1
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2024:10.1038/s41581-024-00906-1. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Min K, Matsumoto Y, Asakura M, Ishihara M. Rediscovery of the implication of albuminuria in heart failure: emerging classic index for cardiorenal interaction. ESC Heart Fail 2024; 11:3470-3487. [PMID: 38725278 PMCID: PMC11631258 DOI: 10.1002/ehf2.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 12/12/2024] Open
Abstract
The development of new drugs and device therapies has led to remarkable advancements in heart failure (HF) treatment in the past couple of decades. However, it becomes increasingly evident that guideline-directed medical therapy cannot be one-size-fits-all across a wide range of ejection fractions (EFs) and various aetiologies. Therefore, classifications solely relying on EF and natriuretic peptide make optimization of treatment challenging, and there is a growing exploration of new indicators that enable efficient risk stratification of HF patients. Particularly when considering HF as a multi-organ interaction syndrome, the cardiorenal interaction plays a central role in its pathophysiology, and albuminuria has gained great prominence as its biomarker, independent from glomerular filtration rate. Albuminuria has been shown to exhibit a linear correlation with cardiovascular disease and HF prognosis in multiple epidemiological studies, ranging from normal (<30 mg/g) to high levels (>300 mg/g). However, on the other hand, it is only recently that the details of the pathological mechanisms that give rise to albuminuria have begun to be elucidated, including the efficient compaction/tightening of the glomerular basement membrane by podocytes and mesangial cells. Interestingly, renal disease, diabetes, and HF damage these components associated with albuminuria, and experimental models have demonstrated that recently developed HF drugs reduce albuminuria by ameliorating these pathological phenotypes. In this review, facing the rapid expansion of horizons in HF treatment, we aim to clarify the current understanding of the pathophysiology of albuminuria and explore the comprehensive understanding of albuminuria by examining the clinically established evidence to date, the pathophysiological mechanisms leading to its occurrence, and the outcomes of clinical studies utilizing various drug classes committed to specific pathological mechanisms to put albuminuria as a novel axis to depict the pathophysiology of HF.
Collapse
Affiliation(s)
- Kyung‐Duk Min
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Yuki Matsumoto
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masanori Asakura
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| |
Collapse
|
3
|
Katagiri D, Nagasaka S, Takahashi K, Wang S, Pozzi A, Zent R, Shimizu A, Zhang MZ, Göthert JR, van Kuppevelt TH, Harris RC, Takahashi T. Endothelial eNOS deficiency causes podocyte injury through NFAT2 and heparanase in diabetic mice. Sci Rep 2024; 14:29179. [PMID: 39587144 PMCID: PMC11589149 DOI: 10.1038/s41598-024-79501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The pivotal role of endothelial nitric oxide synthase (eNOS) in diabetic nephropathy (DN) has been demonstrated using global eNOS knockout (eNOSGKO) mice. However, the precise role of endothelially expressed eNOS and how its deficiency advances DN are still unclear. Here, we targeted endothelial eNOS expression (E-eNOSKO) after the onset of diabetes using the floxed eNOS and endSCL-CreERT alleles. Diabetes was induced by low-dose streptozotocin injections. To evaluate the role of nuclear factor of activated T cells-2 (NFAT2) in podocyte injury in this condition, podocyte-specific NFAT2KO mice were also generated on eNOSGKO mice. The mechanisms of podocyte injury were investigated using cultured podocytes. Compared with diabetic wild-type mice, diabetic E-eNOSKO mice showed more advanced DN accompanied by NFAT2 expression in podocytes. NO donor suppressed NFAT2 expression and activation in high-glucose cultured podocytes as well as in diabetic E-eNOSKO mice. Furthermore, podocyte-specific deletion of NFAT2 attenuated DN in diabetic eNOSGKO mice accompanied by decreased heparanase (HPSE) expression in podocytes. Consistent with this finding, HPSE was upregulated by NFAT2 transfection and suppressed by NFAT2 siRNA or NO donor treatment in cultured podocytes. HPSE transfection reduced podocyte attachment to extracellular matrix concurrent with syndecan-4 (SDC4) shedding, and this effect was attenuated by co-transfection of SDC4. Finally, HPSE inhibitor treatment attenuated podocyte injury in diabetic E-eNOSKO mice with increased SDC4 expression in podocytes. Collectively, our data suggest that endothelial eNOS deficiency causes podocyte HPSE expression in diabetic mice through NFAT2, and HPSE promotes podocyte detachment in part through SDC4 shedding, advancing DN.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Shinya Nagasaka
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Joachim R Göthert
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Nagase M, Ando H, Beppu Y, Kurihara H, Oki S, Kubo F, Yamamoto K, Nagase T, Kaname S, Akimoto Y, Fukuhara H, Sakai T, Hirose S, Nakamura N. Glomerular Endothelial Cell Receptor Adhesion G-Protein-Coupled Receptor F5 (ADGRF5) and the Integrity of the Glomerular Filtration Barrier. J Am Soc Nephrol 2024; 35:1366-1380. [PMID: 38844335 PMCID: PMC11452135 DOI: 10.1681/asn.0000000000000427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 09/13/2024] Open
Abstract
Key Points Deletion of endothelial receptor adhesion G-protein–coupled receptor F5 in mice led to abnormal structural and functional properties of the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 regulates gene expression of glomerular basement membrane components and a mechanosensitive transcription factor. Background Glomerular endothelial cells are recognized to be important for maintaining the glomerular filtration barrier. Adhesion G-protein–coupled receptor F5 (ADGRF5), an adhesion G protein–coupled receptor, has been suggested to be involved in endothelial cell function. However, the role of ADGRF5 in the glomerular filtration barrier integrity remains elusive. Methods Cellular expression of ADGRF5 in mouse glomerulus was determined by histological analyses. The effect of ADGRF5 deletion on the glomerular morphology, kidney function, and glomerular endothelial gene/protein expression was then analyzed using ADGRF5 knockout (Adgrf5 −/−) mice and human primary glomerular endothelial cells. Results ADGRF5 was specifically expressed in the capillary endothelial cells within the glomerulus. Adgrf5 −/− mice developed albuminuria and impaired kidney function with morphological defects in the glomeruli, namely glomerular hypertrophy, glomerular basement membrane splitting and thickening, diaphragmed fenestration and detachment of the glomerular endothelial cells, and mesangial interposition. These defects were accompanied by the altered expression of genes responsible for glomerular basement membrane organization (type 4 collagens and laminins) and Krüppel-like factor 2 (Klf2 ) in glomerular endothelial cells. Moreover, ADGRF5 knockdown decreased COL4A3 and COL4A4 expression and increased KLF2 expression in human primary glomerular endothelial cells. Conclusions The loss of ADGRF5 resulted in altered gene expression in glomerular endothelial cells and perturbed the structure and permselectivity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Hikaru Ando
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshiaki Beppu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hidetake Kurihara
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Faculty of Health Science, Aino University, Osaka, Japan
| | - Souta Oki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Fumimasa Kubo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Shinya Kaname
- Department of Nephrology and Rheumatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigehisa Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhiro Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1860-1874. [PMID: 39205643 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Meng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyao Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xinyu Ma
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi 214001, China
| | - Fei Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Meng X, Xie S, Liu J, Lv B, Huang X, Liu Q, Wang X, Malashicheva A, Liu J. Low dose cadmium inhibits syndecan-4 expression in glycocalyx of glomerular endothelial cells. J Appl Toxicol 2024; 44:908-918. [PMID: 38396353 DOI: 10.1002/jat.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-β signaling pathway to further investigate the role of TGF-β. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-β/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.
Collapse
Affiliation(s)
- Xianli Meng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shuhui Xie
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
8
|
Zhang K, Kan H, Mao A, Yu F, Geng L, Zhou T, Feng L, Ma X. Integrated Single-Cell Transcriptomic Atlas of Human Kidney Endothelial Cells. J Am Soc Nephrol 2024; 35:578-593. [PMID: 38351505 PMCID: PMC11149048 DOI: 10.1681/asn.0000000000000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Key Points We created a comprehensive reference atlas of normal human kidney endothelial cells. We confirmed that endothelial cell types in the human kidney were also highly conserved in the mouse kidney. Background Kidney endothelial cells are exposed to different microenvironmental conditions that support specific physiologic processes. However, the heterogeneity of human kidney endothelial cells has not yet been systematically described. Methods We reprocessed and integrated seven human kidney control single-cell/single-nucleus RNA sequencing datasets of >200,000 kidney cells in the same process. Results We identified five major cell types, 29,992 of which were endothelial cells. Endothelial cell reclustering identified seven subgroups that differed in molecular characteristics and physiologic functions. Mapping new data to a normal kidney endothelial cell atlas allows rapid data annotation and analysis. We confirmed that endothelial cell types in the human kidney were also highly conserved in the mouse kidney and identified endothelial marker genes that were conserved in humans and mice, as well as differentially expressed genes between corresponding subpopulations. Furthermore, combined analysis of single-cell transcriptome data with public genome-wide association study data showed a significant enrichment of endothelial cells, especially arterial endothelial cells, in BP heritability. Finally, we identified M1 and M12 from coexpression networks in endothelial cells that may be deeply involved in BP regulation. Conclusions We created a comprehensive reference atlas of normal human kidney endothelial cells that provides the molecular foundation for understanding how the identity and function of kidney endothelial cells are altered in disease, aging, and between species. Finally, we provide a publicly accessible online tool to explore the datasets described in this work (https://vascularmap.jiangnan.edu.cn ).
Collapse
Affiliation(s)
- Ka Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Kan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Chen Y, Li H, Zhang D, Gong Y, Jiang H, Sun H, Wang Y. ANGPT2/CAV1 regulates albumin transcytosis of glomerular endothelial cells under high glucose exposure and is impaired by losartan. Nefrologia 2024; 44:50-60. [PMID: 36842857 DOI: 10.1016/j.nefroe.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Microalbuminuria is a common clinical symptom that manifests in the early stages of diabetic kidney disease (DKD) and is also the main feature of glomerular endothelial cells (GECs) injury. There is increasing evidence that the transcytosis of albumin across GECs is closely related to the formation of albuminuria. Our previous studies have shown that angiopoietin 2 (ANGPT2) can inhibit albumin transcytosis across renal tubular epithelial cells by activating caveolin 1 (CAV1) phosphorylation during high glucose (HG) exposure. The role of ANGPT2 in albumin transcytosis across GECs remains unclear. Losartan significantly reduces albuminuria, but the mechanism has not been clarified. METHODS We established an in vitro albumin transcytosis model to investigate the change in albumin transcytosis across human renal glomerular endothelial cells (hrGECs) under normal glucose (NG), high glucose (HG) and losartan intervention. We knocked down ANGPT2 and CAV1 to evaluate their roles in albumin transcytosis across hrGECs and verified the relationship between them. In vivo, DKD mouse models were established and treated with different doses of losartan. Immunohistochemistry and Western blot were used to detect the expression of ANGPT2 and CAV1. RESULTS In vitro, the transcytosis of albumin across hrGECs was significantly increased under high glucose stimulation, and losartan inhibited this process. The expression of ANGPT2 and CAV1 were both increased in hrGECs under HG conditions and losartan intervention reduced the expression of them. Moreover, ANGPT2 downregulation reduced albumin transcytosis in hrGECs by regulating CAV1 expression. In vivo, the expression of ANGPT2 and CAV1 in the glomerulus was both increased significantly in DKD mice. Compared with DKD mice, losartan treatment reduced albuminuria and decreased the expression of ANGPT2 and CAV1 in a dose-dependent manner. CONCLUSIONS ANGPT2 exacerbated albumin transcytosis across GECs by increasing CAV1 expression during HG exposure, thereby increasing albuminuria. Losartan reduces albumin transcytosis and albuminuria formation in DKD by inhibiting the upregulation of ANGPT2 under HG conditions. Our findings suggest that ANGPT2 and CAV1 may be novel therapeutic targets for diabetic albuminuria. In addition, we provide new evidence to elaborate on the mechanism of losartan in the development of DKD.
Collapse
Affiliation(s)
- Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Gong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajun Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Shu Y, Xiong Y, Song Y, Jin S, Bai X. Positive association between circulating Caveolin-1 and microalbuminuria in overt diabetes mellitus in pregnancy. J Endocrinol Invest 2024; 47:201-212. [PMID: 37358699 DOI: 10.1007/s40618-023-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
AIMS Mounting evidence has shown that caveolin-1 plays a pathological role in the progression of albuminuria. Our study aimed to provide clinical evidence showing whether circulating caveolin-1 levels were associated with microalbuminuria (MAU) in women with overt diabetes mellitus in pregnancy (ODMIP). METHODS A total of 150 pregnant women were enrolled in different groups, including 40 women with ODMIP and MAU (ODMIP + MAU), 40 women with ODMIP, and 70 women without ODMIP (Non-ODMIP). Plasma caveolin-1 levels were determined by ELISA. The presence of caveolin-1 in the human umbilical vein vascular wall was evaluated by immunohistochemical and western blot analysis, respectively. Albumin transcytosis across endothelial cells was measured using an established nonradioactive in vitro approach. RESULTS Significantly increased levels of plasma caveolin-1 were detected in ODMIP + MAU women. The Pearson's correlation analysis revealed a positive correlation between plasma caveolin-1 levels and Hemoglobin A1c (HbA1c %) as well as with MAU in the ODMIP + MAU group. Simultaneously, experimental knockdown or overexpression of caveolin-1 significantly decreased or increased the level of albumin transcytosis across both human and mouse glomerular endothelial cells (GECs), respectively. CONCLUSIONS Our data showed a positive association between plasma caveolin-1 levels and microalbuminuria in ODMIP + MAU.
Collapse
Affiliation(s)
- Y Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Xiong
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Song
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - S Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| | - X Bai
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| |
Collapse
|
12
|
Saulnier PJ, Looker HC, Layton A, Lemley KV, Nelson RG, Bjornstad P. Loss of Glomerular Permselectivity in Type 2 Diabetes Associates With Progression to Kidney Failure. Diabetes 2023; 72:1682-1691. [PMID: 37586079 PMCID: PMC10588283 DOI: 10.2337/db23-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
We examined whether defects in glomerular size selectivity in type 2 diabetes are associated with progressive kidney disease. Glomerular filtration rate (GFR) and fractional clearances of dextrans of graded sizes were measured in 185 American Indians. The permselectivity model that best fit the dextran sieving data represented the glomerular capillary as being perforated by small restrictive pores and a parallel population of larger nonrestrictive pores characterized by ω0, the fraction of total filtrate volume passing through this shunt. The hazard ratio (HR) for kidney failure was expressed per 1-SD increase of ω0 by Cox regression after adjusting for age, sex, mean arterial pressure, HbA1c, GFR, and the urine albumin-to-creatinine ratio (ACR). Baseline mean ± SD age was 43 ± 10 years, HbA1c 8.9 ± 2.5%, GFR 147 ± 46 mL/min, and median (interquartile range) ACR 41 (11-230) mg/g. During a median follow-up of 17.7 years, 67 participants developed kidney failure. After adjustment, each 1-SD increment in ω0 was associated with a higher risk of kidney failure (HR 1.55 [95% CI 1.17, 2.05]). Enhanced transglomerular passage of test macromolecules was associated with progression to kidney failure, independent of albuminuria and GFR, suggesting that mechanisms associated with impaired glomerular permselectivity are important determinants of progressive kidney disease. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Pierre J. Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
- University of Poitiers, INSERM CIC1402, Poitiers, France
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Anita Layton
- University of Waterloo, Waterloo, Ontario, Canada
| | - Kevin V. Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | | |
Collapse
|
13
|
Wu Q, Huang F. LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1238981. [PMID: 37964955 PMCID: PMC10641825 DOI: 10.3389/fendo.2023.1238981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetic kidney disease (DKD), one of the most severe complications of diabetes mellitus (DM), has received considerable attention owing to its increasing prevalence and contribution to chronic kidney disease (CKD) and end-stage kidney disease (ESRD). However, the use of drugs targeting DKD remains limited. Recent data suggest that long non-coding RNAs (lncRNAs) play a vital role in the development of DKD. The lncRNA H19 is the first imprinted gene, which is expressed in the embryo and down-regulated at birth, and its role in tumors has long been a subject of controversy, however, in recent years, it has received increasing attention in kidney disease. The LncRNA H19 is engaged in the pathological progression of DKD, including glomerulosclerosis and tubulointerstitial fibrosis via the induction of inflammatory responses, apoptosis, ferroptosis, pyroptosis, autophagy, and oxidative damage. In this review, we highlight the most recent research on the molecular mechanism and regulatory forms of lncRNA H19 in DKD, including epigenetic, post-transcriptional, and post-translational regulation, providing a new predictive marker and therapeutic target for the management of DKD.
Collapse
Affiliation(s)
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Lin X, Song W, Zhou Y, Gao Y, Wang Y, Wang Y, Liu Y, Deng L, Liao Y, Wu B, Chen S, Chen L, Fang Y. Elevated urine albumin creatinine ratio increases cardiovascular mortality in coronary artery disease patients with or without type 2 diabetes mellitus: a multicenter retrospective study. Cardiovasc Diabetol 2023; 22:203. [PMID: 37563647 PMCID: PMC10416404 DOI: 10.1186/s12933-023-01907-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Albuminuria has been suggested as an atherosclerotic risk factor among the general population. However, whether this association will be amplified in patients with coronary artery disease (CAD) is unknown. It is also unknown whether diabetes mellitus confounds the association. We aim to analyse the prognosis of elevated urine albumin creatinine ratio (uACR) in the CAD population with or without type 2 diabetes mellitus (T2DM). METHODS This multi-center registry cohort study included 5,960 patients with CAD. Patients were divided into T2DM and non-T2DM group, and baseline uACR levels were assessed on three grades (low: uACR < 10 mg/g, middle: 10 mg/g ≤ uACR < 30 mg/g, and high: uACR ≥ 30 mg/g). The study endpoints were cardiovascular mortality and all-cause mortality. RESULTS During the median follow-up of 2.2 [1.2-3.1] years, 310 (5.2%) patients died, of which 236 (4.0%) patients died of cardiovascular disease. CAD patients with elevated uACR had a higher risk of cardiovascular mortality (middle: HR, 2.32; high: HR, 3.22) than those with low uACR, as well as all-cause mortality. Elevated uACR increased nearly 1.5-fold risk of cardiovascular mortality (middle: HR, 2.33; high: HR, 2.34) among patients without T2DM, and increased 1.5- fold to 3- fold risk of cardiovascular mortality in T2DM patients (middle: HR, 2.49; high: HR, 3.98). CONCLUSIONS Even mildly increased uACR could increase the risk of cardiovascular mortality in patients with CAD, especially when combined with T2DM.
Collapse
Affiliation(s)
- Xueqin Lin
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Wei Song
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yang Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuwei Gao
- Jinan university, Zhuhai people's hospital, Guangzhou, 510100, China
| | - Yani Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yun Wang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yuchen Liu
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Lin Deng
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Yin Liao
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Bo Wu
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China
| | - Shiqun Chen
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510100, China.
| | - Liling Chen
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| | - Yong Fang
- Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China.
| |
Collapse
|
15
|
Wang Y, Luo Y, Yang S, Jiang M, Chu Y. LC-MS/MS-Based Serum Metabolomics and Transcriptome Analyses for the Mechanism of Augmented Renal Clearance. Int J Mol Sci 2023; 24:10459. [PMID: 37445637 DOI: 10.3390/ijms241310459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Augmented Renal Clearance (ARC) refers to the increased renal clearance of circulating solute in critically ill patients. In this study, the analytical research method of transcriptomics combined with metabolomics was used to study the pathogenesis of ARC at the transcriptional and metabolic levels. In transcriptomics, 534 samples from 5 datasets in the Gene Expression Omnibus database were analyzed and 834 differential genes associated with ARC were obtained. In metabolomics, we used Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry to determine the non-targeted metabolites of 102 samples after matching propensity scores, and obtained 45 differential metabolites associated with ARC. The results of the combined analysis showed that purine metabolism, arginine biosynthesis, and arachidonic acid metabolism were changed in patients with ARC. We speculate that the occurrence of ARC may be related to the alteration of renal blood perfusion by LTB4R, ARG1, ALOX5, arginine and prostaglandins E2 through inflammatory response, as well as the effects of CA4, PFKFB2, PFKFB3, PRKACB, NMDAR, glutamate and cAMP on renal capillary wall permeability.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yifan Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shu Yang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Chu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
16
|
Crompton M, Skinner LJ, Satchell SC, Butler MJ. Aldosterone: Essential for Life but Damaging to the Vascular Endothelium. Biomolecules 2023; 13:1004. [PMID: 37371584 PMCID: PMC10296074 DOI: 10.3390/biom13061004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The renin angiotensin aldosterone system is a key regulator of blood pressure. Aldosterone is the final effector of this pathway, acting predominantly via mineralocorticoid receptors. Aldosterone facilitates the conservation of sodium and, with it, water and acts as a powerful stimulus for potassium excretion. However, evidence for the pathological impact of excess mineralocorticoid receptor stimulation is increasing. Here, we discussed how in the heart, hyperaldosteronism is associated with fibrosis, cardiac dysfunction, and maladaptive hypertrophy. In the kidney, aldosterone was shown to cause proteinuria and fibrosis and may contribute to the progression of kidney disease. More recently, studies suggested that aldosterone excess damaged endothelial cells. Here, we reviewed how damage to the endothelial glycocalyx may contribute to this process. The endothelial glycocalyx is a heterogenous, negatively charged layer on the luminal surface of cells. Aldosterone exposure alters this layer. The resulting structural changes reduced endothelial reactivity in response to protective shear stress, altered permeability, and increased immune cell trafficking. Finally, we reviewed current therapeutic strategies for limiting endothelial damage and suggested that preventing glycocalyx remodelling in response to aldosterone exposure may provide a novel strategy, free from the serious adverse effect of hyperkalaemia seen in response to mineralocorticoid blockade.
Collapse
Affiliation(s)
| | | | | | - Matthew J. Butler
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
17
|
Ofori EK, Clinton EB, Acheampong OD, Anane HA, Amponsah SK, SU J, Amanquah SD. Biochemical markers of nephrotic syndrome: An observational, cross-sectional study. Heliyon 2023; 9:e15198. [PMID: 37089385 PMCID: PMC10113854 DOI: 10.1016/j.heliyon.2023.e15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background Blood protein leakage, especially albumin, into the urine is the hallmark of nephrotic syndrome (NS), which poses a serious public health problem. The absence of albumin prompts the liver to produce more proteins to make up the difference. The therapeutic significance of these additional proteins in NS is not yet fully understood. Methods In total, 99 patients with NS and 47 persons without NS (control group) were included in this cross-sectional study. Socio-demographic and clinical information were obtained from recruits utilizing a standard questionnaire and a check of the lab order forms for individuals. Each participant had a 6-mL (6 mL) sample of venous blood taken and levels of calcium, C-reactive protein (CRP), albumin, and other proteins in the serum were assayed. The proteins in serum were separated using the electrophoresis technique, and the various fractions were then measured by a densitometer. Calculations were made for the oncotic pressure. Results The NS group had significantly greater levels of serum CRP, urea, alpha-2-globulin, gamma globulins, and M component than the control group (p < 0.05 respectively). Transferrin, total proteins, albumin, beta-1-globulins, calcium, and oncotic pressure were significantly higher in persons without NS compared to the NS group (p < 0.05 respectively). In addition, levels of CRP (odds ratio = 1.41, p = 0.005) and gamma globulin (odds ratio = 4.12, p = 0.005) in the blood were observed to be independent predictors in the occurrence of NS. These two factors increased the likelihood of developing NS by approximately 1.5 and 4 times, respectively. Conclusion Among the proteins assayed, CRP and gamma globulin were found to be predictors of NS. Nonetheless, further studies are required to understand the mechanisms associated with these serum proteins in NS.
Collapse
Affiliation(s)
- Emmanuel Kwaku Ofori
- Department of Chemical Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- Corresponding author.
| | - Egyam Bill Clinton
- Department of Chemical Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- MDS-Lancet Laboratories Ghana Limited, Accra, Ghana
| | - Obed Danso Acheampong
- Department of Chemical Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Henry Asare- Anane
- Department of Chemical Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jayasinghe SU
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Seth Dortey Amanquah
- Department of Chemical Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
18
|
Crompton M, Ferguson JK, Ramnath RD, Onions KL, Ogier AS, Gamez M, Down CJ, Skinner L, Wong KH, Dixon LK, Sutak J, Harper SJ, Pontrelli P, Gesualdo L, Heerspink HL, Toto RD, Welsh GI, Foster RR, Satchell SC, Butler MJ. Mineralocorticoid receptor antagonism in diabetes reduces albuminuria by preserving the glomerular endothelial glycocalyx. JCI Insight 2023; 8:e154164. [PMID: 36749631 PMCID: PMC10077489 DOI: 10.1172/jci.insight.154164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.
Collapse
Affiliation(s)
- Michael Crompton
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Joanne K. Ferguson
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Raina D. Ramnath
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karen L. Onions
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anna S. Ogier
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Monica Gamez
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Colin J. Down
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laura Skinner
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kitty H. Wong
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lauren K. Dixon
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Judit Sutak
- Pathology Department, Southmead Hospital, Bristol, United Kingdom
| | - Steven J. Harper
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Paola Pontrelli
- Division of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Hiddo L. Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Robert D. Toto
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gavin I. Welsh
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rebecca R. Foster
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Simon C. Satchell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Butler
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Ye Q, Wang D, Zhou C, Meng H, Liu H, Mao J. A spectrum of novel anti-vascular endothelial cells autoantibodies in idiopathic nephrotic syndrome patients. Clin Immunol 2023; 249:109273. [PMID: 36863601 DOI: 10.1016/j.clim.2023.109273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Idiopathic nephrotic syndrome (INS) is a common renal disease characterized by disruption of the glomerular filtration barrier. In a previous study, we screened and identified podocyte autoantibodies in nephrotic syndrome patients and proposed the concept of autoimmune podocytopathy. However, circulating podocyte autoantibodies cannot reach podocytes unless glomerular endothelial cells have been damaged. Therefore, we speculate that INS patients may also have autoantibodies against vascular endothelial cells. Sera from INS patients were used as primary antibodies to screen and identify endothelial autoantibodies by hybridization with vascular endothelial cell proteins separated by two-dimensional electrophoresis. The clinical application value and pathogenicity of these autoantibodies were further verified by clinical study and in vivo and in vitro experiments. Nine kinds of autoantibodies against vascular endothelial cells were screened in patients with INS, which can cause endothelial cell damage. In addition, 89% of these patients were positive for at least one autoantibody.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Dongjie Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Chao Zhou
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Hanyan Meng
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| |
Collapse
|
20
|
Boorsma EM, ter Maaten JM, Damman K, van Essen BJ, Zannad F, van Veldhuisen DJ, Samani NJ, Dickstein K, Metra M, Filippatos G, Lang CC, Ng L, Anker SD, Cleland JG, Pellicori P, Gansevoort RT, Heerspink HJL, Voors AA, Emmens JE. Albuminuria as a marker of systemic congestion in patients with heart failure. Eur Heart J 2023; 44:368-380. [PMID: 36148485 PMCID: PMC9890244 DOI: 10.1093/eurheartj/ehac528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
AIMS Albuminuria is common in patients with heart failure and associated with worse outcomes. The underlying pathophysiological mechanism of albuminuria in heart failure is still incompletely understood. The association of clinical characteristics and biomarker profile with albuminuria in patients with heart failure with both reduced and preserved ejection fractions were evaluated. METHODS AND RESULTS Two thousand three hundred and fifteen patients included in the index cohort of BIOSTAT-CHF were evaluated and findings were validated in the independent BIOSTAT-CHF validation cohort (1431 patients). Micro-albuminuria and macro-albuminuria were defined as urinary albumincreatinine ratio (UACR) 30 mg/gCr and 300 mg/gCr in spot urines, respectively. The prevalence of micro- and macro-albuminuria was 35.4 and 10.0, respectively. Patients with albuminuria had more severe heart failure, as indicated by inclusion during admission, higher New York Heart Association functional class, more clinical signs and symptoms of congestion, and higher concentrations of biomarkers related to congestion, such as biologically active adrenomedullin, cancer antigen 125, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (all P 0.001). The presence of albuminuria was associated with increased risk of mortality and heart failure (re)hospitalization in both cohorts. The strongest independent association with log UACR was found for log NT-proBNP (standardized regression coefficient 0.438, 95 confidence interval 0.350.53, P 0.001). Hierarchical clustering analysis demonstrated that UACR clusters with markers of congestion and less with indices of renal function. The validation cohort yielded similar findings. CONCLUSION In patients with new-onset or worsening heart failure, albuminuria is consistently associated with clinical, echocardiographic, and circulating biomarkers of congestion.
Collapse
Affiliation(s)
- Eva M Boorsma
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jozine M ter Maaten
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kevin Damman
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bart J van Essen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Faiez Zannad
- Department of Cardiovascular Disease, Université de Lorraine, Inserm INI-CRCT, CHRU, 30 rue Lionnois, 54000 Nancy, France
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University Road, Leicester LE1 7RH, UK
| | - Kenneth Dickstein
- Stavanger University Hospital, Gerd-Ragna Bloch Thorsens Gate 8, 4011 Stavanger, Norway
| | - Marco Metra
- Division of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Mercato, 15, 25122 Brescia, Italy
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, 13Α, Navarinou str., 10680 Athens, Greece
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, James Arrott Drive, Dundee DD2 1UB, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University Road, Leicester LE1 7RH, UK
| | - Stefan D Anker
- Department of Cardiology (CVK), Charité Universitätsmedizin, Charite Square 1, Berlin 10117, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin, Friedrichstr. 134, Berlin 10117, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité Universitätsmedizin, Potsdamer Str., Berlin 5810785, Germany
| | - John G Cleland
- National Heart and Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, Guy Dovehouse Street, London SW3 6LY, UK
| | - Pierpaolo Pellicori
- National Heart and Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, Guy Dovehouse Street, London SW3 6LY, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Johanna E Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
21
|
Zhang JW, Lin Y, Liu YM, Wang MM, Gong JG, Shen XG, Shen QQ, Lin B, Su WE, Gao YC, Yuan CY, Pan ZH, Zhu B. Excess selenium intake is associated with microalbuminuria in female but not in male among adults with obesity: Results from NHANES 2009-2018. Front Nutr 2023; 10:1043395. [PMID: 36761214 PMCID: PMC9907462 DOI: 10.3389/fnut.2023.1043395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Selenium is a critical trace element with antioxidant activities that has been related to the preservation of kidney function. Few studies, however, have looked at the effects of excess selenium on kidneys. The purpose of the present study was performed to investigate the relationship between dietary selenium intake and the prevalence of microalbuminuria in American adults with obesity. Methods A total of 8,547 participants with obesity in the National Health and Nutrition Examination Survey (NHANES) with the age of 19 years or older were included in the present study. Multivariable regression and subgroup analyses were performed to examine the association between dietary selenium and microalbuminuria in the two genders, separately. A selenium intake above the median was defined as high selenium intake. Results Dietary selenium intake was significantly higher in men compared to women (139.49 μg/day vs. 101.06 μg/day; P < 0.0001). Among female participants, the prevalence of microalbuminuria was significantly higher in participants with a high selenium intake compared with those without a high selenium intake (13.82 vs. 9.96%; P = 0.008), whereas this difference did not exist in male participants (10.79 vs. 11.97%; P = 0.40). Dietary selenium is not significantly correlated with microalbuminuria (P = 0.68) in the male population, whereas each 1 μg/day of increase in selenium consumption was independently associated with a 6h higher risk of microalbuminuria (OR = 1.006; 95% CI, 1.001-1.011, P = 0.01) in females. Conclusion According to our research, excessive selenium consumption is positively correlated with microalbuminuria in females with obesity, but not in males with obesity.
Collapse
Affiliation(s)
- Jia-wei Zhang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Affiliated to Zhejiang Chinese Medical University, Hangzhou, China,The Third College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue-min Liu
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Min-min Wang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jian-guang Gong
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiao-gang Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Quan-quan Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Lin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wei-er Su
- The Third College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan-cheng Gao
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Affiliated to Zhejiang Chinese Medical University, Hangzhou, China,The Third College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen-yi Yuan
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Affiliated to Zhejiang Chinese Medical University, Hangzhou, China,The Third College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-hui Pan
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Guangxing Hospital), Affiliated to Zhejiang Chinese Medical University, Hangzhou, China,The Third College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Zhu
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,*Correspondence: Bin Zhu,
| |
Collapse
|
22
|
Zheng F, Ma L, Li X, Wang Z, Gao R, Peng C, Kang B, Wang Y, Luo T, Wu J, Yang Y, Gong L, Li Q, Yang S, Hu J. Neutrophil Extracellular Traps Induce Glomerular Endothelial Cell Dysfunction and Pyroptosis in Diabetic Kidney Disease. Diabetes 2022; 71:2739-2750. [PMID: 36095260 DOI: 10.2337/db22-0153] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Neutrophil extracellular traps (NETs) are a network structure composed of loose chromatin and embedded with multiple proteins. Here, we observed increased NETs deposition in the glomeruli of DKD patients and diabetic mice (streptozotocin-induced or db/db mice). After NETs were degraded with DNase I, diabetic mice exhibited attenuated glomerulopathy and glomerular endothelial cells (GECs) injury. We also observed alleviated glomerulopathy and GECs injury in peptidylarginine deiminase 4-knockout mice with streptozotocin-induced diabetes. In vitro, NETs-induced GECs pyroptosis was characterized by pore formation in the cell membrane, dysregulation of multiple genes involved in cell membrane function, and increased expression of pyroptosis-related proteins. Strengthening the GECs surface charge by oleylamine significantly inhibited NETs-induced GECs pyroptosis. These findings suggest that the GECs charge-related pyroptosis is involved in DKD progression, which is promoted by NETs.
Collapse
Affiliation(s)
- Fengfan Zheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqiang Ma
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Li
- Department of Clinical Nutrition, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Kang
- Department of Clinical Nutrition, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinshan Wu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Gong
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Punyaratabandhu N, Dechadilok P, Triampo W, Katavetin P. Hydrodynamic model for renal microvascular filtration: Effects of physiological and hemodynamic changes on glomerular size-selectivity. Microcirculation 2022; 29:e12779. [PMID: 35879876 DOI: 10.1111/micc.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The first step in renal urine formation is ultrafiltration across the glomerular barrier. The change in its nanostructure has been associated with nephrotic syndromes. Effects of physiological and hemodynamic factor alterations associated with diabetic nephropathy (DN) on glomerular permselectivity are examined through a mathematical model employing low-Reynolds-number hydrodynamics and hindered transport theory. METHODS Glomerular capillaries are represented as networks of cylindrical tubes with multilayered walls. Glomerular basement membrane (GBM) is a fibrous medium with bimodal fiber sizes. Epithelial slit fiber spacing follows a lognormal distribution based on reported electron micrographs with the highest resolution. Endothelial fenestrae are filled with fibers the size of glycosaminoglycans (GAGs). Effects of fiber-macromolecule steric and hydrodynamic interactions are included. Focusing on diabetic nephropathy, the physiological and hemodynamic factors employed in the computation are those reported for healthy humans and patients with early-but-overt diabetic nephropathy. The macromolecule concentration is obtained as a finite element solution of the convection-diffusion equation. RESULTS Computed sieving coefficients averaged along the capillary length agree well with ficoll sieving coefficients from studies in humans for most solute radii. GBM thickening and the loss of the slit diaphragm hardly affect glomerular permselectivity. GAG volume fraction reduction in the endothelial fenestrae, however, significantly increases macromolecule filtration. Increased renal plasma flow rate (RPF), glomerular hypertension, and reduction of lumen osmotic pressure cause a slight sieving coefficient decrease. These effects are amplified by an increased macromolecule size. CONCLUSION Our results indicate that glomerular hypertension and the reduction in the oncotic pressure decreases glomerular macromolecule filtration. Reduction of RPF and changes in the glomerular barrier structure associated with DN, however, increase the solute sieving. Damage to GAGs caused by hyperglycemia is likely to be the most prominent factor affecting glomerular size-selectivity.
Collapse
Affiliation(s)
| | - Panadda Dechadilok
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wannapong Triampo
- Thailand Center of Excellence in Physics CHE, Bangkok, Thailand.,Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pisut Katavetin
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Ferreira JP, Zannad F, Butler J, Filippatos G, Pocock SJ, Brueckmann M, Steubl D, Schueler E, Anker SD, Packer M. Association of Empagliflozin Treatment With Albuminuria Levels in Patients With Heart Failure: A Secondary Analysis of EMPEROR-Pooled. JAMA Cardiol 2022; 7:1148-1159. [PMID: 36129693 PMCID: PMC9494272 DOI: 10.1001/jamacardio.2022.2924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Albuminuria, routinely assessed as spot urine albumin-to-creatinine ratio (UACR), indicates structural damage of the glomerular filtration barrier and is associated with poor kidney and cardiovascular outcomes. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been found to reduce UACR in patients with type 2 diabetes, but its use in patients with heart failure (HF) is less well studied. Objective To analyze the association of empagliflozin with study outcomes across baseline levels of albuminuria and change in albuminuria in patients with HF across a wide range of ejection fraction levels. Design, Setting, and Participants This post hoc analysis included all patients with HF from the EMPEROR-Pooled analysis using combined individual patient data from the international multicenter randomized double-blind parallel-group, placebo-controlled EMPEROR-Reduced and EMPEROR-Preserved trials. Participants in the original trials were excluded from this analysis if they were missing baseline UACR data. EMPEROR-Preserved was conducted from March 27, 2017, to April 26, 2021, and EMPEROR-Reduced was conducted from April 6, 2017, to May 28, 2020. Data were analyzed from January to June 2022. Interventions Randomization to empagliflozin or placebo. Main Outcomes and Measures New-onset macroalbuminuria and regression to normoalbuminuria and microalbuminuria. Results A total of 9673 patients were included (mean [SD] age, 69.9 [10.4] years; 3551 [36.7%] female and 6122 [63.3%] male). Of these, 5552 patients had normoalbuminuria (UACR <30 mg/g) and 1025 had macroalbuminuria (UACR >300 mg/g). Compared with normoalbuminuria, macroalbuminuria was associated with younger age, races other than White, obesity, male sex, site region other than Europe, higher levels of N-terminal pro-hormone brain natriuretic peptide and high-sensitivity troponin T, higher blood pressure, higher New York Heart Association class, greater HF duration, more frequent previous HF hospitalizations, diabetes, hypertension, lower eGFR, and less frequent use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and mineralocorticoid receptor antagonists. An increase in events was observed in individuals with higher UACR levels. The association of empagliflozin with cardiovascular mortality or HF hospitalization was consistent across UACR categories (hazard ratio [HR], 0.80; 95% CI, 0.69-0.92 for normoalbuminuria; HR, 0.74; 95% CI, 0.63-0.86 for microalbuminuria; HR, 0.78; 95% CI, 0.63-0.98 for macroalbuminuria; interaction P trend = .71). Treatment with empagliflozin was associated with lower incidence of new macroalbuminuria (HR, 0.81; 95% CI, 0.70-0.94; P = .005) and an increase in rate of remission to sustained normoalbuminuria or microalbuminuria (HR, 1.31; 95% CI, 1.07-1.59; P = .009) but not with a reduction in UACR in the overall population; however, UACR was reduced in patients with diabetes, who had higher UACR levels than patients without diabetes (geometric mean for diabetes at baseline, 0.91; 95% CI, 0.85-0.98 and for no diabetes at baseline, 1.08; 95% CI, 1.01-1.16; interaction P = .008). Conclusions and Relevance In this post hoc analysis of a randomized clinical trial, compared with placebo, empagliflozin was associated with reduced HF hospitalizations or cardiovascular death irrespective of albuminuria levels at baseline, reduced progression to macroalbuminuria, and reversion of macroalbuminuria. Trial Registration ClinicalTrials.gov Identifiers: NCT03057977 and NCT03057951.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques Plurithématique 1433, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France,Department of Surgery and Physiology, Cardiovascular Research and Development Center, University of Porto, Porto, Portugal
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques Plurithématique 1433, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas,University of Mississippi Medical Center, Jackson
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Stuart J. Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martina Brueckmann
- Boehringer Ingelheim International, Ingelheim, Germany,First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dominik Steubl
- Boehringer Ingelheim International, Ingelheim, Germany,Department of Nephrology, Hospital rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Stefan D. Anker
- Department of Cardiology Berlin Institute of Health Center for Regenerative Therapies German Centre for Cardiovascular Research partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany,Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Milton Packer
- Baylor Scott and White Research Institute, Dallas, Texas,Imperial College, London, United Kingdom
| |
Collapse
|
25
|
Gustad LT, Holand AM, Hynnekleiv T, Bjerkeset O, Berk M, Romundstad S. The bidirectional association between depressive symptoms, assessed by the HADS, and albuminuria–A longitudinal population-based cohort study with repeated measures from the HUNT2 and HUNT3 Study. PLoS One 2022; 17:e0274271. [PMID: 36107876 PMCID: PMC9477298 DOI: 10.1371/journal.pone.0274271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Both albuminuria and depression are associated with cardiovascular disease, reflecting low-grade systemic inflammation and endothelial dysfunction. They share risk factors including weight, blood pressure, smoking and blood glucose levels. This longitudinal study aimed to examine bidirectional associations between depression symptoms, indexed by the Hospital Anxiety and Depression scale (HADS), and the inflammation marker albuminuria. Methods 2909 persons provided urine samples in both the second (HUNT2, 1995–97) and third wave (HUNT3, 2006–2008) of the Trøndelag Health Survey, Norway. We used a generalized linear regression model (GLM) and ANOVA to assess the association between albuminuria levels (exposure HUNT2) with depression symptoms (outcome in HUNT3); and between depression symptoms (exposure HUNT2) with albuminuria (outcome HUNT3). Depression symptoms were measured with the HADS Depression Scale, analyzed utilising the full 7 items version and analyses restricted to the first 4 items (HADS-D and HADS-4). We accounted for confounders including baseline individual levels of the exposure variables. Results In this 10-years follow-up study, we found no statistical evidence for an association between baseline depression symptoms and subsequent albuminuria, nor between baseline albuminuria and subsequent depression symptoms. For albuminuria, only 0.04% was explained by prior depression, and for depression, only 0.007% was explained by previous albuminuria levels. The results were essentially the same for the shorter HADS-4 measure. Conclusion There does not appear to be a longitudinal association between albuminuria and depression measured by the HADS.
Collapse
Affiliation(s)
- Lise Tuset Gustad
- Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medicine, Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
- * E-mail:
| | - Anna Marie Holand
- Faculty of Education and Arts, Nord University, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torfinn Hynnekleiv
- Division of Mental Health, Department of Acute Psychiatry and Psychosis Treatment, Innlandet Hospital Trust, Reinsvoll, Norway
| | - Ottar Bjerkeset
- Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway
- Department of Mental Health Sciences, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michael Berk
- IMPACT–the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Solfrid Romundstad
- Department of Medicine, Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, NTNU, Trondheim, Norway
| |
Collapse
|
26
|
Molecular Mechanisms of Acute Organophosphate Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23168855. [PMID: 36012118 PMCID: PMC9407954 DOI: 10.3390/ijms23168855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals produced by an esterification process and some other routes. They are the main components of herbicides, pesticides, and insecticides and are also widely used in the production of plastics and solvents. Acute or chronic exposure to OPs can manifest in various levels of toxicity to humans, animals, plants, and insects. OPs containing insecticides were widely used in many countries during the 20th century, and some of them continue to be used today. In particular, 36 OPs have been registered in the USA, and all of them have the potential to cause acute and sub-acute toxicity. Renal damage and impairment of kidney function after exposure to OPs, accompanied by the development of clinical manifestations of poisoning back in the early 1990s of the last century, was considered a rare manifestation of their toxicity. However, since the beginning of the 21st century, nephrotoxicity of OPs as a manifestation of delayed toxicity is the subject of greater attention of researchers. In this article, we present a modern view on the molecular pathophysiological mechanisms of acute nephrotoxicity of organophosphate compounds.
Collapse
|
27
|
Yang R, Xu S, Zhang X, Zheng X, Liu Y, Jiang C, Liu J, Shang X, Fang S, Zhang J, Yin Z, Pan K. Cyclocarya paliurus triterpenoids attenuate glomerular endothelial injury in the diabetic rats via ROCK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115127. [PMID: 35219820 DOI: 10.1016/j.jep.2022.115127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclocarya paliurus (Batal.) Iljinskaja. (C. paliurus) is a distinctive traditional Chinese herb, with remarkable hypoglycemic capacity. Emerging evidence suggested that glomerular endothelial injury is a crucial pathological process of diabetic kidney disease (DKD). Our previous research found that C. paliurus triterpenoids fraction (CPT) has ameliorative effects on DKD. However, whether C. paliurus could counteract the glomerular endothelial injury of DKD is still undefined. AIM OF THE STUDY We aimed to investigate the effects of CPT on glomerular endothelial function and explore its underlying mechanisms with in vivo and in vitro experiments. MATERIALS AND METHODS The effects and possible mechanisms of CPT on glomerular endothelial injury in streptozotocin (STZ)-induced diabetic rats and H2O2-challenged primary rat glomerular endothelial cells were successively investigated. RESULTS In vivo, we found that CPT treatment obviously decreased the levels of blood glucose, microalbumin, BUN and mesangial expansion. Additionally, CPT could ameliorate renal endothelium function by reducing the content of VCAM-1 and ICAM-1, and blocking the loss of glycocalyx. In vitro, CPT could also alleviate H2O2-induced endothelial injury. Mechanistically, CPT remarkably increased the phosphorylation levels of Akt and eNOS, decreased the expression of ROCK and Arg2in vivo and in vitro. Noticeably, the favorable effects mediated by CPT were abolished following ROCK overexpression with plasmid transfection. CONCLUSION These findings suggested that CPT could be sufficient to protect against glomerular endothelial injury in DKD through regulating ROCK pathway.
Collapse
Affiliation(s)
- Ru Yang
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Susu Xu
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Xuanxuan Zhang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Xian Zheng
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yao Liu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Jianjing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian Zhang
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
28
|
Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and Renal Fibrosis. Aging Dis 2022; 13:712-731. [PMID: 35656109 PMCID: PMC9116923 DOI: 10.14336/ad.2021.1027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli. Nevertheless, the specific role of autophagy in renal fibrosis has still not been fully understood. Therefore, in this review we will describe the characteristics of autophagy and summarize the recent advances in understanding the functions of autophagy in renal fibrosis. Moreover, the problem existing in this field and the possibility of autophagy as the potential therapeutic target for renal fibrosis have also been discussed.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
- Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, Guangdong, China.
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
29
|
Association between depression symptoms and moderately increased levels of the inflammation marker albuminuria is explained by age and comorbidity. Sci Rep 2022; 12:8828. [PMID: 35614069 PMCID: PMC9132899 DOI: 10.1038/s41598-022-12635-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
The study aimed to examine whether there are associations between depression symptoms and levels of the inflammation marker albuminuria. The 8303 participants in this cross-sectional study were subjects from the second survey of the Trøndelag Health Study (HUNT, Norway). Depression symptoms were assessed by the Hospital Anxiety and Depression Scale (HADS). Logistic regression analysis was performed to estimate the odds ratio (OR) for moderately increased albuminuria (ACR ≥ 3.0 mg/mmol) according to different HADS-depression (D) subgroups and -scores. Unadjusted ORs for moderately increased albuminuria were significantly increased in those with HADS-D ≥ 8 (OR 1.27, 95% CI 1.05-1.54, p = 0.013) and HADS-D ≥ 11 (OR 1.59, 95% CI 1.19-2.14, p = 0.002). After adjusting for age and sex, only HADS-D ≥ 11 was significantly associated with ACR ≥ 3.0 mg/mmol (OR 1.46, 95% CI 1.08-1.98, p = 0.014), and after multivariable adjustments for cardiovascular risk factors and comorbidity, there were no significant associations. However, adjusting for the interaction between age and HADS-D strengthened the association in linear regression models. The positive and significant association between moderately increased albuminuria and symptoms of depression found in unadjusted analyses weakened and disappeared after adjustments. Although individuals with depressive symptoms had albuminuria more often than individuals without such symptoms, and the association seemed to change with age, albuminuria may reflect other comorbidity and inflammation conditions than the depression symptomatology measured in this study.
Collapse
|
30
|
Qiu Y, Buffonge S, Ramnath R, Jenner S, Fawaz S, Arkill KP, Neal C, Verkade P, White SJ, Hezzell M, Salmon AHJ, Suleiman MS, Welsh GI, Foster RR, Madeddu P, Satchell SC. Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia 2022; 65:879-894. [PMID: 35211778 PMCID: PMC8960650 DOI: 10.1007/s00125-022-05650-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.
Collapse
Affiliation(s)
- Yan Qiu
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Stanley Buffonge
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Raina Ramnath
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sophie Jenner
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sarah Fawaz
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kenton P Arkill
- Biodiscovery Institute, Medicine, University of Nottingham, Nottingham, UK
| | - Chris Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Melanie Hezzell
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrew H J Salmon
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
- Renal Service, Specialist Medicine and Health of Older People, North Shore Hospital, Waitemata District Health Board, Takapuna, Auckland, New Zealand
| | - M-Saadeh Suleiman
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
31
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
32
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Extracellular HMGB1 Induced Glomerular Endothelial Cell Injury via TLR4/MyD88 Signaling Pathway in Lupus Nephritis. Mediators Inflamm 2022; 2021:9993971. [PMID: 34970076 PMCID: PMC8714399 DOI: 10.1155/2021/9993971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Previously, our study showed that HMGB1 was significantly elevated in the blood and located in the glomerular endothelium in LN patients. But whether extracellular HMGB1 is involved in the injury of glomerular endothelial cells (GECs) in LN still needs further investigation. Firstly, we detected the levels of SDC-1, VCAM-1, and proteinuria in LN patients and MRL/lpr mice and analyzed their correlations. Then, HMGB1 and TLR4/MyD88 were inhibited to observe the shedding of glycocalyx and injury of GECs in vivo and in vitro. Our results showed that HRGEC injury and SDC-1 shedding played an important role in the increase of permeability and proteinuria formation in LN. Additionally, inhibition of extracellular HMGB1 and/or downstream TLR4/MyD88/NF-κB/p65 signaling pathway also alleviated GEC monolayer permeability, reduced the shedding of the glomerular endothelial glycocalyx, improved the intercellular tight junction and cytoskeletal arrangement, and downregulated the NO level and VCAM-1 expression. These results suggested that extracellular HMGB1 might involve in GEC injury by activating the TLR4/MyD88 signaling pathway in LN, which provided novel insights and potential therapeutic target for the treatment of lupus nephritis.
Collapse
|
34
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Kong L, Fan D, Zhou L, Wei S. The influence of modified molecular (D/L-serine) chirality on the theragnostics of PAMAM-based nanomedicine for acute kidney injury. J Mater Chem B 2021; 9:9023-9030. [PMID: 34635887 DOI: 10.1039/d1tb01674a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a severe clinical disease with extremely high morbidity and mortality. It is challenging to find a simple method for early detection of AKI and monitoring the treatment results. Renal tubular damage and inflammation are early events in AKI. Renal tubular damage is conducive to the accumulation of small-sized nanoparticles in the kidney, and inflammation is related to the excessive production of H2O2. Recent studies proved that chiral molecule modification of nanomaterials is a powerful strategy to regulate their biodistribution. Thus, L-serine and D-serine modified poly(amidoamine) (PAMAM) dendrimers were synthesized and used as fluorescent probe (NPSH) carriers to obtain L-SPH and D-SPH, respectively. D-SPH has a strong accumulation capability in the kidney of AKI mice. Then, the H2O2 fluorescent probe can detect the excessively produced H2O2 to generate fluorescence to diagnose AKI. Subsequently, the anti-inflammatory drug manganese pentacarbonyl bromide (CORM) was loaded in D-SPH to obtain D-SPHC with AKI theragnostic functions. Simultaneously, the D-SPHC fluorescence signal intensity change during the treatment can be used to monitor the recovery process. This study is the first report of chiral materials used in the diagnosis and treatment of AKI.
Collapse
Affiliation(s)
- Lulu Kong
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Di Fan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China. .,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
36
|
Gyarmati G, Jacob CO, Peti-Peterdi J. New Endothelial Mechanisms in Glomerular (Patho)biology and Proteinuria Development Captured by Intravital Multiphoton Imaging. Front Med (Lausanne) 2021; 8:765356. [PMID: 34722598 PMCID: PMC8548465 DOI: 10.3389/fmed.2021.765356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
In the past two decades, intravital imaging using multiphoton microscopy has provided numerous new visual and mechanistic insights into glomerular biology and disease processes including the function of glomerular endothelial cells (GEnC), podocytes, and the development of proteinuria. Although glomerular endothelial injury is known to precede podocyte damage in several renal diseases, the primary role of GEnCs in proteinuria development received much less attention compared to the vast field of podocyte pathobiology. Consequently, our knowledge of GEnC mechanisms in glomerular diseases is still emerging. This review highlights new visual clues on molecular and cellular mechanisms of GEnCs and their crosstalk with podocytes and immune cells that were acquired recently by the application of multiphoton imaging of the intact glomerular microenvironment in various proteinuric disease models. New mechanisms of glomerular tissue remodeling and regeneration are discussed based on results of tracking the fate and function of individual GEnCs using serial intravital multiphoton imaging over several days and weeks. The three main topics of this review include (i) the role of endothelial injury and microthrombi in podocyte detachment and albumin leakage via hemodynamic and mechanical forces, (ii) the alterations of the endothelial surface layer (glycocalyx) and its interactions with circulating immune cells in lupus nephritis, and (iii) the structural and functional remodeling and regeneration of GEnCs in hypertension, diabetes, and other experimental injury conditions. By the comprehensive visual portrayal of GEnCs and the many other contributing glomerular cell types, this review emphasizes the complexity of pathogenic mechanisms that result in proteinuria development.
Collapse
Affiliation(s)
- Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Chaim O Jacob
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Chen X, Chen J, Li X, Yu Z. Activation of mTOR mediates hyperglycemia-induced renal glomerular endothelial hyperpermeability via the RhoA/ROCK/pMLC signaling pathway. Diabetol Metab Syndr 2021; 13:105. [PMID: 34627341 PMCID: PMC8501565 DOI: 10.1186/s13098-021-00723-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Hyperglycemia is associated with albuminuria and renal glomerular endothelial dysfunction in patients with diabetic nephropathy. The mTOR and RhoA/ROCK signaling pathways are involved in glomerular filtration barrier (GFB) regulation, but their role in high glucose (HG)-induced GFB dysfunction in human renal glomerular endothelial cells (HRGECs) has not been investigated. This study aimed to investigate the mechanisms of HG-induced GFB dysfunction in vitro. MATERIALS AND METHODS HRGECs were cultured in vitro and exposed to HG. The horseradish peroxidase-albumin leakage and transendothelial electrical resistance of the endothelial monolayer were measured after HG treatment with or without rapamycin preincubation. A fluorescence probe was used to study the distribution of F-actin reorganization. The phosphorylation levels of myosin light chain (MLC) and mTOR were measured via western blotting. RhoA activity was evaluated via GTPase activation assay. The effects of blocking mTOR or the RhoA/ROCK pathway on endothelial permeability and MLC phosphorylation under HG conditions were observed. RESULTS HG exposure induced F-actin reorganization and increased MLC phosphorylation, leading to EC barrier disruption. This effect was attenuated by treatment with rapamycin or Y-27632. Phospho-MLC (pMLC) activation in HRGECs was mediated by RhoA/ROCK signaling. mTOR and RhoA/ROCK inhibition or knockdown attenuated pMLC activation, F-actin reorganization and barrier disruption that occurred in response to HG exposure. CONCLUSIONS Our results revealed that HG stimulation upregulated RhoA expression and activity through an mTOR-dependent pathway, leading to MLC-mediated endothelial cell cytoskeleton rearrangement and glomerular endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China.
- Department of Clinical Laboratory, The Sixth Clinical College of Gannan Medical University, Pingxiang, Jiangxi, China.
| | - Jianhui Chen
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China
| | - Xianfan Li
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China
| | - Zengpu Yu
- Department of Clinical Laboratory, Pingxiang People's Hospital, Pingxiang, 337000, Jiangxi, China
| |
Collapse
|
38
|
Liu J, Xu J, Huang J, Gu C, Liu Q, Zhang W, Gao F, Tian Y, Miao X, Zhu Z, Jia B, Tian Y, Wu L, Zhao H, Feng X, Liu S. TRIM27 contributes to glomerular endothelial cell injury in lupus nephritis by mediating the FoxO1 signaling pathway. J Transl Med 2021; 101:983-997. [PMID: 33854173 PMCID: PMC8044289 DOI: 10.1038/s41374-021-00591-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Tripartite motif-containing 27 (TRIM27) belongs to the triple motif (TRIM) protein family, which plays a role in a variety of biological activities. Our previous study showed that the TRIM27 protein was highly expressed in the glomerular endothelial cells of patients suffering from lupus nephritis (LN). However, whether TRIM27 is involved in the injury of glomerular endothelial cells in lupus nephritis remains to be clarified. Here, we detected the expression of the TRIM27 protein in glomerular endothelial cells in vivo and in vitro. In addition, the influence of TRIM27 knockdown on endothelial cell damage in MRL/lpr mice and cultured human renal glomerular endothelial cells (HRGECs) was explored. The results revealed that the expression of TRIM27 in endothelial cells was significantly enhanced in vivo and in vitro. Downregulating the expression of TRIM27 inhibited the breakdown of the glycocalyx and the injury of endothelial cells via the FoxO1 pathway. Moreover, HRGECs transfected with the WT-FoxO1 plasmid showed a reduction in impairment caused by LN plasma. Furthermore, suppression of the protein kinase B (Akt) pathway could attenuate damage by mediating the expression of TRIM27. Thus, the present study showed that TRIM27 participated in the injury of glomerular endothelial cells and served as a potential therapeutic target for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Xu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Cunyang Gu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Zixuan Zhu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Baiyun Jia
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
- Department of Rheumatology, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lunbi Wu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Hang Zhao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| | - Shuxia Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
39
|
Abstract
Diabetes mellitus is a disease of dysregulated blood glucose homeostasis. The current pandemic of diabetes is a significant driver of patient morbidity and mortality, as well as a major challenge to healthcare systems worldwide. The global increase in the incidence of diabetes has prompted researchers to focus on the different pathogenic processes responsible for type 1 and type 2 diabetes. Similarly, increased morbidity due to diabetic complications has accelerated research to uncover pathological changes causing these secondary complications. Albuminuria, or protein in the urine, is a well-recognised biomarker and risk factor for renal and cardiovascular disease. Albuminuria is a mediator of pathological abnormalities in diabetes-associated conditions such as nephropathy and atherosclerosis. Clinical screening and diagnosis of diabetic nephropathy is chiefly based on the presence of albuminuria. Given the ease in measuring albuminuria, the potential of using albuminuria as a biomarker of cardiovascular diseases is gaining widespread interest. To assess the benefits of albuminuria as a biomarker, it is important to understand the association between albuminuria and cardiovascular disease. This review examines our current understanding of the pathophysiological mechanisms involved in both forms of diabetes, with specific focus on the link between albuminuria and specific vascular complications of diabetes.
Collapse
Affiliation(s)
- Pappitha Raja
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Northern Ireland Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
40
|
Desposito D, Schiessl IM, Gyarmati G, Riquier-Brison A, Izuhara AK, Kadoya H, Der B, Shroff UN, Hong YK, Peti-Peterdi J. Serial intravital imaging captures dynamic and functional endothelial remodeling with single-cell resolution. JCI Insight 2021; 6:123392. [PMID: 33848265 PMCID: PMC8262275 DOI: 10.1172/jci.insight.123392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells are important in the maintenance of healthy blood vessels and in the development of vascular diseases. However, the origin and dynamics of endothelial precursors and remodeling at the single-cell level have been difficult to study in vivo owing to technical limitations. Therefore, we aimed to develop a direct visual approach to track the fate and function of single endothelial cells over several days and weeks in the same vascular bed in vivo using multiphoton microscopy (MPM) of transgenic Cdh5-Confetti mice and the kidney glomerulus as a model. Individual cells of the vascular endothelial lineage were identified and tracked owing to their unique color combination, based on the random expression of cyan/green/yellow/red fluorescent proteins. Experimental hypertension, hyperglycemia, and laser-induced endothelial cell ablation rapidly increased the number of new glomerular endothelial cells that appeared in clusters of the same color, suggesting clonal cell remodeling by local precursors at the vascular pole. Furthermore, intravital MPM allowed the detection of distinct structural and functional alterations of proliferating endothelial cells. No circulating Cdh5-Confetti+ cells were found in the renal cortex. Moreover, the heart, lung, and kidneys showed more significant clonal endothelial cell expansion compared with the brain, pancreas, liver, and spleen. In summary, we have demonstrated that serial MPM of Cdh5-Confetti mice in vivo is a powerful technical advance to study endothelial remodeling and repair in the kidney and other organs under physiological and disease conditions.
Collapse
Affiliation(s)
- Dorinne Desposito
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Audrey K Izuhara
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| |
Collapse
|
41
|
Pereira BMV, Katakia YT, Majumder S, Thieme K. Unraveling the epigenetic landscape of glomerular cells in kidney disease. J Mol Med (Berl) 2021; 99:785-803. [PMID: 33763722 DOI: 10.1007/s00109-021-02066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
42
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
43
|
Li L, Liu Q, Shang T, Song W, Xu D, Allen TD, Wang X, Jeong J, Lobe CG, Liu J. Aberrant Activation of Notch1 Signaling in Glomerular Endothelium Induces Albuminuria. Circ Res 2021; 128:602-618. [PMID: 33435713 DOI: 10.1161/circresaha.120.316970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Glomerular capillaries are lined with a highly specialized fenestrated endothelium and contribute to the glomerular filtration barrier. The Notch signaling pathway is involved in regulation of glomerular filtration barrier, but its role in glomerular endothelium has not been investigated due to the embryonic lethality of animal models with genetic modification of Notch pathway components in the endothelium. OBJECTIVE To determine the effects of aberrant activation of the Notch signaling in glomerular endothelium and the underlying molecular mechanisms. METHODS AND RESULTS We established the ZEG-NICD1 (notch1 intracellular domain)/Tie2-tTA/Tet-O-Cre transgenic mouse model to constitutively activate Notch1 signaling in endothelial cells of adult mice. The triple transgenic mice developed severe albuminuria with significantly decreased VE-cadherin (vascular endothelial cadherin) expression in the glomerular endothelium. In vitro studies showed that either NICD1 (Notch1 intracellular domain) lentiviral infection or treatment with Notch ligand DLL4 (delta-like ligand 4) markedly reduced VE-cadherin expression and increased monolayer permeability of human renal glomerular endothelial cells. In addition, Notch1 activation or gene knockdown of VE-cadherin reduced the glomerular endothelial glycocalyx. Further investigation demonstrated that activated Notch1 suppression of VE-cadherin was through the transcription factors SNAI1 (snail family transcriptional repressor 1) and ERG (Ets related gene), which bind to the -373 E-box and the -134/-118 ETS (E26 transformation-specific) element of the VE-cadherin promoter, respectively. CONCLUSIONS Our results reveal novel regulatory mechanisms whereby endothelial Notch1 signaling dictates the level of VE-cadherin through the transcription factors SNAI1 and ERG, leading to dysfunction of glomerular filtration barrier and induction of albuminuria. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Liqun Li
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tongyao Shang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Wei Song
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - Dongmei Xu
- Department of Nephrology (D.X.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Thaddeus D Allen
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada.,Tradewind BioScience, Daly City, California (T.D.A.)
| | - Xia Wang
- School of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China (L.L., T.S., W.S., X.W.)
| | - James Jeong
- General Internal Medicine, Markham Stouffville Hospital, Toronto, Ontario, Canada (J.J.)
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre (T.D.A., J.J., C.G.L.), University of Toronto, Ontario, Canada.,Department of Medical Biophysics (T.D.A., C.G.L.), University of Toronto, Ontario, Canada
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center (L.L., Q.L., J.L.), Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
44
|
Lian H, Wu H, Ning J, Lin D, Huang C, Li F, Liang Y, Qi Y, Ren M, Yan L, You L, Xu M. The Risk Threshold for Hemoglobin A1c Associated With Albuminuria: A Population-Based Study in China. Front Endocrinol (Lausanne) 2021; 12:673976. [PMID: 34135862 PMCID: PMC8202121 DOI: 10.3389/fendo.2021.673976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a kind of common microvascular complication of diabetes. This study aims to explore the possible links between blood sugar level and albuminuria, providing the exact cut point of the "risk threshold" for blood glucose with DKD. METHODS The relationship between blood glucose and albuminuria was modeled using linear and logistic regression in the REACTION study cohorts (N= 8932). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression model. Two-slope linear regression was used to simulate associations between blood glucose and ACR. RESULTS We found that the increase in ACR was accompanied by increased HbA1c, with a turning point at 5.5%. The positive correlation remained highly significant (P<0.001) when adjusted for age, sex, marital status, education, smoking status, drinking status, BMI, waistline, SBP and DBP. In subgroup analyses including gender, obesity, hypertension, and smoking habits, the relationship was significant and stable. CONCLUSIONS We determined a risk threshold for HbA1c associated with albuminuria in a Chinese population over the age of 40. HbA1c ≥ 5.5% was positively and independently associated with ACR. These results suggest the necessity of early blood glucose control and renal function screening for DKD in at-risk populations.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongshi Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua, District Central Hospital, Shenzhen, China
| | - Diaozhu Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chulin Huang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqin Qi
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lili You
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Mingtong Xu,
| |
Collapse
|
45
|
Li L, Wei T, Liu S, Wang C, Zhao M, Feng Y, Ma L, Lu Y, Fu P, Liu J. Complement C5 activation promotes type 2 diabetic kidney disease via activating STAT3 pathway and disrupting the gut-kidney axis. J Cell Mol Med 2020; 25:960-974. [PMID: 33280239 PMCID: PMC7812276 DOI: 10.1111/jcmm.16157] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe DM complication. While complement C5 up-regulation and gut dysbiosis are found in T2DM, their roles in DKD are unclear. Here, we investigated the effect of C5 on the gut microbiota during DKD development. Renal C5a/C5a receptor (C5aR) expression changes were measured in T2DM patients and db/db mice. Db/db mice were treated with a C5aR antagonist (C5aRA), and renal function, gut microbiota and renal genome changes were analysed. The effects of C5a and short-chain fatty acids (SCFAs) on the signal transducer and activator of transcription 3 (STAT3) pathway were examined in vitro. C5a was up-regulated in glomerular endothelial cells (GECs) of T2DM patients and db/db mice. Although glucose and lipid metabolism were unchanged, C5aR blockade alleviated renal dysfunction, ECM deposition, macrophage infiltration and proinflammatory factor expression in db/db mice. C5aRA partly reversed the declines in gut microbiota diversity and abundance and gut SCFA levels in db/db mice. C5aRA down-regulated the expression of many immune response-related genes, such as STAT3, in db/db mouse kidneys. C5aRA and SCFAs suppressed C5a-induced STAT3 activation in human renal glomerular endothelial cells (HRGECs). Based on our results, C5 hyperactivation promotes DKD by activating STAT3 in GECs and impairing the gut-kidney axis, suggesting that this hyperactivation is a potential target for the treatment of DKD.
Collapse
Affiliation(s)
- Ling Li
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tiantian Wei
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhuan Feng
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Extracellular ATP modulates podocyte function through P2Y purinergic receptors and pleiotropic effects on AMPK and cAMP/PKA signaling pathways. Arch Biochem Biophys 2020; 695:108649. [PMID: 33122160 DOI: 10.1016/j.abb.2020.108649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Podocytes and their foot processes interlinked by slit diaphragms, constitute a continuous outermost layer of the glomerular capillary and seem to be crucial for maintaining the integrity of the glomerular filtration barrier. Purinergic signaling is involved in a wide range of physiological processes in the renal system, including regulating glomerular filtration. We evaluated the role of nucleotide receptors in cultured rat podocytes using non-selective P2 receptor agonists and agonists specific for the P2Y1, P2Y2, and P2Y4 receptors. The results showed that extracellular ATP evokes cAMP-dependent pathways through P2 receptors and influences remodeling of the podocyte cytoskeleton and podocyte permeability to albumin via coupling with RhoA signaling. Our findings highlight the relevance of the P2Y4 receptor in protein kinase A-mediated signal transduction to the actin cytoskeleton. We observed increased cAMP concentration and decreased RhoA activity after treatment with a P2Y4 agonist. Moreover, protein kinase A inhibitors reversed P2Y4-induced changes in RhoA activity and intracellular F-actin staining. P2Y4 stimulation resulted in enhanced AMPK phosphorylation and reduced reactive oxygen species generation. Our findings identify P2Y-PKA-RhoA signaling as the regulatory mechanism of the podocyte contractile apparatus and glomerular filtration. We describe a protection mechanism for the glomerular barrier linked to reduced oxidative stress and reestablished energy balance.
Collapse
|
47
|
Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, Hillebrands JL. Glomerular Endothelial Cells as Instigators of Glomerular Sclerotic Diseases. Front Pharmacol 2020; 11:573557. [PMID: 33123011 PMCID: PMC7573930 DOI: 10.3389/fphar.2020.573557] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction. GEnC dysfunction occurs in early stages of FSGS and DN, and is characterized by a compromised endothelial glycocalyx, an inflammatory phenotype, mitochondrial damage and oxidative stress, aberrant cell signaling, and endothelial-to-mesenchymal transition (EndMT). GEnCs are in an interdependent relationship with podocytes and mesangial cells, which involves bidirectional cross-talk via intercellular signaling. Given that GEnC behavior directly influences podocyte function, it is conceivable that GEnC dysfunction may culminate in podocyte damage, proteinuria, subsequent mesangial activation, and ultimately glomerulosclerosis. Indeed, GEnC dysfunction is sufficient to cause podocyte injury, proteinuria and activation of mesangial cells. Aberrant gene expression patterns largely contribute to GEnC dysfunction and epigenetic changes seem to be involved in causing aberrant transcription. This review summarizes literature that uncovers the importance of cross-talk between GEnCs and podocytes, and GEnCs and mesangial cells in the context of the development of FSGS and DN, and the potential use of GEnCs as efficacious cellular target to pharmacologically halt development and progression of DN and FSGS.
Collapse
Affiliation(s)
- Marloes Sol
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Stern C, Schreier B, Nolze A, Rabe S, Mildenberger S, Gekle M. Knockout of vascular smooth muscle EGF receptor in a mouse model prevents obesity-induced vascular dysfunction and renal damage in vivo. Diabetologia 2020; 63:2218-2234. [PMID: 32548701 PMCID: PMC7476975 DOI: 10.1007/s00125-020-05187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Obesity causes type 2 diabetes leading to vascular dysfunction and finally renal end-organ damage. Vascular smooth muscle (VSM) EGF receptor (EGFR) modulates vascular wall homeostasis in part via serum response factor (SRF), a major regulator of VSM differentiation and a sensor for glucose. We investigated the role of VSM-EGFR during obesity-induced renovascular dysfunction, as well as EGFR-hyperglycaemia crosstalk. METHODS The role of VSM-EGFR during high-fat diet (HFD)-induced type 2 diabetes was investigated in a mouse model with inducible, VSM-specific EGFR-knockout (KO). Various structural and functional variables as well as transcriptome changes, in vivo and ex vivo, were assessed. The impact of hyperglycaemia on EGFR-induced signalling and SRF transcriptional activity and the underlying mechanisms were investigated at the cellular level. RESULTS We show that VSM-EGFR mediates obesity/type 2 diabetes-induced vascular dysfunction, remodelling and transcriptome dysregulation preceding renal damage and identify an EGFR-glucose synergism in terms of SRF activation, matrix dysregulation and mitochondrial function. EGFR deletion protects the animals from HFD-induced endothelial dysfunction, creatininaemia and albuminuria. Furthermore, we show that HFD leads to marked changes of the aortic transcriptome in wild-type but not in KO animals, indicative of EGFR-dependent SRF activation, matrix dysregulation and mitochondrial dysfunction, the latter confirmed at the cellular level. Studies at the cellular level revealed that high glucose potentiated EGFR/EGF receptor 2 (ErbB2)-induced stimulation of SRF activity, enhancing the graded signalling responses to EGF, via the EGFR/ErbB2-ROCK-actin-MRTF pathway and promoted mitochondrial dysfunction. CONCLUSIONS/INTERPRETATION VSM-EGFR contributes to HFD-induced vascular and subsequent renal alterations. We propose that a potentiated EGFR/ErbB2-ROCK-MRTF-SRF signalling axis and mitochondrial dysfunction underlie the role of EGFR. This advanced working hypothesis will be investigated in mechanistic depth in future studies. VSM-EGFR may be a therapeutic target in cases of type 2 diabetes-induced renovascular disease. DATA AVAILABILITY The datasets generated during and/or analysed during the current study are available in: (1) share_it, the data repository of the academic libraries of Saxony-Anhalt ( https://doi.org/10.25673/32049.2 ); and (2) in the gene expression omnibus database with the study identity GSE144838 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144838 ). Graphical abstract.
Collapse
Affiliation(s)
- Christian Stern
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Sindy Rabe
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany
| | - Michael Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 6, 06112, Halle, Germany.
| |
Collapse
|
49
|
Hu YF, Tan Y, Yu XJ, Wang H, Wang SX, Yu F, Zhao MH. Podocyte Involvement in Renal Thrombotic Microangiopathy: A Clinicopathological Study. Am J Nephrol 2020; 51:752-760. [PMID: 32862175 DOI: 10.1159/000510141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The current study aimed to evaluate the associations between podocyte injury and clinicopathological features in renal thrombotic microangiopathy (TMA) based on a Chinese cohort, which might be underscored in this disease. METHODS The clinical, laboratory, and renal histopathological data of patients with renal biopsy-proven TMA from 2000 to 2015 in our institute were collected. Foot process effacement (FPE) was quantified by foot process width (FPW) by electron microscopy. Podocytes in the renal specimens were also detected by stainings for podocyte-specific markers, including Wilms tumor 1 (WT-1), synaptopodin, and podocalyxin. The associations between FPW and clinico-histopathological data were further analyzed. A composite end-point was defined by all-cause death or end-stage renal disease to address the predictive value of FPW. RESULTS Sixty-three patients with renal biopsy-proven TMA were enrolled. The FPW of renal TMA patients was 1,090 ± 637 nm (range, 572-4,748 nm), which was significantly higher than the normal range in our center (p = 0.005). By immunohistochemistry and immunofluorescence assays, we found decreased expressions of synaptopodin, podocalyxin, and WT-1 and continued stainings of WT-1 in some podocytes without detectable synaptopodin stainings in the areas of sclerotic tufts and cellular crescents. The FPW value was correlated with the serum albumin concentration (rs = -0.281, p = 0.026), proteinuria amount (rs = 0.255, p = 0.047), serum creatinine levels (rs = 0.339, p = 0.007), and eGFR (rs = -0.335, p = 0.007). According to ROC curve analysis, the optimal cutoff level of FPW for predicting the composite end-point was 869 nm. In patients with FPW ≥ 869 nm, FPW levels were further correlated with the severity of mesangiolysis (rs = 0.351, p = 0.033) and glomerulosclerosis (rs = 0.369, p = 0.025) in pathological evaluations. Patients without clinical remission also had higher FPW than those with remission (1,240 ± 793 vs. 925 ± 344 nm, p = 0.013). The multivariate Cox hazard model showed that FPW ≥ 869 nm was an independent risk factor for the composite end-point (hazard ratio: 3.64, 95% CI: 1.37-9.66, p = 0.009). CONCLUSION The podocyte injury was prevalent and the FPW levels were closely associated with clinicopathological features, especially prognosis, in renal TMA patients.
Collapse
Affiliation(s)
- Yi-Fang Hu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Electron Microscopy, Peking University First Hospital, Beijing, China
| | - Su-Xia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Electron Microscopy, Peking University First Hospital, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,
- Institute of Nephrology, Peking University, Beijing, China,
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China,
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China,
- Department of Nephrology, Peking University International Hospital, Beijing, China,
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
50
|
Chen Z, Peng H, Zhang C. Advances in kidney-targeted drug delivery systems. Int J Pharm 2020; 587:119679. [PMID: 32717283 DOI: 10.1016/j.ijpharm.2020.119679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| |
Collapse
|