1
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
2
|
Downs J, Pichard DC, Kaufmann WE, Horrigan JP, Raspa M, Townend G, Marsh ED, Leonard H, Motil K, Dietz AC, Garg N, Ananth A, Byiers B, Peters S, Beatty C, Symons F, Jacobs A, Youakim J, Suter B, Santosh P, Neul JL, Benke TA. International workshop: what is needed to ensure outcome measures for Rett syndrome are fit-for-purpose for clinical trials? June 7, 2023, Nashville, USA. Trials 2024; 25:845. [PMID: 39709426 DOI: 10.1186/s13063-024-08678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The clinical, research and advocacy communities for Rett syndrome are striving to achieve clinical trial readiness, including having fit-for-purpose clinical outcome assessments. This study aimed to (1) describe psychometric properties of clinical outcome assessment for Rett syndrome and (2) identify what is needed to ensure that fit-for-purpose clinical outcome assessments are available for clinical trials. METHODS Clinical outcome assessments for the top 10 priority domains identified in the Voice of the Patient Report for Rett syndrome were compiled and available psychometric data were extracted. The clinical outcome assessments measured clinical severity, functional abilities, comorbidities and quality of life, and electrophysiological biomarkers. An international and multidisciplinary panel of 29 experts with clinical, research, psychometric, biostatistical, industry and lived experience was identified through International Rett Syndrome Foundation networks, to discuss validation of the clinical outcome assessments, gaps and next steps, during a workshop and in a follow-up questionnaire. The identified gaps and limitations were coded using inductive content analysis. RESULTS Variable validation profiles across 26 clinical outcome assessments of clinical severity, functional abilities, and comorbidities were discussed. Reliability, validity, and responsiveness profiles were mostly incomplete; there were limited content validation data, particularly parent-informed relevance, comprehensiveness and comprehensibility of items; and no data on meaningful change or cross-cultural validity. The panel identified needs for standardised administration protocols and systematic validation programmes. CONCLUSION A pipeline of collaborative clinical outcome assessment development and validation research in Rett syndrome can now be designed, aiming to have fit-for-purpose measures that can evaluate meaningful change, to serve future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Jenny Downs
- The Kids Research Institute Australia, Centre for Child Health Research, University of Western Australia, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin School of Allied Health, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - Dominique C Pichard
- International Rett Syndrome Foundation, 4500 Cooper Road, Suite 204, Cincinnati, OH, 45242, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Joseph P Horrigan
- Duke Center for Autism and Brain Development, Duke University, 2608 Erwin Road, Suite 300, Durham, NC, 27705, USA
| | - Melissa Raspa
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC, 27607, USA
| | - Gillian Townend
- School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6ES, UK
| | - Eric D Marsh
- Division of Child Neurology and University of Pennsylvania Perelman School of Medicine, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Helen Leonard
- The Kids Research Institute Australia, Centre for Child Health Research, University of Western Australia, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Kathleen Motil
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nupur Garg
- International Rett Syndrome Foundation, 4500 Cooper Road, Suite 204, Cincinnati, OH, 45242, USA
| | - Amitha Ananth
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Breanne Byiers
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Sarika Peters
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 230 Appleton Place, Nashville, TN, PMB4037204, USA
| | - Christopher Beatty
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Frank Symons
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Aleksandra Jacobs
- Isabelle Rapin Division of Child Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, USA
| | - James Youakim
- Acadia Pharmaceuticals Inc., 502 Carnegie Center, Suite 300, Princeton, NJ, 08540, USA
| | - Bernhard Suter
- Department of Pediatrics & Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Paramola Santosh
- Department of Child and Adolescent Psychiatry, Developmental Neuropsychiatry & Psychopharmacology, King's College, London, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD) & CIPP Rett Centre, Maudsley Hospital, London, UK
- HealthTracker Ltd, Gillingham, UK
| | - Jeffrey L Neul
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Tim A Benke
- School of Medicine Depts of Pediatrics, Neurology and Pharmacology, Children's Hospital Colorado/University of Colorado, 12800 E 19th, MS8102, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Yang D, Wu X, Yao Y, Duan M, Wang X, Li G, Guo A, Wu M, Liu Y, Zheng J, Zhang R, Li T, Luk A, Yao X, Shi L, Xu C, Yang H. An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates. Nat Neurosci 2024:10.1038/s41593-024-01838-6. [PMID: 39668251 DOI: 10.1038/s41593-024-01838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2024] [Indexed: 12/14/2024]
Abstract
Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits. Notably, treatment with AAV9-hfCas13Y-gMECP2 extended the median survival of MECP2 transgenic mice from 156.5 to 226 d. Furthermore, studies with monkeys showed a single injection of AAV9-hfCas13Y-gMECP2 was sufficient to drive robust expression of hfCas13Y in widespread brain regions, with MECP2 knockdown efficiency reaching 52.19 ± 0.03% and significantly decreased expression of biomarker gene GDF11. Our results demonstrate that the RNA-targeting hfCas13Y-gMECP2 system is an effective intervention for MDS, providing a potential strategy for treating other dosage-sensitive diseases.
Collapse
Affiliation(s)
- Dong Yang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xiaoqing Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yinan Yao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mengsi Duan
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xing Wang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Aiguo Guo
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Meixian Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zheng
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Renxia Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Alvin Luk
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Linyu Shi
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Inc., Shanghai, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| |
Collapse
|
4
|
Anpalagan K, Jacoby P, Stannage K, Leonard H, Langdon K, Gibson N, Nagarajan L, Wong K, Downs J. Hospitalizations Following Complex Hip Surgery in Children with Intellectual Disability: A Self-Controlled Case Series Analysis. J Pediatr 2024:114435. [PMID: 39674541 DOI: 10.1016/j.jpeds.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIV To evaluate the associations between complex hip surgery and subsequent hospitalizations in children with intellectual disability, including a subset of children with cerebral palsy. STUDY DESIGN We: conducted a retrospective cohort study using linked administrative, health, and disability data from Western Australia. Children born between 1983 and 2009 who underwent complex hip surgery by end 2014 were included (intellectual disability, n=154; subset with cerebral palsy, n=91). A self-controlled case series analysis using Poisson regression was used to estimate the age-adjusted associations of complex hip surgery on all-cause hospitalizations and when the principal diagnosis was lower respiratory tract infection (LRTI) or epilepsy, for periods following the individual's first major hip surgery, compared with the year before surgery. RESULTS Age adjusted incidence of all-cause hospitalizations decreased after surgery (year 1: incidence rate ratio [IRR] 0.87 [95% CI, 0.74-1.02]; year 6: IRR 0.57 [95% CI, 0.46-0.72]). The incidence of hospitalizations for LRTI increased (year 1: IRR,1.03 [95% CI, 0.72-1.51]; year 6: IRR 2.08 [95% CI, 1.18-3.68]). The incidence of hospitalizations for epilepsy decreased (year 1: IRR 0.93 [95% CI, 0.57, 1.54]; year>6: IRR 0.72 [95% CI, 0.34-1.55]) after surgery. A similar pattern was observed for the subset of children with or without cerebral palsy. CONCLUSION Complex hip surgeries are associated with fewer hospitalizations overall but not respiratory hospitalizations for children with intellectual disability. Fewer hospitalizations suggest benefits for better musculoskeletal alignment.
Collapse
Affiliation(s)
- Keerthi Anpalagan
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Peter Jacoby
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | | | - Helen Leonard
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | | | - Noula Gibson
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Physiotherapy Department, Perth Children's Hospital, Perth, Australia; Curtin School of Allied Health, Curtin University, Perth, Australia
| | - Lakshmi Nagarajan
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Neurology Department, Perth Children's Hospital, UWA, Perth, Australia
| | - Kingsley Wong
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Jenny Downs
- The Kids Research Institute Australia, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Curtin School of Allied Health, Curtin University, Perth, Australia.
| |
Collapse
|
5
|
Huang CH, Wong LC, Chu YJ, Hsu CJ, Wang HP, Tsai WC, Lee WT. The sleep problems in individuals with Rett syndrome and their caregivers. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:3118-3130. [PMID: 38853381 DOI: 10.1177/13623613241254620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
LAY ABSTRACT Sleep problems are common and impactful among individuals with Rett syndrome (RTT) and their caregivers. We examined the sleep patterns of 29 RTT patients and their primary caregivers using various assessment tools. The study found that a majority of the patients experienced sleep disturbances, with younger patients showing more sleep difficulties. Caregivers also reported poor sleep quality. The findings emphasize the need to address sleep problems in RTT management, as improving sleep quality can positively impact the well-being of individuals with RTT and their caregivers.
Collapse
Affiliation(s)
- Cheng-Hsien Huang
- Department of Pediatrics, Sleep Center, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan
- University of Taipei, Taiwan
| | - Lee-Chin Wong
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Chu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hsin-Pei Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital YunLin Branch, Yun-Lin, Taiwan
| | - Wen-Che Tsai
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University Children's Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Mishra GP, Sun EX, Chin T, Eckhardt M, Greenberg ME, Stroud H. Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex. Nat Neurosci 2024:10.1038/s41593-024-01808-y. [PMID: 39578572 DOI: 10.1038/s41593-024-01808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/25/2024] [Indexed: 11/24/2024]
Abstract
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome. MeCP2 is thought to regulate gene transcription by binding to methylated DNA broadly across the genome. Here, using cleavage under target and release under nuclease (CUT&RUN) assays in the adult mouse cortex, we show that MeCP2 strongly binds to specific gene enhancers that we call MeCP2-binding hotspots (MBHs). Unexpectedly, we find that MeCP2 binding to MBHs occurs in a DNA methylation-independent manner at MBHs. Multiple MBH sites surrounding genes mediate the transcriptional repression of genes enriched for neuronal functions. We show that MBHs regulate genes irrespective of genic methylation levels, suggesting that MeCP2 controls transcription via an intragenic methylation-independent mechanism. Hence, disruption of intragenic methylation-independent gene regulation by MeCP2 may in part underlie Rett syndrome.
Collapse
Affiliation(s)
- Gyan Prakash Mishra
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Eric X Sun
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Chin
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mandy Eckhardt
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Hume Stroud
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Bajikar SS, Sztainberg Y, Trostle AJ, Tirumala HP, Wan YW, Harrop CL, Bengtsson JD, Carvalho CMB, Pehlivan D, Suter B, Neul JL, Liu Z, Jafar-Nejad P, Rigo F, Zoghbi HY. Modeling antisense oligonucleotide therapy in MECP2 duplication syndrome human iPSC-derived neurons reveals gene expression programs responsive to MeCP2 levels. Hum Mol Genet 2024; 33:1986-2001. [PMID: 39277796 PMCID: PMC11555823 DOI: 10.1093/hmg/ddae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Genomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28. However, because MDS CNVs span MECP2 and additional genes, we generated human neurons from multiple MDS patient-derived induced pluripotent cells (iPSCs) to evaluate the benefit of using an ASO against MECP2 in a MDS human neuronal context. Importantly, we identified a signature of genes that is partially and qualitatively modulated upon ASO treatment, pinpointed genes sensitive to MeCP2 function, and altered in a model of Rett syndrome, a neurological disorder caused by loss of MeCP2 function. Furthermore, the signature contained genes that are aberrantly altered in unaffected control human neurons upon MeCP2 depletion, revealing gene expression programs qualitatively sensitive to MeCP2 levels in human neurons. Lastly, ASO treatment led to a partial rescue of abnormal neuronal morphology in MDS neurons. All together, these data demonstrate that ASOs targeting MECP2 benefit human MDS neurons. Moreover, our study establishes a paradigm by which to evaluate the contribution of individual genes within a CNV to pathogenesis and to assess their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22903, United States
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Harini P Tirumala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Caroline L Harrop
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Davut Pehlivan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Bernhard Suter
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, 110 Magnolia Circle, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Paymaan Jafar-Nejad
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
8
|
Gold WA, Percy AK, Neul JL, Cobb SR, Pozzo-Miller L, Issar JK, Ben-Zeev B, Vignoli A, Kaufmann WE. Rett syndrome. Nat Rev Dis Primers 2024; 10:84. [PMID: 39511247 DOI: 10.1038/s41572-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT) is a severe, progressive, neurodevelopmental disorder, which affects predominantly females. In most cases, RTT is associated with pathogenic variants in MECP2. MeCP2, the protein product of MECP2, is known to regulate gene expression and is highly expressed in the brain. RTT is characterized by developmental regression of spoken language and hand use that, with hand stereotypies and impaired ambulation, constitute the four core diagnostic features. Affected individuals may present multiple other neurological impairments and comorbidities, such as seizures, breathing irregularities, anxiety and constipation. Studies employing neuroimaging, neuropathology, neurochemistry and animal models show reductions in brain size and global decreases in neuronal size, as well as alterations in multiple neurotransmitter systems. Management of RTT is mainly focused on preventing the progression of symptoms, currently improved by guidelines based on natural history studies. Animal and cellular models of MeCP2 deficiency have helped in understanding the pathophysiology of RTT and guided the development of trofinetide, an IGF1-related compound, which is an approved drug for RTT, as well as of other drugs and gene therapies currently under investigation.
Collapse
Affiliation(s)
- Wendy A Gold
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Alan K Percy
- Department of Pediatrics (Neurology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R Cobb
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh Medical School, Edinburgh, UK
| | - Lucas Pozzo-Miller
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jasmeen K Issar
- Molecular Neurobiology Research Laboratory, Kids Research and Kids Neuroscience Centre, The Children's Hospital at Westmead, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology & Psychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
10
|
Downs J, Wong K, Leonard H. Associations between genotype, phenotype and behaviours measured by the Rett syndrome behaviour questionnaire in Rett syndrome. J Neurodev Disord 2024; 16:59. [PMID: 39455915 PMCID: PMC11515842 DOI: 10.1186/s11689-024-09575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION Rett syndrome (RTT) is a rare neurodevelopmental disorder with developmental impairments, comorbidities, and abnormal behaviours such as hand stereotypies and emotional features. The Rett Syndrome Behaviour Questionnaire (RSBQ) was developed to describe the behavioural and emotional features of RTT. Little is known how RSBQ scores are associated with genetic and clinical characteristics in RTT. This study investigated relationships between genotype, age, walking, hand function, sleep, and RSBQ total and subscale scores in RTT. METHODS This is a cross-sectional analysis of data collected in the Australian Rett Syndrome Database and the International Rett Syndrome Phenotype Database. Parent caregivers completed the RSBQ and Sleep Disturbance Scale for Children [subscales for disorders of initiating and maintaining sleep (DIMS), disorders of excessive somnolence (DOES)], and provided information on age, variant type, functional abilities (mobility, hand function), seizure frequency and gastrointestinal problems. Associations between the RSBQ scores and the independent variables were modelled using linear regression. RESULTS Data were available for 365 individuals with RTT [median (range) age 17.8 (2.9-51.9) years, 2 males]. Compared to adults, 2- to 12-year-old children had higher mean Total, Night-time Behaviour and Fear/Anxiety scores. Compared to individuals with a C-terminal deletion, individuals with the p.Arg255* variant had higher mean Total and Night-time Behaviours scores, whereas the p.Arg294* variant had higher mean Mood scores. Individuals with intermediate mobility and hand function abilities had a higher mean Total score. Total RSBQ and subscale scores were similar across categories for seizures, constipation, and reflux, but were higher with abnormal DIMS and abnormal DOES scores. CONCLUSION Except for associations with sleep, the RSBQ measures the behavioural phenotype rather than clinical severity in RTT, as traditionally conceptualised in terms of functional abilities and comorbidities. When designing clinical trials, the RSBQ needs to be complemented by other outcome measures to assess specific core functions and associated comorbidities in RTT.
Collapse
Affiliation(s)
- Jenny Downs
- Centre for Child Health Research, The Kids Research Institute Australia, University of Western Australia, 15 Hospital Avenue, Nedlands, WA, 6009, Australia.
- Curtin School of Allied Health, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - Kingsley Wong
- Centre for Child Health Research, The Kids Research Institute Australia, University of Western Australia, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| | - Helen Leonard
- Centre for Child Health Research, The Kids Research Institute Australia, University of Western Australia, 15 Hospital Avenue, Nedlands, WA, 6009, Australia
| |
Collapse
|
11
|
Wong LC, Hsu CJ, Wu YT, Chu HF, Lin JH, Wang HP, Hu SC, Tsai YC, Tsai WC, Lee WT. Investigating the impact of probiotic on neurological outcomes in Rett syndrome: A randomized, double-blind, and placebo-controlled pilot study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2267-2281. [PMID: 38361371 DOI: 10.1177/13623613231225899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
LAY ABSTRACT Rett syndrome often involves gastrointestinal symptoms and gut microbiota imbalances. We conducted a study to explore the feasibility of probiotic Lactobacillus plantarum PS128 and the impact on neurological functions in Rett syndrome. The results of our investigation demonstrated that the supplementation of probiotic L. plantarum PS128 was feasible and well tolerated, with 100% retention rate and 0% withdrawal rate. In addition, there was only one participant who had loose stool after taking L. plantarum PS128. Further, there was a tendency to enhance overall cognitive developmental level, as assessed using Mullen Scales of Early Learning. In addition, it significantly improved dystonia, as assessed using the Burke-Fahn-Marsden Movement Scale, in comparison with the placebo group. This study provides a strong foundation for future research and clinical trials exploring the potential of L. plantarum PS128 probiotics as a complementary therapy for individuals with Rett syndrome.
Collapse
Affiliation(s)
- Lee Chin Wong
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Yen-Tzu Wu
- School and Graduate Institute of Physical Therapy, National Taiwan University College of Medicine, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University, Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jui-Hsiang Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Pei Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital YunLin Branch, YunLin, Taiwan
| | - Su-Ching Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Che Tsai
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Voniati L, Georgiou R, Papaleontiou A, Tsapara A, Papadopoulos A, Tafiadis D. Scoping Review of Communication Abilities of Children with Rett Syndrome in Daily Routine: A Communication Partners’ Perspectives. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2024. [DOI: 10.1007/s41252-024-00407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 10/06/2024]
|
13
|
Galán-Olleros M, González-Alguacil E, Soto-Insuga V, Vara-Arias MT, Ortiz-Cabrera NV, Serrano JI, Egea-Gámez RM, García-Peñas JJ, Martínez-Caballero I. Orthopedic Conditions and Interplay with Functional Abilities and MECP2 Variant Subtype in Rett Syndrome Patients. J Autism Dev Disord 2024:10.1007/s10803-024-06399-y. [PMID: 38795288 DOI: 10.1007/s10803-024-06399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
PURPOSE Rett syndrome (RTT) is a rare multi-systemic disorder primarily linked to mutations in MECP2 gene. This study aims to describe the prevalence of orthopedic conditions in RTT patients, and examine their intricate interplay with functional capabilities, and MECP2 variant subtypes. METHODS Conducted as a cross-sectional retrospective observational study, the research encompassed 55 patients meeting clinical RTT criteria and holding MECP2 mutations. A review of clinical records was performed to gather demographic data, mutation subtypes, orthopedic conditions, management strategies, and assessments of function. RESULTS Mean age of the participants was 10.22 ± 4.64 years (range, 2.9-19.41). Prevalence rates of orthopedic conditions were as follows: kyphoscoliosis 63.6%, hip displacement 14.6%, knee problems 40%, and foot deformities 75.5%. Significant relationship emerged between spinal (p < 0.01) and knee deformities (p < 0.01) with reduced motor function across various domains. Hip displacement significantly affected sitting ability (p = 0.002), and foot deformities impacted standing and walking capabilities (p = 0.049). Mutation clusters analysis revealed significant correlations with spinal (p = 0.022) and knee deformities (p = 0.002). Linear models highlighted the critical importance of mutation clusters, spine deformities, age, and hip management concerning functional variables. CONCLUSIONS In this study, foot deformities were the most frequent orthopedic manifestation, followed by spinal, knee, and hip deformities; and unveiled their relationships with functional status and groups of mutations in RTT patients. LEVEL OF EVIDENCE Level IV, Case series.
Collapse
Affiliation(s)
- María Galán-Olleros
- Neuro-Orthopaedic Unit, Orthopaedic Surgery and Traumatology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.
| | | | - Víctor Soto-Insuga
- Neurology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - María Teresa Vara-Arias
- Physical Medicine and Rehabilitation Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - J Ignacio Serrano
- Neural and Cognitive Engineering Group, Center for Automation and Robotics, CAR CSIC-UPM, Arganda del Rey, Madrid, Spain
| | - Rosa M Egea-Gámez
- Neuro-Orthopaedic Unit, Orthopaedic Surgery and Traumatology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Ignacio Martínez-Caballero
- Neuro-Orthopaedic Unit, Orthopaedic Surgery and Traumatology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
14
|
Wang W, Pan D, Liu Q, Chen X, Wang S. L-Carnitine in the Treatment of Psychiatric and Neurological Manifestations: A Systematic Review. Nutrients 2024; 16:1232. [PMID: 38674921 PMCID: PMC11055039 DOI: 10.3390/nu16081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE L-carnitine (LC), a vital nutritional supplement, plays a crucial role in myocardial health and exhibits significant cardioprotective effects. LC, being the principal constituent of clinical-grade supplements, finds extensive application in the recovery and treatment of diverse cardiovascular and cerebrovascular disorders. However, controversies persist regarding the utilization of LC in nervous system diseases, with varying effects observed across numerous mental and neurological disorders. This article primarily aims to gather and analyze database information to comprehensively summarize the therapeutic potential of LC in patients suffering from nervous system diseases while providing valuable references for further research. METHODS A comprehensive search was conducted in PubMed, Web Of Science, Embase, Ovid Medline, Cochrane Library and Clinicaltrials.gov databases. The literature pertaining to the impact of LC supplementation on neurological or psychiatric disorders in patients was reviewed up until November 2023. No language or temporal restrictions were imposed on the search. RESULTS A total of 1479 articles were retrieved, and after the removal of duplicates through both automated and manual exclusion processes, 962 articles remained. Subsequently, a meticulous re-screening led to the identification of 60 relevant articles. Among these, there were 12 publications focusing on hepatic encephalopathy (HE), while neurodegenerative diseases (NDs) and peripheral nervous system diseases (PNSDs) were represented by 9 and 6 articles, respectively. Additionally, stroke was addressed in five publications, whereas Raynaud's syndrome (RS) and cognitive disorder (CD) each had three dedicated studies. Furthermore, migraine, depression, and amyotrophic lateral sclerosis (ALS) each accounted for two publications. Lastly, one article was found for other symptoms under investigation. CONCLUSION In summary, LC has demonstrated favorable therapeutic effects in the management of HE, Alzheimer's disease (AD), carpal tunnel syndrome (CTS), CD, migraine, neurofibromatosis (NF), PNSDs, RS, and stroke. However, its efficacy appears to be relatively limited in conditions such as ALS, ataxia, attention deficit hyperactivity disorder (ADHD), depression, chronic fatigue syndrome (CFS), Down syndrome (DS), and sciatica.
Collapse
Affiliation(s)
- Wenbo Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
| | - Qi Liu
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (W.W.); (D.P.); (X.C.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712082, China;
| |
Collapse
|
15
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Zhang Q, Liu X, Gong L, He M. Combinatorial genetic strategies for dissecting cell lineages, cell types, and gene function in the mouse brain. Dev Growth Differ 2023; 65:546-553. [PMID: 37963088 DOI: 10.1111/dgd.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Research in neuroscience has greatly benefited from the development of genetic approaches that enable lineage tracing, cell type targeting, and conditional gene regulation. Recent advances in combinatorial strategies, which integrate multiple cellular features, have significantly enhanced the spatiotemporal precision and flexibility of these manipulations. In this minireview, we introduce the concept and design of these strategies and provide a few examples of their application in genetic fate mapping, cell type targeting, and reversible conditional gene regulation. These advancements have facilitated in-depth investigation into the developmental principles underlying the assembly of brain circuits, granting experimental access to highly specific cell lineages and subtypes, as well as offering valuable new tools for modeling and studying neurological diseases. Additionally, we discuss future directions aimed at expanding and improving the existing genetic toolkit for a better understanding of the development, structure, and function of healthy and diseased brains.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Miranda-Lourenço C, Rosa J, Rei N, Belo RF, Lopes AL, Silva D, Vieira C, Magalhães-Cardoso T, Viais R, Correia-de-Sá P, Sebastião AM, Diógenes MJ. Adenosinergic System and BDNF Signaling Changes as a Cross-Sectional Feature of RTT: Characterization of Mecp2 Heterozygous Mouse Females. Int J Mol Sci 2023; 24:16249. [PMID: 38003438 PMCID: PMC10671708 DOI: 10.3390/ijms242216249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Rett Syndrome is an X-linked neurodevelopmental disorder (RTT; OMIM#312750) associated to MECP2 mutations. MeCP2 dysfunction is seen as one cause for the deficiencies found in brain-derived neurotrophic factor (BDNF) signaling, since BDNF is one of the genes under MeCP2 jurisdiction. BDNF signaling is also dependent on the proper function of the adenosinergic system. Indeed, both BDNF signaling and the adenosinergic system are altered in Mecp2-null mice (Mecp2-/y), a representative model of severe manifestation of RTT. Considering that symptoms severity largely differs among RTT patients, we set out to investigate the BDNF and ADO signaling modifications in Mecp2 heterozygous female mice (Mecp2+/-) presenting a less severe phenotype. Symptomatic Mecp2+/- mice have lower BDNF levels in the cortex and hippocampus. This is accompanied by a loss of BDNF-induced facilitation of hippocampal long-term potentiation (LTP), which could be restored upon selective activation of adenosine A2A receptors (A2AR). While no differences were observed in the amount of adenosine in the cortex and hippocampus of Mecp2+/- mice compared with healthy littermates, the density of the A1R and A2AR subtype receptors was, respectively, upregulated and downregulated in the hippocampus. Data suggest that significant changes in BDNF and adenosine signaling pathways are present in an RTT model with a milder disease phenotype: Mecp2+/- female animals. These features strengthen the theory that boosting adenosinergic activity may be a valid therapeutic strategy for RTT patients, regardless of their genetic penetrance.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jéssica Rosa
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F. Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Lopes
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Diogo Silva
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/MedInUP, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UP), 4050-313 Porto, Portugal (D.S.); (P.C.-d.-S.)
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (C.M.-L.); (A.M.S.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
19
|
Musokhranova U, Grau C, Vergara C, Rodríguez-Pascau L, Xiol C, Castells AA, Alcántara S, Rodríguez-Pombo P, Pizcueta P, Martinell M, García-Cazorla A, Oyarzábal A. Mitochondrial modulation with leriglitazone as a potential treatment for Rett syndrome. J Transl Med 2023; 21:756. [PMID: 37884937 PMCID: PMC10601217 DOI: 10.1186/s12967-023-04622-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment. METHODS We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2tm1.1Bird-/+ mice brain, discriminating between different brain areas. The characterization was made according to their bioenergetics function, oxidative stress, network dynamics or ultrastructure. Building on that, we have studied the effect of leriglitazone, a PPARγ agonist, in the modulation of mitochondrial performance. For that, we treated Rett female mice with 75 mg/kg/day leriglitazone from weaning until sacrifice at 7 months, studying both the mitochondrial performance changes and their consequences on the mice phenotype. Finally, we studied its effect on neuroinflammation based on the presence of reactive glia by immunohistochemistry and through a cytokine panel. RESULTS We have described mitochondrial alterations in Rett fibroblasts regarding both shape and bioenergetic functions, as they displayed less interconnected and shorter mitochondria and reduced ATP production along with increased oxidative stress. The bioenergetic alterations were recalled in Rett mice models, being especially significant in cerebellum, already detectable in pre-symptomatic stages. Treatment with leriglitazone recovered the bioenergetic alterations both in Rett fibroblasts and female mice and exerted an anti-inflammatory effect in the latest, resulting in the amelioration of the mice phenotype both in general condition and exploratory activity. CONCLUSIONS Our studies confirm the mitochondrial dysfunction in Rett syndrome, setting the differences through brain areas and disease stages. Its modulation through leriglitazone is a potential treatment for this disorder, along with other diseases with mitochondrial involvement. This work constitutes the preclinical necessary evidence to lead to a clinical trial.
Collapse
Affiliation(s)
- Uliana Musokhranova
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | - Cristina Grau
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | | | | | - Clara Xiol
- Department of Medical Genetics, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alba A Castells
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soledad Alcántara
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, IDIPAZ, Madrid, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | | | - Marc Martinell
- Minoryx Therapeutics BE S.A., Gosselies, Charleroi, Belgium
- Minoryx Therapeutics S.L., Barcelona, Spain
| | - Angels García-Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain.
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.
| |
Collapse
|
20
|
Kay C, Leonard H, Smith J, Wong K, Downs J. Genotype and sleep independently predict mental health in Rett syndrome: an observational study. J Med Genet 2023; 60:951-959. [PMID: 37055168 DOI: 10.1136/jmg-2022-108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Rett syndrome is a genetically caused neurodevelopmental disorder associated with severe impairments and complex comorbidities. This study examined predictors of anxiety and depression in Rett syndrome, including genotype. METHODS The International Rett Syndrome Database, InterRett, was the data source for this observational study. Associations between genotype, functional abilities, comorbidities, anxiety and depression were estimated with univariate and multivariate regression models. An additional regression model for anxiety included use of an anxiety medication as a predictor variable. RESULTS The sample included 210 individuals aged 6-51 years of whom 54 (25.7%) were on psychotropic medication for anxiety or depression. Individuals with the p.Arg294* variant had the highest anxiety scores, as did those with insomnia or excessive daytime sleepiness, irrespective of anxiety medication use. Individuals with the p.Arg306Cys variant had the lowest depression scores, as did those with insomnia or excessive daytime sleepiness. CONCLUSION Findings indicated that genotype and sleep have implications for mental health in Rett syndrome, suggesting that anticipatory guidance and proactive management of poor sleep could improve mental health. More research is needed to understand the effects of psychometric medications, which cannot be inferred from this cross-sectional study.
Collapse
Affiliation(s)
- Cayla Kay
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jeremy Smith
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Curtin School of Allied Healt, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Kotchetkov P, Blakeley N, Lacoste B. Involvement of brain metabolism in neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:67-113. [PMID: 37993180 DOI: 10.1016/bs.irn.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.
Collapse
Affiliation(s)
- Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
22
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
23
|
Balasubramanian R. Behind the scenes: epigenetic mechanisms rule the roost in pubertal timing. Lancet Diabetes Endocrinol 2023; 11:526-527. [PMID: 37385289 DOI: 10.1016/s2213-8587(23)00167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Ravikumar Balasubramanian
- The Harvard Massachusetts General Hospital Center for Reproductive Medicine and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Oluigbo DC. Rett Syndrome: A Tale of Altered Genetics, Synaptic Plasticity, and Neurodevelopmental Dynamics. Cureus 2023; 15:e41555. [PMID: 37554594 PMCID: PMC10405636 DOI: 10.7759/cureus.41555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is a leading cause of severe cognitive and physical impairment. RTT typically occurs in females, although rare cases of males with the disease exist. Its genetic cause, symptoms, and clinical progression timeline have also become well-documented since its initial discovery. However, a relatively late diagnosis and lack of an available cure signify that our understanding of the disease is incomplete. Innovative research methods and tools are thereby helping to fill gaps in our knowledge of RTT. Specifically, mouse models of RTT, video analysis, and retrospective parental analysis are well-established tools that provide valuable insights into RTT. Moreover, current and anticipated treatment options are improving the quality of life of the RTT patient population. Collectively, these developments are creating optimistic future perspectives for RTT.
Collapse
Affiliation(s)
- David C Oluigbo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
25
|
Lotan M, Downs J, Stahlhut M, Romano A. Evaluation Tools Developed for Rett Syndrome. Diagnostics (Basel) 2023; 13:1708. [PMID: 37238191 PMCID: PMC10217473 DOI: 10.3390/diagnostics13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rett syndrome (RTT) is a complex neurodevelopmental X-linked disorder associated with severe functional impairments and multiple comorbidities. There is wide variation in the clinical presentation, and because of its unique characteristics, several evaluation tools of clinical severity, behavior, and functional motor abilities have been proposed specifically for it. This opinion paper aims to present up-to date evaluation tools which have specifically been adapted for individuals with RTT often used by the authors in their clinical and research practice and to provide the reader with essential considerations and suggestions regarding their use. Due to the rarity of Rett syndrome, we found it important to present these scales in order to improve and professionalize their clinical work. The current article will review the following evaluation tools: (a) the Rett Assessment Rating Scale; (b) the Rett Syndrome Gross Motor Scale; (c) the Rett Syndrome Functional Scale; (d) the Functional Mobility Scale-Rett Syndrome; (e) the Two-Minute Walking Test modified for Rett syndrome; (f) the Rett Syndrome Hand Function Scale; (g) the StepWatch Activity Monitor; (h) the activPALTM; (i) the Modified Bouchard Activity Record; (j) the Rett Syndrome Behavioral Questionnaire; and (k) the Rett Syndrome Fear of Movement Scale. The authors recommend that service providers consider evaluation tools validated for RTT for evaluation and monitoring to guide their clinical recommendations and management. In this article, the authors suggest factors that should be considered when using these evaluation tools to assist in interpreting scores.
Collapse
Affiliation(s)
- Meir Lotan
- Department of Physiotherapy, Ariel University, Ariel 4070000, Israel
- Israeli Rett Syndrome National Evaluation Team, Ramat Gan 5211401, Israel
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Allied Health, Curtin University, Perth, WA 6102, Australia
| | - Michelle Stahlhut
- Department of Paediatrics and Adolescent Medicine, Center for Rett Syndrome, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Alberto Romano
- Department of Health System Management, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
26
|
Downs J, Blackmore AM, Wong K, Buckley N, Lotan M, Elefant C, Leonard H, Stahlhut M. Can telehealth increase physical activity in individuals with Rett syndrome? A multicentre randomized controlled trial. Dev Med Child Neurol 2023; 65:489-497. [PMID: 36284370 DOI: 10.1111/dmcn.15436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022]
Abstract
AIM To evaluate the effects of a physical activity programme on sedentary behaviour and physical activity in ambulant individuals with Rett syndrome (RTT). METHOD In this multicentre randomized waitlist-controlled trial, we recruited 43 ambulatory individuals with RTT in Australia and Denmark. Adequate baseline data were obtained from 38 participants (mean age 20 years, range 6-41, SD 10 years 6 months, one male). All completed the trial. Participants received 12 weeks of usual care (n = 19) or a goal-based, telehealth-supported programme in which activities occurred in their familiar environments (n = 19). Sedentary time and daily steps were assessed at baseline, post-test, and 12-week follow-up. The data analyst was blinded to group allocation. RESULTS Sedentary time decreased in the intervention group by 2.7% (95% confidence interval [CI] -6.0 to 0.6) and increased in the control group by 1.3% (95% CI -4.8 to 7.4). Intervention and control groups increased the number of their steps per day by 264.7 (95% CI -72.2 to 601.5) and 104.8 (95% CI -178.1 to 387.7) respectively. No significant differences were found on any outcomes at post-test. There were three minor adverse events. INTERPRETATION A goal-based telehealth intervention seemed to produce small improvements in physical activity for individuals with RTT. Families require more support to increase these individuals' extremely low physical activity levels. WHAT THIS PAPER ADDS A telehealth-supported intervention may produce small changes in physical activity in Rett syndrome (RTT). Increasing physical activity in individuals with RTT is challenging for caregivers. Families require substantial out-of-home support to increase their children's activity levels.
Collapse
Affiliation(s)
- Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - A Marie Blackmore
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas Buckley
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Meir Lotan
- Department of Physiotherapy, Ariel University, Ariel, Israel
- Rett Syndrome National Clinic, Sheba Hospital, Ramat-Gan, Israel
| | - Cochavit Elefant
- School of Creative Arts Therapies, University of Haifa, Haifa, Israel
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Michelle Stahlhut
- Department of Paediatrics and Adolescent Medicine, Center for Rett Syndrome, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
27
|
Buckley N, Stahlhut M, Elefant C, Leonard H, Lotan M, Downs J. Parent and therapist perspectives on "uptime" activities and participation in Rett syndrome. Disabil Rehabil 2022; 44:7420-7427. [PMID: 34689665 DOI: 10.1080/09638288.2021.1992026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE People with a disability may spend more time sitting and lying ("downtime") and less time standing and walking ("uptime"). Caregivers and therapists supporting individuals with Rett syndrome were surveyed, aiming to gather insights on how to support participation in "uptime" activities. METHOD An anonymous online survey including open ended questions about the enablers and barriers to "uptime" was administered to parent/caregivers and therapists/health professionals in an international sample. Responses were coded to the International Classification of Functioning, Health and Disability (ICF) framework identifying barriers, enablers, and strategies for increasing uptime activities. RESULTS Parents (N = 115) and therapists (N = 49) completed the survey. Barriers and enablers to "uptime" were identified for all ICF domains and additional data coded to enabling access to the physical environment. Strategies to promote "uptime" activities and participation particularly related to the individual's physical capacity and personal factors as well as social and physical environmental factors. CONCLUSIONS Findings can inform the design of interventions aiming to increase "uptime" in individuals with Rett syndrome. Strategies should create individualised support by considering how to build fitness using activities that are motivating, at the same time creating opportunities for social interactions within a range of environments.IMPLICATIONS FOR REHABILITATION"Uptime" participation comprised a dynamic interaction of "doing" the standing or walking activity, with a sense of self-engagement with the activities and interaction with others.Strategies to promote "uptime" participation should consider how to create support for person-related attributes, including building physical capacity for a greater volume of "uptime" in activities that are enjoyable and motivating.Strategies to promote "uptime participation should also include creating a supportive environment, comprising opportunities for social interaction within a range of environments".
Collapse
Affiliation(s)
- Nicholas Buckley
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia
| | - Michelle Stahlhut
- Department of Paediatrics and Adolescent Medicine, Center for Rett Syndrome, Copenhagen, Denmark
| | | | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia
| | - Meir Lotan
- Ariel University, Ariel, Israel.,Israeli Rett syndrome National evaluation team
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia.,Curtin School of Allied Health, Curtin University, Perth, Australia
| |
Collapse
|
28
|
Rodocanachi Roidi ML, Cozzi F, Isaias IU, Grange F, Ferrari EP, Ripamonti E. Clinical and genetic correlations of scoliosis in Rett syndrome. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2987-2993. [PMID: 35482072 DOI: 10.1007/s00586-022-07217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
AIM To identify the clinical features correlating with the presence and severity of scoliosis in girls with Rett syndrome (RTT). METHOD Seventy-five girls with a clinical and genetically determined diagnosis of RTT participated in this cross-sectional study. Clinical scales administered included the Rett assessment rating scale, the modified Ashworth scale, the Rett syndrome motor evaluation scale, the PainAD, and the scale of evaluation of purposeful hand function. Multivariable analyses, such as ordinal logistic regression and ANCOVA, were used to assess the correlation between these scales and a clinical score of scoliosis. RESULTS About 60% of patients had scoliosis, in general mild or moderate. The severity of scoliosis correlated with age and important neurological factors such as muscular hypertonus and hyperreflexia, standing, walking (level walking and on stairs), and postural transitions. No association was found with global disease severity, hand function, pain, or type of genetic mutation. INTERPRETATION Scoliosis is a relevant problem in RTT. It should be carefully monitored along the life span, especially in conjunction with (loco-)motor impairment in these patients.
Collapse
Affiliation(s)
| | | | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| | | | | | - Enrico Ripamonti
- Milan Center for Neuroscience NeuroMi, University of Milan-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy.
- Department of Economics and Management, University of Brescia, Brescia, Italy.
| |
Collapse
|
29
|
Leonard H, Whitehouse A, Jacoby P, Benke T, Demarest S, Saldaris J, Wong K, Reddihough D, Williams K, Downs J. Quality of life beyond diagnosis in intellectual disability - Latent profiling. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 129:104322. [PMID: 35939908 PMCID: PMC9792277 DOI: 10.1016/j.ridd.2022.104322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To compare quality of life (QOL) across diagnoses associated with intellectual disability, construct QOL profiles and evaluate membership by diagnostic group, function and comorbidities. METHOD Primary caregivers of 526 children with intellectual disability (age 5-18 years) and a diagnosis of cerebral palsy, autism spectrum disorder, Down syndrome, CDKL5 deficiency disorder or Rett syndrome completed the Quality of Life Inventory-Disability (QI-Disability) questionnaire. Latent profile analysis of the QI-Disability domain scores was conducted. RESULTS The mean (SD) total QOL score was 67.8 (13.4), ranging from 60.3 (14.6) for CDD to 77.5 (11.7) for Down syndrome. Three classes describing domain scores were identified: Class 1 was characterised by higher domain scores overall but poorer negative emotions scores; Class 2 by average to high scores for most domains but low independence scores; and Class 3 was characterised by low positive emotions, social interaction, and leisure and the outdoors scores, and extremely low independence scores. The majority of individuals with autism spectrum disorder and Down syndrome belonged to Class 1 and the majority with CDKL5 deficiency disorder belonged to Class 3. Those with better functional abilities (verbal communication and independent walking were predominately members of Class 1 and those with frequent seizures were more often members of Class 2 and 3. CONCLUSION The profiles illustrated variation in QOL across a diverse group of children. QOL evaluations illustrate areas where interventions could improve QOL and provide advice to families as to where efforts may be best directed.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, Child Disability, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew Whitehouse
- Telethon Kids Institute, CliniKids Autism Research, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, Child Disability, The University of Western Australia, Perth, Western Australia, Australia
| | - Tim Benke
- Children's Hospital Colorado, Paediatric Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Scott Demarest
- Children's Hospital Colorado, Paediatric Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jacinta Saldaris
- Telethon Kids Institute, Child Disability, The University of Western Australia, Perth, Western Australia, Australia
| | - Kingsley Wong
- Telethon Kids Institute, Child Disability, The University of Western Australia, Perth, Western Australia, Australia
| | - Dinah Reddihough
- Royal Children's Hospital, Parkville, Victoria, Australia; Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia
| | - Katrina Williams
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Victoria, Australia; Paediatric Education and Research, Monash University, Melbourne, Victoria, Australia; Developmental Paediatrics, Monash Children's Hospital, Australia
| | - Jenny Downs
- Telethon Kids Institute, Child Disability, The University of Western Australia, Perth, Western Australia, Australia; Curtin University, School of Physiotherapy and Exercise Science, Perth, Western Australia, Australia.
| |
Collapse
|
30
|
Grimm NB, Lee JT. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends Genet 2022; 38:920-943. [PMID: 35248405 PMCID: PMC9915138 DOI: 10.1016/j.tig.2022.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
The human X-chromosome harbors only 4% of our genome but carries over 20% of genes associated with intellectual disability. Given that they inherit only one X-chromosome, males are more frequently affected by X-linked neurodevelopmental genetic disorders than females. However, despite inheriting two X-chromosomes, females can also be affected because X-chromosome inactivation enables only one of two X-chromosomes to be expressed per cell. For Rett syndrome and similar X-linked disorders affecting females, disease-specific treatments have remained elusive. However, a cure may be found within their own cells because every sick cell carries a healthy copy of the affected gene on the inactive X (Xi). Therefore, selective Xi reactivation may be a viable approach that would address the root cause of various X-linked disorders. Here, we discuss Rett syndrome and compare current approaches in the pharmaceutical pipeline to restore MECP2 function. We then focus on Xi reactivation and review available methods, lessons learned, and future directions.
Collapse
Affiliation(s)
- Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Development and Psychometric Properties of the Multi-System Profile of Symptoms Scale in Patients with Rett Syndrome. J Clin Med 2022; 11:jcm11175094. [PMID: 36079020 PMCID: PMC9457440 DOI: 10.3390/jcm11175094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Rett Syndrome (RTT) is a rare, neurodevelopmental disorder characterised by a range of problematic symptoms. There is yet to be a robust instrument to adequately capture the range of disease severity across the lifespan. In this study, we aimed to develop and assess the validity of an RTT-specific electronic Observer Reported Outcome (eObsRO), the Multi-System Profile of Symptoms Scale (MPSS). Methods: The study was conducted in two phases. Phase 1 consisted of a systematic literature review, focus groups, expert feedback, and a pilot test of the new scale. Modifications were made based on preliminary analysis and feedback collected in the pilot phase. Phase 2 consisted of the validation of the questionnaire based on two samples (Sample 1, n = 18; Sample 2, n = 106). Participants were all parents or caregivers of individuals with RTT. Results: The MPSS consists of 12 validated sub-scales (mental health problems, autonomic problems, cardiac problems, communication problems, problems in social behaviour, problems in engagement, gastrointestinal problems, problems in motor skills, neurological problems, orofacial problems, respiratory problems, and sleep problems), which explore symptom frequency in the past month and a supplement to the scale consisting of five sub-scales (sensory problems, immune dysfunction and infection, endocrine problems, skeletal problems, and dermatological problems), which is designed to capture symptom changes over a longer time period. The frequency of symptoms was rated on a 10-point slider scale, which then was automatically transformed into a 0 to 5 Likert score. All 12 sub-scales showed strong internal consistency (α ≥ 0.700) and good stability, ranging from 0.707 to 0.913. Pearson’s correlation showed a statistically significant (r = 0.649) correlation between the MPSS and the Rett Syndrome Behaviour Questionnaire (RSBQ) total score and significant correlations between sub-scales with items that were presented in both the MPSS and RSBQ. Conclusions: The MPSS is a psychometrically validated eObsRO using the HealthTrackerTM platform and has the potential to be used in clinical trials.
Collapse
|
32
|
Ta D, Downs J, Baynam G, Wilson A, Richmond P, Schmidt A, Decker A, Leonard H. Development of an International Database for a Rare Genetic Disorder: The MECP2 Duplication Database (MDBase). CHILDREN 2022; 9:children9081111. [PMID: 35892614 PMCID: PMC9332564 DOI: 10.3390/children9081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
The natural history of MECP2 duplication syndrome (MDS), a rare X-linked neurodevelopmental disorder with an estimated birth prevalence of 1/150,000 live births, is poorly understood due to a lack of clinical data collected for research. Such information is critical to the understanding of disease progression, therapeutic endpoints and outcome measures for clinical trials, as well as the development of therapies and orphan products. This clinical information can be systematically collected from caregivers through data collation efforts—yet, no such database has existed for MDS before now. Here, in this methodological study, we document the development, launch and management of the international MECP2 Duplication Database (MDBase). The MDBase consists of an extensive family questionnaire that collects information on general medical history, system-specific health problems, medication and hospitalisation records, developmental milestones and function, and quality of life (for individuals with MDS, and their caregivers). Launched in 2020, in its first two years of operation the MDBase has collected clinical data from 154 individuals from 26 countries—the largest sample size to date. The success of this methodology for the establishment and operation of the MDBase may provide insight and aid in the development of databases for other rare neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel Ta
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
| | - Jenny Downs
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia
| | - Gareth Baynam
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
- Rare Care Centre, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA 6904, Australia
| | - Andrew Wilson
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
- Curtin School of Allied Health, Curtin University, Bentley, WA 6102, Australia
- North Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA 6009, Australia
- Discipline of Paediatrics, School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Peter Richmond
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
- North Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA 6009, Australia
- Discipline of Paediatrics, School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Aron Schmidt
- MECP2 Duplication Foundation, Tuscon, AZ 85724, USA; (A.S.); (A.D.)
| | - Amelia Decker
- MECP2 Duplication Foundation, Tuscon, AZ 85724, USA; (A.S.); (A.D.)
- Department of Paediatrics, University of Arizona College of Medicine, Tuscon, AZ 85724, USA
| | - Helen Leonard
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia; (D.T.); (J.D.); (G.B.); (A.W.); (P.R.)
- Correspondence:
| |
Collapse
|
33
|
Kharrat M, Triki CC, Alila-Fersi O, Jallouli O, Khemakham B, Mallouli S, Maalej M, Ammar M, Frikha F, Kamoun F, Fakhfakh F. Combined in Silico Prediction Methods, Molecular Dynamic Simulation, and Molecular Docking of FOXG1 Missense Mutations: Effect on FoxG1 Structure and Its Interactions with DNA and Bmi-1 Protein. J Mol Neurosci 2022; 72:1695-1705. [PMID: 35654936 DOI: 10.1007/s12031-022-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
FoxG1 encoded by FOXG1 gene is a transcriptional factor interacting with the DNA of targeted genes as well as with several proteins to regulate the forebrain development. Mutations in the FOXG1 gene have been shown to cause a wide spectrum of brain disorders, including the congenital variant of Rett syndrome. In this study, the direct sequencing of FOXG1 gene revealed a novel c.645C > A (F215L) variant in the patient P1 and a de novo known one c.755G > A (G252D) in the patient P2. To investigate the putative impact of FOXG1 missense variants, a computational pipeline by the application of in silico prediction methods, molecular dynamic simulation, and molecular docking approaches was used. Bioinformatics analysis and molecular dynamics simulation have demonstrated that F215L and G252D variants found in the DNA binding domain are highly deleterious mutations that may cause the protein structure destabilization. On the other hand, molecular docking revealed that F215L mutant is likely to have a great impact on destabilizing the protein structure and the disruption of the Bmi-1 binding site quite significantly. Regarding G252D mutation, it seems to abolish the ability of FoxG1 to bind DNA target, affecting the transcriptional regulation of targeted genes. Our study highlights the usefulness of combined computational approaches, molecular dynamic simulation, and molecular docking for a better understanding of the dysfunctional effects of FOXG1 missense mutations and their role in the etiopathogenesis as well as in the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| | - Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Bassem Khemakham
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Salma Mallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| |
Collapse
|
34
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
35
|
Zhang WJ, Shi LL, Zhang L. Dysregulated cortical synaptic plasticity under methyl-CpG binding protein 2 deficiency and its implication in motor impairments. World J Psychiatry 2022; 12:673-682. [PMID: 35663301 PMCID: PMC9150038 DOI: 10.5498/wjp.v12.i5.673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Caused by the mutation of methyl-CpG binding protein 2 (MeCP2), Rett syndrome leads to a battery of severe neural dysfunctions including the regression of motor coordination and motor learning. Current understanding has revealed the motor cortex as the critical region mediating voluntary movement. In this review article, we will summarize major findings from human patients and animal models regarding the cortical synaptic plasticity under the regulation of MeCP2. We will also discuss how mutation of MeCP2 leads to the disruption of cortical circuitry homeostasis to cause motor deficits. Lastly, potential values of physical exercise and neuromodulation approaches to recover neural plasticity and motor function will be evaluated. All of this evidence may help to accelerate timely diagnosis and effective interventions for Rett syndrome patients.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ling-Ling Shi
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
36
|
Yoshida S, Amamoto M, Takahashi T, Tomita I, Yuge K, Hara M, Iwama K, Matsumoto N, Matsuishi T. Perampanel markedly improved clinical seizures in a patient with a Rett‐like phenotype and 960‐kb deletion on chromosome 9q34.11 including the
STXBP1. Clin Case Rep 2022; 10:e05811. [PMID: 35600024 PMCID: PMC9107918 DOI: 10.1002/ccr3.5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Intractable epilepsy was successfully controlled using perampanel, an α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionic acid‐type glutamate receptor antagonist, in a 27‐year‐old woman who presented with a Rett syndrome‐like phenotype and novel 960‐kb deletion involving syntaxin‐binding protein 1 on chromosome 9q34.11. Perampanel may be an effective antiepileptic drug for intractable epilepsy associated with STXBP1 mutations.
Collapse
Affiliation(s)
- Syun Yoshida
- Children’s Medical Center Kitakyushu City Yahata Hospital Kitakyushu Japan
| | - Masano Amamoto
- Children’s Medical Center Kitakyushu City Yahata Hospital Kitakyushu Japan
| | - Tomoyuki Takahashi
- Division of Gene Therapy and Regenerative Medicine Cognitive and Molecular Research Institute of Brain Diseases Kurume University School of Medicine Kurume Japan
| | - Ichiro Tomita
- Children’s Medical Center Kitakyushu City Yahata Hospital Kitakyushu Japan
| | - Kotaro Yuge
- Department of Pediatrics and Child Health Kurume University School of Medicine Fukuoka Japan
| | - Munetsugu Hara
- Department of Pediatrics and Child Health Kurume University School of Medicine Fukuoka Japan
| | - Kazuhiro Iwama
- Department of Human Genetics Graduate School of Medicine Yokohama City University Kanagawa Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Graduate School of Medicine Yokohama City University Kanagawa Japan
| | - Toyojiro Matsuishi
- Division of Gene Therapy and Regenerative Medicine Cognitive and Molecular Research Institute of Brain Diseases Kurume University School of Medicine Kurume Japan
- Research Center for Children and Research Center for Rett Syndrome St. Mary’s Hospital Fukuoka Japan
| |
Collapse
|
37
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
38
|
Medical Comorbidities in MECP2 Duplication Syndrome: Results from the International MECP2 Duplication Database. CHILDREN 2022; 9:children9050633. [PMID: 35626810 PMCID: PMC9139587 DOI: 10.3390/children9050633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Since the discovery of MECP2 duplication syndrome (MDS) in 1999, efforts to characterise this disorder have been limited by a lack of large datasets, with small case series often favouring the reporting of certain conditions over others. This study is the largest to date, featuring 134 males and 20 females, ascertained from the international MECP2 Duplication Database (MDBase). We report a higher frequency of pneumonia, bronchitis, bronchiolitis, gastroesophageal reflux and slow gut motility in males compared to females. We further examine the prevalence of other medical comorbidities such as epilepsy, gastrointestinal problems, feeding difficulties, scoliosis, bone fractures, sleep apnoea, autonomic disturbance and decreased pain sensitivity. A novel feature of urinary retention is reported and requires further investigation. Further research is required to understand the developmental trajectory of this disorder and to examine the context of these medical comorbidities in a quality of life framework.
Collapse
|
39
|
Fabio RA, Giannatiempo S, Caprì T, Semino M. Repeated motor training on attention reaching skills and stereotypies in Rett Syndrome. Mov Disord Clin Pract 2022; 9:637-646. [DOI: 10.1002/mdc3.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rosa Angela Fabio
- Department of Economics University of Messina, Via Verdi 75 Messina Italy
| | - Samantha Giannatiempo
- Centro AIRETT Ricerca e Innovazione (CARI), Research and Innovation Airett Center Verona Italy
| | - Tindara Caprì
- Department of Life and Health Sciences Link Campus University, Via del Casale di S. Pio V, 44 00165 Rome Italy
- Institute for Biomedical Research and Innovation (IRIB) , National Research Council of Italy (CNR) 98164 Messina Italy
| | - Martina Semino
- Centro AIRETT Ricerca e Innovazione (CARI), Research and Innovation Airett Center Verona Italy
| |
Collapse
|
40
|
Leoncini S, Signorini C, Boasiako L, Scandurra V, Hayek J, Ciccoli L, Rossi M, Canitano R, De Felice C. Breathing Abnormalities During Sleep and Wakefulness in Rett Syndrome: Clinical Relevance and Paradoxical Relationship With Circulating Pro-oxidant Markers. Front Neurol 2022; 13:833239. [PMID: 35422749 PMCID: PMC9001904 DOI: 10.3389/fneur.2022.833239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBreathing abnormalities are common in Rett syndrome (RTT), a pervasive neurodevelopmental disorder almost exclusively affecting females. RTT is linked to mutations in the methyl-CpG-binding protein 2 (MeCP2) gene. Our aim was to assess the clinical relevance of apneas during sleep-wakefulness cycle in a population with RTT and the possible impact of apneas on circulating oxidative stress markers.MethodsFemale patients with a clinical diagnosis of typical RTT (n = 66), MECP2 gene mutation, and apneas were enrolled (mean age: 12.5 years). Baseline clinical severity, arterial blood gas analysis, and red blood cell count were assessed. Breathing was monitored during the wakefulness and sleep states (average recording time: 13 ± 0.5 h) with a portable polygraphic screening device. According to prevalence of breath holdings, the population was categorized into the wakefulness apnea (WA) and sleep apnea (SA) groups, and apnea-hypopnea index (AHI) was calculated. The impact of respiratory events on oxidative stress was assessed by plasma and intra-erythrocyte non-protein-bound iron (P-NPBI and IE-NPBI, respectively), and plasma F2-isoprostane (F2-IsoP) assays.ResultsSignificant prevalence of obstructive apneas with values of AHI > 15 was present in 69.7% of the population with RTT. The group with SA showed significantly increased AHI values > 15 (p = 0.0032), total breath holding episodes (p = 0.007), and average SpO2 (p = 0.0001) as well as lower nadir SpO2 (p = 0.0004) compared with the patients with WAs. The subgroups of patients with WA and SA showed no significant differences in arterial blood gas analysis variables (p > 0.089). Decreased mean cell hemoglobin (MCH) (p = 0.038) was observed in the group with WAs. P-NPBI levels were significantly higher in the group with WA than in that with SAs (p = 0.0001). Stepwise multiple linear regression models showed WA being related to nadir SpO2, average SpO2, and P-NPBI (adjusted R2 = 0.613, multiple correlation coefficient = 0.795 p < 0.0001), and P-NPBI being related to average SpO2, blood PaCO2, red blood cell mean corpuscular volume (MCV), age, and topiramate treatment (adjusted R2 = 0.551, multiple correlation coefficient = 0.765, p < 0.0001).ConclusionOur findings indicate that the impact of apneas in RTT is uneven according to the sleep-wakefulness cycle, and that plasma redox active iron represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Silvia Leoncini
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lidia Boasiako
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Valeria Scandurra
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Canitano
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Claudio De Felice
- Rett Syndrome Trial Center, Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
41
|
Stafford CF, Sanchez-Lara PA. Impact of Genetic and Genomic Testing on the Clinical Management of Patients with Autism Spectrum Disorder. Genes (Basel) 2022; 13:genes13040585. [PMID: 35456390 PMCID: PMC9030515 DOI: 10.3390/genes13040585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Research has shown that genetics play a key role in the development of autism spectrum disorder (ASD). ASD has been linked to many genes and is a prominent feature in numerous genetic disorders. A genetic evaluation should be offered to any patient who receives a diagnosis of ASD, including deep phenotyping and genetic testing when clinically indicated. When insurance does not cover genetic testing for ASD patients, the lack of medical utility is often cited as a reason for prior authorization request denial. However, ample evidence exists that genetic testing has the power to change clinical management in many of these patients. Genetic testing that results in a diagnosis guides clinicians to screen for associated medical conditions and can direct targeted medical interventions. Given the potential for clinically actionable results, it is important that genetic testing be available and accessible to all patients with ASD.
Collapse
Affiliation(s)
| | - Pedro A. Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
42
|
A brief history of MECP2 duplication syndrome: 20-years of clinical understanding. Orphanet J Rare Dis 2022; 17:131. [PMID: 35313898 PMCID: PMC8939085 DOI: 10.1186/s13023-022-02278-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder caused by a duplication of the methyl-CpG-binding protein 2 (MECP2) gene-a gene in which loss-of-function mutations lead to Rett syndrome (RTT). MDS has an estimated live birth prevalence in males of 1/150,000. The key features of MDS include intellectual disability, developmental delay, hypotonia, seizures, recurrent respiratory infections, gastrointestinal problems, behavioural features of autism and dysmorphic features-although these comorbidities are not yet understood with sufficient granularity. This review has covered the past two decades of MDS case studies and series since the discovery of the disorder in 1999. After comprehensively reviewing the reported characteristics, this review has identified areas of limited knowledge that we recommend may be addressed by better phenotyping this disorder through an international data collection. This endeavour would also serve to delineate the clinical overlap between MDS and RTT.
Collapse
|
43
|
Siqueira E, Obiols-Guardia A, Jorge-Torres OC, Oliveira-Mateos C, Soler M, Ramesh-Kumar D, Setién F, van Rossum D, Pascual-Alonso A, Xiol C, Ivan C, Shimizu M, Armstrong J, Calin GA, Pasterkamp RJ, Esteller M, Guil S. Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:621-644. [PMID: 35036070 PMCID: PMC8749388 DOI: 10.1016/j.omtn.2021.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes. Proteomic analysis of hippocampal samples from affected individuals confirms abnormal levels of several cytoskeleton-related proteins together with key alterations in neurotransmission. Importantly, the glutamate receptor GRIA3 gene displays altered biogenesis in affected individuals and in vitro human cells and is influenced by expression of two ultraconserved RNAs. We also describe post-transcriptional regulation of SIRT2 by circRNAs, which modulates acetylation and total protein levels of GluR-1. As a consequence, both regulatory mechanisms converge on the biogenesis of AMPA receptors, with an effect on neuronal differentiation. In both cases, the noncoding RNAs antagonize MeCP2-directed regulation. Our findings indicate that noncoding transcripts may contribute to key alterations in Rett syndrome and are not only useful tools for revealing dysregulated processes but also molecules of biomarker value.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908 Catalonia, Spain
- National Council for Scientific and Technological Development (CNPq), Brasilia, 71605-001 Federal District, Brazil
| | - Aida Obiols-Guardia
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908 Catalonia, Spain
| | - Olga C. Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908 Catalonia, Spain
| | | | - Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
| | - Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
| | - Daniëlle van Rossum
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Ainhoa Pascual-Alonso
- Fundación San Juan de Dios, Barcelona, 08950 Catalonia, Spain
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, 08950 Catalonia, Spain
| | - Clara Xiol
- Fundación San Juan de Dios, Barcelona, 08950 Catalonia, Spain
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, 08950 Catalonia, Spain
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Judith Armstrong
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, 08950 Catalonia, Spain
- Servei de Medicina Genètica i Molecular, Hospital Sant Joan de Déu, Barcelona, 08950 Catalonia, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010 Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, 08907 Catalonia, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, 08916 Catalonia, Spain
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908 Catalonia, Spain
- Germans Trias i Pujol Health Science Research Institute, Badalona, Barcelona, 08916 Catalonia, Spain
| |
Collapse
|
44
|
Improving clinical trial readiness to accelerate development of new therapeutics for Rett syndrome. Orphanet J Rare Dis 2022; 17:108. [PMID: 35246185 PMCID: PMC8894842 DOI: 10.1186/s13023-022-02240-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
Rett syndrome is associated with severe functional impairments and many comorbidities, each in urgent need of treatments. Mutations in the MECP2 gene were identified as causing Rett syndrome in 1999. Over the past 20 years there has been an abundance of preclinical research with some studies leading to human clinical trials. Despite this, few viable therapeutic options have emerged from this investment of effort. Reasons for this lack of success as they relate both to preclinical research and the clinical trial landscape are discussed. Considering what needs to be done to promote further success in the field, we take a positive and constructive approach and introduce the concept of clinical trial readiness and its necessary ingredients for Rett syndrome. These include: listening to the needs of families; support from advocacy groups; optimising use of existing clinic infrastructures and available natural history data; and, finally, the validation of existing outcome measures and/or the development and validation of new measures. We conclude by reiterating the need for a collaborative and coordinated approach amongst the many different stakeholder groups and the need to engage in new types of trial design which could be much more efficient, less costly and much less burdensome on families.
Collapse
|
45
|
Shovlin S, Delepine C, Swanson L, Bach S, Sahin M, Sur M, Kaufmann WE, Tropea D. Molecular Signatures of Response to Mecasermin in Children With Rett Syndrome. Front Neurosci 2022; 16:868008. [PMID: 35712450 PMCID: PMC9197456 DOI: 10.3389/fnins.2022.868008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder without effective treatments. Attempts at developing targetted therapies have been relatively unsuccessful, at least in part, because the genotypical and phenotypical variability of the disorder. Therefore, identification of biomarkers of response and patients' stratification are high priorities. Administration of Insulin-like Growth Factor 1 (IGF-1) and related compounds leads to significant reversal of RTT-like symptoms in preclinical mouse models. However, improvements in corresponding clinical trials have not been consistent. A 20-weeks phase I open label trial of mecasermin (recombinant human IGF-1) in children with RTT demonstrated significant improvements in breathing phenotypes. However, a subsequent randomised controlled phase II trial did not show significant improvements in primary outcomes although two secondary clinical endpoints showed positive changes. To identify molecular biomarkers of response and surrogate endpoints, we used RNA sequencing to measure differential gene expression in whole blood samples of participants in the abovementioned phase I mecasermin trial. When all participants (n = 9) were analysed, gene expression was unchanged during the study (baseline vs. end of treatment, T0-T3). However, when participants were subclassified in terms of breathing phenotype improvement, specifically by their plethysmography-based apnoea index, individuals with moderate-severe apnoea and breathing improvement (Responder group) displayed significantly different transcript profiles compared to the other participants in the study (Mecasermin Study Reference group, MSR). Many of the differentially expressed genes are involved in the regulation of cell cycle processes and immune responses, as well as in IGF-1 signalling and breathing regulation. While the Responder group showed limited gene expression changes in response to mecasermin, the MSR group displayed marked differences in the expression of genes associated with inflammatory processes (e.g., neutrophil activation, complement activation) throughout the trial. Our analyses revealed gene expression profiles associated with severe breathing phenotype and its improvement after mecasermin administration in RTT, and suggest that inflammatory/immune pathways and IGF-1 signalling contribute to treatment response. Overall, these data support the notion that transcript profiles have potential as biomarkers of response to IGF-1 and related compounds.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Lindsay Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Snow Bach
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
46
|
Downs J, Wong K, Drummond C, Leonard H. Longitudinal Evaluation of the Stability of Hand Function in Rett Syndrome. J Pediatr 2021; 237:244-249.e3. [PMID: 34214590 DOI: 10.1016/j.jpeds.2021.06.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the longitudinal stability of hand function in Rett syndrome and to analyze further the relationships between stability of hand function and genotype, age, and walking ability. STUDY DESIGN Longitudinal video data of functional abilities of individuals with genetically confirmed Rett syndrome were collected by families of individuals registered with the Australian Rett Syndrome Database. A total of 120 individuals provided 290 recordings from which 170 observation pairs were available for comparison. The Rett Syndrome Hand Function Scale was used to classify a level of hand function observed in each video on a range from unable to grasp, pick up, and hold objects to skillful manipulation of large and small objects. RESULTS Approximately one-third of the population lost some hand function over time. Younger children (<6 years) rather than adults were at greater risk of deterioration in hand function. Clinical severity, as indicated by walking ability or genotype, played a lesser role. There was no identified pattern between genotype and the stability of hand function skills. Rather, mutations associated with milder (p.Arg133Cys, p.Arg294∗) and greater (p.Arg106Trp, p.Thr158Met) clinical severity were both associated with greater risks of decline. CONCLUSIONS Genotype was a lesser predictor of loss of hand function beyond the early regression period, and younger children were particularly vulnerable to further loss of hand function compared with adults.
Collapse
Affiliation(s)
- Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Curtin School of Allied Health, Curtin University, Perth, Australia.
| | - Kingsley Wong
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | - Carolyn Drummond
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia; Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Perth, Australia
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| |
Collapse
|
47
|
Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, Allison TF, Kurdian A, Fotion NN, Gandal MJ, Golshani P, Plath K, Lowry WE, Parent JM, Mody I, Novitch BG. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci 2021; 24:1488-1500. [PMID: 34426698 PMCID: PMC9070733 DOI: 10.1038/s41593-021-00906-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Osvaldo A Miranda
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jessie E Buth
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Simon Mitchell
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Isabella Ferando
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Momoko Watanabe
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Anatomy & Neurobiology, Sue & Bill Gross Stem Cell Research Center, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Thomas F Allison
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Arinnae Kurdian
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- CIRM CSUN-UCLA Stem Cell Training Program, California State University, Northridge, CA, USA
| | - Namie N Fotion
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael J Gandal
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William E Lowry
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor VA Healthcare System, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Istvan Mody
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Intellectual Development and Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Technological Improvements in the Genetic Diagnosis of Rett Syndrome Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221910375. [PMID: 34638716 PMCID: PMC8508637 DOI: 10.3390/ijms221910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several “omics”, and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.
Collapse
|
49
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
50
|
Reddihough D, Leonard H, Jacoby P, Kim R, Epstein A, Murphy N, Reid S, Whitehouse A, Williams K, Downs J. Comorbidities and quality of life in children with intellectual disability. Child Care Health Dev 2021; 47:654-666. [PMID: 33885172 DOI: 10.1111/cch.12873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many children with intellectual disability live with medical comorbidities. This study examined the impacts of comorbidities on quality of life (QOL) of children with intellectual disabilities and whether impacts varied with caregiver perceptions that medical needs had been met. METHODS Primary caregivers of 447 children (aged 5-19 years) with an intellectual disability reported on their child's medical comorbidities and the extent to which they perceived their child's medical needs had been met in a cross-sectional observational study. The Quality of Life Inventory-Disability was used to measure QOL on a 100-point scale. Linear regression models including interaction terms were used to evaluate their associations. RESULTS Parent-reported recurrent child pain (-4.97, 95% CI -8.21, -1.72), night-time sleep disturbances (-4.98, 95% CI -7.23, -2.73), daytime somnolence (-8.71, 95% CI -11.30, -2.73), seizures that occurred at least weekly (-7.59, 95% CI -13.50, -1.68) and conservatively managed severe scoliosis (-7.39, 95% CI -12.97, -1.81) were negatively associated with child QOL. Despite the majority of parents (~70%) perceiving that their child's medical needs had been met to a great extent, this did not significantly moderate the association between any comorbidities and QOL. CONCLUSIONS Comorbidities were common and had marked associations with QOL. Evaluation and management of pain and sleep disturbance continue to be high priorities in improving QOL of young people with intellectual disabilities. Further research on the optimal methods of managing these comorbidities is warranted.
Collapse
Affiliation(s)
- Dinah Reddihough
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Neurodevelopment and Disability, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Helen Leonard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Jacoby
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Rachel Kim
- Department of Sociology, Princeton University, Princeton, New Jersey, USA
| | - Amy Epstein
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Nada Murphy
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Sue Reid
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Neurodevelopment and Disability, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Andrew Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Katrina Williams
- Paediatric Education and Research, Monash University, Melbourne, Victoria, Australia
| | - Jenny Downs
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|