1
|
Lyu C, Vaddi PK, Elshafae S, Pradeep A, Ma D, Chen S. Unveiling RACK1: a key regulator of the PI3K/AKT pathway in prostate cancer development. Oncogene 2024:10.1038/s41388-024-03224-9. [PMID: 39537875 DOI: 10.1038/s41388-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The dysregulated PI3K/AKT pathway is pivotal in the onset and progression of various cancers, including prostate cancer. However, targeting this pathway directly poses challenges due to compensatory upregulation of alternative oncogenic pathways. This study focuses on the novel regulatory activity of the Receptor for Activated Protein Kinase (RACK1), a scaffolding/adaptor protein, in governing the PI3K/AKT pathway within prostate cancer. Through a genetic mouse model, our research unveils RACK1's pivotal role in orchestrating AKT activation and the genesis of prostate cancer. RACK1 deficiency hampers AKT activation, effectively impeding prostate tumor formation induced by PTEN and p53 deficiency. Mechanistically, RACK1 facilitates AKT membrane translocation and fosters its interaction with mTORC2, thereby promoting AKT activation and subsequent tumor cell proliferation and tumor formation. Notably, inhibiting AKT activation via RACK1 deficiency does not trigger feedback upregulation of HER3 and androgen receptor (AR) expression and activation, distinguishing it from direct PI3K or AKT targeting. These findings position RACK1 as a critical regulator of the PI3K/AKT pathway and a promising target for curtailing prostate cancer development arising from pathway aberrations.
Collapse
Affiliation(s)
- Cancan Lyu
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Prasanna Kuma Vaddi
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Said Elshafae
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Anirudh Pradeep
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Deqin Ma
- Departments of Phathology, University of Iowa, Iowa City, USA
| | - Songhai Chen
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA.
- Departments of Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
2
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
4
|
VanSlyke JK, Boswell BA, Musil LS. TGFβ overcomes FGF-induced transinhibition of EGFR in lens cells to enable fibrotic secondary cataract. Mol Biol Cell 2024; 35:ar75. [PMID: 38598298 PMCID: PMC11238076 DOI: 10.1091/mbc.e24-01-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFβ to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFβ, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFβ upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
5
|
Golmohammadi M, Meibodi SAA, Al-Hawary SIS, Gupta J, Sapaev IB, Najm MAA, Alwave M, Nazifi M, Rahmani M, Zamanian MY, Moriasi G. Neuroprotective effects of resveratrol on retinal ganglion cells in glaucoma in rodents: A narrative review. Animal Model Exp Med 2024; 7:195-207. [PMID: 38808561 PMCID: PMC11228121 DOI: 10.1002/ame2.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Glaucoma, an irreversible optic neuropathy, primarily affects retinal ganglion cells (RGC) and causes vision loss and blindness. The damage to RGCs in glaucoma occurs by various mechanisms, including elevated intraocular pressure, oxidative stress, inflammation, and other neurodegenerative processes. As the disease progresses, the loss of RGCs leads to vision loss. Therefore, protecting RGCs from damage and promoting their survival are important goals in managing glaucoma. In this regard, resveratrol (RES), a polyphenolic phytoalexin, exerts antioxidant effects and slows down the evolution and progression of glaucoma. The present review shows that RES plays a protective role in RGCs in cases of ischemic injury and hypoxia as well as in ErbB2 protein expression in the retina. Additionally, RES plays protective roles in RGCs by promoting cell growth, reducing apoptosis, and decreasing oxidative stress in H2O2-exposed RGCs. RES was also found to inhibit oxidative stress damage in RGCs and suppress the activation of mitogen-activated protein kinase signaling pathways. RES could alleviate retinal function impairment by suppressing the hypoxia-inducible factor-1 alpha/vascular endothelial growth factor and p38/p53 axes while stimulating the PI3K/Akt pathway. Therefore, RES might exert potential therapeutic effects for managing glaucoma by protecting RGCs from damage and promoting their survival.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ibrohim B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
- New Uzbekistan University, Tashkent, Uzbekistan
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadreza Rahmani
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
6
|
Huang W, Jiang M, Lin Y, Qi Y, Li B. Crosstalk between cancer cells and macrophages promotes OSCC cell migration and invasion through a CXCL1/EGF positive feedback loop. Discov Oncol 2024; 15:145. [PMID: 38713320 PMCID: PMC11076430 DOI: 10.1007/s12672-024-00972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND C-X-C motif chemokine ligand 1 (CXCL1) and epithelial growth factor (EGF) are highly secreted by oral squamous cell carcinoma (OSCC) cells and tumor-associated macrophages, respectively. Recent studies have shown that there is intricate "cross-talk" between OSCC cells and macrophages. However, the underlying mechanisms are still poorly elucidated. METHODS The expression of CXCL1 was detected by immunohistochemistry in OSCC clinical samples. CXCL1 levels were evaluated by RT‒PCR and ELISA in an OSCC cell line and a normal epithelial cell line. The expression of EGF was determined by RT‒PCR and ELISA. The effect of EGF on the proliferation of OSCC cells was evaluated by CCK-8 and colony formation assays. The effect of EGF on the migration and invasion ability and epithelial-mesenchymal transition (EMT) of OSCC cells was determined by wound healing, Transwell, RT‒PCR, Western blot and immunofluorescence assays. The polarization of macrophages was evaluated by RT‒PCR and flow cytometry. Western blotting was used to study the molecular mechanism in OSCC. RESULTS The expression of C-X-C motif chemokine ligand 1 (CXCL1) was higher in the OSCC cell line (Cal27) than in immortalized human keratinocytes (Hacat cells). CXCL1 derived from Cal27 cells upregulates the expression of epithelial growth factor (EGF) in macrophages. Paracrine stimulation mediated by EGF further facilitates the epithelial-mesenchymal transition (EMT) of Cal27 cells and initiates the upregulation of CXCL1 in a positive feedback-manner. Mechanistically, EGF signaling-induced OSCC cell invasion and migration can be ascribed to the activation of NF-κB signaling mediated by the epithelial growth factor receptor (EGFR), as determined by western blotting. CONCLUSIONS OSCC cell-derived CXCL1 can stimulate the M2 polarization of macrophages and the secretion of EGF. Moreover, EGF significantly activates NF-κB signaling and promotes the migration and invasion of OSCC cells in a paracrine manner. A positive feedback loop between OSCC cells and macrophages was formed, contributing to the promotion of OSCC progression.
Collapse
Affiliation(s)
- Wei Huang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Mingjing Jiang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Lin
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Ying Qi
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Bo Li
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China.
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin University, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, 130021, China.
| |
Collapse
|
7
|
Totonji S, Ramos-Triguero A, Willmann D, Sum M, Urban S, Bauer H, Rieder A, Wang S, Greschik H, Metzger E, Schüle R. Lysine Methyltransferase 9 (KMT9) Is an Actionable Target in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1532. [PMID: 38672614 PMCID: PMC11049522 DOI: 10.3390/cancers16081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Novel treatment modalities are imperative for the challenging management of muscle-invasive and metastatic BC to improve patient survival rates. The recently identified KMT9, an obligate heterodimer composed of KMT9α and KMT9β, regulates the growth of various types of tumors such as prostate, lung, and colon cancer. While the overexpression of KMT9α was previously observed to be associated with aggressive basal-like MIBC in an analysis of patients' tissue samples, a potential functional role of KMT9 in this type of cancer has not been investigated to date. In this study, we show that KMT9 regulates proliferation, migration, and invasion of various MIBC cell lines with different genetic mutations. KMT9α depletion results in the differential expression of genes regulating the cell cycle, cell adhesion, and migration. Differentially expressed genes include oncogenes such as EGFR and AKT1 as well as mediators of cell adhesion or migration such as DAG1 and ITGA6. Reduced cell proliferation upon KMT9α depletion is also observed in Pten/Trp53 knockout bladder tumor organoids, which cannot be rescued with an enzymatically inactive KMT9α mutant. In accordance with the idea that the catalytic activity of KMT9 is required for the control of cellular processes in MIBC, a recently developed small-molecule inhibitor of KMT9 (KMI169) also impairs cancer cell proliferation. Since KMT9α depletion also restricts the growth of xenografts in mice, our data suggest that KMT9 is an actionable novel therapeutic target for the treatment of MIBC.
Collapse
Affiliation(s)
- Sainab Totonji
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Astrid Rieder
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Li Z, Quan C, Li W, Ji M. Synergistic effect of docetaxel combined with a novel multi-target inhibitor CUDC-101 on inhibiting human prostate cancer. Pathol Res Pract 2023; 252:154938. [PMID: 37989076 DOI: 10.1016/j.prp.2023.154938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Histone deacetylases (HDACs) are commonly overexpressed in several types of human cancers, including prostate cancer (PCa). Histone deacetylase inhibitors (HDACis) are emerging as promising tools for cancer therapy. However, there is still a need to understand their anti-tumor effects and the mechanisms underlying their action. In our study, we investigated the effects of co-treatment with CUDC-101 and docetaxel (DTX) on cell growth, clonogenicity, invasion and migration of PCa cells both in vitro, and in a xenograft mouse model. We found that the combination of CUDC-101 and DTX significantly reduced tumor growth, as evidenced by lower tumor weight and volumes. Moreover, apoptotic cell death was increased in the combination group compared to either drug alone or control. Mechanistically, we observed that the combined treatment of CUDC-101 with DTX suppressed the progression of PCa cell lines through the AKT and ERK1/2 signaling pathways. Additionally, this combination treatment reversed EMT by modulating the expression of key markers such as E-cadherin, vimentin, Snail and MMP-9. To conclude, these results demonstrated that the combination of CUDC-101 with DTX had a synergistic and significantly improved anti-carcinogenic effect. This combination may serve as a potential strategy for clinical treatment and prognosis improvement in PCa.
Collapse
Affiliation(s)
- Zhenling Li
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China.
| | - Chunji Quan
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Wenhao Li
- Department of Laboratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Meiying Ji
- Research Center of Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
9
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
10
|
Shah MA, Abuzar SM, Ilyas K, Qadees I, Bilal M, Yousaf R, Kassim RMT, Rasul A, Saleem U, Alves MS, Khan H, Blundell R, Jeandet P. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chem Biol Interact 2023; 382:110634. [PMID: 37451663 DOI: 10.1016/j.cbi.2023.110634] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Despite the existence of extensive clinical research and novel therapeutic treatments, cancer remains undefeated and the significant cause of death worldwide. Cancer is a disease in which growth of cells goes out of control, being also able to invade other parts of the body. Cellular division is strictly controlled by multiple checkpoints like G1/S and G2/M which, when dysregulated, lead to uncontrollable cell division. The current remedies which are being utilized to combat cancer are monoclonal antibodies, chemotherapy, cryoablation, and bone marrow transplant etc. and these have also been greatly disheartening because of their serious adverse effects like hypotension, neuropathy, necrosis, leukemia relapse and many more. Bioactive compounds derived from natural products have marked the history of the development of novel drug therapies against cancer among which ginsenosides have no peer as they target several signaling pathways, which when abnormally regulated, lead to cancer. Substantial research has reported that ginsenosides like Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2 etc. can prevent and treat cancer by targeting different pathways and molecules by induction of autophagy, neutralizing ROS, induction of cancerous cell death by controlling the p53 pathway, modulation of miRNAs by decreasing Smad2 expression, regulating Bcl-2 expression by normalizing the NF-Kb pathway, inhibition of inflammatory pathways by decreasing the production of cytokines like IL-8, causing cell cycle arrest by restricting cyclin E1 and CDC2, and induction of apoptosis during malignancy by decreasing β-catenin levels etc. In this review, we have analyzed the anti-cancer therapeutic potential of various ginsenoside compounds in order to consider their possible use in new strategies in the fight against cancer.
Collapse
Affiliation(s)
| | - Syed Muhammad Abuzar
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kainat Ilyas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Irtaza Qadees
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Momna Bilal
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | | | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine, University of Malta, Msida, MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080 Imsida, Malta
| | - Philippe Jeandet
- University of Reims, Research Unit Induced Resistance and Plant Bioprotection USC INRAe 1488 Department of Biology and Biochemistry, Faculty of Sciences, 51100, Reims, France.
| |
Collapse
|
11
|
Chang X, Obianwuna UE, Wang J, Zhang H, Qi G, Qiu K, Wu S. Glycosylated proteins with abnormal glycosylation changes are potential biomarkers for early diagnosis of breast cancer. Int J Biol Macromol 2023; 236:123855. [PMID: 36868337 DOI: 10.1016/j.ijbiomac.2023.123855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.
Collapse
Affiliation(s)
- Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Masaki T, Habara M, Shibutani S, Hanaki S, Sato Y, Tomiyasu H, Shimada M. Dephosphorylation of the EGFR protein by calcineurin at serine 1046/1047 enhances its stability. Biochem Biophys Res Commun 2023; 641:84-92. [PMID: 36525928 DOI: 10.1016/j.bbrc.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed or abnormally activated in several types of cancers, such as lung and colorectal cancers. Inhibitors that suppress the tyrosine kinase activity of EGFR have been used in the treatment of lung cancer. However, resistance to these inhibitors has become an issue in cancer treatment, and the development of new therapies that inhibit EGFR is desired. We found that calcineurin, a Ca2+/calmodulin-activated serine/threonine phosphatase, is a novel regulator of EGFR. Inhibition of calcineurin by FK506 treatment or calcineurin depletion promoted EGFR degradation in cancer cells. In addition, we found that calcineurin dephosphorylates EGFR at serine (S)1046/1047, which in turn stabilizes EGFR. Furthermore, in human colon cancer cells transplanted into mice, the inhibition of calcineurin by FK506 decreased EGFR expression. These results indicate that calcineurin stabilizes EGFR by dephosphorylating S1046/1047 and promotes tumor growth. These findings suggest that calcineurin may be a new therapeutic target for cancers with high EGFR expression or activation.
Collapse
Affiliation(s)
- Takahiro Masaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shusaku Shibutani
- Department of Veterinary Hygiene, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
13
|
Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Dis 2022; 8:442. [PMID: 36329016 PMCID: PMC9633810 DOI: 10.1038/s41420-022-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Multiple molecular subtypes and distinct clinical outcomes in breast cancer, necessitate specific therapy. Moreover, despite the improvements in breast cancer therapy, it remains the fifth cause of cancer-related deaths, indicating the involvement of unknown genes. To identify novel contributors and molecular subtype independent therapeutic options, we report reduced expression of FRG1 in breast cancer patients, which regulates GM-CSF expression via direct binding to its promoter. Reduction in FRG1 expression enhanced EMT and increased cell proliferation, migration, and invasion, in breast cancer cell lines. Loss of FRG1 increased GM-CSF levels which activated MEK/ERK axis and prevented apoptosis by inhibiting p53 in an ERK-dependent manner. FRG1 depletion in the mouse model increased tumor volume, phospho-ERK, and EMT marker levels. The therapeutic potential of anti-GM-CSF therapy was evident by reduced tumor size, when tumors with decreased FRG1 were treated with anti-GM-CSF mAb. We found an inverse expression pattern of FRG1 and phospho-ERK levels in breast cancer patient tissues, corroborating the in vitro and mouse model-based findings. Our findings first time elucidate the role of FRG1 as a metastatic suppressor of breast cancer by regulating the GM-CSF/MEK-ERK axis.
Collapse
Affiliation(s)
- Bratati Mukherjee
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Ankit Tiwari
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | | | - Subrat Samantara
- Acharya Harihar Regional Cancer Centre (AHRCC), Cuttack, 753007, Odisha, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
14
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
15
|
Russo A, Yang Z, Heyrman GM, Cain BP, Lopez Carrero A, Isenberg BC, Dean MJ, Coppeta J, Burdette JE. Versican secreted by the ovary links ovulation and migration in fallopian tube derived serous cancer. Cancer Lett 2022; 543:215779. [PMID: 35697329 PMCID: PMC10134877 DOI: 10.1016/j.canlet.2022.215779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
High grade serous ovarian cancers (HGSOC) predominantly arise in the fallopian tube epithelium (FTE) and colonize the ovary first, before further metastasis to the peritoneum. Ovarian cancer risk is directly related to the number of ovulations, suggesting that the ovary may secrete specific factors that act as chemoattractants for fallopian tube derived tumor cells during ovulation. We found that 3D ovarian organ culture produced a secreted factor that enhanced the migration of FTE non-tumorigenic cells as well as cells harboring specific pathway modifications commonly found in high grade serous cancers. Through size fractionation and a small molecule inhibitors screen, the secreted protein was determined to be 50-100kDa in size and acted through the Epidermal Growth Factor Receptor (EGFR). To correlate the candidates with ovulation, the PREDICT organ-on-chip system was optimized to support ovulation in a perfused microfluidic platform. Versican was found in the correct molecular weight range, contained EGF-like domains, and correlated with ovulation in the PREDICT system. Exogenous versican increased migration, invasion, and enhanced adhesion of both murine and human FTE cells to the ovary in an EGFR-dependent manner. The identification of a protein secreted during ovulation that impacts the ability of FTE cells to colonize the ovary provides new insights into the development of strategies for limiting primary ovarian metastasis.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Zizhao Yang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brian P Cain
- Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
| | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Matthew J Dean
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
16
|
Fawzy NM, Ahmed KM, Abo-Salem HM, Aly MS. Novel Furochromone Derivatives of Potential Anticancer Activity Targeting EGFR Tyrosine Kinase. Synthesis and Molecular Docking Study. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pompili S, Vetuschi A, Sferra R, Cappariello A. Extracellular Vesicles and Resistance to Anticancer Drugs: A Tumor Skeleton Key for Unhinging Chemotherapies. Front Oncol 2022; 12:933675. [PMID: 35814444 PMCID: PMC9259994 DOI: 10.3389/fonc.2022.933675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Although surgical procedures and clinical care allow reaching high success in fighting most tumors, cancer is still a formidable foe. Recurrence and metastatization dampen the patients’ overall survival after the first diagnosis; nevertheless, the large knowledge of the molecular bases drives these aspects. Chemoresistance is tightly linked to these features and is mainly responsible for the failure of cancer eradication, leaving patients without a crucial medical strategy. Many pathways have been elucidated to trigger insensitiveness to drugs, generally associated with the promotion of tumor growth, aggressiveness, and metastatisation. The main mechanisms reported are the expression of transporter proteins, the induction or mutations of oncogenes and transcription factors, the alteration in genomic or mitochondrial DNA, the triggering of autophagy or epithelial-to-mesenchymal transition, the acquisition of a stem phenotype, and the activation of tumor microenvironment cells. Extracellular vesicles (EVs) can directly transfer or epigenetically induce to a target cell the molecular machinery responsible for the acquisition of resistance to drugs. In this review, we resume the main body of knowledge supporting the crucial role of EVs in the context of chemoresistance, with a particular emphasis on the mechanisms related to some of the main drugs used to fight cancer.
Collapse
|
18
|
Muresan XM, Slabáková E, Procházková J, Drápela S, Fedr R, Pícková M, Vacek O, Víchová R, Suchánková T, Bouchal J, Kürfürstová D, Král M, Hulínová T, Sýkora RP, Študent V, Hejret V, van Weerden WM, Puhr M, Pustka V, Potěšil D, Zdráhal Z, Culig Z, Souček K. Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1321-1335. [PMID: 35750257 DOI: 10.1016/j.ajpath.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and described its role mainly in the proinflammatory response and induction of apoptosis. It has been found up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. We have experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to the significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. We conclude that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ximena M Muresan
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ráchel Víchová
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | - Milan Král
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Tereza Hulínová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, University Hospital, Ostrava, Czech Republic
| | - Radek P Sýkora
- Department of Urology, University Hospital, Ostrava, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Puhr
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Pustka
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - David Potěšil
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zbyněk Zdráhal
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoran Culig
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
20
|
Savino L, Di Marcantonio MC, Moscatello C, Cotellese R, Centurione L, Muraro R, Aceto GM, Mincione G. Effects of H 2O 2 Treatment Combined With PI3K Inhibitor and MEK Inhibitor in AGS Cells: Oxidative Stress Outcomes in a Model of Gastric Cancer. Front Oncol 2022; 12:860760. [PMID: 35372019 PMCID: PMC8966616 DOI: 10.3389/fonc.2022.860760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer is worldwide the fifth and third cancer for incidence and mortality, respectively. Stomach wall is daily exposed to oxidative stress and BER system has a key role in the defense from oxidation-induced DNA damage, whilst ErbB receptors have important roles in the pathogenesis of cancer. We used AGS cells as an aggressive gastric carcinoma cell model, treated with H2O2 alone or combined with ErbB signaling pathway inhibitors, to evaluate the effects of oxidative stress in gastric cancer, focusing on the modulation of ErbB signaling pathways and their eventual cross-talk with BER system. We showed that treatment with H2O2 combined with PI3K/AKT and MEK inhibitors influenced cell morphology and resulted in a reduction of cancer cell viability. Migration ability was reduced after H2O2 treatment alone or combined with MEK inhibitor and after PI3K/AKT inhibitor alone. Western blotting analysis showed that oxidative stress stimulated EGFR pathway favoring the MAPKs activation at the expense of PI3K/AKT pathway. Gene expression analysis by RT-qPCR showed ErbB2 and OGG1 increase under oxidative stress conditions. Therefore, we suggest that in AGS cells a pro-oxidant treatment can reduce gastric cancer cell growth and migration via a different modulation of PI3K and MAPKs pathways. Moreover, the observed ErbB2 and OGG1 induction is a cellular response to protect the cells from H2O2-induced cell death. In conclusion, to tailor specific combinations of therapies and to decide which strategy to use, administration of a chemotherapy that increases intracellular ROS to toxic levels, might not only be dependent on the tumor type, but also on the molecular targeting therapy used.
Collapse
Affiliation(s)
- Luca Savino
- Department of Innovative Technologies in Medicine and Dentistry, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Lucia Centurione
- Department of Medicine and Aging Sciences, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine and Dentistry, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry, University 'G. d'Annunzio' of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med 2022; 26:2049-2062. [PMID: 35229974 PMCID: PMC8980946 DOI: 10.1111/jcmm.17228] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Through a comprehensive review and in silico analysis of reported data on STAT-linked diseases, we analysed the communication pathways and interactome of the seven STATs in major cancer categories and proposed rational targeting approaches for therapeutic intervention to disrupt critical pathways and addictions to hyperactive JAK/STAT in neoplastic states. Although all STATs follow a similar molecular activation pathway, STAT1, STAT2, STAT4 and STAT6 exert specific biological profiles associated with a more restricted pattern of activation by cytokines. STAT3 and STAT5A as well as STAT5B have pleiotropic roles in the body and can act as critical oncogenes that promote many processes involved in cancer development. STAT1, STAT3 and STAT5 also possess tumour suppressive action in certain mutational and cancer type context. Here, we demonstrated member-specific STAT activity in major cancer types. Through systems biology approaches, we found surprising roles for EGFR family members, sex steroid hormone receptor ESR1 interplay with oncogenic STAT function and proposed new drug targeting approaches of oncogenic STAT pathway addiction.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Tudor Bogdan Radu
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Anna Orlova
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Abdul Khawazak Qadree
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Elvin Dominic de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Johan Israelian
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Peter Valent
- Division of Hematology and HemostaseologyDepartment of Internal Medicine IMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyMedical University of ViennaViennaAustria
| | - Satu M. Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
- Hematology Research UnitHelsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Richard Moriggl
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Patrick Thomas Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
22
|
Kim M, Hwang SU, Yoon JD, Lee J, Kim E, Cai L, Kim G, Choi H, Oh D, Hyun SH. Beneficial Effects of Neurotrophin-4 Supplementation During in vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Embryonic Development After Parthenogenetic Activation. Front Vet Sci 2021; 8:779298. [PMID: 34869748 PMCID: PMC8632945 DOI: 10.3389/fvets.2021.779298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Neurotrophin-4 (NT-4) is a neurotrophic factor that plays an important role in follicular development and oocyte maturation. However, it is not yet known whether NT-4 is related to oocyte maturation and follicular development in pigs. This study aims to investigate the effects of NT-4 supplementation during in vitro maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA). First, NT-4 and its receptors (TrkB and p75NTR) were identified through fluorescent immunohistochemistry in porcine ovaries. NT-4 was mainly expressed in theca and granulosa cells; phospho-TrkB and total TrkB were expressed in theca cells, granulosa cells, and oocytes; p75NTR was expressed in all follicular cells. During IVM, the defined maturation medium was supplemented with various concentrations of NT-4 (0, 1, 10, and 100 ng/mL). After IVM, the nuclear maturation rate was significantly higher in the 10 and 100 ng/mL NT-4 treated groups than in the control. There was no significant difference in the intracellular reactive oxygen species levels in any group after IVM, but the 1 and 10 ng/mL NT-4 treatment groups showed a significant increase in the intracellular glutathione levels compared to the control. In matured cumulus cells, the 10 ng/mL NT-4 treatment group showed significantly increased cumulus expansion-related genes and epidermal growth factor (EGF) signaling pathway-related genes. In matured oocytes, the 10 ng/mL treatment group showed significantly increased expression of cell proliferation-related genes, antioxidant-related genes, and EGF signaling pathway-related genes. We also investigated the subsequent embryonic developmental competence of PA embryos. After PA, the cleavage rates significantly increased in the 10 and 100 ng/mL NT-4 treatment groups. Although there was no significant difference in the total cell number of blastocysts, only the 10 ng/mL NT-4 treatment group showed a higher blastocyst formation rate than the control group. Our findings suggest that supplementation with the 10 ng/mL NT-4 can enhance porcine oocyte maturation by interacting with the EGF receptor signaling pathway. In addition, we demonstrated for the first time that NT-4 is not only required for porcine follicular development, but also has beneficial effects on oocyte maturation and developmental competence of PA embryos.
Collapse
Affiliation(s)
- Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Gahye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.,Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea.,Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
23
|
EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sci 2021; 286:120031. [PMID: 34627777 DOI: 10.1016/j.lfs.2021.120031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
AIM To study the role of EGFR signaling in regulation of intrinsic resistance in prostate cancer. MATERIALS AND METHODS Radioresistant prostate carcinoma DU145 and PC-3 cells were used to study the effect of shRNA-mediated knockdown of EGFR on intrinsic radioresistance mechanisms. Semi-quantitative PCR, western blotting, growth kinetics, colony formation, transwell migration, invasion and trypan blue assays along with inhibitors erlotinib, NU7441, B02, PD98059 and LY294002 were used. KEY FINDINGS EGFR knock-down induced morphological alterations along with reduction in clonogenic potential and cell proliferation in DU145 cells. Migratory potential of prostate cancer cells were reduced concomitant with upregulation of epithelial marker, E-cadherin and decreased expression of mesenchymal markers, vimentin and snail. Further, EGFR knock-down decreased the expression of Rad51 and DNA-PK at mRNA as well as protein levels. Likewise, erlotinib, an EGFR inhibitor, and NU7441, a DNA-PK inhibitor increased the expression of E-cadherin and decreased the level of vimentin. Both these inhibitors also decreased the levels of DNA damage regulatory protein Rad51. Further, Rad51 inhibitor, B02, inhibited the clonogenic potential, cell migration and reduced the expression of vimentin, Ku70 and Ku80, and also, B02 radiosensitized DU145 cells. EGFR-regulated expression of Rad51 was found to be mediated via PI3K/Akt and Erk1/2 pathways. SIGNIFICANCE EGFR was found to regulate DNA damage repair, survival and EMT responses in prostate cancer cells through transcriptional regulation of Rad51. A novel role of EGFR-Erk1/2/Akt-Rad51 axis through modulation of EMT and DNA repair pathways in prostate cancer resistance mechanisms is suggested.
Collapse
|
24
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
25
|
Kwon PK, Kim SW, De R, Jeong SW, Kim KT. Isoprocurcumenol Supports Keratinocyte Growth and Survival through Epidermal Growth Factor Receptor Activation. Int J Mol Sci 2021; 22:ijms222212579. [PMID: 34830467 PMCID: PMC8625800 DOI: 10.3390/ijms222212579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 02/04/2023] Open
Abstract
Although proliferation of keratinocytes, a major type of skin cells, is a key factor in maintaining the function of skin, their ability to proliferate tends to diminish with age. To solve such a problem, researchers in medical and skin cosmetic fields have tried to utilize epidermal growth factor (EGF), but achieved limited success. Therefore, a small natural compound that can mimic the activity of EGF is highly desired in both medical and cosmetic fields. Here, using the modified biosensor system, we observed that natural small-compound isoprocurcumenol, which is a terpenoid molecule derived from turmeric, can activate EGFR signaling. It increased the phosphorylation of ERK and AKT, and upregulated the expression of genes related to cell growth and proliferation, such as c-myc, c-jun, c-fos, and egr-1. In addition, isoprocurcumenol induced the proliferation of keratinocytes in both physical and UVB-induced cellular damage, indicative of its function in skin regeneration. These findings reveal that EGF-like isoprocurcumenol promotes the proliferation of keratinocytes and further suggest its potential as an ingredient for medical and cosmetics use.
Collapse
Affiliation(s)
- Paul Kwangho Kwon
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
| | - Ranjit De
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
| | - Sung Woo Jeong
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
| | - Kyong-Tai Kim
- Research Institute of Industrial Science and Technology, Pohang 37673, Gyeongbuk, Korea; (P.K.K.); (S.W.J.)
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea; (S.W.K.); (R.D.)
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Korea
- Correspondence:
| |
Collapse
|
26
|
CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia 2021; 23:1147-1165. [PMID: 34706306 PMCID: PMC8551525 DOI: 10.1016/j.neo.2021.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to tumor invasion, metastasis and drug resistance. AKT activation is key in a number of cellular processes. While many positive regulators for either EMT or AKT activation have been reported, few negative regulators are established. Through kinase cDNA screen, we identified brain-type creatine kinase (CKB or BCK) as a potent suppressor for both. As a ubiquitously expressed kinase in normal tissues, CKB is significantly downregulated in several solid cancer types. Lower CKB expression is significantly associated with worse prognosis. Phenotypically, CKB overexpression suppresses, while its silencing promotes, EMT and cell migration, xenograft tumor growth and metastasis of prostate cancer cells. AKT activation is one of the most prominent signaling events upon CKB silencing in prostate cancer cells, which is in line with prostate cancer TCGA data. EMT enhanced by CKB silencing is abolished by AKT inhibition. Mechanistically, CKB interacts with AKT and sequestrates it from activation by mTOR. We further elucidated that an 84aa fragment at C-terminus of CKB protein interacts with AKT's PH domain. Ectopic expression of the 84aa CKB fragment inhibits AKT activation, EMT and cell proliferation. Interestingly, molecular dynamics simulation on crystal structures of AKT and CKB independently demonstrates that AKT's PH domain and CKB's 84aa fragment establish their major interaction interface. In summary, we have discovered CKB as a negative regulator of EMT and AKT activation, revealing a new mode of their regulation . We have also demonstrated that CKB downregulation is a poor prognosticator, which is sufficient to promote prostate cancer progression.
Collapse
|
27
|
Ramanayake-Mudiyanselage V, Embogama DM, Pflum MKH. Kinase-Catalyzed Biotinylation to Map Cell Signaling Pathways: Application to Epidermal Growth Factor Signaling. J Proteome Res 2021; 20:4852-4861. [PMID: 34491762 PMCID: PMC8898094 DOI: 10.1021/acs.jproteome.1c00562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell signaling involves a network of protein-protein interactions and post-translational modifications that govern cellular responses to environmental cues. To understand and ultimately modulate these signaling pathways to confront disease, the complex web of proteins that becomes phosphorylated after extracellular stimulation has been studied using mass spectrometry-based proteomics methods. To complement prior work and fully characterize all phosphorylated proteins after the stimulation of cell signaling, we developed K-BMAPS (kinase-catalyzed biotinylation to map signaling), which utilizes ATP-biotin as a kinase cosubstrate to biotin label substrates. As a first application of the K-BMAPS method, the well-characterized epidermal growth factor receptor (EGFR) kinase signaling pathway was monitored by treating epidermal growth factor (EGF)-stimulated HeLa lysates with ATP-biotin, followed by streptavidin enrichment and quantitative mass spectrometry analysis. On the basis of the dynamic phosphoproteins identified, a pathway map was developed considering functional categories and known interactors of EGFR. Remarkably, 94% of the K-BMAPS hit proteins were included in the EGFR pathway map. With many proteins involved in transcription, translation, cell adhesion, and GTPase signaling, K-BMAPS identified phosphoproteins were associated with late and continuous signaling events. In summary, the K-BMAPS method is a powerful tool to map the dynamic phosphorylation governing cell signaling pathways.
Collapse
Affiliation(s)
| | - D Maheeka Embogama
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
28
|
Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2021; 13:2380. [PMID: 34069147 PMCID: PMC8156532 DOI: 10.3390/cancers13102380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
Collapse
Affiliation(s)
| | | | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (R.E.B.)
| |
Collapse
|
29
|
Wang S, Wei H, Huang Z, Wang X, Shen R, Wu Z, Lin J. Epidermal growth factor receptor promotes tumor progression and contributes to gemcitabine resistance in osteosarcoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:317-324. [PMID: 33432347 DOI: 10.1093/abbs/gmaa177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary malignant tumors that originate in the bone. Resistance to chemotherapy confers a poor prognosis on OS patients. Dysregulation of the epidermal growth factor receptor (EGFR) signaling has been reported in sarcomas. However, the functional contribution of EGFR hyperactivation to the tumor biology and chemoresistance remains largely unexplored in OS. In this study, we aimed to investigate the role of EGFR in OS progression and in the response of OS to gemcitabine treatment. The EGFR expression was found to be upregulated in fibroblastic OS cell lines. EGFR knockdown suppressed OS cell proliferation, migration, and invasion in vitro and tumor formation in vivo. Conversely, EGFR overexpression promoted the growth and motility of OS cells. In terms of mechanism, the levels of phospho-Akt and phospho-ERK were decreased upon EGFR knockdown but increased as a result of EGFR overexpression, implying a possible involvement of PI3K/Akt and ERK pathways in mediating the effects of EGFR on OS cells. Moreover, the level of phospho-EGFR was increased in OS cells when exposed to gemcitabine treatment. A more profound proliferative inhibition and a higher rate of apoptosis were obtained in OS cells via inducing cell cycle arrest at G1 phase upon gemcitabine treatment combined with EGFR knockdown, as compared to gemcitabine alone. On the contrary, EGFR overexpression counteracted the growth-inhibiting and pro-apoptotic effects of gemcitabine in OS cells. The present study suggests that EGFR promotes tumor progression and contributes to gemcitabine resistance in OS.
Collapse
Affiliation(s)
- Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xinwen Wang
- Department of Orthopedics, The People’s Hospital of Jiangmen City, Jiangmen 529051, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhaoyang Wu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
30
|
miR-541-3p enhances the radiosensitivity of prostate cancer cells by inhibiting HSP27 expression and downregulating β-catenin. Cell Death Discov 2021; 7:18. [PMID: 33462201 PMCID: PMC7813831 DOI: 10.1038/s41420-020-00387-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023] Open
Abstract
Heat shock protein 27 (HSP27), a regulator of cell survival, can enhance the resistance of cancer cells to radiotherapy. As microRNA-541-3p (miR-541-3p) was recently predicted to be a putative upstream modulator of HSP27, the present study was designed to investigate the function and mechanism underlying how miR-541-3p modulates the radiosensitivity of prostate cancer (PCa) cells by regulating HSP27. Through quantitative PCR, miR-541-3p was determined to be poorly expressed in PCa tissues relative to normal controls, whereas its expression was enhanced after radiotherapy. Consistently, miR-541-3p expression levels in PCa cells were elevated after radiation. Cell viability and proliferation and apoptosis under radiation were subsequently evaluated in response to loss-of-function of miR-541-3p. It was found that inhibition of miR-541-3p facilitated the viability and proliferation of PCa cells and promoted their apoptosis post radiation, hence reducing the radiosensitivity of LNCaP cells. Dual-luciferase reporter assay identified that miR-541-3p negatively regulated the HSP27 mRNA expression by targeting its 3'-UTR. Meanwhile, miR-541-3p overexpression inhibited the β-catenin expression by targeting HSP27. Furthermore, HSP27 or β-catenin overexpression was noted to significantly reverse the miR-541-3p-mediated changes in the biological functions of PCa cells post radiation, suggesting that HSP27-dependent activation of β-catenin might be the mechanism responsible for the promotive effect of miR-541-3p on radiosensitivity. Collectively, this study suggests that miR-541-3p specifically inhibits the HSP27 expression and downregulates β-catenin, thereby enhancing the radiosensitivity of PCa cells. Our findings highlight the underlying mechanism of the miR-541-3p/HSP27/Wnt/β-catenin axis regarding radiotherapy for PCa.
Collapse
|
31
|
Lu MK, Chao CH, Hsu YC, Chang CC. Structural sequencing and anti-inflammatory, anti-lung cancer activities of 1,4-α/β-sulfomalonoglucan in Antrodia cinnamomea. Int J Biol Macromol 2020; 170:307-316. [PMID: 33358951 DOI: 10.1016/j.ijbiomac.2020.12.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Antrodia cinnamomea is a precious Polyporaceous fungus with various bioactivities. This study reports the chemical identification and biological activities of sulfomalonoglucan, a sulfated polysaccharide (SPS), from the sodium sulfate enriched medium of the title fungus. The SPS-containing fraction was separated by gel filtration chromatography (GFC) to give the title SPS (denoted as Na10_SPS-F3). By analyzing the evidence for key inter-glycosidic linkages in the 1D and 2D NMR spectroscopic data, one possible repeat unit was proposed as: Na10_SPS-F3 inhibited the secretion of tumor necrosis factor (TNF-α) and interleukin (IL)-6 after lipopolysaccharide (LPS) stimulation in RAW264.7 macrophages. Mechanistically, Na10_SPS-F3 downregulated TGFRII also attenuated the LPS-induced IκB-α degradation. Moreover, Na10_SPS-F3 inhibited lung cancer cell H1975 EGFR/ERK signaling. This is the first paper reporting a 3-O-sulfomalonyl glucan (Na10_SPS-F3) with eight 1,4-β-Glc moieties connected with ten 1,4-α-Glc moieties from Antrodia cinnamomea and its anti-inflammatory and anti-cancer activities.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
32
|
Parveen S, Alnoman RB, Hagar M, Ahmed HA, Knight JG. Synthesis, Molecular Docking, and DFT Calculation of a Half‐Strapped BODIPY as Potential EGFR Inhibitor**. ChemistrySelect 2020. [DOI: 10.1002/slct.202003621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shazia Parveen
- Faculty of Science Chemistry Department Taibah University 46423 Yanbu Saudi Arabia
| | - Rua B. Alnoman
- Faculty of Science Chemistry Department Taibah University 46423 Yanbu Saudi Arabia
| | - Mohamad Hagar
- Faculty of Science Chemistry Department Taibah University 46423 Yanbu Saudi Arabia
- Faculty of Science Chemistry Department Alexandria University Alexandria Egypt
| | - Hoda A. Ahmed
- Faculty of Science Chemistry Department Taibah University 46423 Yanbu Saudi Arabia
- Faculty of Science Department of Chemistry Cairo University Cairo Egypt
| | - Julian G. Knight
- School of Chemistry Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
33
|
Yu MR, Kim HJ, Park HR. Fusobacterium nucleatum Accelerates the Progression of Colitis-Associated Colorectal Cancer by Promoting EMT. Cancers (Basel) 2020; 12:cancers12102728. [PMID: 32977534 PMCID: PMC7598280 DOI: 10.3390/cancers12102728] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Colitis-associated cancer (CAC) are associated with the development and progression of colorectal cancer (CRC). And Fusobacterium nucleatum (F. nucleatum), a major pathogen involved in chronic periodontitis, may play an important role in CRC progression. Though the importance of F. nucleatum in CRC has attracted attention, its exact role and related mechanism in CAC progression remain unclear. We investigated the effects of F. nucleatum in both in vitro and in vivo colitis models induced with dextran sodium sulfate (DSS), a well-known colitis-inducing chemical, on the aggressiveness of CAC and its related mechanism. This study showed that F. nucleatum accelerates the progression of CAC cancer by promoting epithelial–mesenchymal transition (EMT). This study provides a novel mechanism involved F. nucleatum in the development of colitis-associated CRC. Abstract Recently, it has been reported that Fusobacterium nucleatum, a major pathogen involved in chronic periodontitis, may play an important role in colorectal cancer (CRC) progression. In addition, inflammatory bowel diseases such as ulcerative colitis and Crohn’s disease represent major predisposing conditions for the development of CRC, and this subtype of cancer is called colitis-associated cancer (CAC). Although the importance of F. nucleatum in CRC has attracted attention, its exact role and related mechanism in CAC progression remain unclear. In this study, we investigated the effects of F. nucleatum in experimental colitis induced with dextran sodium sulfate (DSS), which is a well-known colitis-inducing chemical, on the aggressiveness of CAC and its related mechanism in both in vitro and in vivo models. F. nucleatum synergistically increased the aggressiveness and epithelial–mesenchymal transition (EMT) characteristics of CRC cells that were treated with DSS compared to those in non-treated CRC cells. The role of F. nucleatum in CAC progression was further confirmed in mouse models, as F. nucleatum was found to significantly increase the malignancy of azoxymethane (AOM)/DSS-induced colon cancer. This promoting effect of F. nucleatum was based on activation of the EGFR signaling pathways, including protein kinase B (AKT) and extracellular signal-regulated kinase (ERK), and epidermal growth factor receptor (EGFR) inhibition significantly reduced the F. nucleatum-induced EMT alteration. In conclusion, F. nucleatum accelerates the progression of CAC by promoting EMT through the EGFR signaling pathway.
Collapse
Affiliation(s)
- Mi Ra Yu
- Department of Oral Pathology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hye Jung Kim
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
34
|
Zhan K, Liu R, Tong H, Gao S, Yang G, Hossain A, Li T, He W. Fetuin B overexpression suppresses proliferation, migration, and invasion in prostate cancer by inhibiting the PI3K/AKT signaling pathway. Biomed Pharmacother 2020; 131:110689. [PMID: 32892030 DOI: 10.1016/j.biopha.2020.110689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Fetuin B (FETUB) is a glycoprotein that is a member of the cysteine protease inhibitor family, and it is associated with cancer. However, the role of FETUB in prostate carcinogenesis is unknown. In this study, we overexpressed FETUB in prostate cancer cells by using lentivirus and then studied the impacts on cell apoptosis, migration and invasion. We found that apoptosis was increased and the migration and invasion of prostate cancer cells were significantly inhibited after overexpression. Then, we performed experiments in vivo and found that there were fewer tumors in the overexpression groups than in the control groups. In addition, we demonstrated that overexpression of FETUB inactivates the PI3K/AKT signaling pathway. Rescue assays revealed that intervention of 740Y-P reversed the anti-tumor effect of FETUB on prostate cancer cells. Taken together, our results revealed that FETUB may act as a novel regulator to promote apoptosis and inhibit the migration and invasion of prostate cancer cells and that FETUB is related to the inactivation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Kai Zhan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shun Gao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guang Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Arman Hossain
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Mota STS, Vecchi L, Alves DA, Cordeiro AO, Guimarães GS, Campos-Fernández E, Maia YCP, Dornelas BDC, Bezerra SM, de Andrade VP, Goulart LR, Araújo TG. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer. Int J Biochem Cell Biol 2020; 127:105838. [PMID: 32858191 DOI: 10.1016/j.biocel.2020.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor is a cancer driver whose nuclear localization has been associated with the progression of prostate cancer to the castration-resistant phenotype. Previous reports indicated a functional interaction between this receptor and the protein Annexin A1, which has also been associated with aggressive tumors. The molecular pathogenesis of castration-resistant prostate cancer remains largely unresolved, and herein we have demonstrated the correlation between the expression levels and localization of the epidermal growth factor receptor and Annexin A1 in prostate cancer samples and cell lines. Interestingly, a higher expression of both proteins was detected in castration-resistant prostate cancer cell lines and the strongest correlation was seen at the nuclear level. We verified that Annexin A1 interacts with the epidermal growth factor receptor, and by using prostate cancer cell lines knocked down for Annexin A1, we succeeded in demonstrating that Annexin A1 promotes the nuclear localization of epidermal growth factor receptor. Finally, we showed that Annexin A1 activates an autocrine signaling in castration-resistant prostate cells through the formyl peptide receptor 1. The inhibition of such signaling by Cyclosporin H inhibits the nuclear localization of epidermal growth factor receptor and its downstream signaling. The present work sheds light on the functional interaction between nuclear epidermal growth factor receptor and nuclear Annexin A1 in castration-resistant prostate cancer. Therefore, strategies to inhibit the nuclear localization of epidermal growth factor receptor through the suppression of the Annexin A1 autocrine loop could represent an important intervention strategy for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Douglas Alexsander Alves
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Antonielle Oliveira Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Gabriela Silva Guimarães
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Esther Campos-Fernández
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | - Bruno de Carvalho Dornelas
- Pathology Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | | | - Luiz Ricardo Goulart
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; University of California, Davis, Dept. of Medical Microbiology and Immunology, Davis, CA, 95616, USA.
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| |
Collapse
|
36
|
Jonnalagadda B, Arockiasamy S, Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci 2020; 259:118208. [PMID: 32763294 DOI: 10.1016/j.lfs.2020.118208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide, with prostate cancer, the second most commonly diagnosed cancer among men. Prostate cancer develops in the peripheral zone of the prostate gland, and the initial progression largely depends on androgens, the male reproductive hormone that regulates the growth and development of the prostate gland and testis. The currently available treatments for androgen dependent prostate cancer are, however, effective for a limited period, where the patients show disease relapse, and develop androgen-independent prostate cancer (AIPC). Studies have shown various intricate cellular processes such as, deregulation in multiple biochemical and signaling pathways, intra-tumoral androgen synthesis; AR over-expression and mutations and AR activation via alternative growth pathways are involved in progression of AIPC. The currently approved treatment strategies target a single cellular protein or pathway, where the cells slowly develop resistance and adapt to proliferate via other cellular pathways over a period of time. Therefore, an increased research aims to understand the efficacy of combination therapy, which targets multiple interlinked pathways responsible for acquisition of resistance and survival. The combination therapy is also shown to enhance efficacy as well as reduce toxicity of the drugs. Thus, the present review focuses on the signaling pathways involved in the progression of AIPC, comprising a heterogeneous population of cells and the advantages of combination therapy. Several clinical and pre-clinical studies on a variety of combination treatments have shown beneficial outcomes, yet further research is needed to understand the potential of combination therapy and its diverse strategies.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Sriram Krishnamoorthy
- Department of Urology, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
37
|
Zaucha J, Heinzinger M, Kulandaisamy A, Kataka E, Salvádor ÓL, Popov P, Rost B, Gromiha MM, Zhorov BS, Frishman D. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Brief Bioinform 2020; 22:5872174. [PMID: 32672331 DOI: 10.1093/bib/bbaa132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein's functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - A Kulandaisamy
- Department of Biotechnology of the IIT Bhupat and Jyoti Mehta School of BioSciences in Madras, India
| | - Evans Kataka
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Óscar Llorian Salvádor
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - Petr Popov
- Center for Computational and Data-Intensive Science and Engineering of the Skolkovo Institute of Science and Technology in Moscow, Russia
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology at the TUM Faculty of Informatics in Garching, Germany
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University in Hamilton, Canada
| | - Dmitrij Frishman
- Department of Bioinformatics at the TUM School of Life Sciences Weihenstephan in Freising, Germany
| |
Collapse
|
38
|
Jonnalagadda B, Arockiasamy S, Vetrivel U, P A A. In silico docking of phytocompounds to identify potent inhibitors of signaling pathways involved in prostate cancer. J Biomol Struct Dyn 2020; 39:5182-5208. [PMID: 32643549 DOI: 10.1080/07391102.2020.1785944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Androgens and androgen receptors (AR) are the master regulators in the development of prostate cancer. Majority of the patients show positive response to surgical or medical castration, while many patients show disease relapse after the treatment. Genomic profiling has proven that the deregulated PI3K, Ras/Raf, MAPK and EGFR signaling pathways confer survival and invasion advantage to the cancer cells. Thus, modulation of these interlinked growth pathways along with androgen ablation may provide attractive therapeutic benefits. The current research is focused to identify the inhibitors of these pathways with bacosides and Piperine. The quantitative estimation of bacosides enriched standard extract of Bacopa monnieri by HPTLC showed 59.38% of Bacoside A and various active compounds with anti-oxidant, anti-cancer, anti-microbial, anti-inflammatory properties were also analyzed by GC-MS analysis. The in-vitro cytotoxic study against PC3 cell lines showed dose-dependent effect of Piperine and the extract. Further, in silico docking has shown bacosides with significant molecular interactions and binding score with growth factor receptors such as EGFR, PI3K, Akt and ERK, whereas Piperine exhibited interactions with AR. Hence, a simultaneous downregulation of interlinked signaling pathways of growth factors and AR with bacosides and Piperine may produce effective cytotoxic potential against the androgen-independent prostate cancer. Further in-vitro and in-vivo experimental investigations are necessary to determine the ultimate therapeutic utility. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya Research Institute, Chennai, India
| | - Abhinand P A
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
39
|
Yang L, Liu S, Chu J, Miao S, Wang K, Zhang Q, Wang Y, Xiao Y, Wu L, Liu Y, Yu L, Yu C, Liu X, Ke M, Cheng Z, Sun X. Novel anilino quinazoline-based EGFR tyrosine kinase inhibitors for treatment of non-small cell lung cancer. Biomater Sci 2020; 9:443-455. [PMID: 32236267 DOI: 10.1039/d0bm00293c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC). EGFR-TKI positron emission tomography (PET) probes based on the central quinazoline core show great potential for NSCLC diagnosis, and pre-clinical and clinical therapy monitoring. In our previous research, anilino quinazoline based PET probe, N-(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2-18F-fluoroethoxy) ethoxy) ethoxy) ethoxy)-6-methoxyquinazolin-4-amine (18F-MPG), have been developed, and it has been successfully demonstrated to be a powerful non-invasive imaging tool for differentiating EGFR mutation status and stratifying NSCLC patients for EGFR-TKI treatment in a clinical study (n = 75 patients). Moreover, it has been found that 18F-MPG shows excellent tumor targeting performance and good pharmacokinetic characteristics in NSCLC patients. These results motivate us to investigate the cancer treatment efficacy of non-radioactive F-MPG and its analogue N-(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2-hydroxyethoxy)ethoxy) ethoxy) ethoxy)-6-methoxyquinazolin-4-amine (OH-MPG) in vitro and in small animal models. Our studies revealed that both F-MPG and OH-MPG displayed high therapeutic effect to NSCLC cells (IC50 = 5.3 nM and 2.0 nM to HCC827 cells for F-MPG and OH-MPG, respectively). More importantly, compared with a standard EGFR-TKI, 4-(3-bromoanilino)-6,7-dimethoxyquinazoline (PD153035), F-MPG and OH-MPG showed stronger tumor inhibition in preclinical models. Furthermore, the treatment efficacy of F-MPG or OH-MPG monitored by 18F-FDG-PET indicated that tumor uptake in treated groups was significantly decreased. Ex vivo experiments showed that the levels of serum biomarkers and pathological changes in the liver were significantly reduced in the F-MPG and OH-MPG group, compared to PD153035 treated group. In conclusion, EGFR targeted F-MPG and OH-MPG exhibit promising anti-tumor activity with limited liver damage, thus representing promising drug candidates for further investigation for combating the deadly NSCLC.
Collapse
Affiliation(s)
- Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Le Y, Gan Y, Fu Y, Liu J, Li W, Zou X, Zhou Z, Wang Z, Ouyang G, Yan L. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J Enzyme Inhib Med Chem 2020; 35:555-564. [PMID: 31967481 PMCID: PMC7006757 DOI: 10.1080/14756366.2020.1715389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5 g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5 l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10 nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.
Collapse
Affiliation(s)
- Yi Le
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Yiyuan Gan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yihong Fu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Jiamin Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Wen Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhixu Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China.,Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Guiping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China.,Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
41
|
Wang X, De Geyter C, Jia Z, Peng Y, Zhang H. HECTD1 regulates the expression of SNAIL: Implications for epithelial‑mesenchymal transition. Int J Oncol 2020; 56:1186-1198. [PMID: 32319576 PMCID: PMC7115742 DOI: 10.3892/ijo.2020.5002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023] Open
Abstract
As a transcription factor, SNAIL plays a crucial role in embryonic development and cancer progression by mediating epithelial‑mesenchymal transition (EMT); however, post‑translational modifications, such as ubiquitination, which control the degradation of SNAIL have been observed to affect its functional role in EMT. In a previous study by the authors, it was demonstrated that the HECT domain E3 ubiquitin ligase 1 (HECTD1) regulated the dynamic nature of adhesive structures. In the present study, HECTD1 was observed to interact with SNAIL and regulate its stability through ubiquitination, and the knockdown of HECTD1 increased the expression levels of SNAIL. HECTD1 was discovered to contain putative nuclear localization and export signals that facilitated its translocation between the cytoplasm and nucleus, a process regulated by epidermal growth factor (EGF). Treatment with leptomycin B resulted in the nuclear retention of HECTD1, which was associated with the loss of SNAIL expression. The knockdown of HECTD1 in HeLa cells increased cell migration and induced a mesenchymal phenotype, in addition to demonstrating sustained EGF signaling, which was observed through increased phosphorylated ERK expression levels. Under hypoxic conditions, HECTD1 expression levels were decreased by microRNA (miRNA or miR)‑210. Upon the observation of genetic abnormalities in the HECTD1 gene in cervical cancer specimens, it was observed that the decreased expression levels of HECTD1 were significantly associated with a poor patient survival. Thus, it was hypothesized that HECTD1 may regulate EMT through the hypoxia/hypoxia inducible factor 1α/miR‑210/HECTD1/SNAIL signaling pathway and the EGF/EGF receptor/HECTD1/ERK/SNAIL signaling pathway in cervical cancer. On the whole, the data of the present study indicated that HECTD1 serves as an E3 ubiquitin ligase to mediate the stability of SNAIL proteins.
Collapse
Affiliation(s)
- Xinggang Wang
- Department of Biomedicine (DBM), University Hospital, University of Basel, CH‑4031 Basel, Switzerland
| | - Christian De Geyter
- Department of Biomedicine (DBM), University Hospital, University of Basel, CH‑4031 Basel, Switzerland
| | - Zanhui Jia
- Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ya Peng
- Department of Biomedicine (DBM), University Hospital, University of Basel, CH‑4031 Basel, Switzerland
| | - Hong Zhang
- Department of Biomedicine (DBM), University Hospital, University of Basel, CH‑4031 Basel, Switzerland
| |
Collapse
|
42
|
Zhu L, Sun Y, Zhang S, Wang L. Rap2B knockdown suppresses malignant progression of hepatocellular carcinoma by inactivating the PTEN/PI3K/Akt and ERK1/2 pathways. Mol Cell Biochem 2020; 466:55-63. [PMID: 32052247 DOI: 10.1007/s11010-020-03687-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/18/2020] [Indexed: 01/06/2023]
Abstract
Rap2B, belonging to the Ras superfamily of small guanosine triphosphate-binding proteins, is upregulated and contributes to the progression of several tumors by acting as an oncogene, including hepatocellular carcinoma (HCC). However, the mechanism underlying the functional roles of Rap2B in HCC remains unclear. In this study, the evaluation of Rap2B expression in HCC cells and tissues was achieved by qRT-PCR and western blot assays. The effects of Rap2B on the malignant biological behaviors in HCC were explored by means of MTT assay, flow cytometry analysis, and Transwell invasion assay, respectively. Protein levels of Ki67, matrix metalloproteinase (MMP)-2, MMP-9, and cleaved caspase-3, together with the alternations of the ERK1/2 and PTEN/PI3K/Akt pathways were qualified by western blot assay. Further verification of the Rap2B function on HCC tumorigenesis was attained by performing in vivo assays. We found that Rap2B levels were upregulated in HCC tissues and cells. Rap2B silencing led to a reduction of cell-proliferative and invasive abilities, and an increase of apoptosis in HCC cells. In addition, xenograft tumor assay demonstrated that Rap2B silencing repressed HCC xenograft tumor growth in vivo. In addition, we found that Rap2B knockdown significantly inhibited the ERK1/2 and PTEN/PI3K/Akt cascades in HCC cells and xenograft tumor tissues. Together, Rap2B knockdown inhibited HCC-malignant progression, which was involved in inhibiting the ERK1/2 and PTEN/PI3K/Akt pathways. Our findings contribute to understanding of the molecular mechanism of Rap2B in HCC progression.
Collapse
Affiliation(s)
- Linchao Zhu
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China.
| | - Ying Sun
- Department of Clinical Laboratory, Third People's Hospital of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Shufeng Zhang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lin Wang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
43
|
Tang DE, Dai Y, Fan LL, Geng XY, Fu DX, Jiang HW, Xu SH. Histone Demethylase JMJD1A Promotes Tumor Progression via Activating Snail in Prostate Cancer. Mol Cancer Res 2020; 18:698-708. [PMID: 32019811 DOI: 10.1158/1541-7786.mcr-19-0889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/27/2019] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
The histone demethylase JMJD1A plays a key functional role in spermatogenesis, sex determination, stem cell renewal, and cancer via removing mono- and di-methyl groups from H3K9 to epigenetically control gene expression. However, its role in prostate cancer progression remains unclear. Here, we found JMJD1A was significantly elevated in prostate cancer tissue compared with matched normal tissue. Ectopic JMJD1A expression in prostate cancer cells promoted proliferation, migration, and invasion in vitro, and tumorigenesis in vivo; JMJD1A knockdown exhibited the opposite effects. Mechanically, we revealed that JMJD1A directly interacted with the Snail gene promoter and regulated its transcriptional activity, promoting prostate cancer progression both in vitro and in vivo. Furthermore, we found that JMJD1A transcriptionally activated Snail expression via H3K9me1 and H3K9me2 demethylation at its special promoter region. In summary, our studies reveal JMJD1A plays an important role in regulating proliferation and progression of prostate cancer cells though Snail, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer. IMPLICATIONS: Our studies identify that JMJD1A promotes the proliferation and progression of prostate cancer cells through enabling Snail transcriptional activation, and thus highlight JMJD1A as potential therapeutic target for advanced prostate cancer.
Collapse
Affiliation(s)
- Dong-E Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Ling-Ling Fan
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xin-Yan Geng
- Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - De-Xue Fu
- Department of Surgery, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hao-Wu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri
| | - Song-Hui Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China. .,Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Marková I, Koníčková R, Vaňková K, Leníček M, Kolář M, Strnad H, Hradilová M, Šáchová J, Rasl J, Klímová Z, Vomastek T, Němečková I, Nachtigal P, Vítek L. Anti-angiogenic effects of the blue-green alga Arthrospira platensis on pancreatic cancer. J Cell Mol Med 2020; 24:2402-2415. [PMID: 31957261 PMCID: PMC7028863 DOI: 10.1111/jcmm.14922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Arthrospira platensis, a blue-green alga, is a popular nutraceutical substance having potent antioxidant properties with potential anti-carcinogenic activities. The aim of our study was to assess the possible anti-angiogenic effects of A platensis in an experimental model of pancreatic cancer. The effects of an A platensis extract were investigated on human pancreatic cancer cells (PA-TU-8902) and immortalized endothelial-like cells (Ea.hy926). PA-TU-8902 pancreatic tumours xenografted to athymic mice were also examined. In vitro migration and invasiveness assays were performed on the tested cells. Multiple angiogenic factors and signalling pathways were analysed in the epithelial, endothelial and cancer cells, and tumour tissue. The A platensis extract exerted inhibitory effects on both migration and invasion of pancreatic cancer as well as endothelial-like cells. Tumours of mice treated with A platensis exhibited much lesser degrees of vascularization as measured by CD31 immunostaining (P = .004). Surprisingly, the VEGF-A mRNA and protein expressions were up-regulated in pancreatic cancer cells. A platensis inhibited ERK activation upstream of Raf and suppressed the expression of ERK-regulated proteins. Treatment of pancreatic cancer with A platensis was associated with suppressive effects on migration and invasiveness with various anti-angiogenic features, which might account for the anticancer effects of this blue-green alga.
Collapse
Affiliation(s)
- Ivana Marková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Renata Koníčková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Kateřina Vaňková
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Michal Kolář
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Informatics and ChemistryFaculty of Chemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jana Šáchová
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Rasl
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Cell BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Zuzana Klímová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivana Němečková
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Petr Nachtigal
- Department of Biological and Medical SciencesFaculty of Pharmacy in Hradec KraloveCharles UniversityHradec KrálovéCzech Republic
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory DiagnosticsFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
- 4th Department of Internal MedicineFaculty General Hospital and 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
45
|
Sakunrangsit N, Ketchart W. Plumbagin inhibited AKT signaling pathway in HER-2 overexpressed-endocrine resistant breast cancer cells. Eur J Pharmacol 2019; 868:172878. [PMID: 31863768 DOI: 10.1016/j.ejphar.2019.172878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
The important mechanism of endocrine resistance is the crosstalk between estrogen receptor (ER) and HER2 signaling pathways. Aside from ER downregulation, there was an increase in HER2 expression and increased activation of the downstream AKT/ERK pathways in endocrine-resistant cells (MCF-7/LCC2 and MCF-7/LCC9) which is similar to HER2-overexpressed (SKBR3) cells. However, nuclear receptor coactivator 3 (NCOA3), the important ER-coactivator, that upregulated in endocrine-resistant cells did not express in HER2-overexpressed (SKBR3) cells. NCOA3 was able to activate AKT/ERK signalling pathway. Our previous study reported that plumbagin (PLB), a naphthoquinone compound, had a potent cytotoxic activity against endocrine-resistant cells. This study aimed to further investigate the mechanism of anti-cancer effects of PLB on ER and HER-2 signaling. PLB can inhibit estradiol (E2)-induced cell proliferation in MCF-7 wild-type cells but had no effect in the resistant cells. It also inhibited HER2 expression in both endocrine-resistant and HER-2 overexpressed cells. Therefore, the mechanism of PLB may be regulated through HER-2 signaling. PLB inhibited the phosphorylation of AKT (pAKT) and pERK1/2 and induced apoptosis and reduced the expression of anti-apoptotic genes Bcl-2 and pro-caspase 3 and Cleaved Caspase 3 protein in both endocrine-resistant and HER-2 overexpressed cells. However, the inhibitory effect of PLB was more obvious when pre-treated the cells with AKT inhibitor only in HER-2 overexpressed cells. In addition, the inhibitory effect of PLB on pAKT was attenuated when NCOA3 was downregulated. Our finding suggested that the inhibitory effect of PLB on AKT signaling pathways regulated through NCOA3 in HER2-overexpressed endocrine-resistant cells.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
46
|
Chen Z, Hu H. Retracted: Identification of Prognosis Biomarkers of Prostatic Cancer in a Cohort of 498 Patients from TCGA. J Comput Biol 2019; 26:e1487-e1498. [PMID: 31841638 DOI: 10.1089/cmb.2019.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The article entitled, "Identification of prognosis biomarkers of prostatic cancer in a cohort of 498 patients from TCGA," by Chen Z and Hu H. (J Comput Biol Dec 2019: e-pub ahead of print; DOI: 10.1089/cmb.2019.0224) is being officially retracted at the authors' request due to errors found in the data after publication of the article. The detected errors render the results and conclusion irreproducible, and therefore, invalid. Based on the communications received from the authors, the editorial leadership of Journal of Computational Biology agreed to retract the published paper. However, after retracting the article, it was also discovered that the same article had been previously published in volume 43, issue 6 of the journal, Current Problems in Cancer, published by Elsevier. The publisher of Journal of Computational Biology was in communication with Elseivier since simultaneous submission and/or publication is a violation of the proper protocols of peer review, and they are conducting their own evaluation. Journal of Computational Biology also notified the authors' institution of the infraction. Journal of Computational Biology, its Editor, and its Publisher are committed to preserving the integrity of the scientific record for the community it serves.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Urology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Haiyi Hu
- Department of Urology, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Park SR, Kim SR, Park CH, Lim S, Ha SY, Hong IS, Lee HY. Sonic Hedgehog, a Novel Endogenous Damage Signal, Activates Multiple Beneficial Functions of Human Endometrial Stem Cells. Mol Ther 2019; 28:452-465. [PMID: 31866117 DOI: 10.1016/j.ymthe.2019.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023] Open
Abstract
Local endometrial stem cells play an important role in regulating endometrial thickness, which is an essential factor for successful embryo implantation and pregnancy outcomes. Importantly, defects in endometrial stem cell function can be responsible for thin endometrium and subsequent recurrent pregnancy losses. Therefore, many researchers have directed their efforts toward finding a novel stimulatory factor that can enhance the regenerative capacity of endometrial stem cells. Sonic hedgehog (SHH) is a morphogen that plays a key role in regulating pattern formation throughout embryonic limb development. In addition to this canonical function, we identified for the first time that SHH is actively secreted as a stem cell-activating factor in response to tissue injury and subsequently stimulates tissue regeneration by promoting various beneficial functions of endometrial stem cells. Our results also showed that SHH exerts stimulatory effects on endometrial stem cells via the FAK/ERK1/2 and/or phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. More importantly, we also observed that endometrial stem cells stimulated with SHH showed markedly enhanced differentiation and migratory capacities and subsequent in vivo therapeutic effects in an endometrial ablation animal model.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| | - Soyi Lim
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea.
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Republic of Korea.
| |
Collapse
|
48
|
Verma S, Pandey M, Shukla GC, Singh V, Gupta S. Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer. PLoS One 2019; 14:e0224071. [PMID: 31756185 PMCID: PMC6874298 DOI: 10.1371/journal.pone.0224071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of miRNAs has been demonstrated in several human malignancies including prostate cancer. Due to tissue limitation and variable disease progression, stage-specific miRNAs changes in prostate cancer is unknown. Using chip-based microarray, we investigated global miRNA expression in human prostate cancer LNCaP, PC3, DU145 and 22Rv1 cells representing early-stage, advanced-stage and castration resistant prostate cancer in comparison with normal prostate epithelial cells. A total of 292 miRNAs were differentially expressed with 125 upregulated and 167 downregulated. These miRNAs were involved in pathways including drug resistance drug-efflux, adipogenesis, epithelial-to-mesenchymal transition, bone metamorphosis, and Th1/Th2 signaling. Regulation of miRNAs were interlinked with upstream regulators such as Argonaut 2 (AGO2), Double-Stranded RNA-Specific Endoribonuclease (DICER1), Sjogren syndrome antigen B (SSB), neurofibromatosis 2 (NF2), and peroxisome proliferator activated receptor alpha (PPARA), activated during stage-specific disease progression. Candidate target genes and pathways dysregulated in stage-specific prostate cancer were identified using CS-miRTar database and confirmed in clinical specimens. Integrative network analysis suggested some genes targeted by miRNAs include miR-17, let7g, miR-146, miR-204, miR-205, miR-221, miR-301 and miR-520 having a major effect on their dysregulation in prostate cancer. MiRNA-microarray analysis further identified miR-130a, miR-181, miR-328, miR146 and miR-200 as a panel of novel miRNAs associated with drug resistance drug-efflux and epithelial-to-mesenchymal transition in prostate cancer. Our findings provide evidence on miRNA dysregulation and its association with key functional components in stage-specific prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
| | - Mitali Pandey
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
| | - Girish C. Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, United States of America
| | - Vaibhav Singh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States of America
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, United States of America
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States of America
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States of America
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, United States of America
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
49
|
Miller SA, Policastro RA, Savant SS, Sriramkumar S, Ding N, Lu X, Mohammad HP, Cao S, Kalin JH, Cole PA, Zentner GE, O'Hagan HM. Lysine-Specific Demethylase 1 Mediates AKT Activity and Promotes Epithelial-to-Mesenchymal Transition in PIK3CA-Mutant Colorectal Cancer. Mol Cancer Res 2019; 18:264-277. [PMID: 31704733 DOI: 10.1158/1541-7786.mcr-19-0748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine-specific demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer and enhances cell migration. In this study, we determine that LSD1 expression is significantly elevated in patients with colorectal cancer with mutation of the catalytic subunit of PI3K, PIK3CA, compared with patients with colorectal cancer with WT PIK3CA. LSD1 enhances activation of the AKT kinase in colorectal cancer cells through a noncatalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. In addition, growth of PIK3CA-mutant colorectal cancer cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall, we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA-mutant cells. IMPLICATIONS: Our data support the hypothesis that inhibitors targeting the CoREST complex may be clinically effective in patients with colorectal cancer harboring PIK3CA mutations.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Sudha S Savant
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Ning Ding
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Xiaoyu Lu
- Center for Computational Biology and Bioinformatics, Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biohealth Informatics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Helai P Mohammad
- Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Sha Cao
- Department of Biohealth Informatics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Jay H Kalin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
50
|
Yu Y, Fang L, Wang S, Li Y, Guo Y, Sun YP. Amphiregulin promotes trophoblast invasion and increases MMP9/TIMP1 ratio through ERK1/2 and Akt signal pathways. Life Sci 2019; 236:116899. [DOI: 10.1016/j.lfs.2019.116899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|