1
|
Gangemi E, Piervincenzi C, Mallio CA, Spagnolo G, Petsas N, Gallo IF, Sisto A, Quintiliani L, Bruni V, Quattrocchi CC. Impact of Sleeve Gastrectomy on Brain Structural Integrity. Obes Surg 2024; 34:3203-3215. [PMID: 39073675 DOI: 10.1007/s11695-024-07416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Potential brain structural differences in people with obesity (PwO) who achieve over or less than 50% excess weight loss (EWL) after sleeve gastrectomy (SG) are currently unknown. We compared measures of gray matter volume (GMV) and white matter (WM) microstructural integrity of PwO who achieved over or less than 50% EWL after SG with a group of controls with obesity (CwO) without a past history of metabolic bariatric surgery. METHODS Sixty-two PwO underwent 1.5 T MRI scanning: 24 who achieved more than 50% of EWL after SG ("group a"), 18 who achieved less than 50% EWL after SG ("group b"), and 20 CwO ("group c"). Voxel-based morphometry and tract-based spatial Statistics analyses were performed to investigate GMV and WM differences among groups. Multiple regression analyses were performed to investigate relationships between structural and psychological measures. RESULTS Group a demonstrated significantly lower GMV loss and higher WM microstructural integrity with respect to group b and c in some cortical regions and several WM tracts. Positive correlations were observed in group a between WM integrity and several psychological measures; the lower the WM integrity, the higher the mental distress, emotional dysregulation, and binge eating behavior. CONCLUSION The present results gain a new understanding of the neural mechanisms of outcome in patients who undergo SG. We found limited GMV changes and extensive WM microstructural differences between PwO who achieved over or less than 50% EWL after SG, which may be due to higher vulnerability of WM to the metabolic dysfunction present in PwO.
Collapse
Affiliation(s)
- Emma Gangemi
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Claudia Piervincenzi
- Department of Human Neurosciences, Sapienza University of Rome, Viale Dell'Università 30, 00185, Rome, Italy
| | - Carlo Augusto Mallio
- Unit of Diagnostic Imaging, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - Giuseppe Spagnolo
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Nikolaos Petsas
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Ida Francesca Gallo
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Antonella Sisto
- Clinical Psychological Service, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Livia Quintiliani
- Clinical Psychological Service, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Vincenzo Bruni
- Unit of Bariatric Surgery, Fondazione Policlinico Universitario Campus Bio-Medico Di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy
| |
Collapse
|
2
|
Wang MB, Rahmani F, Benzinger TLS, Raji CA. Edge Density Imaging Identifies White Matter Biomarkers of Late-Life Obesity and Cognition. Aging Dis 2024; 15:1899-1912. [PMID: 37196133 PMCID: PMC11272213 DOI: 10.14336/ad.2022.1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/10/2022] [Indexed: 05/19/2023] Open
Abstract
Alzheimer disease (AD) and obesity are related to disruptions in the white matter (WM) connectome. We examined the link between the WM connectome and obesity and AD through edge-density imaging/index (EDI), a tractography-based method that characterizes the anatomical embedding of tractography connections. A total of 60 participants, 30 known to convert from normal cognition or mild-cognitive impairment to AD within a minimum of 24 months of follow up, were selected from the Alzheimer disease Neuroimaging Initiative (ADNI). Diffusion-weighted MR images from the baseline scans were used to extract fractional anisotropy (FA) and EDI maps that were subsequently averaged using deterministic WM tractography based on the Desikan-Killiany atlas. Multiple linear and logistic regression analysis were used to identify the weighted sum of tract-specific FA or EDI indices that maximized correlation to body-mass-index (BMI) or conversion to AD. Participants from the Open Access Series of Imaging Studies (OASIS) were used as an independent validation for the BMI findings. The edge-density rich, periventricular, commissural and projection fibers were among the most important WM tracts linking BMI to FA as well as to EDI. WM fibers that contributed significantly to the regression model related to BMI overlapped with those that predicted conversion; specifically in the frontopontine, corticostriatal, and optic radiation pathways. These results were replicated by testing the tract-specific coefficients found using ADNI in the OASIS-4 dataset. WM mapping with EDI enables identification of an abnormal connectome implicated in both obesity and conversion to AD.
Collapse
Affiliation(s)
- Maxwell Bond Wang
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
- Medical Scientist Training Program, University of Pittsburgh/Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Tammie L. S Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
| | - Cyrus A Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, Missouri, USA.
- Department of Neurology, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Baynat L, Yamamoto T, Tourdias T, Zhang B, Prevost V, Infante A, Klein A, Caid J, Cadart O, Dousset V, Gatta Cherifi B. Quantitative MRI Biomarkers Measure Changes in Targeted Brain Areas in Patients With Obesity. J Clin Endocrinol Metab 2024; 109:1850-1857. [PMID: 38195765 DOI: 10.1210/clinem/dgae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
CONTEXT Obesity is accompanied by damages to several tissues, including the brain. Pathological data and animal models have demonstrated an increased inflammatory reaction in hypothalamus and hippocampus. OBJECTIVE We tested whether we could observe such pathological modifications in vivo through quantitative magnetic resonance imaging (MRI) metrics. METHODS This prospective study was conducted between May 2019 and November 2022. The study was conducted in the Specialized Center for the Care of Obesity in a French University Hospital. Twenty-seven patients with obesity and 23 age and gender-paired normal-weight controls were prospectively recruited. All participants were examined using brain MRI. Anthropometric and biological data, eating behavior, anxiety, depression, and memory performance were assessed in both groups. The main outcome measure was brain MRI with the following parametric maps: quantitative susceptibility mapping (QSM), mean diffusivity (MD), fractional anisotropy (FA), magnetization transfer ratio map, and T2 relaxivity map. RESULTS In the hypothalamus, patients with obesity had higher FA and lower QSM than normal-weight controls. In the hippocampus, patients with obesity had higher FA and lower MD. There was no correlation between imaging biomarkers and eating behavior or anxiety. CONCLUSION Our findings are consistent with the presence of neuroinflammation in brain regions involved in food intake. In vivo brain biomarkers from quantitative MRI appear to provide an incremental information for the assessment of brain damages in patients with obesity.
Collapse
Affiliation(s)
- Louise Baynat
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Takayuki Yamamoto
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
| | - Thomas Tourdias
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Bei Zhang
- Magnetic Resonance, Canon Medical Systems Europe, 2718 Zoetermeer, Netherlands
| | - Valentin Prevost
- CT-MR Solution Planning Department, Canon Medical Systems Corporation, Tochigi, Japan
| | - Asael Infante
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Achille Klein
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Julien Caid
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Olivier Cadart
- Endocrinology, Centre Hospitalier d'Angoulême, Endocrinolology, Rond point Girac, 16000 Angouleme, France
| | - Vincent Dousset
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Blandine Gatta Cherifi
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| |
Collapse
|
4
|
Okudzhava L, Schulz S, Fischi‐Gomez E, Girard G, Machann J, Koch PJ, Thiran J, Münte TF, Heldmann M. White adipose tissue distribution and amount are associated with increased white matter connectivity. Hum Brain Mapp 2024; 45:e26654. [PMID: 38520361 PMCID: PMC10960552 DOI: 10.1002/hbm.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Obesity represents a significant public health concern and is linked to various comorbidities and cognitive impairments. Previous research indicates that elevated body mass index (BMI) is associated with structural changes in white matter (WM). However, a deeper characterization of body composition is required, especially considering the links between abdominal obesity and metabolic dysfunction. This study aims to enhance our understanding of the relationship between obesity and WM connectivity by directly assessing the amount and distribution of fat tissue. Whole-body magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight, and obese males. WM connectivity was quantified using microstructure-informed tractography. Connectome-based predictive modeling was used to predict body composition metrics based on WM connectomes. Our analysis revealed a positive dependency between BMI, TAT, SAT, and WM connectivity in brain regions involved in reward processing and appetite regulation, such as the insula, nucleus accumbens, and orbitofrontal cortex. Increased connectivity was also observed in cognitive control and inhibition networks, including the middle frontal gyrus and anterior cingulate cortex. No significant associations were found between WM connectivity and VAT or liver fat. Our findings suggest that altered neural communication between these brain regions may affect cognitive processes, emotional regulation, and reward perception in individuals with obesity, potentially contributing to weight gain. While our study did not identify a link between WM connectivity and VAT or liver fat, further investigation of the role of various fat depots and metabolic factors in brain networks is required to advance obesity prevention and treatment approaches.
Collapse
Affiliation(s)
- Liana Okudzhava
- Department of NeurologyUniversity of LübeckLübeckGermany
- Center of Brain, Behavior and MetabolismUniversity of LübeckLübeckGermany
| | - Stephanie Schulz
- Department of NeurologyUniversity of LübeckLübeckGermany
- Center of Brain, Behavior and MetabolismUniversity of LübeckLübeckGermany
| | - Elda Fischi‐Gomez
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Radiology DepartmentLausanne University and University Hospital (CHUV)LausanneSwitzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Gabriel Girard
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Department of Computer ScienceUniversité de SherbrookeSherbrookeQuebecCanada
| | - Jürgen Machann
- Section on Experimental Radiology, Department of RadiologyEberhard‐Karls UniversityTübingenGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Philipp J. Koch
- Department of NeurologyUniversity of LübeckLübeckGermany
- Center of Brain, Behavior and MetabolismUniversity of LübeckLübeckGermany
| | - Jean‐Philippe Thiran
- CIBM Center for Biomedical ImagingLausanneSwitzerland
- Radiology DepartmentLausanne University and University Hospital (CHUV)LausanneSwitzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Thomas F. Münte
- Department of NeurologyUniversity of LübeckLübeckGermany
- Center of Brain, Behavior and MetabolismUniversity of LübeckLübeckGermany
| | - Marcus Heldmann
- Department of NeurologyUniversity of LübeckLübeckGermany
- Center of Brain, Behavior and MetabolismUniversity of LübeckLübeckGermany
- Institute of Psychology IIUniversity of LübeckLübeckGermany
| |
Collapse
|
5
|
Cao HL, Wei W, Meng YJ, Deng RH, Li XJ, Deng W, Liu YS, Tang Z, Du XD, Greenshaw AJ, Li ML, Li T, Guo WJ. Interactions between overweight/obesity and alcohol dependence impact human brain white matter microstructure: evidence from DTI. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01760-9. [PMID: 38403735 DOI: 10.1007/s00406-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024]
Abstract
There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ren-Hao Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen Tang
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang-Dong Du
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Yurtsever I, Atasoy B, Bozkurt S, Yıldız GB, Balsak S, Yabul F, Donmez Z, Selvitop R, Karaman O, Toluk O, Alkan A. Diffusion tensor imaging findings in the hunger and satiety centers of the brain after bariatric surgery: a preliminary study. Ir J Med Sci 2024; 193:191-197. [PMID: 37231150 DOI: 10.1007/s11845-023-03389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To investigate the alterations in the diffusion tensor imaging (DTI) parameters measured in the hunger and satiety centers of the brain before and after bariatric surgery (BS) in morbidly obese patients. METHODS Fourty morbidly obese patients were evaluated before and after BS. Mean diffusivity (MD) and fractional anisotropy (FA) values were calculated from 14 related brain locations, and the DTI parameters were analyzed. RESULTS After the BS, the mean BMI of the patients decreased from 47.53 ± 5.21 to 31.48 ± 4.21. The MD and FA values in the all of the hunger and satiety centers was found statistically significant different in the pre-surgery period compared to the post-surgery period (for each; p-value < 0.001). CONCLUSION The FA and MD changes after BS may be attributed to reversible neuroinflammatory alterations in the hunger and satiety centers. Decreased MD and FA values after BS may be explained by the neuroplastic structural recovery in the related brain locations.
Collapse
Affiliation(s)
- Ismail Yurtsever
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey.
| | - Bahar Atasoy
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Suleyman Bozkurt
- Department of General Surgery, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Gulsen Babacan Yıldız
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Rabia Selvitop
- Department of Neurology, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinoloy and Metabolism, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Biostatistics, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University Hospital, 34093, Istanbul, Turkey
| |
Collapse
|
7
|
Hu Y, Li G, Zhang W, Wang J, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow N, Ji G, Wang GJ, Zhang Y. Obesity is associated with alterations in anatomical connectivity of frontal-corpus callosum. Cereb Cortex 2024; 34:bhae014. [PMID: 38300178 PMCID: PMC11486688 DOI: 10.1093/cercor/bhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
Obesity has been linked to abnormal frontal function, including the white matter fibers of anterior portion of the corpus callosum, which is crucial for information exchange within frontal cortex. However, alterations in white matter anatomical connectivity between corpus callosum and cortical regions in patients with obesity have not yet been investigated. Thus, we enrolled 72 obese and 60 age-/gender-matched normal weight participants who underwent clinical measurements and diffusion tensor imaging. Probabilistic tractography with connectivity-based classification was performed to segment the corpus callosum and quantify white matter anatomical connectivity between subregions of corpus callosum and cortical regions, and associations between corpus callosum-cortex white matter anatomical connectivity and clinical behaviors were also assessed. Relative to normal weight individuals, individuals with obesity exhibited significantly greater white matter anatomical connectivity of corpus callosum-orbitofrontal cortex, which was positively correlated with body mass index and self-reported disinhibition of eating behavior, and lower white matter anatomical connectivity of corpus callosum-prefrontal cortex, which was significantly negatively correlated with craving for high-calorie food cues. The findings show that alterations in white matter anatomical connectivity between corpus callosum and frontal regions involved in reward and executive control are associated with abnormal eating behaviors.
Collapse
Affiliation(s)
- Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, 4 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Haoyi Wang
- College of Westa, Southwest University, 2 Tiansheng Road, Chongqing 400715, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Nora Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle West Road, Xi’an, Shaanxi 710032, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126, China
| |
Collapse
|
8
|
Cheng X, Wang W, Sun C, Sun Y, Zhou C. White Matter Integrity Abnormalities in Healthy Overweight Individuals Revealed by Whole Brain Meta-Analysis of Diffusion Tensor Imaging Studies. J Obes 2023; 2023:7966540. [PMID: 37908490 PMCID: PMC10615581 DOI: 10.1155/2023/7966540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Objective This study aimed to conduct a coordinate-based meta-analysis (CBMA) to investigate white matter (WM) abnormalities in healthy individuals with overweight or obesity. Methods A systematic literature search using Web of Science and PubMed datasets was performed. Original investigations that used diffusion tensor imaging (DTI) to explore fractional anisotropy (FA) differences between healthy overweight/obese individuals and normal weight controls were collected. The meta-analysis was conducted using the seed-based d mapping (SDM) software, employing stringent thresholds for significance. Sensitivity analyses and meta-regression analysis were also performed to examine the robustness of the results and explore potential associations with age and body mass index (BMI). Results The analysis included five studies comprising 232 overweight/obese individuals and 219 healthy normal weight controls. The findings showed that overweight/obese individuals exhibited reduced fractional anisotropy (FA) in specific regions, namely, the right superior longitudinal fasciculus (SLF), the splenium of the corpus callosum (CC), and the right median network, cingulum. Meta-regression analysis further revealed that these FA reductions were associated with age. Conclusion These findings provided insights into the potential impact of overweight/obesity on cognition, emotion, and neural functions and highlighted the significance of early prevention and intervention for overweight on the basis of neuroimaging.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Wenchang Wang
- School of Mental Health, Jining Medical University, Jining, China
| | - Chen Sun
- School of Mental Health, Jining Medical University, Jining, China
| | - Yana Sun
- Department of Nutrition, Affiliated Hospital of Jining Medical University, Jining, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
9
|
Atasoy B, Balsak S, Donmez Z, Yurtsever I, Yabul F, Akcay A, Atila N, Cesme DH, Toluk O, Alkan A. Evaluation of the white matter integrity in morbidly obese patients before and after bariatric surgery; a diffusion tensor imaging study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1403-1409. [PMID: 37644657 DOI: 10.1002/jcu.23550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To investigate the difference in FA (Fractional anisotropy), ADC (Apparent diffusion coefficient), RD (Radial diffusivity) and AD (axial diffusivity) values of white matter (WM) tracts in morbidly obese subjects before and after bariatric surgery (BS). MATERIALS AND METHODS A group of thirty-nine morbidly obese subjects are evaluated before and 4-6 months after BS. ADC, FA, RD and AD values of 17 distinct neuroanatomic localizations are measured and DTI parameters are analyzed. RESULTS Following the BS, the patients' mean BMI decreased from 47.665.21 to 31.723.97. A significant difference is displayed between the pre-surgery and post-surgery FA values of SLF, SFOF, ALIC, fornix, ILF, CST, MCP (p = 0.010, p < 0.001, p = 0.048, p = 0.014, p = 0.012, p = 0.012, p = 0.040 respectively). Following BS, decrease in FA values in the mentioned areas are detected. ADC values obtained from MCP are significantly lower in the post-BS period compared to pre-BS period (p = 0.018). There was a statistically significant difference between the pre-surgery and post-surgery AD values of SLF, SFOF, ILF, ALIC, EC, CST, and MCP (p = 0.001, p = 0.022, p = 0.001, p = 0.011, p = 0.001, p = 0.000, p = 0.000, respectively). Following the BS, AD values of the SLF, SFOF, ILF, ALIC, EC, CST, and MCP are decreased. RD values measured from GCC are significantly lower in the post-BS period compared to pre-BS period (p = 0.008). CONCLUSION Our study supported the hypothesis of the BS-induced reversibility of the low-grade inflammation in WM tracts in the morbidly obese group following BS. Our DTI results may represent the subacute period findings of the reversal of low-grade inflammation after BS.
Collapse
Affiliation(s)
- Bahar Atasoy
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Serdar Balsak
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Zeynep Donmez
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ismail Yurtsever
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Fatma Yabul
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ahmet Akcay
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Naz Atila
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Dilek Hacer Cesme
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Ozlem Toluk
- Department of Bioistatistics, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| | - Alpay Alkan
- Department of Radiology, Bezmialem Vakıf University Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Caldú X, Prats-Soteras X, García-García I, Prunell-Castañé A, Sánchez-Garre C, Cano N, Tor E, Sender-Palacios MJ, Ottino-González J, Garolera M, Jurado MÁ. Body mass index, systemic inflammation and cognitive performance in adolescents: A cross-sectional study. Psychoneuroendocrinology 2023; 156:106298. [PMID: 37295218 DOI: 10.1016/j.psyneuen.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive body weight has been related to lower cognitive performance. One of the mechanisms through which excess body weight may affect cognition is inflammation. HYPOTHESIS Our hypothesis is that both body mass index (BMI) and circulating levels of inflammatory biomarkers will be negatively related to cognitive performance. DESIGN Cross-sectional study. SETTING Users of the public health centres of the Consorci Sanitari de Terrassa (Terrassa, Spain) between 2010 and 2017 aged 12-21 years. PARTICIPANTS One hundred and five adolescents (46 normoweight, 18 overweight, 41 obese). MEASUREMENTS Levels of high sensitivity C-reactive protein, interleukin 6, tumour necrosis factor α (TNFα) and fibrinogen were determined from blood samples. Cognitive performance was evaluated and six cognitive composites were obtained: working memory, cognitive flexibility, inhibitory control, decision-making, verbal memory, and fine motor speed. A single multivariate general lineal model was used to assess the influence of the four inflammatory biomarkers, as well as participants' BMI, sex, and age on the 6 cognitive indexes. RESULTS An inverse relationship between BMI and inhibitory control (F = 5.688, p = .019; β = -0.212, p = .031), verbal memory (F = 5.404, p = .022; β = -0.255, p = .009) and fine motor speed (F = 9.038, p = .003; β = -0.319, p = .001) was observed. Levels of TNFα and fibrinogen were inversely related to inhibitory control (F = 5.055, p = .027; β = -0.226, p = .021) and verbal memory (F = 4.732, p = .032; β = -0.274, p = .005), respectively. LIMITATIONS The cross-sectional nature of the study, the use of cognitive tests designed for clinical purposes, and the use of BMI as a proxy for adiposity are limitations of our study that must be taken into account when interpreting results. CONCLUSIONS Our data indicate that some components of executive functions, together with verbal memory, are sensitive to specific obesity-related inflammatory agents at early ages.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Xavier Prats-Soteras
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Isabel García-García
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Clinique la Prairie, Montreux, Rue du Lac 142, 1815 Clarens, Switzerland
| | - Anna Prunell-Castañé
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Neus Cano
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Encarnació Tor
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - María-José Sender-Palacios
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - Jonatan Ottino-González
- Division of Endocrinology, The Saban Research Institute, Children's Hospital Los Angeles, United States
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain.
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
11
|
Tashiro M, Yasuda N, Inoue M, Yamagishi K, Tsugane S, Sawada N. Body mass index, weight change in midlife, and dementia incidence: the Japan Public Health Center-based Prospective Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12507. [PMID: 38026757 PMCID: PMC10668007 DOI: 10.1002/dad2.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Insufficient evidence exists on the sex-specific associations of body mass index (BMI) and weight change through midlife with dementia incidence, especially in Asian populations. METHODS For 37,414 Japanese residents aged 40 to 59 years, BMIs at baseline (year 1990 or 1993) and 10-year follow-ups were obtained. Weight changes between baseline and 10-year follow-ups were determined. Disabling dementia incidence from 2006 to 2016 was ascertained using long-term care insurance (LTCI) certifications. Hazard ratios (HRs) were computed. RESULTS Increased dementia risk was observed with obesity at baseline and with underweight at 10-year follow-ups. Weight loss after baseline was at greater risk than weight gain. No sex difference was observed. DISCUSSION In both sexes, obesity in midlife increased the risk of developing dementia with increasing impacts of weight loss after midlife. A healthy body weight throughout adulthood is beneficial for dementia prevention. Highlights Obesity in midlife is a risk factor for incident dementia.Weight loss is a bigger risk factor than weight gain in later midlife.Association of BMI and weight change in midlife with dementia does not vary by sex.
Collapse
Affiliation(s)
- Miwa Tashiro
- Department of Public HealthKochi University Medical SchoolNankoku‐shiKochiJapan
| | - Nobufumi Yasuda
- Department of Public HealthKochi University Medical SchoolNankoku‐shiKochiJapan
| | - Manami Inoue
- Division of PreventionNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| | - Kazumasa Yamagishi
- Department of Public Health MedicineInstitute of Medicineand Health Services Research and Development CenterUniversity of TsukubaTsukuba‐shiIbarakiJapan
| | - Shoichiro Tsugane
- National Institute of Health and NutritionNational Institutes of Biomedical InnovationHealth and NutritionShinjyuku‐kuTokyoJapan
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| | - Norie Sawada
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| |
Collapse
|
12
|
Chen AK, Gullett JM, Williamson JB, Cohen RA. Presurgical microstructural coherence predicts cognitive change for bariatric surgery patients. Obesity (Silver Spring) 2023; 31:2325-2334. [PMID: 37605633 PMCID: PMC10449364 DOI: 10.1002/oby.23837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This observational study examined the relationship between presurgical white matter microstructural coherence and cognitive change after weight loss. It was hypothesized that higher baseline fractional anisotropy (FA) would predict greater baseline and change cognition. METHODS A sample of 24 adults (BMI ≥ 35 kg/m2 ) underwent neuropsychological assessment at baseline and 12 weeks after bariatric surgery. A magnetic resonance imaging brain scan was administered at baseline and processed through Tract-Based Spatial Statistics to compute FA in white matter tracts of interest. Composite scores for attention, learning, processing speed, executive function, verbal fluency, working memory, and overall cognition were calculated. RESULTS As expected, FA in some tracts of interest was significantly (p < 0.05) positively associated with change in cognition. Inverse relationships were observed between baseline FA and presurgical cognition, which may be explained by increased medial and radial diffusivity and preserved axonal diffusivity. Cognition generally improved after surgery; however, relative but clinically nonsignificant deterioration was observed on learning measures. Poorer baseline cognitive performance was associated with greater postsurgical cognitive improvement. CONCLUSIONS Presurgical microstructural coherence is associated with magnitude of cognitive change after weight loss. An observed reduction in learning suggests that bariatric surgery may lead to negative outcomes in some cognitive domains, at least temporarily.
Collapse
Affiliation(s)
- Alexa K Chen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Joseph M Gullett
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - John B Williamson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Tinney EM, Loui P, Raine LB, Hiscox LV, Delgorio PL, Kramer MK, Schwarb H, Martens CR, Kramer AF, Hillman CH, Johnson CL. Influence of mild cognitive impairment and body mass index on white matter integrity assessed by diffusion tensor imaging. Psychophysiology 2023; 60:e14306. [PMID: 37038273 PMCID: PMC10524314 DOI: 10.1111/psyp.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Mild cognitive impairment (MCI), a prodromal stage of Alzheimer's disease, is characterized by decreased memory and cognition, which are linked to degenerative changes in the brain. To assess whether white matter (WM) integrity is compromised in MCI, we collected diffusion-weighted images from 60 healthy older adults (OA) (69.16 ± 0.7) and 20 older adults with amnestic MCI (72.45 ± 1.9). WM integrity differences were examined using Tract-Based Spatial Statistics (TBSS). We hypothesized that those with MCI would have diminished WM integrity relative to OA. In a whole-brain comparison, those with MCI showed higher axial diffusivity in the splenium (SCC) and body of the corpus callosum (BCC), superior corona radiata (SCR), and the retrolenticular part of the internal capsule (RLIC) (p's < .05 TFCE-corrected). Additionally, significant between-group connectivity differences were observed using probabilistic tractography between the SCC, chosen from the TBSS results, and forceps major and minor (p-value's < .05). To further relate a physical health indicator to WM alterations, linear regression showed significant interactions between cognitive status and body mass index (BMI) on diffusivity outcome measures from probabilistic tractography (p-value-'s < .05). Additionally, we examined the association between relational memory, BMI, and WM integrity. WM integrity was positively associated with relational memory performance. These findings suggest that these regions may be more sensitive to early markers of neurodegenerative disease and health behaviors, suggesting that modifiable lifestyle factors may affect white matter integrity.
Collapse
Affiliation(s)
- Emma M. Tinney
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
| | - Psyche Loui
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
| | - Lauren B. Raine
- Northeastern University, Center for Cognitive and Brain Health
- Northeastern University, Department of Physical Therapy Movement Rehabilitation Sciences
- Northeastern University, Department of Medicinal Sciences
| | - Lucy V. Hiscox
- University of Delaware, Department of Biomedical Engineering
| | | | - Mary K. Kramer
- University of Delaware, Department of Biomedical Engineering
| | - Hillary Schwarb
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology
| | | | - Arthur F. Kramer
- Northeastern University, Department of Psychology
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology
| | - Charles H. Hillman
- Northeastern University, Department of Psychology
- Northeastern University, Center for Cognitive and Brain Health
- Northeastern University, Department of Physical Therapy Movement Rehabilitation Sciences
| | | |
Collapse
|
14
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Colmenares AM, Hiner G, Kramer AF, Li K, Lee J, Lee P, Oh SH, Umland S, Thomas ML. Metabolic syndrome and adiposity: Risk factors for decreased myelin in cognitively healthy adults. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100180. [PMID: 38162292 PMCID: PMC10757180 DOI: 10.1016/j.cccb.2023.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 01/03/2024]
Abstract
Metabolic syndrome (MetS) is a cluster of conditions that affects ∼25% of the global population, including excess adiposity, hyperglycemia, dyslipidemia, and elevated blood pressure. MetS is one of major risk factors not only for chronic diseases, but also for dementia and cognitive dysfunction, although the underlying mechanisms remain poorly understood. White matter is of particular interest in the context of MetS due to the metabolic vulnerability of myelin maintenance, and the accumulating evidence for the importance of the white matter in the pathophysiology of dementia. Therefore, we investigated the associations of MetS risk score and adiposity (combined body mass index and waist circumference) with myelin water fraction measured with myelin water imaging. In 90 cognitively and neurologically healthy adults (20-79 years), we found that both high MetS risk score and adiposity were correlated with lower myelin water fraction in late-myelinating prefrontal and associative fibers, controlling for age, sex, race, ethnicity, education and income. Our findings call for randomized clinical trials to establish causality between MetS, adiposity, and myelin content, and to explore the potential of weight loss and visceral adiposity reduction as means to support maintenance of myelin integrity throughout adulthood, which could open new avenues for prevention or treatment of cognitive decline and dementia.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Grace Hiner
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Republic of Korea
| | - Samantha Umland
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Michael L Thomas
- Michael Thomas, Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Szczerbowska-Boruchowska M, Piana K, Surowka AD, Czyzycki M, Wrobel P, Szymkowski M, Ziomber-Lisiak A. A combined X-ray fluorescence and infrared microspectroscopy study for new insights into elemental-biomolecular obesity-induced changes in rat brain structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122478. [PMID: 36801735 DOI: 10.1016/j.saa.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein β- sheet ratio and the percentage fraction of β-turns and β-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.
Collapse
Affiliation(s)
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Artur D Surowka
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, TS 34149 Trieste, Italy
| | - Mateusz Czyzycki
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland; Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; International Atomic Energy Agency, Nuclear Science and Instrumentation Laboratory, Friedensstrasse 1, 2444 Seibersdorf, Austria
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Szymkowski
- Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A, 15-351 Białystok, Poland
| | - Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
16
|
Brooks SJ, Smith C, Stamoulis C. Excess BMI in early adolescence adversely impacts maturating functional circuits supporting high-level cognition and their structural correlates. Int J Obes (Lond) 2023:10.1038/s41366-023-01303-7. [PMID: 37012426 DOI: 10.1038/s41366-023-01303-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND/OBJECTIVES Adverse effects of excess BMI (affecting 1 in 5 children in the US) on brain circuits during neurodevelopmentally vulnerable periods are incompletely understood. This study investigated BMI-related alterations in maturating functional networks and their underlying brain structures, and high-level cognition in early adolescence. SUBJECTS/METHODS Cross-sectional resting-state fMRI, structural sMRI, neurocognitive task scores, and BMI from 4922 youth [median (IQR) age = 120.0 (13.0) months, 2572 females (52.25%)] from the Adolescent Brain Cognitive Development (ABCD) cohort were analyzed. Comprehensive topological and morphometric network properties were estimated from fMRI and sMRI, respectively. Cross-validated linear regression models assessed correlations with BMI. Results were reproduced across multiple fMRI datasets. RESULTS Almost 30% of youth had excess BMI, including 736 (15.0%) with overweight and 672 (13.7%) with obesity, and statistically more Black and Hispanic compared to white, Asian and non-Hispanic youth (p < 0.01). Those with obesity or overweight were less physically active, slept less than recommended, snored more frequently, and spent more time using an electronic device (p < 0.01). They also had lower topological efficiency, resilience, connectivity, connectedness and clustering in Default-Mode, dorsal attention, salience, control, limbic, and reward networks (p ≤ 0.04, Cohen's d: 0.07-0.39). Lower cortico-thalamic efficiency and connectivity were estimated only in youth with obesity (p < 0.01, Cohen's d: 0.09-0.19). Both groups had lower cortical thickness, volume and white matter intensity in these networks' constituent structures, particularly anterior cingulate, entorhinal, prefrontal, and lateral occipital cortices (p < 0.01, Cohen's d: 0.12-0.30), which also mediated inverse relationships between BMI and regional functional topologies. Youth with obesity or overweight had lower scores in a task measuring fluid reasoning - a core aspect of cognitive function, which were partially correlated with topological changes (p ≤ 0.04). CONCLUSIONS Excess BMI in early adolescence may be associated with profound aberrant topological alterations in maturating functional circuits and underdeveloped brain structures that adversely impact core aspects of cognitive function.
Collapse
Affiliation(s)
- Skylar J Brooks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
- University of California Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Calli Smith
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
| | - Catherine Stamoulis
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA.
- Harvard Medical School, Department of Pediatrics, Boston, MA, USA.
| |
Collapse
|
17
|
Patel A, Chad JA, Chen JJ. Is adiposity associated with white matter microstructural health and intelligence differently in males and females? Obesity (Silver Spring) 2023; 31:1011-1023. [PMID: 36883598 DOI: 10.1002/oby.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The role of vascular risk factors in age-related brain degeneration has long been the subject of intense study, but the role of obesity remains understudied. Given known sex differences in fat storage and usage, this study investigates sex differences in the association between adiposity and white matter microstructural integrity, an important early marker of brain degeneration. METHODS This study assesses the associations between adiposity (abdominal fat ratio and liver proton density fat fraction) and brain health (measures of intelligence and white matter microstructure using diffusion-tensor imaging [DTI]) in a group of UK Biobank participants. RESULTS This study finds that intelligence and DTI metrics are indeed associated with adiposity differently in males and females. These sex differences are distinct from those in the associations of DTI metrics with age and blood pressure. CONCLUSIONS Taken together, these findings suggest that there are inherent sex-driven differences in how brain health is associated with obesity.
Collapse
Affiliation(s)
- Arjun Patel
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Jordan A Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Condoleo V, Bonfrate L, Armentaro G, Pelaia C, Cassano V, De Marco M, Severini G, Pastura CA, Miceli S, Maio R, Perticone M, Arturi F, Sesti G, Sciacqua A. Effects of continuous positive airway pressure on comprehensive geriatric assessment and cognitive function in elderly patients with obstructive sleep apnea syndrome. Intern Emerg Med 2023; 18:769-779. [PMID: 36808594 DOI: 10.1007/s11739-023-03220-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) can lead to cognitive impairment and depression affecting memory, attention, and executive functions. Continuous positive airway pressure (CPAP) treatment seems to be able to revert changes in brain networks and neuropsychological tests correlated to OSAS. The aim of the present study was to evaluate the effects of a 6-month treatment with CPAP on functional, humoral and cognitive parameters in a cohort of elderly OSAS patients with several comorbidities. We enrolled 360 elderly patients suffering from moderate to severe OSAS and indication for nocturnal CPAP. At baseline the Comprehensive Geriatric Assessment (CGA) revealed a borderline Mini-Mental State Examination (MMSE) score that improved after 6-month treatment with CPAP (25.3 ± 1.6 vs 26 ± 1.5; p < 0.0001), as well as the Montreal Cognitive Assessment (MoCA) showed a mild improvement (24.4 ± 2.3 vs 26.2 ± 1.7; p < 0.0001). Moreover, functionality activities increased after treatment, as documented by a short physical performance battery (SPPB) (6.3 ± 1.5 vs 6.9 ± 1.4; p < 0.0001). Reduction of the Geriatric Depression Scale (GDS) from 6.0 ± 2.5 to 4.6 ± 2.2 (p < 0.0001) was also detected. Changes of homeostasis model assessment (HOMA) index, oxygen desaturation index (ODI), sleep-time spent with saturation below 90% (TC90), peripheral arterial oxyhaemoglobin saturation (SpO2), apnea-hypopnea index (AHI) and estimation of glomerular filtration rate (eGFR), contributed, respectively, to 27.9%, 9.0%, 2.8%, 2.3%, 1.7% and 0.9% of MMSE variability for a total of 44.6% of MMSE variations. GDS score changes were due to the improvement of AHI, ODI and TC90, respectively, for 19.2%, 4.9%, 4.2% of the GDS variability, cumulative responsible for 28.3% of GDS modifications. The present real-world study shows that CPAP treatment is able to improve cognition and depressive symptoms in OSAS elderly patients.
Collapse
Affiliation(s)
- Valentino Condoleo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy.
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Mario De Marco
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Giandomenico Severini
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Carlo Alberto Pastura
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Raffaele Maio
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Maria Perticone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario "S. Venuta", Viale Europa - Località Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
19
|
Paolini M, Palladini M, Mazza MG, Colombo F, Vai B, Rovere-Querini P, Falini A, Poletti S, Benedetti F. Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study. Eur Neuropsychopharmacol 2023; 68:1-10. [PMID: 36640728 PMCID: PMC9742225 DOI: 10.1016/j.euroneuro.2022.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness's resolution, mainly related to neurological and neuropsychiatric consequences. Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach. Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest. Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.
Collapse
Affiliation(s)
- Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Mariagrazia Palladini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Federica Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; PhD Program in Cognitive Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
20
|
Vreeken D, Seidel F, de La Roij G, Vening W, den Hengst WA, Verschuren L, Özsezen S, Kessels RPC, Duering M, Mutsaerts HJMM, Kleemann R, Wiesmann M, Hazebroek EJ, Kiliaan AJ. Impact of White Adipose Tissue on Brain Structure, Perfusion, and Cognitive Function in Patients With Severe Obesity: The BARICO Study. Neurology 2023; 100:e703-e718. [PMID: 36332987 PMCID: PMC9969926 DOI: 10.1212/wnl.0000000000201538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND OBJECTIVE While underlying pathophysiology linking obesity to brain health is not completely understood, white adipose tissue (WAT) is considered a key player. In obesity, WAT becomes dysregulated, showing hyperplasia, hypertrophy, and eventually inflammation. This disbalance leads to dysregulated secretion of adipokines influencing both (cardio)vascular and brain health. Within this study, we investigated the association between omental WAT (oWAT) and subcutaneous WAT (scWAT) with brain structure and perfusion and cognition in adults with severe obesity. METHODS Within the cross-sectional BARICO study, brain structure and perfusion and cognitive function were measured before bariatric surgery (BS) using MRI and cognitive assessments. During BS, oWAT and scWAT depots were collected and analyzed by histopathology. The number and diameter of adipocytes were quantified together with the amount of crown-like structures (CLS) as an indication of inflammation. Blood samples were collected to analyze adipokines and inflammatory markers. Neuroimaging outcomes included brain volumes, cortical thickness, white matter (WM) integrity, WM hyperintensities, cerebral blood flow using arterial spin labeling (ASL), and the ASL spatial coefficient of variation (sCoV), reflecting cerebrovascular health. RESULTS Seventy-one patients were included (mean age 45.1 ± 5.8 years; 83.1% women; mean body mass index 40.8 ± 3.8 kg/m2). scWAT showed more CLS (z = -2.72, p < 0.01, r = -0.24) and hypertrophy compared with oWAT (F(1,64) = 3.99, p < 0.05, η2 = 0.06). Adiponectin levels were inversely associated with the average diameter of scWAT (β = -0.31, 95% CI -0.54 to -0.08) and oWAT (β = -0.33, 95% CI -0.55 to -0.09). Furthermore, the adipocyte diameter in oWAT was positively associated with the sCoV in the parietal cortex (β = 0.33, 95% CI 0.10-0.60), and the number of adipocytes (per mm2) was positively associated with sCoV in the nucleus accumbens (NAcc) (β = 0.34, 95% CI 0.09-0.61). Cognitive function did not correlate with any WAT parameter or plasma marker. These associations were highly influenced by age and sex. sCoV in the NAcc was positively associated with fasting plasma glucose (β = 0.35, 95% CI 0.10-0.56). DISCUSSION scWAT and oWAT are different in morphology and in their relationship with plasma markers and cerebrovascular health. Although scWAT showed more CLS and hypertrophy, scWAT was not associated with brain readouts. This study showed, however, important relationships between oWAT morphology and cerebrovascular health in obesity. TRIAL REGISTRATION INFORMATION Trial Registration Number NTR7288 (trialregister.nl/trial/7090).
Collapse
Affiliation(s)
- Debby Vreeken
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Florine Seidel
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Guido de La Roij
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Wouter Vening
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Willem A den Hengst
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Lars Verschuren
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Serdar Özsezen
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Roy P C Kessels
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Marco Duering
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Henk J M M Mutsaerts
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Robert Kleemann
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Maximilian Wiesmann
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Eric J Hazebroek
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands
| | - Amanda J Kiliaan
- From the Department of Medical Imaging (D.V., F.S., G.L.R., M.W., A.J.K.), Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Bariatric Surgery (D.V., W.V., W.A.H., E.J.H.), Vitalys, Part of Rijnstate Hospital, Arnhem, The Netherlands; Donders Institute for Brain (D.V., F.S., R.P.C.K., M.W., A.J.K.), Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Metabolic Health Research (F.S., R.K.), Netherlands Organisation for Applied Scientific Research (TNO), Leiden; Department of Microbiology and Systems Biology (L.V., S.Ö.), Netherlands Organisation for Applied Scientific Research (TNO), Zeist; Vincent van Gogh Institute for Psychiatry (R.P.C.K.), Venray, The Netherlands; Department of Medical Psychology and Radboudumc Alzheimer Center (R.P.C.K.), Radboud University Medical Center, Nijmegen, The Netherlands; Medical Image Analysis Center (MIAC) and Qbig (M.D.), and Department of Biomedical Engineering, University of Basel, Switzerland; Department of Radiology and Nuclear Medicine (H.J.M.M.M.), Amsterdam UMC, Amsterdam Neuroscience, The Netherlands; and Division of Human Nutrition and Health (E.J.H.), Wageningen University, The Netherlands.
| |
Collapse
|
21
|
Lacalle-Aurioles M, Iturria-Medina Y. Fornix degeneration in risk factors of Alzheimer's disease, possible trigger of cognitive decline. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100158. [PMID: 36703699 PMCID: PMC9871745 DOI: 10.1016/j.cccb.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Risk factors of late-onset Alzheimer's disease (AD) such as aging, type 2 diabetes, obesity, heart failure, and traumatic brain injury can facilitate the appearance of cognitive decline and dementia by triggering cerebrovascular pathology and neuroinflammation. White matter (WM) microstructure and function are especially vulnerable to these conditions. Microstructural WM changes, assessed with diffusion weighted magnetic resonance imaging, can already be detected at preclinical stages of AD, and in the presence of the aforementioned risk factors. Particularly, the limbic system and cortico-cortical association WM tracts, which myelinate late during brain development, degenerate at the earliest stages. The fornix, a C-shaped WM tract that originates from the hippocampus, is one of the limbic tracts that shows early microstructural changes. Fornix integrity is necessary for ensuring an intact executive function and memory performance. Thus, a better understanding of the mechanisms that cause fornix degeneration is critical in the development of therapeutic strategies aiming to prevent cognitive decline in populations at risk. In this literature review, i) we deepen the idea that partial loss of forniceal integrity is an early event in AD, ii) we describe the role that common risk factors of AD can play in the degeneration of the fornix, and iii) we discuss some potential cellular and physiological mechanisms of WM degeneration in the scenario of cerebrovascular disease and inflammation.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Corresponding author at: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada,Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada,McConnell Brain Imaging Centre, McGill University, Montreal, Canada
| |
Collapse
|
22
|
Dietze LMF, McWhinney SR, Radua J, Hajek T. Extended and replicated white matter changes in obesity: Voxel-based and region of interest meta-analyses of diffusion tensor imaging studies. Front Nutr 2023; 10:1108360. [PMID: 36960197 PMCID: PMC10028081 DOI: 10.3389/fnut.2023.1108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Obesity has become a global public health issue, which impacts general health and the brain. Associations between obesity and white matter microstructure measured using diffusion tensor imaging have been under reviewed, despite a relatively large number of individual studies. Our objective was to determine the association between obesity and white matter microstructure in a large general population sample. Methods We analyzed location of brain white matter changes in obesity using the Anisotropic Effect Size Seed-based d Mapping (AES-SDM) method in a voxel-based meta-analysis, with validation in a region of interest (ROI) effect size meta-analysis. Our sample included 21 742 individuals from 51 studies. Results The voxel-based spatial meta-analysis demonstrated reduced fractional anisotropy (FA) with obesity in the genu and splenium of the corpus callosum, middle cerebellar peduncles, anterior thalamic radiation, cortico-spinal projections, and cerebellum. The ROI effect size meta-analysis replicated associations between obesity and lower FA in the genu and splenium of the corpus callosum, middle cerebellar peduncles. Effect size of obesity related brain changes was small to medium. Discussion Our findings demonstrate obesity related brain white matter changes are localized rather than diffuse. Better understanding the brain correlates of obesity could help identify risk factors, and targets for prevention or treatment of brain changes.
Collapse
Affiliation(s)
- Lorielle M. F. Dietze
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Prague, Czechia
- *Correspondence: Tomas Hajek,
| |
Collapse
|
23
|
Hidese S, Ota M, Matsuo J, Ishida I, Yokota Y, Hattori K, Yomogida Y, Kunugi H. Association of body mass index and its classifications with gray matter volume in individuals with a wide range of body mass index group: A whole-brain magnetic resonance imaging study. Front Hum Neurosci 2022; 16:926804. [PMID: 36158620 PMCID: PMC9493114 DOI: 10.3389/fnhum.2022.926804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Aim To examine the association of body mass index (BMI) [kg/m2] and its classifications (underweight [BMI < 18.5], normal [18.5 ≤ BMI < 25], overweight [25 ≤ BMI < 30], and obese [BMI ≥ 30]) with brain structure in individuals with a wide range of BMI group. Materials and methods The participants included 382 right-handed individuals (mean age: 46.9 ± 14.3 years, 142 men and 240 women). The intelligence quotient was assessed using the Japanese Adult Reading Test. Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) were performed to analyze the association of BMI and its classifications with gray and white matter structures, respectively. Results According to VBM, BMI was significantly and negatively correlated with the bilateral cerebellum exterior volumes. In group comparisons, the right cerebellum exterior volume was significantly lower in the overweight or obese group than in the underweight or normal group, while the bilateral cuneus and calcarine cortex, left cuneus, and left precuneus volume was significantly lower in the underweight group than in the non-underweight group. Sex-related stratification analyses for VBM revealed that BMI was significantly and negatively correlated with the bilateral cerebellum exterior volumes only in women. In group comparisons, the left cerebellum exterior volume was significantly lower in obese women than in non-obese women. The left thalamus proper and the right cerebellum exterior volumes were significantly lower in overweight or obese group than in underweight or normal group in men and women, respectively. The bilateral cuneus and calcarine cortex, left cuneus and carcarine cortex, and bilateral cuneus volume was significantly lower in underweight men than in non-underweight men. In contrast, there were no notable findings on DTI. Conclusion Our results suggest association of continuous BMI, being overweight or obese, and being underweight with decreased gray matter volume in individuals with a wide range of BMI group. Furthermore, sex-related differences are seen in the association of BMI and its classifications with regional gray matter volume reductions. Abnormally high or low BMIs may have a negative influence on regional gray matter volumes.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan
- *Correspondence: Shinsuke Hidese,
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yukihito Yomogida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Araya Inc., Minato-ku, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan
| |
Collapse
|
24
|
Subramaniapillai S, Suri S, Barth C, Maximov II, Voldsbekk I, van der Meer D, Gurholt TP, Beck D, Draganski B, Andreassen OA, Ebmeier KP, Westlye LT, de Lange AG. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort. Hum Brain Mapp 2022; 43:3759-3774. [PMID: 35460147 PMCID: PMC9294301 DOI: 10.1002/hbm.25882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiometabolic risk (CMR) factors are associated with accelerated brain aging and increased risk for sex-dimorphic illnesses such as Alzheimer's disease (AD). Yet, it is unknown how CMRs interact with sex and apolipoprotein E-ϵ4 (APOE4), a known genetic risk factor for AD, to influence brain age across different life stages. Using age prediction based on multi-shell diffusion-weighted imaging data in 21,308 UK Biobank participants, we investigated whether associations between white matter Brain Age Gap (BAG) and body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF%), and APOE4 status varied (i) between males and females, (ii) according to age at menopause in females, and (iii) across different age groups in males and females. We report sex differences in associations between BAG and all three CMRs, with stronger positive associations among males compared to females. Independent of APOE4 status, higher BAG (older brain age relative to chronological age) was associated with greater BMI, WHR, and BF% in males, whereas in females, higher BAG was associated with greater WHR, but not BMI and BF%. These divergent associations were most prominent within the oldest group of females (66-81 years), where greater BF% was linked to lower BAG. Earlier menopause transition was associated with higher BAG, but no interactions were found with CMRs. In conclusion, the findings point to sex- and age-specific associations between CMRs and brain age. Incorporating sex as a factor of interest in studies addressing CMR may promote sex-specific precision medicine, consequently improving health care for both males and females.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of Psychology, Faculty of ScienceMcGill UniversityMontrealQuebecCanada
- Department of PsychologyUniversity of OsloOsloNorway
| | - Sana Suri
- Department of PsychiatryUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Ivan I. Maximov
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| | - Dani Beck
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
| | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Ann‐Marie G. de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychiatryUniversity of OxfordOxfordUK
| |
Collapse
|
25
|
Li CM, Song JR, Zhao J, Wang CF, Zhang CS, Wang HD, Zhang Q, Liu DF, Ma ZY, Yuan JH, Dong J. The Effects of Bariatric Surgery on Cognition in Patients with Obesity: a Systematic Review and Meta-Analysis. Surg Obes Relat Dis 2022; 18:1323-1338. [DOI: 10.1016/j.soard.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
|
26
|
Angoff R, Himali JJ, Maillard P, Aparicio HJ, Vasan RS, Seshadri S, Beiser AS, Tsao CW. Relations of Metabolic Health and Obesity to Brain Aging in Young to Middle-Aged Adults. J Am Heart Assoc 2022; 11:e022107. [PMID: 35229662 PMCID: PMC9075324 DOI: 10.1161/jaha.121.022107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
Background We aimed to evaluate the association between metabolic health and obesity and brain health measured via magnetic resonance imaging and neurocognitive testing in community dwelling adults. Methods and Results Framingham Heart Study Third Generation Cohort members (n=2170, 46±9 years of age, 54% women) without prevalent diabetes, stroke, dementia, or other neurologic conditions were grouped by metabolic unhealthiness (≥2 criteria for metabolic syndrome) and obesity (body mass index ≥30 kg/m2): metabolically healthy (MH) nonobese, MH obese, metabolically unhealthy (MU) nonobese, and MU obese. We evaluated the relationships of these groups with brain structure (magnetic resonance imaging) and function (neurocognitive tests). In multivariable-adjusted analyses, metabolically unhealthy individuals (MU nonobese and MU obese) had lower total cerebral brain volume compared with the MH nonobese referent group (both P<0.05). Additionally, the MU obese group had greater white matter hyperintensity volume (P=0.004), whereas no association was noted between white matter hyperintensity volume and either groups of metabolic health or obesity alone. Obese individuals had less favorable cognitive scores: MH obese had lower scores on global cognition, Logical Memory-Delayed Recall and Similarities tests, and MU obese had lower scores on Similarities and Visual Reproductions-Delayed tests (all P≤0.04). MU and obese groups had higher free water content and lower fractional anisotropy in several brain regions, consistent with loss of white matter integrity. Conclusions In this cross-sectional cohort study of younger to middle-aged adults, poor metabolic health and obesity were associated with structural and functional evidence of brain aging. Improvement in metabolic health and obesity may present opportunities to improve long-term brain health.
Collapse
Affiliation(s)
- Rebecca Angoff
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
| | - Jayandra J. Himali
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Pauline Maillard
- Department of Neurology and Center for NeuroscienceUniversity of California at DavisDavisCA
| | - Hugo J. Aparicio
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Ramachandran S. Vasan
- Department of MedicineSchool of MedicineBoston UniversityBostonMA
- Department of EpidemiologyBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Sudha Seshadri
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTX
- Department of Population Health SciencesUniversity of Texas Health Science CenterSan AntonioTX
- The Framingham Heart StudyFraminghamMA
| | - Alexa S. Beiser
- Department of NeurologySchool of MedicineBoston UniversityBostonMA
- The Department of BiostatisticsBoston UniversityBostonMA
- The Framingham Heart StudyFraminghamMA
| | - Connie W. Tsao
- Cardiovascular DivisionBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMA
- The Framingham Heart StudyFraminghamMA
| |
Collapse
|
27
|
Laczkovics C, Nenning KH, Wittek T, Schmidbauer V, Schwarzenberg J, Maurer ES, Wagner G, Seidel S, Philipp J, Prayer D, Kasprian G, Karwautz A. White matter integrity is disrupted in adolescents with acute anorexia nervosa: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2022; 320:111427. [PMID: 34952446 DOI: 10.1016/j.pscychresns.2021.111427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Anorexia nervosa (AN) is a highly debilitating mental illness with multifactorial etiology. It oftentimes begins in adolescence, therefore understanding the pathophysiology in this period is important. Few studies investigated the possible impact of the acute state of illness on white matter (WM) tissue properties in the developing adolescent brain. The present study expands our understanding of the implications of AN and starvation on WM integrity. 67 acutely ill adolescent patients suffering from AN restricting type were compared with 32 healthy controls using diffusion tensor imaging assessing fractional anisotropy (FA) and mean diffusivity (MD). We found widespread alterations in the vast majority of the WM regions with significantly decreased FA and increased MD in the AN group. In this highly selective sample in the acute stage of AN, the alterations are likely to be the consequence of starvation. Still, we cannot rule out that some of the affected regions might play a key role in AN-specific psychopathology.
Collapse
Affiliation(s)
- Clarissa Laczkovics
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Tanja Wittek
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Schwarzenberg
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Elisabeth Sophie Maurer
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Gudrun Wagner
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Stefan Seidel
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Philipp
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Daniela Prayer
- Department of Neurology, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Department of Neurology, Medical University of Vienna, Austria
| | - Andreas Karwautz
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Okudzhava L, Heldmann M, Münte TF. A systematic review of diffusion tensor imaging studies in obesity. Obes Rev 2022; 23:e13388. [PMID: 34908217 DOI: 10.1111/obr.13388] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Obesity is a major global health problem leading to serious complications. It has been consistently associated with alterations in brain structure. Diffusion tensor imaging is used to examine brain white matter microstructure by assessing the dynamics of water diffusion in white matter tracts. Fractional anisotropy and mean diffusivity are two parameters measuring the directionality and rate of diffusion, respectively. Changes in these indices associated with obesity have been previously reported in numerous fiber tracts. This systematic review investigates microstructural white matter alterations in obesity using diffusion tensor imaging. A computerized search was performed in PubMed, Web of Science, and Livivo databases. Based on the inclusion/exclusion criteria, 31 cross-sectional studies comparing individuals with obesity and lean controls were identified. The studies included mixed-gender samples of children, young, middle-aged, and older adults. The majority of included studies reported decreased fractional anisotropy and increased mean diffusivity associated with elevated body mass index, suggesting white matter abnormalities. Nevertheless, a pattern of alterations is inconsistent across studies. This could be explained by several potential biases assessed by the National Institute of Health quality assessment tool. Furthermore, a direct assessment of body fat is recommended for a more accurate characterization of the brain-body relationship.
Collapse
Affiliation(s)
- Liana Okudzhava
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
29
|
Beck D, de Lange AMG, Alnæs D, Maximov II, Pedersen ML, Leinhard OD, Linge J, Simon R, Richard G, Ulrichsen KM, Dørum ES, Kolskår KK, Sanders AM, Winterton A, Gurholt TP, Kaufmann T, Steen NE, Nordvik JE, Andreassen OA, Westlye LT. Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults. Neuroimage Clin 2022; 33:102949. [PMID: 35114636 PMCID: PMC8814666 DOI: 10.1016/j.nicl.2022.102949] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor cardiometabolic health and neurodegenerative conditions. Although research has demonstrated deleterious effects of obesity on brain structure and function, the majority of studies have used conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While sensitive to gross features of body composition, such global anthropometric features fail to describe regional differences in body fat distribution and composition. The sample consisted of baseline brain magnetic resonance imaging (MRI) acquired from 790 healthy participants aged 18-94 years (mean ± standard deviation (SD) at baseline: 46.8 ± 16.3), and follow-up brain MRI collected from 272 of those individuals (two time-points with 19.7 months interval, on average (min = 9.8, max = 35.6). Of the 790 included participants, cross-sectional body MRI data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, SD = 15.6). Adopting a mixed cross-sectional and longitudinal design, we investigated cross-sectional body magnetic resonance imaging measures of adipose tissue distribution in relation to longitudinal brain structure using MRI-based morphometry (T1) and diffusion tensor imaging (DTI). We estimated tissue-specific brain age at two time points and performed Bayesian multilevel modelling to investigate the associations between adipose measures at follow-up and brain age gap (BAG) - the difference between actual age and the prediction of the brain's biological age - at baseline and follow-up. We also tested for interactions between BAG and both time and age on each adipose measure. The results showed credible associations between T1-based BAG and liver fat, muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of the study period in people with higher measures of adipose tissue. The results show that specific measures of fat distribution are associated with brain ageing and that different compartments of adipose tissue may be differentially linked with increased brain ageing, with potential to identify key processes involved in age-related transdiagnostic disease processes.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Ann-Marie G de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; LREN, Centre for Research in Neurosciences-Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Adriano Winterton
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | | | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
30
|
Roger C, Lasbleiz A, Guye M, Dutour A, Gaborit B, Ranjeva JP. The Role of the Human Hypothalamus in Food Intake Networks: An MRI Perspective. Front Nutr 2022; 8:760914. [PMID: 35047539 PMCID: PMC8762294 DOI: 10.3389/fnut.2021.760914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hypothalamus (HT), this small structure often perceived through the prism of neuroimaging as morphologically and functionally homogeneous, plays a key role in the primitive act of feeding. The current paper aims at reviewing the contribution of magnetic resonance imaging (MRI) in the study of the role of the HT in food intake regulation. It focuses on the different MRI techniques that have been used to describe structurally and functionally the Human HT. The latest advances in HT parcellation as well as perspectives in this field are presented. The value of MRI in the study of eating disorders such as anorexia nervosa (AN) and obesity are also highlighted.
Collapse
Affiliation(s)
- Coleen Roger
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Adèle Lasbleiz
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France.,Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Maxime Guye
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| | - Anne Dutour
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Bénédicte Gaborit
- Département d'Endocrinologie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Marseille, France
| | - Jean-Philippe Ranjeva
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Universitaire de la Timone, Marseille, France
| |
Collapse
|
31
|
Rahmani F, Wang Q, McKay NS, Keefe S, Hantler N, Hornbeck R, Wang Y, Hassenstab J, Schindler S, Xiong C, Morris JC, Benzinger TL, Raji CA. Sex-Specific Patterns of Body Mass Index Relationship with White Matter Connectivity. J Alzheimers Dis 2022; 86:1831-1848. [PMID: 35180116 PMCID: PMC9108572 DOI: 10.3233/jad-215329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity is an increasingly recognized modifiable risk factor for Alzheimer's disease (AD). Increased body mass index (BMI) is related to distinct changes in white matter (WM) fiber density and connectivity. OBJECTIVE We investigated whether sex differentially affects the relationship between BMI and WM structural connectivity. METHODS A cross-sectional sample of 231 cognitively normal participants were enrolled from the Knight Alzheimer Disease Research Center. Connectome analyses were done with diffusion data reconstructed using q-space diffeomorphic reconstruction to obtain the spin distribution function and tracts were selected using a deterministic fiber tracking algorithm. RESULTS We identified an inverse relationship between higher BMI and lower connectivity in the associational fibers of the temporal lobe in overweight and obese men. Normal to overweight women showed a significant positive association between BMI and connectivity in a wide array of WM fibers, an association that reversed in obese and morbidly obese women. Interaction analyses revealed that with increasing BMI, women showed higher WM connectivity in the bilateral frontoparietal and parahippocampal parts of the cingulum, while men showed lower connectivity in right sided corticostriatal and corticopontine tracts. Subgroup analyses demonstrated comparable results in participants with and without positron emission tomography or cerebrospinal fluid evidence of brain amyloidosis, indicating that the relationship between BMI and structural connectivity in men and women is independent of AD biomarker status. CONCLUSION BMI influences structural connectivity of WM differently in men and women across BMI categories and this relationship does not vary as a function of preclinical AD.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole S. McKay
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah Keefe
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nancy Hantler
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason Hassenstab
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Suzanne Schindler
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - John C. Morris
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC), Washington University, St. Louis, MO, USA
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
32
|
Parent MB, Higgs S, Cheke LG, Kanoski SE. Memory and eating: A bidirectional relationship implicated in obesity. Neurosci Biobehav Rev 2022; 132:110-129. [PMID: 34813827 PMCID: PMC8816841 DOI: 10.1016/j.neubiorev.2021.10.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
This paper reviews evidence demonstrating a bidirectional relationship between memory and eating in humans and rodents. In humans, amnesia is associated with impaired processing of hunger and satiety cues, disrupted memory of recent meals, and overconsumption. In healthy participants, meal-related memory limits subsequent ingestive behavior and obesity is associated with impaired memory and disturbances in the hippocampus. Evidence from rodents suggests that dorsal hippocampal neural activity contributes to the ability of meal-related memory to control future intake, that endocrine and neuropeptide systems act in the ventral hippocampus to provide cues regarding energy status and regulate learned aspects of eating, and that consumption of hypercaloric diets and obesity disrupt these processes. Collectively, this evidence indicates that diet-induced obesity may be caused and/or maintained, at least in part, by a vicious cycle wherein excess intake disrupts hippocampal functioning, which further increases intake. This perspective may advance our understanding of how the brain controls eating, the neural mechanisms that contribute to eating-related disorders, and identify how to treat diet-induced obesity.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute & Department of Psychology, Georgia State University, Box 5030, Atlanta, GA 30303-5030, United States.
| | - Suzanne Higgs
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, BI5 2TT, United Kingdom.
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, 90089-0371, United States.
| |
Collapse
|
33
|
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021; 15:761456. [PMID: 34938153 PMCID: PMC8685335 DOI: 10.3389/fnins.2021.761456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects 13% of the adult population worldwide and this number is only expected to increase. Obesity is known to have a negative impact on cardiovascular and metabolic health, but it also impacts brain structure and function; it is associated with both gray and white matter integrity loss, as well as decreased cognitive function, including the domains of executive function, memory, inhibition, and language. Especially midlife obesity is associated with both cognitive impairment and an increased risk of developing dementia at later age. However, underlying mechanisms are not yet fully revealed. Here, we review recent literature (published between 2010 and March 2021) and discuss the effects of obesity on brain structure and cognition, with a main focus on the contributions of the gut microbiome, white adipose tissue (WAT), inflammation, and cerebrovascular function. Obesity-associated changes in gut microbiota composition may cause increased gut permeability and inflammation, therewith affecting cognitive function. Moreover, excess of WAT in obesity produces pro-inflammatory adipokines, leading to a low grade systemic peripheral inflammation, which is associated with decreased cognition. The blood-brain barrier also shows increased permeability, allowing among others, peripheral pro-inflammatory markers to access the brain, leading to neuroinflammation, especially in the hypothalamus, hippocampus and amygdala. Altogether, the interaction between the gut microbiota, WAT inflammation, and cerebrovascular integrity plays a significant role in the link between obesity and cognition. Future research should focus more on the interplay between gut microbiota, WAT, inflammation and cerebrovascular function to obtain a better understanding about the complex link between obesity and cognitive function in order to develop preventatives and personalized treatments.
Collapse
Affiliation(s)
- Lisette Olsthoorn
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands.,Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
34
|
Baek S, Jung J, Moon P, Park W. Obesity impacts on task performance and perceived discomfort during seated foot target reaches. ERGONOMICS 2021; 64:1569-1578. [PMID: 34018914 DOI: 10.1080/00140139.2021.1933202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
This study examined obesity impacts on task performance and perceived discomfort during seated foot target reaches. Three independent variables, participant group, movement distance, and, movement direction, were considered. The task performance measures employed were reaction time, movement time and task performance time. Perceived discomfort was measured using a modified Borg CR-10 scale. Statistical analyses revealed that: obesity was associated with increases in movement time, reaction time and performance time; movement distance significantly affected the three task performance measures and discomfort rating; and, movement direction significantly affected movement time, performance time and discomfort rating. The obesity impacts observed are thought to reflect the decelerating effects of the extra fat mass in the obese body during foot reaches and possibly obesity-related physiological and cognitive changes. Design improvements of foot-operated systems, such as reducing distances to targets, increasing target sizes and avoiding forward foot reaches, may help counteract the observed obesity impacts. Practitioner Summary: This study empirically investigated the obesity impacts on task performance and perceived discomfort during seated foot target reaches. Obesity was found to be associated with increases in movement time, reaction time and performance time. The observed obesity impacts seem attributable to the anthropometric, motor and cognitive characteristics of the obese.Abbreviations: ANOVA: analysis of variance; BMI: body mass index; ROM: range of motion; Borg CR-10: Borg's category ratio 10 scale.
Collapse
Affiliation(s)
- Seungwon Baek
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
| | - Jaemoon Jung
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
| | - Philjun Moon
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
| | - Woojin Park
- Department of Industrial Engineering, Seoul National University, Seoul, South Korea
- Institute for Industrial Systems Innovation, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Solis-Urra P, Esteban-Cornejo I, Rodriguez-Ayllon M, Verdejo-Román J, Labayen I, Catena A, Ortega FB. Early life factors and white matter microstructure in children with overweight and obesity: The ActiveBrains project. Clin Nutr 2021; 41:40-48. [PMID: 34864454 DOI: 10.1016/j.clnu.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Exposure to a suboptimal environment during the fetal and early infancy period's results in long-term consequences for brain morphology and function. We investigated the associations of early life factors such as anthropometric neonatal data (i.e., birth length, birth weight and birth head circumference) and breastfeeding practices (i.e., exclusive and any breastfeeding) with white matter (WM) microstructure, and ii) we tested whether WM tracts related to early life factors are associated with academic performance in children with overweight/obesity. METHODS 96 overweight/obese children (10.03 ± 1.16 years; 38.7% girls) were included from the ActiveBrains Project. WM microstructure indicators used were fractional anisotropy (FA) and mean diffusivity (MD), derived from Diffusion Tensor Imaging. Academic performance was evaluated with the Battery III Woodcock-Muñoz Tests of Achievement. Regression models were used to examine the associations of the early life factors with tract-specific FA and MD, as well as its association with academic performance. RESULTS Head circumference at birth was positively associated with FA of the inferior fronto-occipital fasciculus tract (0.441; p = 0.005), as well as negatively associated with MD of the cingulate gyrus part of cingulum (-0.470; p = 0.006), corticospinal (-0.457; p = 0.005) and superior thalamic radiation tract (-0.476; p = 0.001). Association of birth weight, birth length and exclusive breastfeeding with WM microstructure did not remain significant after false discovery rate correction. None tract related to birth head circumference was associated with academic performance (all p > 0.05). CONCLUSIONS Our results highlighted the importance of the perinatal growth in WM microstructure later in life, although its possible academic implications remain inconclusive.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
36
|
Dalkner N, Bengesser S, Birner A, Rieger A, Seebauer J, Platzer M, Hamm C, Maget A, Queissner R, Pilz R, Fellendorf FT, Reininghaus B, Strassnig MT, Kapfhammer HP, Weiss EM, Reininghaus EZ. Body Mass Index Predicts Decline in Executive Function in Bipolar Disorder: Preliminary Data of a 12-Month Follow-up Study. Neuropsychobiology 2021; 80:1-11. [PMID: 32454501 DOI: 10.1159/000505784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Obesity and associated risk factors have been linked to cognitive decline before. OBJECTIVES In the present study, we evaluated potential cumulative negative effects of overweight and obesity on cognitive performance in euthymic patients with bipolar disorder (BD) in a longitudinal design. METHODS Neurocognitive measures (California Verbal Learning Test, Trail Making Test [TMT] A/B, Digit-Symbol-Test, Digit-Span, d2 Test), anthropometrics (e.g., body mass index [BMI]), and clinical ratings (Hamilton Depression Scale, Young Mania Rating Scale) were collected over a 12-month observation period. Follow-up data of 38 patients with BD (mean age 40 years; 15 males, 23 females) were available. RESULTS High baseline BMI predicted a decrease in the patient's performance in the Digit-Span backwards task measuring working memory performance. In contrast, cognitive performance was not predicted by increases in BMI at follow-up. Normal weight bipolar patients (n = 19) improved their performance on the TMT B, measuring cognitive flexibility and executive functioning, within 1 year, while overweight bipolar patients (n = 19) showed no change in this task. CONCLUSIONS The results suggest that overweight can predict cognitive performance changes over 12 months.
Collapse
Affiliation(s)
- Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria,
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Julia Seebauer
- Department of Biological Psychology, University of Graz, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - René Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Martin T Strassnig
- Department of Integrated Medical Science, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| | - Elisabeth M Weiss
- Department of Biological Psychology, University of Graz, Graz, Austria.,Department of Psychology, University of Innsbruck, Clinical Psychology, Innsbruck, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
37
|
Syan SK, McIntyre-Wood C, Minuzzi L, Hall G, McCabe RE, MacKillop J. Dysregulated resting state functional connectivity and obesity: A systematic review. Neurosci Biobehav Rev 2021; 131:270-292. [PMID: 34425125 DOI: 10.1016/j.neubiorev.2021.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Obesity has been variously linked to differences in brain functional connectivity in regions associated with reward, emotional regulation and cognition, potentially revealing neural mechanisms contributing to its development and maintenance. This systematic review summarizes and critically appraises the existing literature on differences in resting state functional connectivity (Rs-FC) between overweight and individuals with obesity in relation healthy-BMI controls. Twenty-nine studies were identified and the results consistently support the hypothesis that obesity is associated with differences in Rs-FC. Specifically, obesity/overweight was consistently associated with (i) DMN hypoconnectivity and salience network hyperconnectivity; (ii) increased Rs-FC between the hypothalamus and reward, limbic and salience networks, and decreased Rs-FC between the hypothalamus and cognitive regions; (iii) increased power within regions associated with inhibition/emotional reasoning; (iv) decreased nodal efficiency, degree centrality, and global efficiency. Collectively, the results suggest obesity is associated with disrupted connectivity of brain networks responsible for cognition, reward, self-referential processing and emotional regulation.
Collapse
Affiliation(s)
- Sabrina K Syan
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Randi E McCabe
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White matter integrity differences in obesity: A meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev 2021; 129:133-141. [PMID: 34284063 DOI: 10.1016/j.neubiorev.2021.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/17/2023]
Abstract
Some Diffusion Tensor Imaging studies have shown a loss of white matter (WM) integrity linked to impaired cognitive function in obese individuals. However, inconsistent WM integrity changes have been reported. We aimed to identify which WM tracts show consistent changes with obesity. We conducted a systematic search to find studies examining the association between obesity-related measures and Fractional Anisotropy (FA) or Mean Diffusivity. We performed a meta-analysis with FA datasets using Anisotropic Effect Size-Signed Differential Mapping software. The meta-analysis showed that increased obesity measurements were related to reduced FA in the genu of the corpus callosum. We validated our findings using an independent sample from the Human Connectome Project dataset, which supports lower FA in this region in individuals with obesity compared to those with normal weight (p = 0.028). Our findings provide evidence that obesity is associated with reduced WM integrity in the genu of the corpus callosum, a tract linking frontal areas involved in executive function. Future studies are needed on the mechanisms linking obesity with loss of WM integrity.
Collapse
Affiliation(s)
- Justine Daoust
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada
| | - Joelle Schaffer
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Yashar Zeighami
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Québec, H3A 2B4, Canada
| | - Isabel García-García
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
| | - Andréanne Michaud
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725 chemin Sainte-Foy, Québec, Québec, G1V 4G5, Canada; School of Nutrition, Université Laval, 2325 rue de l'Université, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
39
|
Rana S, Sultana A, Bhatti AA. Effect of interaction between obesity-promoting genetic variants and behavioral factors on the risk of obese phenotypes. Mol Genet Genomics 2021; 296:919-938. [PMID: 33966103 DOI: 10.1007/s00438-021-01793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 01/28/2023]
Abstract
The studies investigating gene-gene and gene-environment (or gene-behavior) interactions provide valuable insight into the pathomechanisms underlying obese phenotypes. The Pakistani population due to its unique characteristics offers numerous advantages for conducting such studies. In this view, the current study was undertaken to examine the effects of gene-gene and gene-environment/behavior interactions on the risk of obesity in a sample of Pakistani population. A total of 578 adult participants including 290 overweight/obese cases and 288 normal-weight controls were involved. The five key obesity-associated genetic variants namely MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752 were genotyped using the TaqMan allelic discrimination assays. The data related to behavioral factors, such as eating pattern, diet consciousness, the tendency toward fat-dense food (TFDF), sleep duration, sleep-wake cycle (SWC), shift work (SW), and physical activity levels were collected via a questionnaire. Gene-gene and gene-behavior interactions were analyzed by multifactor dimensionality reduction and linear regression, respectively. In our study, only TMEM18 rs7561317 was found to be significantly associated with anthropometric traits with no significant effect of gene-gene interactions were observed on obesity-related phenotypes. However, the genetic variants were found to interact with the behavioral factors to significantly influence various obesity-related anthropometric traits including BMI, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, and percentage of body fat. In conclusion, the interaction between genetic architecture and behavior/environment determines the outcome of obesity-related anthropometric phenotypes. Thus, gene-environment/behavior interaction studies should be promoted to explore the risk of complex and multifactorial disorders, such as obesity.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Ayesha Sultana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
40
|
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96:107765. [PMID: 34015596 DOI: 10.1016/j.intimp.2021.107765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Since adipose tissue (AT) can upregulate pro-inflammatory interleukins (ILs) via storing extra lipids in obesity, obesity is considered the leading cause of chronic low-grade inflammation. These ILs can pave the way for the infiltration of immune cells into the AT, ultimately resulting in low-grade inflammation and dysregulation of adipocytes. IL-1, which is divided into two subclasses, i.e., IL-1α and IL-1β, is a critical pro-inflammatory factor. In obesity, IL-1α and IL-1β can promote insulin resistance via impairing the function of adipocytes and promoting inflammation. The current study aims to review the detailed molecular mechanisms and the roles of IL-1α and IL-1β and their antagonist, interleukin-1 receptor antagonist(IL-1Ra), in developing obesity-related inflammatory complications, i.e., type II diabetes (T2D), non-alcoholic steatohepatitis (NASH), atherosclerosis, and cognitive disorders. Besides, the current study discusses the recent advances in natural drugs, synthetic agents, and gene therapy approaches to treat obesity-related inflammatory complications via suppressing IL-1.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
41
|
Hakim AM. A Proposed Hypothesis on Dementia: Inflammation, Small Vessel Disease, and Hypoperfusion Is the Sequence That Links All Harmful Lifestyles to Cognitive Impairment. Front Aging Neurosci 2021; 13:679837. [PMID: 33994998 PMCID: PMC8116506 DOI: 10.3389/fnagi.2021.679837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
There is growing consensus that certain lifestyles can contribute to cognitive impairment and dementia, but the physiological steps that link a harmful lifestyle to its negative impact are not always evident. It is also unclear whether all lifestyles that contribute to dementia do so through the same intermediary steps. This article will focus on three lifestyles known to be risk factors for dementia, namely obesity, sedentary behavior, and insufficient sleep, and offer a unifying hypothesis proposing that lifestyles that negatively impact cognition do so through the same sequence of events: inflammation, small vessel disease, decline in cerebral perfusion, and brain atrophy. The hypothesis will then be tested in a recently identified risk factor for dementia, namely hearing deficit. If further studies confirm this sequence of events leading to dementia, a significant change in our approach to this debilitating and costly condition may be necessary, possible, and beneficial.
Collapse
Affiliation(s)
- Antoine M. Hakim
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
43
|
The Emergence of eSports Nutrition: A Review. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.1-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J. Structural Brain Changes Associated with Overweight and Obesity. J Obes 2021; 2021:6613385. [PMID: 34327017 PMCID: PMC8302366 DOI: 10.1155/2021/6613385] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global health problem with a broad set of comorbidities, such as malnutrition, metabolic syndrome, diabetes, systemic hypertension, heart failure, and kidney failure. This review describes recent findings of neuroimaging and two studies of cell density regarding the roles of overnutrition-induced hypothalamic inflammation in neurodegeneration. These studies provided consistent evidence of smaller cortical thickness or reduction in the gray matter volume in people with overweight and obesity; however, the investigated brain regions varied across the studies. In general, bilateral frontal and temporal areas, basal nuclei, and cerebellum are more commonly involved. Mechanisms of volume reduction are unknown, and neuroinflammation caused by obesity is likely to induce neuronal loss. Adipocytes, macrophages of the adipose tissue, and gut dysbiosis in overweight and obese individuals result in the secretion of the cytokines and chemokines that cross the blood-brain barrier and may stimulate microglia, which in turn also release proinflammatory cytokines. This leads to chronic low-grade neuroinflammation and may be an important factor for apoptotic signaling and neuronal death. Additionally, significant microangiopathy observed in rat models may be another important mechanism of induction of apoptosis. Neuroinflammation in neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) may be similar to that in metabolic diseases induced by malnutrition. Poor cognitive performance, mainly in executive functions, in individuals with obesity is also discussed. This review highlights the neuroinflammatory and neurodegenerative mechanisms linked to obesity and emphasizes the importance of developing effective prevention and treatment intervention strategies for overweight and obese individuals.
Collapse
Affiliation(s)
- Erick Gómez-Apo
- Servicio de Anatomía Patológica, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México, Mexico
| | - Alejandra Mondragón-Maya
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Martina Ferrari-Díaz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
45
|
Luckhoff HK, du Plessis S, Scheffler F, Phahladira L, Kilian S, Buckle C, Smit R, Chiliza B, Asmal L, Emsley R. Fronto-limbic white matter fractional anisotropy and body mass index in first-episode schizophrenia spectrum disorder patients compared to healthy controls. Psychiatry Res Neuroimaging 2020; 305:111173. [PMID: 32896691 DOI: 10.1016/j.pscychresns.2020.111173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
In this diffusion tensor imaging study, we explored the associations of body mass index (BMI) with white matter microstructure in first-episode schizophrenia spectrum disorder patients (n = 69) versus healthy controls (n = 93). We focused on fractional anisotropy (FA) measures for fronto-limbic white matter tracts known to connect brain regions which form part of a "core eating network". Secondary objectives included the associations of body mass with global illness severity, psychopathology and depressive symptoms. In a multivariate analysis of covariance (MANCOVA) model, there was a significant interaction between BMI and group (patient versus control) across the fronto-limbic white matter tracts of interest (F(1,155)= 4.91, p = 0.03). In a sub-analysis, BMI was significantly inversely correlated with FA measures for the genu and body of the corpus callosum, left and right tapetum, and left superior fronto-occipital fasciculus in controls. In patients, BMI was significantly positively correlated with white matter FA for the genu of the corpus callosum and left tapetum. Lower BMI was significantly correlated with more severe negative symptoms, as was earlier age of illness onset. Body mass may be differentially associated with fronto-limbic white matter microstructure in first-episode schizophrenia spectrum disorder compared to controls.
Collapse
Affiliation(s)
- H K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa.
| | - S du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - F Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - L Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - S Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - C Buckle
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - R Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - B Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - L Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| | - R Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Western Cape 7500, South Africa
| |
Collapse
|
46
|
Western diet, obesity and bariatric surgery sequentially modulated anxiety, eating patterns and brain responses to sucrose in adult Yucatan minipigs. Sci Rep 2020; 10:20130. [PMID: 33208772 PMCID: PMC7676239 DOI: 10.1038/s41598-020-76910-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
Palatable sweet/fatty foods overconsumption is a major risk factor for obesity and eating disorders, also having an impact on neuro-behavioural hedonic and cognitive components comparable to what is described for substance abuse. We hypothesized that Yucatan minipigs would show hedonic, cognitive, and affective neuro-behavioral shifts when subjected to western diet (WD) exposure without weight gain, after the onset of obesity, and finally after weight loss induced by caloric restriction with (RYGB) or without (Sham) gastric bypass. Eating behavior, cognitive and affective abilities were assessed with a spatial discrimination task (holeboard test) and two-choice feed tests. Brain responses to oral sucrose were mapped using 18F-FDG positron emission tomography. WD exposure impaired working memory and led to an “addiction-type” neuronal pattern involving hippocampal and cortical brain areas. Obesity induced anxiety-like behavior, loss of motivation, and snacking-type eating behavior. Weight loss interventions normalized the motivational and affective states but not eating behavior patterns. Brain glucose metabolism increased in gustatory (insula) and executive control (aPFC) areas after weight loss, but RYGB showed higher responses in inhibition-related areas (dorsal striatum). These results showed that diet quality, weight loss, and the type of weight loss intervention differently impacted brain responses to sucrose in the Yucatan minipig model.
Collapse
|
47
|
Carbine KA, Duraccio KM, Hedges-Muncy A, Barnett KA, Kirwan CB, Jensen CD. White matter integrity disparities between normal-weight and overweight/obese adolescents: an automated fiber quantification tractography study. Brain Imaging Behav 2020; 14:308-319. [PMID: 30719618 DOI: 10.1007/s11682-019-00036-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obese adults have been shown to have poorer white brain matter integrity relative to normal-weight peers, but few studies have tested whether white matter integrity is compromised in overweight and obese adolescents. Also, it is unclear if age interacts with body mass to affect white matter integrity in adolescents. We used Automated Fiber Quantification, a tractography method, to compare fractional anisotropy between normal-weight and overweight/obese adolescents in the corpus callosum, corticospinal tract, cingulum, inferior fronto-occipital fasciculus, and uncinate fasciculus. Further, we tested whether any differences were moderated by age. Forty-seven normal-weight and forty overweight/obese adolescents were scanned using a diffusion tensor imaging (DTI) scan sequence. Overweight/obese compared to normal-weight adolescents had decreased white matter integrity in the superior frontal corpus callosum, left and right uncinate fasciculi, left inferior fronto-occipital fasciculus, and left corticospinal tract, which may be related to heightened reward processing. Overweight/obese compared to normal-weight adolescents had increased white matter integrity in the orbital and anterior frontal corpus callosum, right inferior fronto-occipital fasciculus, left cingulum, and left corticospinal tract, which may be related to heightened attentional processing. As age increased, six tracts showed poorer white matter integrity as body mass index percentile (BMI%) increased, but three tracts showed greater white matter integrity as BMI% increased. Future research examining associations between white matter integrity and neural indices of food-related reward and attention are needed to clarify the functional significance of white matter integrity discrepancies between normal-weight and overweight/obese adolescents.
Collapse
Affiliation(s)
- Kaylie A Carbine
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA
| | - Kara M Duraccio
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA
| | - Ariana Hedges-Muncy
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA
| | - Kimberly A Barnett
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA
| | - C Brock Kirwan
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA.,Department of Neuroscience, Brigham Young University, Provo, UT, USA
| | - Chad D Jensen
- Department of Psychology, Brigham Young University, 223 TLRB, Provo, UT, 84602, USA.
| |
Collapse
|
48
|
Best JR, Dao E, Churchill R, Cosco TD. Associations Between Physical Fitness and Brain Structure in Young Adulthood. Front Psychol 2020; 11:608049. [PMID: 33281692 PMCID: PMC7705380 DOI: 10.3389/fpsyg.2020.608049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
A comprehensive analysis of associations between physical fitness and brain structure in young adulthood is lacking, and further, it is unclear the degree to which associations between physical fitness and brain health can be attributed to a common genetic pathway or to environmental factors that jointly influences physical fitness and brain health. This study examined genotype-confirmed monozygotic and dizygotic twins, along with non-twin full-siblings to estimate the contribution of genetic and environmental factors to variation within, and covariation between, physical fitness and brain structure. Participants were 1,065 young adults between the ages of 22 and 36 from open-access Young Adult Human Connectome Project (YA-HCP). Physical fitness was assessed by submaximal endurance (2-min walk test), grip strength, and body mass index. Brain structure was assessed using magnetic resonance imaging on a Siemens 3T customized 'Connectome Skyra' at Washington University in St. Louis, using a 32-channel Siemens head coil. Acquired T1-weighted images provided measures of cortical surface area and thickness, and subcortical volume following processing by the YA-HCP structural FreeSurfer pipeline. Diffusion weighted imaging was acquired to assess white matter tract integrity, as measured by fractional anisotropy, following processing by the YA-HCP diffusion pipeline and tensor fit. Following correction for multiple testing, body mass index was negatively associated with fractional anisotropy in various white matter regions of interest (all | z| statistics > 3.9) and positively associated with cortical thickness within the right superior parietal lobe (z statistic = 4.6). Performance-based measures of fitness (i.e., endurance and grip strength) were not associated with any structural neuroimaging markers. Behavioral genetic analysis suggested that heritability of white matter integrity varied by region, but consistently explained >50% of the phenotypic variation. Heritability of right superior parietal thickness was large (∼75% variation). Heritability of body mass index was also fairly large (∼60% variation). Generally, 1 2 to 2 3 of the correlation between brain structure and body mass index could be attributed to heritability effects. Overall, this study suggests that greater body mass index is associated with lower white matter integrity, which may be due to common genetic effects that impact body composition and white matter integrity.
Collapse
Affiliation(s)
- John R. Best
- Gerontology Research Centre, Simon Fraser University, Vancouver, BC, Canada
- Department of Gerontology, Simon Fraser University, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth Dao
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Churchill
- Department of Gerontology, Simon Fraser University, Vancouver, BC, Canada
| | - Theodore D. Cosco
- Gerontology Research Centre, Simon Fraser University, Vancouver, BC, Canada
- Department of Gerontology, Simon Fraser University, Vancouver, BC, Canada
| |
Collapse
|
49
|
Strong J, Fonda JR, Grande L, Milberg W, McGlinchey R, Leritz E. The role of cognitive reserve in the relationship between metabolic syndrome and cognitive functioning. AGING NEUROPSYCHOLOGY AND COGNITION 2020; 28:717-732. [PMID: 32893722 DOI: 10.1080/13825585.2020.1817304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of vascular risk factors that can impact cognition. Cognitive reserve (CR), specifically early operators of reserve (e.g., education), have not been explored in the relationship between MetS and cognition. Adults 45-90 years old (n = 149) underwent neuropsychological testing and evaluation for MetS. Exploratory and confirmatory factor analyses defined neuropsychological domains and created a CR score based on early operators of CR. Regression analyses examined the association among MetS, CR, and neuropsychological performance. CFA revealed two neuropsychological factors: Episodic Memory and Executive Functioning. Controlling for age and physical ability, MetS and CR were significant predictors of the Factors. With CR in the model, MetS became a non-significant predictor of Executive Functioning; CR and physical ability were the most significant predictors. CR and MetS significantly predicted Episodic Memory . The results are discussed in the context of neuroprotective factors and cognitive aging.
Collapse
Affiliation(s)
- Jessica Strong
- VA Boston Healthcare System; Boston, Massachusetts, USA.,New England Geriatric Research Education and Clinical Center; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| | - Jennifer R Fonda
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, USA
| | - Laura Grande
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| | - William Milberg
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA
| | - Regina McGlinchey
- VA Boston Healthcare System; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA.,Translational Research Center for Traumatic Brain Injury and Stress Disorders; Boston, Massachusetts, USA
| | - Elizabeth Leritz
- VA Boston Healthcare System; Boston, Massachusetts, USA.,New England Geriatric Research Education and Clinical Center; Boston, Massachusetts, USA.,Harvard Medical School, Department of Psychiatry; Boston, Massachusetts, USA
| |
Collapse
|
50
|
Larsen RJ, Raine LB, Hillman CH, Kramer AF, Cohen NJ, Barbey AK. Body mass and cardiorespiratory fitness are associated with altered brain metabolism. Metab Brain Dis 2020; 35:999-1007. [PMID: 32350752 DOI: 10.1007/s11011-020-00560-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022]
Abstract
Magnetic Resonance Spectroscopy provides measures of brain chemistry that are sensitive to cardiorespiratory fitness and body composition. The concentration of N-acetyl aspartic acid (NAA) is of interest because it is a marker of neuronal integrity. The ratio of NAA to creatine, a standard reference metabolite, has been shown to correlate with measures of both cardiorespiratory fitness and body composition. However, previous studies have explored these effects in isolation, making it impossible to know which of these highly correlated measures drive the correlations with NAA/Cr. As a result, the mechanisms underlying their association remain to be established. We therefore conducted a comprehensive study to investigate the relative contributions of cardiorespiratory fitness and percent body fat in predicting NAA/Cr. We demonstrate that NAA/Cr in white matter is correlated with percent body fat, and that this relationship largely subsumes the correlation of NAA/Cr with cardiorespiratory fitness. These results underscore the association of body composition with axonal integrity and suggests that this relationship drives the association of NAA/Cr with physical fitness in young adults.
Collapse
Affiliation(s)
- Ryan J Larsen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, IL, USA.
| | - Lauren B Raine
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Charles H Hillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, IL, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Physical Therapy, Movement, & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, IL, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Neal J Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Champaign, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|