1
|
Dyer A, Lunau K. It's not easy being green. A commentary on 'Green flowers need yellow to get noticed in a green world'. ANNALS OF BOTANY 2025:mcaf016. [PMID: 40037602 DOI: 10.1093/aob/mcaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Adrian Dyer
- Department of Physiology, Monash University, Clayton, Australia
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Gadiwalla S, Guillaume C, Huang L, White SJB, Basha N, Petersen PH, Galliano E. Ex Vivo Functional Characterization of Mouse Olfactory Bulb Projection Neurons Reveals a Heterogeneous Continuum. eNeuro 2025; 12:ENEURO.0407-24.2025. [PMID: 39904626 PMCID: PMC11881907 DOI: 10.1523/eneuro.0407-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Mitral cells (MCs) and tufted cells (TCs) in the olfactory bulb (OB) act as an input convergence hub and transmit information to higher olfactory areas. Since first characterized, they have been classed as distinct projection neurons based on size and location: laminarly arranged MCs with a diameter larger than 20 µm in the mitral layer (ML) and smaller TCs spread across both the ML and external plexiform layers (EPL). Recent in vivo work has shown that these neurons encode complementary olfactory information, akin to parallel channels in other sensory systems. Yet, many ex vivo studies still collapse them into a single class, mitral/tufted, when describing their physiological properties and impact on circuit function. Using immunohistochemistry and whole-cell patch-clamp electrophysiology in fixed or acute slices from adult mice, we attempted to align in vivo and ex vivo data and test a soma size-based classifier of bulbar projection neurons using passive and intrinsic firing properties. We found that there is no clear separation between cell types based on passive or active properties. Rather, there is a heterogeneous continuum with three loosely clustered subgroups: TCs in the EPL, and putative tufted or putative MCs in the ML. These findings illustrate the large functional heterogeneity present within the OB projection neurons and complement existing literature highlighting how heterogeneity in sensory systems is preponderant and possibly used in the OB to decode complex olfactory information.
Collapse
Affiliation(s)
- Sana Gadiwalla
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik 102, Iceland
| | - Chloé Guillaume
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
| | - Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
| | - Samuel J B White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
| | - Nihal Basha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
| | - Pétur Henry Petersen
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik 102, Iceland
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EL, United Kingdom
| |
Collapse
|
3
|
Müller-Axt C, Kauffmann L, Eichner C, von Kriegstein K. Dysfunction of the magnocellular subdivision of the visual thalamus in developmental dyslexia. Brain 2025; 148:252-261. [PMID: 39110638 PMCID: PMC11706283 DOI: 10.1093/brain/awae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 01/11/2025] Open
Abstract
Developmental dyslexia (DD) is one of the most common learning disorders, affecting millions of children and adults worldwide. To date, scientific research has attempted to explain DD primarily based on pathophysiological alterations in the cerebral cortex. In contrast, several decades ago, pioneering research on five post-mortem human brains suggested that a core characteristic of DD might be morphological alterations in a specific subdivision of the visual thalamus-the magnocellular lateral geniculate nucleus (M-LGN). However, due to considerable technical challenges in investigating LGN subdivisions non-invasively in humans, this finding was never confirmed in vivo, and its relevance for DD pathology remained highly controversial. Here, we leveraged recent advances in high resolution MRI at high field strength (7 T) to investigate the M-LGN in DD in vivo. Using a case-control design, we acquired data from a large sample of young adults with DD (n = 26; age 28 ± 7 years; 13 females) and matched control participants (n = 28; age 27 ± 6 years; 15 females). Each participant completed a comprehensive diagnostic behavioural test battery and participated in two MRI sessions, including three functional MRI experiments and one structural MRI acquisition. We measured blood oxygen level-dependent responses and longitudinal relaxation rates to compare both groups on LGN subdivision function and myelination. Based on previous research, we hypothesized that the M-LGN is altered in DD and that these alterations are associated with a key DD diagnostic score, i.e. rapid letter and number naming. The results showed aberrant responses of the M-LGN in DD compared to controls, which was reflected in a different functional lateralization of this subdivision between groups. These alterations were associated with rapid letter and number naming performance, specifically in male DD. We also found lateralization differences in the longitudinal relaxation rates of the M-LGN in DD relative to controls. Conversely, the other main subdivision of the LGN, the parvocellular LGN (P-LGN), showed comparable blood oxygen level-dependent responses and longitudinal relaxation rates between groups. The present study is the first to unequivocally show that M-LGN alterations are a hallmark of DD, affecting both the function and microstructure of this subdivision. It further provides a first functional interpretation of M-LGN alterations and a basis for a better understanding of sex-specific differences in DD with implications for prospective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Christa Müller-Axt
- Faculty of Psychology, TUD Dresden University of Technology, 01062 Dresden, Germany
- Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Louise Kauffmann
- Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Laboratory of Psychology and NeuroCognition, Grenoble Alpes University, 38000 Grenoble, France
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | | |
Collapse
|
4
|
Zeng Q, Yang L, Li Y, Xie L, Feng Y. RGVPSeg: multimodal information fusion network for retinogeniculate visual pathway segmentation. Med Biol Eng Comput 2025:10.1007/s11517-024-03248-z. [PMID: 39743637 DOI: 10.1007/s11517-024-03248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
The segmentation of the retinogeniculate visual pathway (RGVP) enables quantitative analysis of its anatomical structure. Multimodal learning has exhibited considerable potential in segmenting the RGVP based on structural MRI (sMRI) and diffusion MRI (dMRI). However, the intricate nature of the skull base environment and the slender morphology of the RGVP pose challenges for existing methodologies to adequately leverage the complementary information from each modality. In this study, we propose a multimodal information fusion network designed to optimize and select the complementary information across multiple modalities: the T1-weighted (T1w) images, the fractional anisotropy (FA) images, and the fiber orientation distribution function (fODF) peaks, and the modalities can supervise each other during the process. Specifically, we add a supervised master-assistant cross-modal learning framework between the encoder layers of different modalities so that the characteristics of different modalities can be more fully utilized to achieve a more accurate segmentation result. We apply RGVPSeg to an MRI dataset with 102 subjects from the Human Connectome Project (HCP) and 10 subjects from Multi-shell Diffusion MRI (MDM), the experimental results show promising results, which demonstrate that the proposed framework is feasible and outperforms the methods mentioned in this paper. Our code is freely available at https://github.com/yanglin9911/RGVPSeg .
Collapse
Affiliation(s)
- Qingrun Zeng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Lin Yang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yongqiang Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Lei Xie
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Yuanjing Feng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
5
|
Zhang XH, Anderson KM, Dong HM, Chopra S, Dhamala E, Emani PS, Gerstein MB, Margulies DS, Holmes AJ. The cell-type underpinnings of the human functional cortical connectome. Nat Neurosci 2025; 28:150-160. [PMID: 39572742 DOI: 10.1038/s41593-024-01812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cerebral cortex. The cortical sheet can be broadly divided into distinct networks, which are embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here using microarray data from the Allen Human Brain Atlas and single-nucleus RNA-sequencing data from multiple cortical territories, we demonstrate that cell-type distributions are spatially coupled to the functional organization of cortex, as estimated through functional magnetic resonance imaging. Differentially enriched cells follow the spatial topography of both functional gradients and associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on postmortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.
Collapse
Affiliation(s)
- Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA.
| | | | - Hao-Ming Dong
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Daniel S Margulies
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Karamanlis D, Khani MH, Schreyer HM, Zapp SJ, Mietsch M, Gollisch T. Nonlinear receptive fields evoke redundant retinal coding of natural scenes. Nature 2025; 637:394-401. [PMID: 39567692 PMCID: PMC11711096 DOI: 10.1038/s41586-024-08212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
The role of the vertebrate retina in early vision is generally described by the efficient coding hypothesis1,2, which predicts that the retina reduces the redundancy inherent in natural scenes3 by discarding spatiotemporal correlations while preserving stimulus information4. It is unclear, however, whether the predicted decorrelation and redundancy reduction in the activity of ganglion cells, the retina's output neurons, hold under gaze shifts, which dominate the dynamics of the natural visual input5. We show here that species-specific gaze patterns in natural stimuli can drive correlated spiking responses both in and across distinct types of ganglion cells in marmoset as well as mouse retina. These concerted responses disrupt redundancy reduction to signal fixation periods with locally high spatial contrast. Model-based analyses of ganglion cell responses to natural stimuli show that the observed response correlations follow from nonlinear pooling of ganglion cell inputs. Our results indicate cell-type-specific deviations from efficient coding in retinal processing of natural gaze shifts.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland.
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Han X, Bonin V. Higher-order cortical and thalamic pathways shape visual processing streams in the mouse cortex. Curr Biol 2024; 34:5671-5684.e6. [PMID: 39566501 DOI: 10.1016/j.cub.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Mammalian visual functions rely on distributed processing across interconnected cortical and subcortical regions. In higher-order visual areas (HVAs), visual features are processed in specialized streams that integrate feedforward and higher-order inputs from intracortical and thalamocortical pathways. However, the precise circuit organization responsible for HVA specialization remains unclear. We investigated the cellular architecture of primary visual cortex (V1) and higher-order visual pathways in the mouse, focusing on their roles in shaping visual representations. Using in vivo functional imaging and neural circuit tracing, we found that HVAs preferentially receive inputs from both V1 and higher-order pathways tuned to similar spatiotemporal properties, with the strongest selectivity seen in layer 2/3 neurons. These neurons exhibit target-specific tuning and sublaminar specificity in their projections, reflecting cell-type-specific visual information flow. In contrast, HVA layer 5 pathways nonspecifically broadcast visual signals across cortical areas, suggesting a role in distributing HVA outputs. Additionally, thalamocortical pathways from the lateral posterior thalamic nucleus (LP) provide highly specific, nearly non-overlapping visual inputs to HVAs, complementing intracortical inputs and contributing to input functional diversity. Our findings suggest that the convergence of laminar and cell-type-specific pathways V1 and higher-order intracortical and thalamocortical pathways plays a key role in shaping the functional specialization and diversity of HVAs.
Collapse
Affiliation(s)
- Xu Han
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Schelinski S, Kauffmann L, Tabas A, Müller-Axt C, von Kriegstein K. Functional alterations of the magnocellular subdivision of the visual sensory thalamus in autism. Proc Natl Acad Sci U S A 2024; 121:e2413409121. [PMID: 39527738 PMCID: PMC11588090 DOI: 10.1073/pnas.2413409121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
The long-standing hypothesis that autism is linked to changes in the visual magnocellular system of the human brain has never been directly examined due to technological constraints. Here, we used a recently developed 7-Tesla functional MRI (fMRI) approach to investigate this hypothesis within the visual sensory thalamus (lateral geniculate nucleus, LGN). The LGN is a crucial component of the primary visual pathway. It is particularly suited to investigate the magnocellular visual system, because within the LGN, the magnocellular (mLGN) uniquely segregates from the parvocellular (pLGN) system. Our results revealed diminished mLGN blood-oxygenation-level-dependent (BOLD) responses in the autism group compared to controls. pLGN responses were comparable across groups. The mLGN alterations were observed specifically for stimuli optimized for mLGN function, i.e., visual displays with low spatial frequency and high temporal flicker frequency. The results confirm the long-standing hypothesis of magnocellular visual system alterations in autism. They substantiate the emerging perspective that sensory processing variations are part of autism symptomatology.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Dresden University of Technology, Dresden01187, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04303, Germany
| | - Louise Kauffmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04303, Germany
- Laboratoire de Psychologie et Neurocognition, Université Grenoble Alpes, Grenoble38000, France
| | - Alejandro Tabas
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04303, Germany
- Basque Center on Cognition, Brain and Language, San Sebastian20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao48009, Spain
| | - Christa Müller-Axt
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Dresden University of Technology, Dresden01187, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04303, Germany
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Dresden University of Technology, Dresden01187, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04303, Germany
| |
Collapse
|
9
|
Liu S, Wang Y, Yu X, Li J, Zhou J, Li Y, Wang Z, Zhou C, Xie J, Guo A, Zhou X, Ding Y, Li X, Ding L. Investigating the effects of simulated high altitude on colour discrimination. BMJ Open Ophthalmol 2024; 9:e001894. [PMID: 39510602 PMCID: PMC11551991 DOI: 10.1136/bmjophth-2024-001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE To quantify changes in colour vision immediately after exposure to different altitudes of low-pressure hypoxia. METHODS The study involved 35 healthy participants (ages 20-26). Colour vision was assessed using the Farnsworth-Munsell 100-Hue test at eight different altitudes (condition 1: ground, condition 2: 3500 m, condition 3: 3500 m after 40 min, condition 4: 4000 m, condition 5: 4000 m after 40 min, condition 6: 4500 m, condition 7: 4500 m after 40 min, condition 8: back to the ground). Data were analysed using Analysis of Variance (ANOVA), paired t-test, and χ2 test . RESULTS Total Error Score (TES) increased with altitude and hypoxia duration, with higher TES in condition 8 than in condition 1. There were significant TES differences between conditions 3 and 7, as well as 4 and 7. Friedman and repeated ANOVA tests revealed significant sector differences, with Blue-Yellow Partial Error Score (PES) greater than Red-Green PES, particularly on conditions 4, 5 and 8. Significant Red-Green PES differences were found between conditions 4 and 7, and Blue-Yellow PES between conditions 3 and 5, 7, 8. Tritan (Blue-Yellow) shift was most pronounced at high altitudes. CONCLUSIONS This experiment investigated acute low-pressure hypoxia's effects on colour vision, supplementing chronic hypoxia research. Increased altitudes and exposure duration worsen colour vision, with effects persisting post-recovery. Tritan axis loss is most significant under hypoxia.
Collapse
Affiliation(s)
- Siru Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yuchen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xinli Yu
- Beihang University, Beijing, China
| | - Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jun Zhou
- Beihang University, Beijing, China
| | - Yuanhong Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Zesong Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Chengkai Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jiaxing Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Anqi Guo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xinzuo Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yi Ding
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Li Ding
- Beihang University, Beijing, China
| |
Collapse
|
10
|
Liu Z, Zhang M, Zhang Q, Li G, Xie D, Wang Z, Xie J, Guo E, He M, Wang C, Gu L, Yang G, Jin K, Ge C. All-In-One Optoelectronic Transistors for Bio-Inspired Visual System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409520. [PMID: 39375990 DOI: 10.1002/adma.202409520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Indexed: 10/09/2024]
Abstract
Visual perception has profound effects on human decision-making and emotional responses. Replicating the functions of the human visual system through device development has been a constant pursuit in recent years. However, to fully simulate the various functions of the human visual system, it is often necessary to integrate multiple devices with different functions, resulting in complex, large-volume device structures and increased power consumption. Here, an optoelectronic transistor with comprehensive visual functions is introduced. By coupling diverse photoreceptive properties of the channel and electrical regulation through charge injection/ferroelectric switching from the hafnium-based gate, the devices can simulate functions of both photoreceptors in the retina and synapses in the visual cortex. A device array is constructed to confirm the perceptual functions of cone and rod cells. Subsequently, color discrimination and recognition for color images are achieved by combining the tunable perception and synapse functions. Then an intelligent traffic judgment system with this all-in-one device is developed, which is capable of making judgments and decisions regarding traffic signals and pedestrian movements. This work provides a potential solution for developing compact and efficient devices for the next-generation bio-inspired visual system.
Collapse
Affiliation(s)
- Zhuohui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhen Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Zheng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Jiahui Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erjia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Meng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
11
|
Zhang Y, Zhou K, Bao P, Liu J. A biologically inspired computational model of human ventral temporal cortex. Neural Netw 2024; 178:106437. [PMID: 38936111 DOI: 10.1016/j.neunet.2024.106437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Our minds represent miscellaneous objects in the physical world metaphorically in an abstract and complex high-dimensional object space, which is implemented in a two-dimensional surface of the ventral temporal cortex (VTC) with topologically organized object selectivity. Here we investigated principles guiding the topographical organization of object selectivities in the VTC by constructing a hybrid Self-Organizing Map (SOM) model that harnesses a biologically inspired algorithm of wiring cost minimization and adheres to the constraints of the lateral wiring span of human VTC neurons. In a series of in silico experiments with functional brain neuroimaging and neurophysiological single-unit data from humans and non-human primates, the VTC-SOM predicted the topographical structure of fine-scale category-selective regions (face-, tool-, body-, and place-selective regions) and the boundary in large-scale abstract functional maps (animate vs. inanimate, real-word small-size vs. big-size, central vs. peripheral), with no significant loss in functionality (e.g., categorical selectivity and view-invariant representations). In addition, when the same principle was applied to V1 orientation preferences, a pinwheel-like topology emerged, suggesting the model's broad applicability. In summary, our study illustrates that the simple principle of wiring cost minimization, coupled with the appropriate biological constraint of lateral wiring span, is able to implement the high-dimensional object space in a two-dimensional cortical surface.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Tsinghua Laboratory of Brain & Intelligence, Department of Psychology, Tsinghua University, Beijing, 100084, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Pinglei Bao
- Department of Psychology, Peking University, Beijing, 100871, China
| | - Jia Liu
- Tsinghua Laboratory of Brain & Intelligence, Department of Psychology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
MacNeil RR, Enns JT. The "What" and "How" of Pantomime Actions. Vision (Basel) 2024; 8:58. [PMID: 39449391 PMCID: PMC11503306 DOI: 10.3390/vision8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines of research: (1) the two visual systems (TVS) framework for visually guided action, and (2) the neuropsychological literature on limb apraxia. Historically, the TVS framework has considered pantomime actions as expressions of conscious perceptual processing in the ventral stream, but an emerging view is that they are jointly influenced by ventral and dorsal stream processing. Within the apraxia literature, pantomimes were historically viewed as learned motor schemas, but there is growing recognition that they include creative and improvised actions. Both literatures now recognize that pantomimes are often created spontaneously, sometimes drawing on memory and always requiring online cognitive control. By highlighting this convergence of ideas, we aim to encourage greater collaboration across these two research areas, in an effort to better understand these uniquely human behaviors.
Collapse
Affiliation(s)
- Raymond R. MacNeil
- Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | | |
Collapse
|
13
|
Ashtari M, Bennett J, Leopold DA. Central visual pathways affected by degenerative retinal disease before and after gene therapy. Brain 2024; 147:3234-3246. [PMID: 38538211 PMCID: PMC11370797 DOI: 10.1093/brain/awae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's congenital amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI (fMRI) was used to assess retinal signal transmission in cortical and subcortical visual structures before and 1 year after retinal intervention. The fMRI paradigm consisted of 15-s blocks of flickering (8 Hz) black and white checkerboards interleaved with 15 s of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway. Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some re-engagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the retinotectal pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.
Collapse
Affiliation(s)
- Manzar Ashtari
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
15
|
Zhao X, Zou H, Wang M, Wang J, Wang T, Wang L, Chen X. Conformal Neuromorphic Bioelectronics for Sense Digitalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403444. [PMID: 38934554 DOI: 10.1002/adma.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haochen Zou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
16
|
Wong WW, Peel H, Cabeen R, Diaz-Fong JP, Feusner JD. Visual system structural and functional connections during face viewing in body dysmorphic disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603273. [PMID: 39071433 PMCID: PMC11275846 DOI: 10.1101/2024.07.12.603273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Individuals with body dysmorphic disorder (BDD) perceive distortions in their appearance, which could be due to imbalances in global and local visual processing. The vertical occipital fasciculus connects dorsal and ventral visual stream regions, integrating global and local information, yet the role of this structural connection in BDD has not been explored. Here, we investigated the vertical occipital fasciculus's white matter microstructure in those with BDD and healthy controls and tested associations with psychometric measures and effective connectivity while viewing their face during fMRI. Methods We analyzed diffusion MRI and fMRI data in 17 unmedicated adults with BDD and 21 healthy controls. For diffusion MRI, bundle-specific analysis was performed, enabling quantitative estimation of neurite density and orientation dispersion of the vertical occipital fasciculus. For task fMRI, participants naturalistically viewed photos of their own face, from which we computed effective connectivity from dorsal to ventral visual regions. Results In BDD, neurite density was negatively correlated with appearance dissatisfaction and negatively correlated with effective connectivity. Further, those with weaker effective connectivity while viewing their face had worse BDD symptoms and worse insight. In controls, no significant relationships were found between any of the measures. There were no significant group differences in neurite density or orientation dispersion. Conclusion Those with BDD with worse appearance dissatisfaction have a lower fraction of tissue having axons or dendrites along the vertical occipital fasciculus bundle, possibly reflecting impacting the degree of integration of global and local visual information between the dorsal and ventral visual streams. These results provide early insights into how the vertical occipital fasciculus's microstructure relates to the subjective experience of one's appearance, as well as the possibility of distinct functional-structural relationships in BDD.
Collapse
Affiliation(s)
- Wan-wa Wong
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Hayden Peel
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- La Trobe University, Melbourne, VIC, Australia
| | - Ryan Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Jamie D. Feusner
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry, Division of Neurosciences & Clinical Translation, University of Toronto, Toronto, ON, Canada
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Wang Y, Xie J, Yu X, Liu Y, Wang Z, Guo A, Ding Y, Zhou X, Liu S, Li J, Zhou C, Li Y, Liu Z, Li X, Ding L. Influence of short-term hypoxia exposure on dynamic visual acuity. Front Neurosci 2024; 18:1428987. [PMID: 39050671 PMCID: PMC11266189 DOI: 10.3389/fnins.2024.1428987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background To quantify the changes in dynamic visual acuity (DVA) and explain the hidden reasons after acute exposure to hypobaric hypoxia status. Methods The study group comprised 18 healthy male and 15 healthy female participants aged 20-24 years old. DVA was measured with the self-developed software of Meidixin (Tianjin) Co., Ltd. Measurements were taken at eight altitudes. Data analysis was performed using the Kolmogorov-Smirnov test, paired sample T-test, and two-way repeated measures analysis of variance (ANOVA) for repeated measurements. Results At constant altitude, DVA showed an overall decreasing trend with increasing angular velocity and a fluctuating decrease at the vast majority of altitudes. At constant angular velocities, DVA gradually increased with altitude, with the most pronounced increase in DVA at altitude 5, and thereafter a gradual decrease in DVA as altitude increased. Finally, as altitude decreased, DVA increased again and reached a higher level at the end of the experiment, which was superior to the DVA in the initial state. Conclusion Under a hypobaric hypoxic environment at high altitude, DVA was affected by the angular velocity and the degree of hypoxia, manifesting as an increase or decrease in DVA, which affects the pilot's observation of the display and control interfaces during the driving process, acquisition of information, and decision-making ability, which in turn may potentially jeopardize the safety of the flight.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiaxing Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xinli Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yihe Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zesong Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Anqi Guo
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yi Ding
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xinzuo Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Siru Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chengkai Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yuanhong Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Li Ding
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
18
|
Fadaei AH, Dehaqani MRA. Going beyond still images to improve input variance resilience in multi-stream vision understanding models. Sci Rep 2024; 14:15366. [PMID: 38965359 PMCID: PMC11224316 DOI: 10.1038/s41598-024-66346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Traditionally, vision models have predominantly relied on spatial features extracted from static images, deviating from the continuous stream of spatiotemporal features processed by the brain in natural vision. While numerous video-understanding models have emerged, incorporating videos into image-understanding models with spatiotemporal features has been limited. Drawing inspiration from natural vision, which exhibits remarkable resilience to input changes, our research focuses on the development of a brain-inspired model for vision understanding trained with videos. Our findings demonstrate that models that train on videos instead of still images and include temporal features become more resilient to various alternations on input media.
Collapse
Affiliation(s)
- Amir Hosein Fadaei
- College of Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Mohammad-Reza A Dehaqani
- College of Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
19
|
Ordóñez-Rubiano EG, Castañeda-Duarte MA, Baeza-Antón L, Romo-Quebradas JA, Perilla-Estrada JP, Perilla-Cepeda TA, Enciso-Olivera CO, Rudas J, Marín-Muñoz JH, Pulido C, Gómez F, Martínez D, Zorro O, Garzón E, Patiño-Gómez JG. Resting state networks in patients with acute disorders of consciousness after severe traumatic brain injury. Clin Neurol Neurosurg 2024; 242:108353. [PMID: 38830290 DOI: 10.1016/j.clineuro.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES This study aims to describe resting state networks (RSN) in patients with disorders of consciousness (DOC)s after acute severe traumatic brain injury (TBI). METHODS Adult patients with TBI with a GCS score <8 who remained in a coma, minimally conscious state (MCS), or unresponsive wakefulness syndrome (UWS), between 2017 and 2020 were included. Blood-oxygen-level dependent imaging was performed to compare their RSN with 10 healthy volunteers. RESULTS Of a total of 293 patients evaluated, only 13 patients were included according to inclusion criteria: 7 in coma (54%), 2 in MCS (15%), and 4 (31%) had an UWS. RSN analysis showed that the default mode network (DMN) was present and symmetric in 6 patients (46%), absent in 1 (8%), and asymmetric in 6 (46%). The executive control network (ECN) was present in all patients but was asymmetric in 3 (23%). The right ECN was absent in 2 patients (15%) and the left ECN in 1 (7%). The medial visual network was present in 11 (85%) patients. Finally, the cerebellar network was symmetric in 8 patients (62%), asymmetric in 1 (8%), and absent in 4 (30%). CONCLUSIONS A substantial impairment in activation of RSN is demonstrated in patients with DOC after severe TBI in comparison with healthy subjects. Three patterns of activation were found: normal/complete activation, 2) asymmetric activation or partially absent, and 3) absent activation.
Collapse
Affiliation(s)
- Edgar G Ordóñez-Rubiano
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Marcelo A Castañeda-Duarte
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Laura Baeza-Antón
- Department of Neurological Surgery, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, NY, USA.
| | - Jorge A Romo-Quebradas
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Juan P Perilla-Estrada
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Tito A Perilla-Cepeda
- Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Cesar O Enciso-Olivera
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge Rudas
- Department of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge H Marín-Muñoz
- Department of Radiology, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia; Innovation and Research Division, Imaging Experts and Healthcare Services (ImexHS), Bogotá, Colombia
| | - Cristian Pulido
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Francisco Gómez
- Department of Computer Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Darwin Martínez
- Department of Computer Science, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Oscar Zorro
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Emilio Garzón
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Javier G Patiño-Gómez
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| |
Collapse
|
20
|
Bhagwandin A, Molnár Z, Bertelsen MF, Karlsson KÆ, Alagaili AN, Bennett NC, Hof PR, Kaswera-Kyamakya C, Gilissen E, Jayakumar J, Manger PR. Where Do Core Thalamocortical Axons Terminate in Mammalian Neocortex When There Is No Cytoarchitecturally Distinct Layer 4? J Comp Neurol 2024; 532:e25652. [PMID: 38962882 DOI: 10.1002/cne.25652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Although the mammalian cerebral cortex is most often described as a hexalaminar structure, there are cortical areas (primary motor cortex) and species (elephants, cetaceans, and hippopotami), where a cytoarchitecturally indistinct, or absent, layer 4 is noted. Thalamocortical projections from the core, or first order, thalamic system terminate primarily in layers 4/inner 3. We explored the termination sites of core thalamocortical projections in cortical areas and in species where there is no cytoarchitecturally distinct layer 4 using the immunolocalization of vesicular glutamate transporter 2, a known marker of core thalamocortical axon terminals, in 31 mammal species spanning the eutherian radiation. Several variations from the canonical cortical column outline of layer 4 and core thalamocortical inputs were noted. In shrews/microchiropterans, layer 4 was present, but many core thalamocortical projections terminated in layer 1 in addition to layers 4 and inner 3. In primate primary visual cortex, the sublaminated layer 4 was associated with a specialized core thalamocortical projection pattern. In primate primary motor cortex, no cytoarchitecturally distinct layer 4 was evident and the core thalamocortical projections terminated throughout layer 3. In the African elephant, cetaceans, and river hippopotamus, no cytoarchitecturally distinct layer 4 was observed and core thalamocortical projections terminated primarily in inner layer 3 and less densely in outer layer 3. These findings are contextualized in terms of cortical processing, perception, and the evolutionary trajectory leading to an indistinct or absent cortical layer 4.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Karl Æ Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Nigel C Bennett
- South African Research Chair of Mammal Behavioural Ecology and Physiology, University of Pretoria, Pretoria, South Africa
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, India
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
21
|
Mishra RK, Prasad S. Parallel Interactions Between Linguistic and Contextual Factors in Bilinguals. Top Cogn Sci 2024. [PMID: 38923214 DOI: 10.1111/tops.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The necessity for introducing interactionist and parallelism approaches in different branches of cognitive science emerged as a reaction to classical sequential stage-based models. Functional psychological models that emphasized and explained how different components interact, dynamically producing cognitive and perceptual states, influenced multiple disciplines. Chiefly among them were experimental psycholinguistics and the many applied areas that dealt with humans' ability to process different types of information in different contexts. Understanding how bilinguals represent and process verbal and visual input, how their neural and psychological states facilitate such interactions, and how linguistic and nonlinguistic processing overlap, has now emerged as an important area of multidisciplinary research. In this article, we will review available evidence from different language-speaking groups of bilinguals in India with a focus on situational context. In the discussion, we will address models of language processing in bilinguals within a cognitive psychological approach with a focus on existent models of inhibitory control. The paper's stated goal will be to show that the parallel architecture framework can serve as a theoretical foundation for examining bilingual language processing and its interface with external factors such as social context.
Collapse
Affiliation(s)
- Ramesh K Mishra
- Center for Neural and Cognitive Sciences, University of Hyderabad
| | - Seema Prasad
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden
| |
Collapse
|
22
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
23
|
Kosnoff J, Yu K, Liu C, He B. Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention. Nat Commun 2024; 15:4382. [PMID: 38862476 PMCID: PMC11167030 DOI: 10.1038/s41467-024-48576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
A brain-computer interface (BCI) enables users to control devices with their minds. Despite advancements, non-invasive BCIs still exhibit high error rates, prompting investigation into the potential reduction through concurrent targeted neuromodulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive neuromodulation technology with high spatiotemporal precision. This study examines whether tFUS neuromodulation can improve BCI outcomes, and explores the underlying mechanism of action using high-density electroencephalography (EEG) source imaging (ESI). As a result, V5-targeted tFUS significantly reduced the error in a BCI speller task. Source analyses revealed a significantly increase in theta and alpha activities in the tFUS condition at both V5 and downstream in the dorsal visual processing pathway. Correlation analysis indicated that the connection within the dorsal processing pathway was preserved during tFUS stimulation, while the ventral connection was weakened. These findings suggest that V5-targeted tFUS enhances feature-based attention to visual motion.
Collapse
Affiliation(s)
- Joshua Kosnoff
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Chang Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
| |
Collapse
|
24
|
Liu Y, Zhang J, Jiang Z, Qin M, Xu M, Zhang S, Ma G. Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex. Nat Commun 2024; 15:4495. [PMID: 38802410 PMCID: PMC11130321 DOI: 10.1038/s41467-024-48924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Unified visual perception requires integration of bottom-up and top-down inputs in the primary visual cortex (V1), yet the organization of top-down inputs in V1 remains unclear. Here, we used optogenetics-assisted circuit mapping to identify how multiple top-down inputs from higher-order cortical and thalamic areas engage V1 excitatory and inhibitory neurons. Top-down inputs overlap in superficial layers yet segregate in deep layers. Inputs from the medial secondary visual cortex (V2M) and anterior cingulate cortex (ACA) converge on L6 Pyrs, whereas ventrolateral orbitofrontal cortex (ORBvl) and lateral posterior thalamic nucleus (LP) inputs are processed in parallel in Pyr-type-specific subnetworks (Pyr←ORBvl and Pyr←LP) and drive mutual inhibition between them via local interneurons. Our study deepens understanding of the top-down modulation mechanisms of visual processing and establishes that V2M and ACA inputs in L6 employ integrated processing distinct from the parallel processing of LP and ORBvl inputs in L5.
Collapse
Affiliation(s)
- Yanmei Liu
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiahe Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhishan Jiang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siyu Zhang
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guofen Ma
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
25
|
Phangwiwat T, Phunchongharn P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague TC, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. Sci Rep 2024; 14:11188. [PMID: 38755251 PMCID: PMC11099062 DOI: 10.1038/s41598-024-61171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Phond Phunchongharn
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Chaipat Chunharas
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thomas C Sprague
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Geoffrey F Woodman
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
- Big Data Experience Center (BX), King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10600, Thailand.
- Department of Psychology, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
26
|
Wang T, Dai W, Wu Y, Li Y, Yang Y, Zhang Y, Zhou T, Sun X, Wang G, Li L, Dou F, Xing D. Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates. Nat Commun 2024; 15:4005. [PMID: 38740786 DOI: 10.1038/s41467-024-48379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The neocortex comprises six cortical layers that play a crucial role in information processing; however, it remains unclear whether laminar processing is consistent across all regions within a single cortex. In this study, we demonstrate diverse laminar response patterns in the primary visual cortex (V1) of three male macaque monkeys when exposed to visual stimuli at different spatial frequencies (SFs). These response patterns can be categorized into two groups. One group exhibit suppressed responses in the output layers for all SFs, while the other type shows amplified responses specifically at high SFs. Further analysis suggests that both magnocellular (M) and parvocellular (P) pathways contribute to the suppressive effect through feedforward mechanisms, whereas amplification is specific to local recurrent mechanisms within the parvocellular pathway. These findings highlight the non-uniform distribution of neural mechanisms involved in laminar processing and emphasize how pathway-specific amplification selectively enhances representations of high-SF information in primate V1.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100005, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
27
|
Li J, Hua L, Deng SW. Modality-specific impacts of distractors on visual and auditory categorical decision-making: an evidence accumulation perspective. Front Psychol 2024; 15:1380196. [PMID: 38765839 PMCID: PMC11099231 DOI: 10.3389/fpsyg.2024.1380196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Our brain constantly processes multisensory inputs to make decisions and guide behaviors, but how goal-relevant processes are influenced by irrelevant information is unclear. Here, we investigated the effects of intermodal and intramodal task-irrelevant information on visual and auditory categorical decision-making. In both visual and auditory tasks, we manipulated the modality of irrelevant inputs (visual vs. auditory vs. none) and used linear discrimination analysis of EEG and hierarchical drift-diffusion modeling (HDDM) to identify when and how task-irrelevant information affected decision-relevant processing. The results revealed modality-specific impacts of irrelevant inputs on visual and auditory categorical decision-making. The distinct effects on the visual task were shown on the neural components, with auditory distractors amplifying the sensory processing whereas visual distractors amplifying the post-sensory process. Conversely, the distinct effects on the auditory task were shown in behavioral performance and underlying cognitive processes. Visual distractors facilitate behavioral performance and affect both stages, but auditory distractors interfere with behavioral performance and impact on the sensory processing rather than the post-sensory decision stage. Overall, these findings suggested that auditory distractors affect the sensory processing stage of both tasks while visual distractors affect the post-sensory decision stage of visual categorical decision-making and both stages of auditory categorical decision-making. This study provides insights into how humans process information from multiple sensory modalities during decision-making by leveraging modality-specific impacts.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Psychology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Lin Hua
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Sophia W. Deng
- Department of Psychology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
28
|
Yang Z, Wang T, Lin Y, Chen Y, Zeng H, Pei J, Wang J, Liu X, Zhou Y, Zhang J, Wang X, Lv X, Zhao R, Shi L. A vision chip with complementary pathways for open-world sensing. Nature 2024; 629:1027-1033. [PMID: 38811710 DOI: 10.1038/s41586-024-07358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/26/2024] [Indexed: 05/31/2024]
Abstract
Image sensors face substantial challenges when dealing with dynamic, diverse and unpredictable scenes in open-world applications. However, the development of image sensors towards high speed, high resolution, large dynamic range and high precision is limited by power and bandwidth. Here we present a complementary sensing paradigm inspired by the human visual system that involves parsing visual information into primitive-based representations and assembling these primitives to form two complementary vision pathways: a cognition-oriented pathway for accurate cognition and an action-oriented pathway for rapid response. To realize this paradigm, a vision chip called Tianmouc is developed, incorporating a hybrid pixel array and a parallel-and-heterogeneous readout architecture. Leveraging the characteristics of the complementary vision pathway, Tianmouc achieves high-speed sensing of up to 10,000 fps, a dynamic range of 130 dB and an advanced figure of merit in terms of spatial resolution, speed and dynamic range. Furthermore, it adaptively reduces bandwidth by 90%. We demonstrate the integration of a Tianmouc chip into an autonomous driving system, showcasing its abilities to enable accurate, fast and robust perception, even in challenging corner cases on open roads. The primitive-based complementary sensing paradigm helps in overcoming fundamental limitations in developing vision systems for diverse open-world applications.
Collapse
Affiliation(s)
- Zheyu Yang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
- Lynxi Technologies, Beijing, China
| | - Taoyi Wang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yihan Lin
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yuguo Chen
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Hui Zeng
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jing Pei
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jiazheng Wang
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Xue Liu
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China
| | | | | | - Xin Wang
- Lynxi Technologies, Beijing, China
| | | | - Rong Zhao
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Luping Shi
- Center for Brain-Inspired Computing Research (CBICR), Optical Memory National Engineering Research Center and Department of Precision Instrument, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- THU-CET HIK Joint Research Center for Brain-Inspired Computing, Tsinghua University, Beijing, China.
| |
Collapse
|
29
|
Djama D, Zirpel F, Ye Z, Moore G, Chue C, Edge C, Jager P, Delogu A, Brickley SG. The type of inhibition provided by thalamic interneurons alters the input selectivity of thalamocortical neurons. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100130. [PMID: 38694514 PMCID: PMC11061260 DOI: 10.1016/j.crneur.2024.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
A fundamental problem in neuroscience is how neurons select for their many inputs. A common assumption is that a neuron's selectivity is largely explained by differences in excitatory synaptic input weightings. Here we describe another solution to this important problem. We show that within the first order visual thalamus, the type of inhibition provided by thalamic interneurons has the potential to alter the input selectivity of thalamocortical neurons. To do this, we developed conductance injection protocols to compare how different types of synchronous and asynchronous GABA release influence thalamocortical excitability in response to realistic patterns of retinal ganglion cell input. We show that the asynchronous GABA release associated with tonic inhibition is particularly efficient at maintaining information content, ensuring that thalamocortical neurons can distinguish between their inputs. We propose a model where alterations in GABA release properties results in rapid changes in input selectivity without requiring structural changes in the network.
Collapse
Affiliation(s)
- Deyl Djama
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Florian Zirpel
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, USA
| | - Gerald Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Charmaine Chue
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Edge
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Polona Jager
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | | |
Collapse
|
30
|
Tamura H. An analysis of information segregation in parallel streams of a multi-stream convolutional neural network. Sci Rep 2024; 14:9097. [PMID: 38643326 PMCID: PMC11032341 DOI: 10.1038/s41598-024-59930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Visual information is processed in hierarchically organized parallel streams in the primate brain. In the present study, information segregation in parallel streams was examined by constructing a convolutional neural network with parallel architecture in all of the convolutional layers. Although filter weights for convolution were initially set to random values, color information was segregated from shape information in most model instances after training. Deletion of the color-related stream decreased recognition accuracy of animate images, whereas deletion of the shape-related stream decreased recognition accuracy of both animate and inanimate images. The results suggest that properties of filters and functions of a stream are spontaneously segregated in parallel streams of neural networks.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Cognitive Neuroscience Group, Graduate School of Frontier Biosciences, The University of Osaka, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Center for Information and Neural Networks, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
31
|
Wang H, Dey O, Lagos WN, Behnam N, Callaway EM, Stafford BK. Parallel pathways carrying direction-and orientation-selective retinal signals to layer 4 of the mouse visual cortex. Cell Rep 2024; 43:113830. [PMID: 38386556 PMCID: PMC11111173 DOI: 10.1016/j.celrep.2024.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Parallel visual pathways from the retina to the primary visual cortex (V1) via the lateral geniculate nucleus are common to many mammalian species, including mice, carnivores, and primates. However, it remains unclear which visual features present in both retina and V1 may be inherited from parallel pathways versus extracted by V1 circuits in the mouse. Here, using calcium imaging and rabies circuit tracing, we explore the relationships between tuning of layer 4 (L4) V1 neurons and their retinal ganglion cell (RGC) inputs. We find that subpopulations of L4 V1 neurons differ in their tuning for direction, orientation, spatial frequency, temporal frequency, and speed. Furthermore, we find that direction-tuned L4 V1 neurons receive input from direction-selective RGCs, whereas orientation-tuned L4 V1 neurons receive input from orientation-selective RGCs. These results suggest that direction and orientation tuning of V1 neurons may be partly inherited from parallel pathways originating in the retina.
Collapse
Affiliation(s)
- Helen Wang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oyshi Dey
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Willian N Lagos
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Noor Behnam
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Abubaker MB, Hsu FY, Feng KL, Chu LA, de Belle JS, Chiang AS. Asymmetric neurons are necessary for olfactory learning in the Drosophila brain. Curr Biol 2024; 34:946-957.e4. [PMID: 38320552 DOI: 10.1016/j.cub.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Animals have complementary parallel memory systems that process signals from various sensory modalities. In the brain of the fruit fly Drosophila melanogaster, mushroom body (MB) circuitry is the primary associative neuropil, critical for all stages of olfactory memory. Here, our findings suggest that active signaling from specific asymmetric body (AB) neurons is also crucial for this process. These AB neurons respond to odors and electric shock separately and exhibit timing-sensitive neuronal activity in response to paired stimulation while leaving a decreased memory trace during retrieval. Our experiments also show that rutabaga-encoded adenylate cyclase, which mediates coincidence detection, is required for learning and short-term memory in both AB and MB. We observed additive effects when manipulating rutabaga co-expression in both structures. Together, these results implicate the AB in playing a critical role in associative olfactory learning and short-term memory.
Collapse
Affiliation(s)
| | - Fu-Yu Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
33
|
Hirata T. Olfactory information processing viewed through mitral and tufted cell-specific channels. Front Neural Circuits 2024; 18:1382626. [PMID: 38523698 PMCID: PMC10957668 DOI: 10.3389/fncir.2024.1382626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Parallel processing is a fundamental strategy of sensory coding. Through this processing, unique and distinct features of sensations are computed and projected to the central targets. This review proposes that mitral and tufted cells, which are the second-order projection neurons in the olfactory bulb, contribute to parallel processing within the olfactory system. Based on anatomical and functional evidence, I discuss potential features that could be conveyed through the unique channel formed by these neurons.
Collapse
Affiliation(s)
- Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics, SOKENDAI, Mishima, Japan
| |
Collapse
|
34
|
Hsiang JC, Shen N, Soto F, Kerschensteiner D. Distributed feature representations of natural stimuli across parallel retinal pathways. Nat Commun 2024; 15:1920. [PMID: 38429280 PMCID: PMC10907388 DOI: 10.1038/s41467-024-46348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.
Collapse
Affiliation(s)
- Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Biesbroek JM, Verhagen MG, van der Stigchel S, Biessels GJ. When the central integrator disintegrates: A review of the role of the thalamus in cognition and dementia. Alzheimers Dement 2024; 20:2209-2222. [PMID: 38041861 PMCID: PMC10984498 DOI: 10.1002/alz.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/04/2023]
Abstract
The thalamus is a complex neural structure with numerous anatomical subdivisions and intricate connectivity patterns. In recent decades, the traditional view of the thalamus as a relay station and "gateway to the cortex" has expanded in recognition of its role as a central integrator of inputs from sensory systems, cortex, basal ganglia, limbic systems, brain stem nuclei, and cerebellum. As such, the thalamus is critical for numerous aspects of human cognition, mood, and behavior, as well as serving sensory processing and motor functions. Thalamus pathology is an important contributor to cognitive and functional decline, and it might be argued that the thalamus has been somewhat overlooked as an important player in dementia. In this review, we provide a comprehensive overview of thalamus anatomy and function, with an emphasis on human cognition and behavior, and discuss emerging insights on the role of thalamus pathology in dementia.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of NeurologyDiakonessenhuis HospitalUtrechtThe Netherlands
| | - Marieke G. Verhagen
- VIB Center for Brain and DiseaseLeuvenBelgium
- Department of NeurosciencesKatholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - Stefan van der Stigchel
- Department of Experimental PsychologyHelmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | - Geert Jan Biessels
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
36
|
Cornean J, Molina-Obando S, Gür B, Bast A, Ramos-Traslosheros G, Chojetzki J, Lörsch L, Ioannidou M, Taneja R, Schnaitmann C, Silies M. Heterogeneity of synaptic connectivity in the fly visual system. Nat Commun 2024; 15:1570. [PMID: 38383614 PMCID: PMC10882054 DOI: 10.1038/s41467-024-45971-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Visual systems are homogeneous structures, where repeating columnar units retinotopically cover the visual field. Each of these columns contain many of the same neuron types that are distinguished by anatomic, genetic and - generally - by functional properties. However, there are exceptions to this rule. In the 800 columns of the Drosophila eye, there is an anatomically and genetically identifiable cell type with variable functional properties, Tm9. Since anatomical connectivity shapes functional neuronal properties, we identified the presynaptic inputs of several hundred Tm9s across both optic lobes using the full adult female fly brain (FAFB) electron microscopic dataset and FlyWire connectome. Our work shows that Tm9 has three major and many sparsely distributed inputs. This differs from the presynaptic connectivity of other Tm neurons, which have only one major, and more stereotypic inputs than Tm9. Genetic synapse labeling showed that the heterogeneous wiring exists across individuals. Together, our data argue that the visual system uses heterogeneous, distributed circuit properties to achieve robust visual processing.
Collapse
Affiliation(s)
- Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Annika Bast
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonas Chojetzki
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Lena Lörsch
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Rachita Taneja
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Christopher Schnaitmann
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
37
|
Ryu J, Lee SH. Bounded contribution of human early visual cortex to the topographic anisotropy in spatial extent perception. Commun Biol 2024; 7:178. [PMID: 38351283 PMCID: PMC10864322 DOI: 10.1038/s42003-024-05846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
To interact successfully with objects, it is crucial to accurately perceive their spatial extent, an enclosed region they occupy in space. Although the topographic representation of space in the early visual cortex (EVC) has been favored as a neural correlate of spatial extent perception, its exact nature and contribution to perception remain unclear. Here, we inspect the topographic representations of human individuals' EVC and perception in terms of how much their anisotropy is influenced by the orientation (co-axiality) and radial position (radiality) of stimuli. We report that while the anisotropy is influenced by both factors, its direction is primarily determined by radiality in EVC but by co-axiality in perception. Despite this mismatch, the individual differences in both radial and co-axial anisotropy are substantially shared between EVC and perception. Our findings suggest that spatial extent perception builds on EVC's spatial representation but requires an additional mechanism to transform its topographic bias.
Collapse
Affiliation(s)
- Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
38
|
Di Pierdomenico J, Gallego-Ortega A, Norte-Muñoz M, Vidal-Villegas B, Bravo I, Boluda-Ruiz M, Bernal-Garro JM, Fernandez-Bueno I, Pastor-Jimeno JC, Villegas-Pérez MP, Avilés-Trigueros M, de Los Ríos C, Vidal-Sanz M. Evaluation of the neuroprotective efficacy of the gramine derivative ITH12657 against NMDA-induced excitotoxicity in the rat retina. Front Neuroanat 2024; 18:1335176. [PMID: 38415017 PMCID: PMC10898249 DOI: 10.3389/fnana.2024.1335176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose The aim of this study was to investigate, the neuroprotective effects of a new Gramine derivative named: ITH12657, in a model of retinal excitotoxicity induced by intravitreal injection of NMDA. Methods Adult Sprague Dawley rats received an intravitreal injection of 100 mM NMDA in their left eye and were treated daily with subcutaneous injections of ITH12657 or vehicle. The best dose-response, therapeutic window study, and optimal treatment duration of ITH12657 were studied. Based on the best survival of Brn3a + RGCs obtained from the above-mentioned studies, the protective effects of ITH12657 were studied in vivo (retinal thickness and full-field Electroretinography), and ex vivo by quantifying the surviving population of Brn3a + RGCs, αRGCs and their subtypes α-ONsRGCs, α-ONtRGCs, and α-OFFRGCs. Results Administration of 10 mg/kg ITH12657, starting 12 h before NMDA injection and dispensed for 3 days, resulted in the best significant protection of Brn3a + RGCs against NMDA-induced excitotoxicity. In vivo, ITH12657-treated rats showed significant preservation of retinal thickness and functional protection against NMDA-induced retinal excitotoxicity. Ex vivo results showed that ITH12657 afforded a significant protection against NMDA-induced excitotoxicity for the populations of Brn3a + RGC, αRGC, and αONs-RGC, but not for the population of αOFF-RGC, while the population of α-ONtRGC was fully resistant to NMDA-induced excitotoxicity. Conclusion Subcutaneous administration of ITH12657 at 10 mg/kg, initiated 12 h before NMDA-induced retinal injury and continued for 3 days, resulted in the best protection of Brn3a + RGCs, αRGC, and αONs-RGC against excitotoxicity-induced RGC death. The population of αOFF-RGCs was extremely sensitive while α-ONtRGCs were fully resistant to NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
| | | | - María Norte-Muñoz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | | | - Isaac Bravo
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María Boluda-Ruiz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| | | | - Iván Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, Valladolid, Spain
| | - Jose Carlos Pastor-Jimeno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Retina Group, Universidad de Valladolid, Valladolid, Spain
| | | | | | - Cristobal de Los Ríos
- Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia e IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
39
|
Gil R, Valente M, Shemesh N. Rat superior colliculus encodes the transition between static and dynamic vision modes. Nat Commun 2024; 15:849. [PMID: 38346973 PMCID: PMC10861507 DOI: 10.1038/s41467-024-44934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
40
|
Liu Y, Mahony BW, Wang X, Daye PM, Wang W, Cavanagh P, Pouget P, Andolina IM. Assessing perceptual chromatic equiluminance using a reflexive pupillary response. Sci Rep 2024; 14:2420. [PMID: 38286801 PMCID: PMC10825167 DOI: 10.1038/s41598-024-51982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Equiluminant stimuli help assess the integrity of colour perception and the relationship of colour to other visual features. As a result of individual variation, it is necessary to calibrate experimental visual stimuli to suit each individual's unique equiluminant ratio. Most traditional methods rely on training observers to report their subjective equiluminance point. Such paradigms cannot easily be implemented on pre-verbal or non-verbal observers. Here, we present a novel Pupil Frequency-Tagging Method (PFTM) for detecting a participant's unique equiluminance point without verbal instruction and with minimal training. PFTM analyses reflexive pupil oscillations induced by slow (< 2 Hz) temporal alternations between coloured stimuli. Two equiluminant stimuli will induce a similar pupil dilation response regardless of colour; therefore, an observer's equiluminant point can be identified as the luminance ratio between two colours for which the oscillatory amplitude of the pupil at the tagged frequency is minimal. We compared pupillometry-based equiluminance ratios to those obtained with two established techniques in humans: minimum flicker and minimum motion. In addition, we estimated the equiluminance point in non-human primates, demonstrating that this new technique can be successfully employed in non-verbal subjects.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Xiaochun Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pierre M Daye
- Sorbonne Université, Inserm, CNRS, ICM, Paris, France
| | - Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Patrick Cavanagh
- Glendon College and Centre for Vision Research, York University, Toronto, Canada
| | - Pierre Pouget
- Sorbonne Université, Inserm, CNRS, ICM, Paris, France.
| | - Ian Max Andolina
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
41
|
Sherman BE, Turk-Browne NB, Goldfarb EV. Multiple Memory Subsystems: Reconsidering Memory in the Mind and Brain. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:103-125. [PMID: 37390333 PMCID: PMC10756937 DOI: 10.1177/17456916231179146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The multiple-memory-systems framework-that distinct types of memory are supported by distinct brain systems-has guided learning and memory research for decades. However, recent work challenges the one-to-one mapping between brain structures and memory types central to this taxonomy, with key memory-related structures supporting multiple functions across substructures. Here we integrate cross-species findings in the hippocampus, striatum, and amygdala to propose an updated framework of multiple memory subsystems (MMSS). We provide evidence for two organizational principles of the MMSS theory: First, opposing memory representations are colocated in the same brain structures; second, parallel memory representations are supported by distinct structures. We discuss why this burgeoning framework has the potential to provide a useful revision of classic theories of long-term memory, what evidence is needed to further validate the framework, and how this novel perspective on memory organization may guide future research.
Collapse
Affiliation(s)
| | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
- National Center for PTSD, West Haven, USA
| |
Collapse
|
42
|
Sezai T, Murphy MJ, Riddell N, Nguyen V, Crewther SG. Visual Processing During the Interictal Period Between Migraines: A Meta-Analysis. Neuropsychol Rev 2023; 33:765-782. [PMID: 36115887 PMCID: PMC10770263 DOI: 10.1007/s11065-022-09562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/20/2022] [Indexed: 10/14/2022]
Abstract
Migraine is a poorly understood neurological disorder and a leading cause of disability in young adults, particularly women. Migraines are characterized by recurring episodes of severe pulsating unilateral headache and usually visual symptoms. Currently there is some disagreement in the electrophysiological literature regarding the universality of all migraineurs exhibiting physiological visual impairments also during interictal periods (i.e., the symptom free period between migraines). Thus, this meta-analysis investigated the evidence for altered visual function as measured electrophysiologically via pattern-reversal visual evoked potential (VEP) amplitudes and habituation in adult migraineurs with or without visual aura and controls in the interictal period. Twenty-three studies were selected for random effects meta-analysis which demonstrated slightly diminished VEP amplitudes in the early fast conducting P100 component but not in N135, and substantially reduced habituation in the P100 and the N135 in migraineurs with and without visual aura symptoms compared to controls. No statistical differences were found between migraineurs with and without aura, possibly due to inadequate studies. Overall, insufficient published data and substantial heterogeneity between studies was observed for all latency components of pattern-reversal VEP, highlighting the need for further electrophysiological experimentation and more targeted temporal analysis of visual function, in episodic migraineurs.
Collapse
Affiliation(s)
- Timucin Sezai
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Melanie J Murphy
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Nina Riddell
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Vinh Nguyen
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sheila G Crewther
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
43
|
Hahn J, Monavarfeshani A, Qiao M, Kao AH, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Wekselblatt JB, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 2023; 624:415-424. [PMID: 38092908 PMCID: PMC10719112 DOI: 10.1038/s41586-023-06638-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- LinkedIn, Mountain View, CA, USA
| | - Allison H Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Joseph B Wekselblatt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Robert J Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Center for Computational Biology, Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
44
|
Stepniewska I, Kaas JH. The dorsal stream of visual processing and action-specific domains in parietal and frontal cortex in primates. J Comp Neurol 2023; 531:1897-1908. [PMID: 37118872 PMCID: PMC10611900 DOI: 10.1002/cne.25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
This review summarizes our findings obtained from over 15 years of research on parietal-frontal networks involved in the dorsal stream of cortical processing. We have presented considerable evidence for the existence of similar, partially independent, parietal-frontal networks involved in specific motor actions in a number of primates. These networks are formed by connections between action-specific domains representing the same complex movement evoked by electrical microstimulation. Functionally matched domains in the posterior parietal (PPC) and frontal (M1-PMC) motor regions are hierarchically related. M1 seems to be a critical link in these networks, since the outputs of M1 are essential to the evoked behavior, whereas PPC and PMC mediate complex movements mostly via their connections with M1. Thus, lesioning or deactivating M1 domains selectively blocks matching PMC and PPC domains, while having limited impact on other domains. When pairs of domains are stimulated together, domains within the same parietal-frontal network (matching domains) are cooperative in evoking movements, while they are mainly competitive with other domains (mismatched domains) within the same set of cortical areas. We propose that the interaction of different functional domains in each cortical region (as well as in striatum) occurs mainly via mutual suppression. Thus, the domains at each level are in competition with each other for mediating one of several possible behavioral outcomes.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
45
|
Berdugo‐Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J 2023; 42:e113524. [PMID: 37743770 PMCID: PMC11059975 DOI: 10.15252/embj.2023113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.
Collapse
Affiliation(s)
- Gabriel Berdugo‐Vega
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
- Present address:
Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland
| | - Shonali Dhingra
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Federico Calegari
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|
46
|
Yang T, He Y, Wu L, Wang H, Wang X, Li Y, Guo Y, Wu S, Liu X. The effects of object size on spatial orientation: an eye movement study. Front Neurosci 2023; 17:1197618. [PMID: 38027477 PMCID: PMC10668018 DOI: 10.3389/fnins.2023.1197618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The processing of visual information in the human brain is divided into two streams, namely, the dorsal and ventral streams, object identification is related to the ventral stream and motion processing is related to the dorsal stream. Object identification is interconnected with motion processing, object size was found to affect the information processing of motion characteristics in uniform linear motion. However, whether the object size affects the spatial orientation is still unknown. Methods Thirty-eight college students were recruited to participate in an experiment based on the spatial visualization dynamic test. Eyelink 1,000 Plus was used to collect eye movement data. The final direction difference (the difference between the final moving direction of the target and the final direction of the moving target pointing to the destination point), rotation angle (the rotation angle of the knob from the start of the target movement to the moment of key pressing) and eye movement indices under conditions of different object sizes and motion velocities were compared. Results The final direction difference and rotation angle under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point were significantly smaller than those under the other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point). The average pupil size under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point was significantly larger than the average pupil size under other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point). Discussion A relatively large moving target can resist the landmark attraction effect in spatial orientation, and the influence of object size on spatial orientation may originate from differences in cognitive resource consumption. The present study enriches the interaction theory of the processing of object characteristics and motion characteristics and provides new ideas for the application of eye movement technology in the examination of spatial orientation ability.
Collapse
Affiliation(s)
- Tianqi Yang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Lin Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Hui Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xiuchao Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yahong Li
- Central Theater Command Air Force Hospital of PLA, Datong, China
| | - Yaning Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi’an, China
| |
Collapse
|
47
|
Phangwiwat T, Punchongham P, Wongsawat Y, Chatnuntawech I, Wang S, Chunharas C, Sprague T, Woodman GF, Itthipuripat S. Sustained attention operates via dissociable neural mechanisms across different eccentric locations. RESEARCH SQUARE 2023:rs.3.rs-3562186. [PMID: 37986807 PMCID: PMC10659535 DOI: 10.21203/rs.3.rs-3562186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In primates, foveal and peripheral vision have distinct neural architectures and functions. However, it has been debated if selective attention operates via the same or different neural mechanisms across eccentricities. We tested these alternative accounts by examining the effects of selective attention on the steady-state visually evoked potential (SSVEP) and the fronto-parietal signal measured via EEG from human subjects performing a sustained visuospatial attention task. With a negligible level of eye movements, both SSVEP and SND exhibited the heterogeneous patterns of attentional modulations across eccentricities. Specifically, the attentional modulations of these signals peaked at the parafoveal locations and such modulations wore off as visual stimuli appeared closer to the fovea or further away towards the periphery. However, with a relatively higher level of eye movements, the heterogeneous patterns of attentional modulations of these neural signals were less robust. These data demonstrate that the top-down influence of covert visuospatial attention on early sensory processing in human cortex depends on eccentricity and the level of saccadic responses. Taken together, the results suggest that sustained visuospatial attention operates differently across different eccentric locations, providing new understanding of how attention augments sensory representations regardless of where the attended stimulus appears.
Collapse
Affiliation(s)
- Tanagrit Phangwiwat
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Phond Punchongham
- Department of Computer Engineering, King Mongkut's University of Technology Thonburi
| | - Yodchanan Wongsawat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency
| | - Sisi Wang
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society
| | - Thomas Sprague
- Psychological and Brain Science, 251, University of California Santa Barbara
| | | | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi
| |
Collapse
|
48
|
Balaram P, Takasaki K, Hellevik A, Tandukar J, Turschak E, MacLennan B, Ouellette N, Torres R, Laughland C, Gliko O, Seshamani S, Perlman E, Taormina M, Peterson E, Juneau Z, Potekhina L, Glaser A, Chandrashekar J, Logsdon M, Cao K, Dylla C, Hatanaka G, Chatterjee S, Ting J, Vumbaco D, Waters J, Bair W, Tsao D, Gao R, Reid C. Microscale visualization of cellular features in adult macaque visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565381. [PMID: 37961179 PMCID: PMC10635096 DOI: 10.1101/2023.11.02.565381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.
Collapse
|
49
|
Khadir A, Maghareh M, Sasani Ghamsari S, Beigzadeh B. Brain activity characteristics of RGB stimulus: an EEG study. Sci Rep 2023; 13:18988. [PMID: 37923926 PMCID: PMC10624840 DOI: 10.1038/s41598-023-46450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The perception of color is a fundamental cognitive feature of our psychological experience, with an essential role in many aspects of human behavior. Several studies used magnetoencephalography, functional magnetic resonance imaging, and electroencephalography (EEG) approaches to investigate color perception. Their methods includes the event-related potential and spectral power activity of different color spaces, such as Derrington-Krauskopf-Lennie and red-green-blue (RGB), in addition to exploring the psychological and emotional effects of colors. However, we found insufficient studies in RGB space that considered combining all aspects of EEG signals. Thus, in the present study, focusing on RGB stimuli and using a data-driven approach, we investigated significant differences in the perception of colors. Our findings show that beta oscillation of green compared to red and blue colors occurs in early sensory periods with a latency shifting in the occipital region. Furthermore, in the occipital region, the theta power of the blue color decreases noticeably compared to the other colors. Concurrently, in the prefrontal area, we observed an increase in phase consistency in response to the green color, while the blue color showed a decrease. Therefore, our results can be used to interpret the brain activity mechanism of color perception in RGB color space and to choose suitable colors for more efficient performance in cognitive activities.
Collapse
Affiliation(s)
- Alireza Khadir
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Maghareh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Shamim Sasani Ghamsari
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Lab, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
50
|
Uejima T, Mancinelli E, Niebur E, Etienne-Cummings R. The influence of stereopsis on visual saliency in a proto-object based model of selective attention. Vision Res 2023; 212:108304. [PMID: 37542763 PMCID: PMC10592191 DOI: 10.1016/j.visres.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Some animals including humans use stereoscopic vision which reconstructs spatial information about the environment from the disparity between images captured by eyes in two separate adjacent locations. Like other sensory information, such stereoscopic information is expected to influence attentional selection. We develop a biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on unbound sets of elementary features. We show that taking into account the stereoscopic information improves the performance of the model in the prediction of human eye movements with statistically significant differences.
Collapse
Affiliation(s)
- Takeshi Uejima
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | - Elena Mancinelli
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ernst Niebur
- The Solomon Snyder Department of Neuroscience and the Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, MD, USA
| | - Ralph Etienne-Cummings
- The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|