simply more variable. We had individuals with focal VMF damage, individuals with other frontal damage, and healthy controls make repeated choices across three categories-artworks, chocolate bar brands, and gambles. Using proper tests of transitivity, we find that, in our study, individuals with VMF damage make rational decisions consistent with transitive preferences, even though they exhibit greater variability in their preferences. That is, the VMF is necessary for having strong and reliable preferences, but not for being a rational decision maker. VMF damage affects the variability with which value is assessed, but not the consistency with which value is sought.
Collapse
Affiliation(s)
- Linda Q Yu
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA.
| | - Jason Dana
- Yale School of Management, Yale University, New Haven, CT, 06520, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
Treadway MT, Salamone JD. Vigor, Effort-Related Aspects of Motivation and Anhedonia. Curr Top Behav Neurosci 2022; 58:325-353. [PMID: 35505057 DOI: 10.1007/7854_2022_355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter we provide an overview of the pharmacological and circuit mechanisms that determine the willingness to expend effort in pursuit of rewards. A particular focus will be on the role of the mesolimbic dopamine system, as well the contributing roles of limbic and cortical brains areas involved in the evaluation, selection, and invigoration of goal-directed actions. We begin with a review of preclinical studies, which have provided key insights into the brain systems that are necessary and sufficient for effort-based decision-making and have characterized novel compounds that enhance selection of high-effort activities. Next, we summarize translational studies identifying and expanding this circuitry in humans. Finally, we discuss the relevance of this work for understanding common motivational impairments as part of the broader anhedonia symptom domain associated with mental illness, and the identification of new treatment targets within this circuitry to improve motivation and effort-expenditure.
Collapse
Affiliation(s)
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
32
|
Suzuki S. Constructing value signals for food rewards: determinants and the integration. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Ballesta S, Shi W, Padoa-Schioppa C. Orbitofrontal cortex contributes to the comparison of values underlying economic choices. Nat Commun 2022; 13:4405. [PMID: 35906242 PMCID: PMC9338286 DOI: 10.1038/s41467-022-32199-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Economic choices between goods entail the computation and comparison of subjective values. Previous studies examined neuronal activity in the orbitofrontal cortex (OFC) of monkeys choosing between different types of juices. Three groups of neurons were identified: offer value cells encoding the value of individual offers, chosen juice cells encoding the identity of the chosen juice, and chosen value cells encoding the value of the chosen offer. The encoded variables capture both the input (offer value) and the output (chosen juice, chosen value) of the decision process, suggesting that values are compared within OFC. Recent work demonstrates that choices are causally linked to the activity of offer value cells. Conversely, the hypothesis that OFC contributes to value comparison has not been confirmed. Here we show that weak electrical stimulation of OFC specifically disrupts value comparison without altering offer values. This result implies that neuronal populations in OFC participate in value comparison.
Collapse
Affiliation(s)
- Sébastien Ballesta
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Laboratoire de Neurosciences Cognitives et Adaptatives (UMR 7364), Strasbourg, France
- Centre de Primatologie de l'Université de Strasbourg, Niederhausbergen, France
| | - Weikang Shi
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Economics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
34
|
Contemori S, Loeb GE, Corneil BD, Wallis G, Carroll TJ. Symbolic cues enhance express visuomotor responses in human arm muscles at the motor planning rather than the visuospatial processing stage. J Neurophysiol 2022; 128:494-510. [PMID: 35858112 DOI: 10.1152/jn.00136.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans can produce "express" (~100ms) arm muscle responses that are inflexibly locked in time and space to visual target presentations, consistent with subcortical visuomotor transformations via the tecto-reticulo-spinal pathway. These express visuomotor responses are sensitive to explicit cue-driven expectations, but it is unclear at what stage of sensory-to-motor transformation such modulation occurs. Here, we recorded electromyographic activity from shoulder muscles as participants reached toward one of four virtual targets whose physical location was partially predictable from a symbolic cue. In an experiment in which targets could be veridically reached, express responses were inclusive of the biomechanical requirements for reaching the cued locations and not systematically modulated by cue validity. In a second experiment, movements were restricted to the horizontal plane so that the participants could perform only rightward or leftward reaches, irrespective of target position on the vertical axis. Express muscle responses were almost identical for targets that were validly cued in the horizontal direction, regardless of cue validity in the vertical dimension. Together, these findings suggest that the cue-induced enhancements of express responses are dominated by effects at the level of motor plans and not solely via facilitation of early visuospatial target processing. Notably, direct cortico-tectal and cortico-reticular projections exist that are well-placed to modulate pre-stimulus motor preparation state in subcortical circuits. Our results could reflect a neural mechanism by which contextually relevant motor responses to compatible visual inputs are rapidly released via subcortical circuits that are sufficiently along the sensory- to-motor continuum.
Collapse
Affiliation(s)
- Samuele Contemori
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Guy Wallis
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Inagaki HK, Chen S, Daie K, Finkelstein A, Fontolan L, Romani S, Svoboda K. Neural Algorithms and Circuits for Motor Planning. Annu Rev Neurosci 2022; 45:249-271. [PMID: 35316610 DOI: 10.1146/annurev-neuro-092021-121730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.
Collapse
Affiliation(s)
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Kayvon Daie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| | - Arseny Finkelstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lorenzo Fontolan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Allen Institute for Neural Dynamics, Seattle, Washington, USA;
| |
Collapse
|
36
|
Kaushik P, Naudé J, Raju SB, Alexandre F. A VTA GABAergic computational model of dissociated reward prediction error computation in classical conditioning. Neurobiol Learn Mem 2022; 193:107653. [PMID: 35772681 DOI: 10.1016/j.nlm.2022.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Classical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.
Collapse
Affiliation(s)
- Pramod Kaushik
- International Institute of Information Technology, Hyderabad, India; Inria Bordeaux Sud-Ouest, Talence, France
| | - Jérémie Naudé
- Institut de Génomique Fonctionnelle, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | - Frédéric Alexandre
- Inria Bordeaux Sud-Ouest, Talence, France; LaBRI, University of Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France; Institute of Neurodegenerative Diseases, University of Bordeaux, CNRS, UMR 5293, Bordeaux, France.
| |
Collapse
|
37
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
38
|
Theta but not beta activity is modulated by freedom of choice during action selection. Sci Rep 2022; 12:9115. [PMID: 35650241 PMCID: PMC9160249 DOI: 10.1038/s41598-022-13318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Large-scale neurophysiological markers of action competition have been almost exclusively investigated in the context of instructed choices, hence it remains unclear whether these markers also apply to free choices. This study aimed to compare the specific brain dynamics underlying instructed and free decisions. Electroencephalography (EEG) was recorded while 31 participants performed a target selection task; the choice relied either on stimulus-response mappings (instructed) or on participants' preferences (free). Choice difficulty was increased by introducing distractors in the informative stimulus in instructed choices, and by presenting targets with similar motor costs in free choices. Results revealed that increased decision difficulty was associated with higher reaction times (RTs) in instructed choices and greater choice uncertainty in free choices. Midfrontal EEG theta (4-8 Hz) power increased with difficulty in instructed choices, but not in free choices. Although sensorimotor beta (15-30 Hz) power was correlated with RTs, it was not significantly influenced by choice context or difficulty. These results suggest that midfrontal theta power may specifically increase with difficulty in externally-driven choices, whereas sensorimotor beta power may be predictive of RTs in both externally- and internally-driven choices.
Collapse
|
39
|
Dennison JB, Sazhin D, Smith DV. Decision neuroscience and neuroeconomics: Recent progress and ongoing challenges. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1589. [PMID: 35137549 PMCID: PMC9124684 DOI: 10.1002/wcs.1589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the past decade, decision neuroscience and neuroeconomics have developed many new insights in the study of decision making. This review provides an overarching update on how the field has advanced in this time period. Although our initial review a decade ago outlined several theoretical, conceptual, methodological, empirical, and practical challenges, there has only been limited progress in resolving these challenges. We summarize significant trends in decision neuroscience through the lens of the challenges outlined for the field and review examples where the field has had significant, direct, and applicable impacts across economics and psychology. First, we review progress on topics including reward learning, explore-exploit decisions, risk and ambiguity, intertemporal choice, and valuation. Next, we assess the impacts of emotion, social rewards, and social context on decision making. Then, we follow up with how individual differences impact choices and new exciting developments in the prediction and neuroforecasting of future decisions. Finally, we consider how trends in decision-neuroscience research reflect progress toward resolving past challenges, discuss new and exciting applications of recent research, and identify new challenges for the field. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Emotion and Motivation.
Collapse
Affiliation(s)
- Jeffrey B Dennison
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniel Sazhin
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - David V Smith
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Hall-McMaster S, Stokes MG, Myers NE. Integrating Reward Information for Prospective Behavior. J Neurosci 2022; 42:1804-1819. [PMID: 35042770 PMCID: PMC8896545 DOI: 10.1523/jneurosci.1113-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Value-based decision-making is often studied in a static context, where participants decide which option to select from those currently available. However, everyday life often involves an additional dimension: deciding when to select to maximize reward. Recent evidence suggests that agents track the latent reward of an option, updating changes in their latent reward estimate, to achieve appropriate selection timing (latent reward tracking). However, this strategy can be difficult to distinguish from one in which the optimal selection time is estimated in advance, allowing an agent to wait a predetermined amount of time before selecting, without needing to monitor an option's latent reward (distance-to-goal tracking). Here, we show that these strategies can in principle be dissociated. Human brain activity was recorded using electroencephalography (EEG), while female and male participants performed a novel decision task. Participants were shown an option and decided when to select it, as its latent reward changed from trial-to-trial. While the latent reward was uncued, it could be estimated using cued information about the option's starting value and value growth rate. We then used representational similarity analysis (RSA) to assess whether EEG signals more closely resembled latent reward tracking or distance-to-goal tracking. This approach successfully dissociated the strategies in this task. Starting value and growth rate were translated into a distance-to-goal signal, far in advance of selecting the option. Latent reward could not be independently decoded. These results demonstrate the feasibility of using high temporal resolution neural recordings to identify internally computed decision variables in the human brain.SIGNIFICANCE STATEMENT Reward-seeking behavior involves acting at the right time. However, the external world does not always tell us when an action is most rewarding, necessitating internal representations that guide action timing. Specifying this internal neural representation is challenging because it might stem from a variety of strategies, many of which make similar predictions about brain activity. This study used a novel approach to test whether alternative strategies could be dissociated in principle. Using representational similarity analysis (RSA), we were able to distinguish between candidate internal representations for selection timing. This shows how pattern analysis methods can be used to measure latent decision information in noninvasive neural data.
Collapse
Affiliation(s)
- Sam Hall-McMaster
- Department of Experimental Psychology, University of Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom, OX3 9DU
| | - Mark G Stokes
- Department of Experimental Psychology, University of Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom, OX3 9DU
| | - Nicholas E Myers
- Department of Experimental Psychology, University of Oxford, United Kingdom, OX2 6GG
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, United Kingdom, OX3 9DU
| |
Collapse
|
41
|
Frömer R, Shenhav A. Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making. Neurosci Biobehav Rev 2022; 134:104483. [PMID: 34902441 PMCID: PMC8844247 DOI: 10.1016/j.neubiorev.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022]
Abstract
While often seeming to investigate rather different problems, research into value-based decision making and cognitive control have historically offered parallel insights into how people select thoughts and actions. While the former studies how people weigh costs and benefits to make a decision, the latter studies how they adjust information processing to achieve their goals. Recent work has highlighted ways in which decision-making research can inform our understanding of cognitive control. Here, we provide the complementary perspective: how cognitive control research has informed understanding of decision-making. We highlight three particular areas of research where this critical interchange has occurred: (1) how different types of goals shape the evaluation of choice options, (2) how people use control to adjust the ways they make their decisions, and (3) how people monitor decisions to inform adjustments to control at multiple levels and timescales. We show how adopting this alternate viewpoint offers new insight into the determinants of both decisions and control; provides alternative interpretations for common neuroeconomic findings; and generates fruitful directions for future research.
Collapse
Affiliation(s)
- R Frömer
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| | - A Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI, United States.
| |
Collapse
|
42
|
Fine JM, Hayden BY. The whole prefrontal cortex is premotor cortex. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200524. [PMID: 34957853 PMCID: PMC8710885 DOI: 10.1098/rstb.2020.0524] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
We propose that the entirety of the prefrontal cortex (PFC) can be seen as fundamentally premotor in nature. By this, we mean that the PFC consists of an action abstraction hierarchy whose core function is the potentiation and depotentiation of possible action plans at different levels of granularity. We argue that the apex of the hierarchy should revolve around the process of goal-selection, which we posit is inherently a form of optimization over action abstraction. Anatomical and functional evidence supports the idea that this hierarchy originates on the orbital surface of the brain and extends dorsally to motor cortex. Accordingly, our viewpoint positions the orbitofrontal cortex in a key role in the optimization of goal-selection policies, and suggests that its other proposed roles are aspects of this more general function. Our proposed perspective will reframe outstanding questions, open up new areas of inquiry and align theories of prefrontal function with evolutionary principles. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Justin M. Fine
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y. Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Kraemer PM, Weilbächer RA, Mechera-Ostrovsky T, Gluth S. Cognitive and neural principles of a memory bias on preferential choices. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100029. [PMID: 36685759 PMCID: PMC9846459 DOI: 10.1016/j.crneur.2022.100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/25/2023] Open
Abstract
Value-based decisions depend on different forms of memory. However, the respective roles of memory and valuation processes that give rise to these decisions are often vaguely described and have rarely been investigated jointly. In this review article, we address the problem of memory-based decision making from a neuroeconomic perspective. We first describe the neural and cognitive processes involved in decisions requiring memory processes, with a focus on episodic memory. Based on the results of a systematic research program, we then spotlight the phenomenon of the memory bias, a general preference for choice options that can be retrieved from episodic memory more successfully. Our findings indicate that failed memory recall biases neural valuation processes as indicated by altered effective connectivity between the hippocampus and ventromedial prefrontal cortex. This bias can be attributed to meta-cognitive beliefs about the relationship between subjective value and memory as well as to uncertainty aversion. After summarizing the findings, we outline potential future research endeavors to integrate the two research traditions of memory and decision making.
Collapse
Affiliation(s)
| | | | | | - Sebastian Gluth
- Department of Psychology, University of Hamburg, Germany
- Corresponding author. Von-Melle-Park 11, 20146, Hamburg, Germany.
| |
Collapse
|
44
|
Aragon MJ, Mok AT, Shea J, Wang M, Kim H, Barkdull N, Xu C, Yapici N. Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle. eLife 2022; 11:e69094. [PMID: 35073257 PMCID: PMC8846588 DOI: 10.7554/elife.69094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a multiphoton imaging method to capture neural structure and activity in behaving flies through the intact cuticle. Our measurements showed that the fly head cuticle has surprisingly high transmission at wavelengths >900nm, and the difficulty of through-cuticle imaging is due to the air sacs and/or fat tissue underneath the head cuticle. By compressing or removing the air sacs, we performed multiphoton imaging of the fly brain through the intact cuticle. Our anatomical and functional imaging results show that 2- and 3-photon imaging are comparable in superficial regions such as the mushroom body, but 3-photon imaging is superior in deeper regions such as the central complex and beyond. We further demonstrated 2-photon through-cuticle functional imaging of odor-evoked calcium responses from the mushroom body γ-lobes in behaving flies short term and long term. The through-cuticle imaging method developed here extends the time limits of in vivo imaging in flies and opens new ways to capture neural structure and activity from the fly brain.
Collapse
Affiliation(s)
- Max Jameson Aragon
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Aaron T Mok
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Mengran Wang
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Nathan Barkdull
- Department of Physics, University of FloridaGainesvilleUnited States
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell UniversityIthacaUnited States
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| |
Collapse
|
45
|
Abstract
Recent breakthroughs in artificial intelligence (AI) have enabled machines to plan in tasks previously thought to be uniquely human. Meanwhile, the planning algorithms implemented by the brain itself remain largely unknown. Here, we review neural and behavioral data in sequential decision-making tasks that elucidate the ways in which the brain does-and does not-plan. To systematically review available biological data, we create a taxonomy of planning algorithms by summarizing the relevant design choices for such algorithms in AI. Across species, recording techniques, and task paradigms, we find converging evidence that the brain represents future states consistent with a class of planning algorithms within our taxonomy-focused, depth-limited, and serial. However, we argue that current data are insufficient for addressing more detailed algorithmic questions. We propose a new approach leveraging AI advances to drive experiments that can adjudicate between competing candidate algorithms.
Collapse
|
46
|
Collins AGE, Shenhav A. Advances in modeling learning and decision-making in neuroscience. Neuropsychopharmacology 2022; 47:104-118. [PMID: 34453117 PMCID: PMC8617262 DOI: 10.1038/s41386-021-01126-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
An organism's survival depends on its ability to learn about its environment and to make adaptive decisions in the service of achieving the best possible outcomes in that environment. To study the neural circuits that support these functions, researchers have increasingly relied on models that formalize the computations required to carry them out. Here, we review the recent history of computational modeling of learning and decision-making, and how these models have been used to advance understanding of prefrontal cortex function. We discuss how such models have advanced from their origins in basic algorithms of updating and action selection to increasingly account for complexities in the cognitive processes required for learning and decision-making, and the representations over which they operate. We further discuss how a deeper understanding of the real-world complexities in these computations has shed light on the fundamental constraints on optimal behavior, and on the complex interactions between corticostriatal pathways to determine such behavior. The continuing and rapid development of these models holds great promise for understanding the mechanisms by which animals adapt to their environments, and what leads to maladaptive forms of learning and decision-making within clinical populations.
Collapse
Affiliation(s)
- Anne G E Collins
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Amitai Shenhav
- Department of Cognitive, Linguistic, & Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
47
|
Folloni D, Fouragnan E, Wittmann MK, Roumazeilles L, Tankelevitch L, Verhagen L, Attali D, Aubry JF, Sallet J, Rushworth MFS. Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment-related activity and behavior. SCIENCE ADVANCES 2021; 7:eabg7700. [PMID: 34910510 PMCID: PMC8673758 DOI: 10.1126/sciadv.abg7700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/28/2021] [Indexed: 05/30/2023]
Abstract
Credit assignment is the association of specific instances of reward to the specific events, such as a particular choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good the environment was when the choice was made—the global reward state—rather than exactly which outcome the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging in macaques demonstrate credit assignment–related activity in prefrontal area 47/12o, and when this signal was disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was no longer guided by choice value, and decision-making was poorer. By contrast, global reward state–related activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Elsa Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marco K. Wittmann
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lev Tankelevitch
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 HR, Netherlands
| | - David Attali
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
- GHU PARIS Psychiatrie and Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire, Paris 15, F-75014 Paris, France
- Université de Paris, F-75005 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, ESPCI Paris, INSERM, CNRS, PSL Research University, Paris, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, Mansfield Road, Oxford OX1 3TA, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Foucault C, Meyniel F. Gated recurrence enables simple and accurate sequence prediction in stochastic, changing, and structured environments. eLife 2021; 10:71801. [PMID: 34854377 PMCID: PMC8735865 DOI: 10.7554/elife.71801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
From decision making to perception to language, predicting what is coming next is crucial. It is also challenging in stochastic, changing, and structured environments; yet the brain makes accurate predictions in many situations. What computational architecture could enable this feat? Bayesian inference makes optimal predictions but is prohibitively difficult to compute. Here, we show that a specific recurrent neural network architecture enables simple and accurate solutions in several environments. This architecture relies on three mechanisms: gating, lateral connections, and recurrent weight training. Like the optimal solution and the human brain, such networks develop internal representations of their changing environment (including estimates of the environment’s latent variables and the precision of these estimates), leverage multiple levels of latent structure, and adapt their effective learning rate to changes without changing their connection weights. Being ubiquitous in the brain, gated recurrence could therefore serve as a generic building block to predict in real-life environments.
Collapse
Affiliation(s)
- Cédric Foucault
- INSERM, CEA, Université Paris-Saclay, Gif sur Yvette, France
| | | |
Collapse
|
49
|
Panizza F, Vostroknutov A, Coricelli G. How conformity can lead to polarised social behaviour. PLoS Comput Biol 2021; 17:e1009530. [PMID: 34669694 PMCID: PMC8559952 DOI: 10.1371/journal.pcbi.1009530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/01/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Learning social behaviour of others strongly influences one’s own social attitudes. We compare several distinct explanations of this phenomenon, testing their predictions using computational modelling across four experimental conditions. In the experiment, participants chose repeatedly whether to pay for increasing (prosocial) or decreasing (antisocial) the earnings of an unknown other. Halfway through the task, participants predicted the choices of an extremely prosocial or antisocial agent (either a computer, a single participant, or a group of participants). Our analyses indicate that participants polarise their social attitude mainly due to normative expectations. Specifically, most participants conform to presumed demands by the authority (vertical influence), or because they learn that the observed human agents follow the norm very closely (horizontal influence). What drives people to extreme acts of generosity? What causes behaviour that is unduly spiteful? This study explored how our social decisions polarise. Participants chose whether to spend money to increase or decrease the earnings of an unknown person. Halfway through this task, they observed another agent playing. The agent took participants’ choices to the extremes: if for instance the participant was moderately generous, it spent considerable sums to help the other. Participants conformed regardless of whether the agent was a computer algorithm, a person, or a group of people. We tested several competing explanations of why this happened with the help of cognitive modelling. Our analyses identify two factors behind polarisation: willingness to comply with the experimenter expectations (social desirability), and concern about appropriate behaviour (norm conformity). Our approach provided insight into how social choices are influenced by others, and could be applied in the study of conformity in other types of decisions.
Collapse
Affiliation(s)
- Folco Panizza
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
- Center for Mind/Brain Sciences, University of Trento, Mattarello (TN), Italy
- * E-mail:
| | | | - Giorgio Coricelli
- Department of Economics, University of Southern California, Los Angeles, California, United States of America
- LaPsyDÉ, UMR CNRS 8240, La Sorbonne, Paris, France
| |
Collapse
|
50
|
Ebitz RB, Hayden BY. The population doctrine in cognitive neuroscience. Neuron 2021; 109:3055-3068. [PMID: 34416170 PMCID: PMC8725976 DOI: 10.1016/j.neuron.2021.07.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023]
Abstract
A major shift is happening within neurophysiology: a population doctrine is drawing level with the single-neuron doctrine that has long dominated the field. Population-level ideas have so far had their greatest impact in motor neuroscience, but they hold great promise for resolving open questions in cognition as well. Here, we codify the population doctrine and survey recent work that leverages this view to specifically probe cognition. Our discussion is organized around five core concepts that provide a foundation for population-level thinking: (1) state spaces, (2) manifolds, (3) coding dimensions, (4) subspaces, and (5) dynamics. The work we review illustrates the progress and promise that population-level thinking holds for cognitive neuroscience-for delivering new insight into attention, working memory, decision-making, executive function, learning, and reward processing.
Collapse
Affiliation(s)
- R Becket Ebitz
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|