1
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Jones GD, Ellisdon AM. Understanding P-Rex regulation: structural breakthroughs and emerging perspectives. Biochem Soc Trans 2024; 52:1849-1860. [PMID: 39023851 PMCID: PMC11668296 DOI: 10.1042/bst20231546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gβγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.
Collapse
Affiliation(s)
- Gareth D. Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Andrew M. Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
3
|
Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, Wu S, Lu X. Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: dependent on p53 status. J Exp Clin Cancer Res 2024; 43:237. [PMID: 39164746 PMCID: PMC11337850 DOI: 10.1186/s13046-024-03161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
- Center of Gallstone Disease, Shanghai East Hospital & Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery, Ward 2, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China.
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
4
|
Jacobson JC, Qiao J, Cochran ED, McCreery S, Chung DH. Migration, invasion, and metastasis are mediated by P-Rex1 in neuroblastoma. Front Oncol 2024; 14:1336031. [PMID: 38884093 PMCID: PMC11176429 DOI: 10.3389/fonc.2024.1336031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Neuroblastoma accounts for approximately 15% of pediatric cancer-related deaths despite intensive multimodal therapy. This is due, in part, to high rates of metastatic disease at diagnosis and disease relapse. A better understanding of tumor biology of aggressive, pro-metastatic phenotypes is necessary to develop novel, more effective therapeutics against neuroblastoma. Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) has been found to stimulate migration, invasion, and metastasis in several adult malignancies. However, its role in neuroblastoma is currently unknown. In the present study, we found that P-Rex1 is upregulated in pro-metastatic murine models of neuroblastoma, as well as human neuroblastoma metastases. Correspondingly, silencing of P-Rex1 was associated with decreased migration and invasion in vitro. This was associated with decreased AKT-mTOR and ERK2 activity, dysregulation of Rac, and diminished secretion of matrix metalloproteinases. Furthermore, increased P-Rex1 expression was associated with inferior relapse-free and overall survival via tissue microarray and Kaplan-Meier survival analysis of a publicly available clinical database. Together, these findings suggest that P-Rex1 may be a novel therapeutic target and potential prognostic factor in neuroblastoma.
Collapse
Affiliation(s)
- Jillian C Jacobson
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Jingbo Qiao
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Elizabeth D Cochran
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Sullivan McCreery
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| | - Dai H Chung
- Division of Pediatric Surgery, Department of Surgery, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, United States
| |
Collapse
|
5
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Pang WG, Ye M, Chen JR, Zhang L, Wang Z. Data mining-based identification of epigenetic signatures with discrimination potential of lung adenocarcinoma and squamous cell carcinoma. Mol Biol Rep 2024; 51:255. [PMID: 38302782 DOI: 10.1007/s11033-024-09216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Mounting evidence suggests that lung adenocarcinoma (LAC) and lung squamous cell carcinoma (LSC) have different biological behaviors and therapeutic regimens in clinical practice. However, limited improvements in molecular differential diagnosis of the two entities have been achieved in recent decades. We aimed to find novel markers that could define non-small cell lung cancer (NSCLC) subtypes. METHODS We first explored publically available databases to search for DNA methylation signatures that enable a precise discrimination of LAC and LSC. Next-generation sequencing (NGS) was then used to analyze the methylation status and sites of candidate genes in LAC/LSC tissue samples, and a quantitative methylation-sensitive PCR (qMS-PCR) assay was conducted to test the performance of the selected maker in tissue samples and bronchoalveolar lavage fluid (BALF) specimens. RESULTS We screened 19 top-ranked methylation loci that are differentially methylated between LAC and LSC. Among these hits, 6 methylation sites are enriched within the PREX1 gene promoter, thus becoming our focus. NGS analysis confirmed markedly higher PREX1 methylation levels in LAC than in LSC and revealed the right sites for detection of PREX1 methylation. Furthermore, PREX1 methylation analysis in lung cancer tissue samples defined 9 of 11 pathologically proven LACs, as well as 12 of 14 LSCs. In addition, ~ 80% LAC BALF samples showed methylated PREX1 compared to substantially lower test positivity (0-9%) of it in LSC and other lung conditions (P < 0.01). CONCLUSION Our pilot study identified a unique epigenetic signature that could effectively distinguish LAC from LSC in various lung samples. It may enhance our in-depth understanding of the biology of lung cancer and pave the way for better accurate diagnosis and treatment stratification in the future.
Collapse
Affiliation(s)
- Wen-Guang Pang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Min Ye
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jia-Rong Chen
- Department of Oncology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Liang Zhang
- Translational Medicine Center, Maternal and Child Health Research Institute, Guangdong Women and Children Hospital, 521 Xingnan Road, Guangzhou, 511400, China.
| | - Zheng Wang
- Department of Thoracic Surgery, The 2nd Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, 518020, China.
| |
Collapse
|
7
|
Li J, Yao J, Qi L. HER2 low expression breast cancer subtyping and their correlation with prognosis and immune landscape based on the histone modification related genes. Sci Rep 2023; 13:21753. [PMID: 38066224 PMCID: PMC10709565 DOI: 10.1038/s41598-023-49010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) plays an important role in diagnosis and treatment of breast cancer (BRCA). The histone modification has been found to be related to the progression of cancer. This study aimed to probe the low HER2 expression BRCA heterogeneity by histone modification genes. The BRCA data and cell lines were collected from The Cancer Genome Atlas database. Weighted gene co-expression network analysis and non-negative matrix factorization clustering were jointly applied to obtain BRCA clusters. The expression of hub histone modification gene was detected using western blot assay. The gene ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal functional information. The overall survival analysis was performed using survival and survminer packages, and the immune landscape was mainly analyzed using CIBERSORT software. Totally 43 histone modification genes correlated with survival of BRCA patients with HER2 low expression were screened. Based on these 43 histone modification genes, the BRCA samples were classified into cluster1, cluster2 and cluster3. Histone modification gene NFKBIZ exhibited high expression, while RAD51 demonstrated low expression in low HER2 expression BRCA cell. Cluster1 exhibited the best prognosis, while cluster3 had the worse outcomes. Tumor mutational burden (TMB) was remarkably increased in cluster3 group compared to cluster1 and cluster2. Moreover, the relative proportion of 16 immune cell infiltration and 8 immune checkpoint expression were remarkably differential among cluster1, cluster2 and cluster3, and the drug sensitivity exhibited difference among cluster1, cluster2 and cluster3 in BRCA patients with low HER2 expression. This study identified three HER2 low expression BRCA clusters with different characteristics based on histone modification genes. The TMB, immune cell infiltration, immune checkpoints and drug sensitivity were different among the three clusters.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgical Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Jingchun Yao
- Department of Head and Neck, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Xinghualing District, Taiyuan, 030013, Shanxi Province, People's Republic of China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan, Huawei South Road, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
8
|
The pseudokinase NRBP1 activates Rac1/Cdc42 via P-Rex1 to drive oncogenic signalling in triple-negative breast cancer. Oncogene 2023; 42:833-847. [PMID: 36693952 PMCID: PMC10005955 DOI: 10.1038/s41388-023-02594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
We have determined that expression of the pseudokinase NRBP1 positively associates with poor prognosis in triple negative breast cancer (TNBC) and is required for efficient migration, invasion and proliferation of TNBC cells in culture as well as growth of TNBC orthotopic xenografts and experimental metastasis. Application of BioID/MS profiling identified P-Rex1, a known guanine nucleotide exchange factor for Rac1, as a NRBP1 binding partner. Importantly, NRBP1 overexpression enhanced levels of GTP-bound Rac1 and Cdc42 in a P-Rex1-dependent manner, while NRBP1 knockdown reduced their activation. In addition, NRBP1 associated with P-Rex1, Rac1 and Cdc42, suggesting a scaffolding function for this pseudokinase. NRBP1-mediated promotion of cell migration and invasion was P-Rex1-dependent, while constitutively-active Rac1 rescued the effect of NRBP1 knockdown on cell proliferation and invasion. Generation of reactive oxygen species via a NRBP1/P-Rex1 pathway was implicated in these oncogenic roles of NRBP1. Overall, these findings define a new function for NRBP1 and a novel oncogenic signalling pathway in TNBC that may be amenable to therapeutic intervention.
Collapse
|
9
|
Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J, Liu C. Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J 2023; 21:1606-1620. [PMID: 36874158 PMCID: PMC9975252 DOI: 10.1016/j.csbj.2023.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.
Collapse
Key Words
- 1H–13C HMBC, 1H–13C Heteronuclear Multiple Bond Correlation Spectroscopy
- 1H–13C HSQC, 1H–13C Heteronuclear Single Quantum Coherence Spectroscopy
- 1H–1H COSY, 1H–1H Correlation Spectroscopy
- 1H–1H TOCSY, 1H–1H Total Correlation Spectroscopy
- ADP, Adenosine diphosphate
- AMP, Adenosine monophosphate
- ATP, Adenosine triphosphate
- Ace, Acetate
- Ach, Acetylcholine
- Ala, Alanine
- CRC, Colorectal Cancer
- Caco-2, Human Colon Adenocarcinoma
- Cho, Choline
- CoA, Coenzyme A
- Cre, Creatine
- DCFH-DA, Dichloro-Dihydro-Fluorescein Diacetate
- DEGs, Differentially Expressed Genes
- DMEM, Dulbecco's Modified Eagle Medium
- DMG, Dimethylglycine
- DNA, Deoxyribonucleic Acid
- EP, Eppendorf
- FA, Formate
- FDR, False Discovery Rate
- Fru, Fructose
- Fum, Fumaric acid
- GLS, Glutaminase
- GSEA, Gene Set Enrichment Analysis
- GSH, Glutathione
- Gal-1-P, Galactose-1-phosphate
- Glc, Glucose
- Gln, Glutamine
- Glu, Glutamate
- Gly, Glycine
- HCT116, Human Colorectal Carcinoma Cell Line
- HEK, Human Embryonic Kidney cells
- HT29, Human Colorectal Adenocarcinoma Cell Line with Epithelial Morphology
- His, Histidine
- Ile, Isoleucine
- J-Res, J-resolved Spectroscopy
- LDH, Lactate Dehydrogenase
- Lac, Lactate
- Leu, Leucine
- Lys, Lysine
- MCF-7, Human Breast Cancer Cell Line with Estrogen
- MCT, Monocarboxylate Transporters
- Met, Methionine
- MetS, Metabolic Syndrome
- Mitochondrial function
- NAD+, Nicotinamide adenine dinucleotide
- NAG, N-Acetyl-L-Glutamine
- NMR, Nuclear Magnetic Resonance
- NMR-based Metabolomics
- NOESY, Nuclear Overhauser Effect Spectroscopy
- O-PLS-DA, Orthogonal Projection to the Latent Structures Discriminant Analysis
- PA, Pantothenate
- PC, Phosphocholine
- PCA, Principal Component Analysis
- PDC, Pyruvate Decarboxylase
- PDK, Pyruvate Dehydrogenase Kinase
- PKC, Protein Kinase C
- PPP, Pentose Phosphate Pathway
- Phe, Phenylalanine
- Pyr, Pyruvate
- RNA, Ribonucleic Acid
- ROS, Reactive Oxygen Species
- RPKM, Reads per Kilobase of Transcript per Million Reads Mapped
- Reactive oxygen species
- SCFAs, Short Chain Fatty Acids
- SLC, Solute-Carrier Genes
- Short-chain fatty acids
- Suc, Succinate
- T2DM, Type 2 Diabetes
- TCA, Tricarboxylic Acid
- Tau, Taurine
- Thr, Threonine
- Transcriptomics
- Tyr, Tyrosine
- UDP, Uridine 5′-diphosphate
- UDP-GLC, UDP Glucose
- UDPG, UDP Glucuronate
- UDPGs, UDP Glucose and UDP Glucuronate
- UMP, Uridine 5′-monophosphate
- Val, Valine
- WST-1, Water-Soluble Tetrazolium salts
- dDNP, dissolution Dynamic Nuclear Polarization
- qRT-PCR, Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction
- α-KIV, α-Keto-isovalerate
- α-KMV, α-keto-β-methyl-valerate
Collapse
Affiliation(s)
- Chongyang Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjun Deng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan-zhou Xu
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chen Zhou
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junfei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Qinjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Jing Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
10
|
COQ10B Knockdown Modulates Cell Proliferation, Invasion, Migration, and Apoptosis in Esophageal Squamous Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6247824. [PMID: 35911165 PMCID: PMC9334081 DOI: 10.1155/2022/6247824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Objective Esophageal squamous-cell carcinoma (ESCC) is an aggressive malignant tumor, accounting for more than 90% of esophageal cancers. However, treatments such as surgical resection, radiotherapy, and chemotherapy are unable to achieve ideal clinical outcomes. The purpose of this study was to explore the effects of COQ10B on proliferation, apoptosis, migration, and invasion of esophageal squamous-cell carcinoma (ESCC) cells. Methods Quantitative real-time PCR (qRT-PCR) was used to detect the expression of COQ10B in ESCC and normal tissues and in ESCC cell lines (KYSE-150 and TE-1). MTT assay and flow cytometry were applied to investigate the effects of COQ10B shRNA lentivirus (LV-shCOQ10B) on ESCC cell proliferation and apoptosis, respectively. The effect of COQ10B silencing on ESCC cell migration and invasion was determined by wound healing assay and transwell invasion assay, respectively. Results The expression of COQ10B mRNA in ESCC tissues was higher than that in surrounding tissues. The decreased COQ10B level in KYSE-150 and TE-1 cells by LV-shCOQ10B could inhibit cell proliferation, promote cell apoptosis, and reduce the ability of invasion and migration (all P < 0.05). Conclusion COQ10B was highly expressed in human ESCC tissues. COQ10B silencing contributed to the inhibition of proliferation, invasion, and migration of ESCC cells and the promotion of cell apoptosis, suggesting COQ10B may be a potential molecular target for the diagnosis and treatment of ESCC.
Collapse
|
11
|
Li Z, Wu K, Zou Y, Gong W, Wang P, Wang H. PREX1 depletion ameliorates high-fat diet-induced non-alcoholic fatty liver disease in mice and mitigates palmitic acid-induced hepatocellular injury via suppressing the NF-κB signaling pathway. Toxicol Appl Pharmacol 2022; 448:116074. [PMID: 35605788 DOI: 10.1016/j.taap.2022.116074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide. Oxidative stress has been considered a key factor in the pathogenesis of NAFLD. Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (PREX1), a guanine nucleotide exchange factor for Rac, has been associated with inflammation and oxidative stress. This study aimed to investigate the biological function of PREX1 in the progression of NAFLD. Male C57BL/6 mice were fed a high-fat diet for 12 weeks to induce NAFLD in vivo. Adeno-associated virus type 8-mediated liver-specific PREX1 depletion was employed to investigate the role of PREX1 in the progression of high-fat diet-induced NAFLD. Murine hepatocyte cell line AML-12 was stimulated with palmitic acid for 24 h to induce steatosis in vitro. PREX1 depletion was carried out by transfection with PREX1 small interfering RNA. Results showed that PREX1 depletion exerted protective effects against lipid accumulation, oxidative stress and inflammation and inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. Subsequently, NF-κB inhibitor BAY11-7082 was applied to investigate the role of the NF-κB signaling pathway in the protective effect of PREX1 inhibition against NAFLD. We confirmed that PREX1 inhibition mitigated palmitic acid-induced hepatocellular inflammation mainly via the NF-κB signaling pathway and lipid accumulation and oxidative stress at least partly via the NF-κB signaling pathway. This study highlights the biological function of PREX1 in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kanglin Wu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi Zou
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Wei Gong
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Hong Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Hosseinzadeh A, Merikhian P, Naseri N, Eisavand MR, Farahmand L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int 2022; 22:110. [PMID: 35248049 PMCID: PMC8897942 DOI: 10.1186/s12935-022-02523-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Although resistance is its major obstacle in cancer therapy, trastuzumab is the most successful agent in treating epidermal growth factor receptor 2 positive (HER2 +) breast cancer (BC). Some patients show resistance to trastuzumab, and scientists want to circumvent this problem. This review elaborately discusses possible resistance mechanisms to trastuzumab and introduces mucin 1 (MUC1) as a potential target efficient for overcoming such resistance. MUC1 belongs to the mucin family, playing the oncogenic/mitogenic roles in cancer cells and interacting with several other oncogenic receptors and pathways, such as HER2, β-catenin, NF-κB, and estrogen receptor (ERα). Besides, it has been established that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates the development of resistance to trastuzumab and that silencing MUC1-C proto-oncogene is associated with increased sensitivity of HER2+ cells to trastuzumab-induced growth inhibitors. We mention why targeting MUC1 can be useful in overcoming trastuzumab resistance in cancer therapy.
Collapse
|
13
|
Barreno A, Orgaz JL. Cytoskeletal Remodelling as an Achilles’ Heel for Therapy Resistance in Melanoma. Cells 2022; 11:cells11030518. [PMID: 35159327 PMCID: PMC8834185 DOI: 10.3390/cells11030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Melanoma is an aggressive skin cancer with a poor prognosis when diagnosed late. MAPK-targeted therapies and immune checkpoint blockers benefit a subset of melanoma patients; however, acquired therapy resistance inevitably arises within a year. In addition, some patients display intrinsic (primary) resistance and never respond to therapy. There is mounting evidence that resistant cells adapt to therapy through the rewiring of cytoskeleton regulators, leading to a profound remodelling of the actomyosin cytoskeleton. Importantly, this renders therapy-resistant cells highly dependent on cytoskeletal signalling pathways for sustaining their survival under drug pressure, which becomes a vulnerability that can be exploited therapeutically. Here, we discuss the current knowledge on cytoskeletal pathways involved in mainly targeted therapy resistance and future avenues, as well as potential clinical interventions.
Collapse
|
14
|
Zeng RJ, Xie WJ, Zheng CW, Chen WX, Wang SM, Li Z, Cheng CB, Zou HY, Xu LY, Li EM. Role of Rho guanine nucleotide exchange factors in non-small cell lung cancer. Bioengineered 2021; 12:11169-11187. [PMID: 34783629 PMCID: PMC8810164 DOI: 10.1080/21655979.2021.2006519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Conventionally, Rho guanine nucleotide exchange factors (GEFs) are known activators of Rho guanosine triphosphatases (GTPases) that promote tumorigenesis. However, the role of Rho GEFs in non-small cell lung cancer (NSCLC) remains largely unknown. Through the screening of 81 Rho GEFs for their expression profiles and correlations with survival, four of them were identified with strong significance for predicting the prognosis of NSCLC patients. The four Rho GEFs, namely ABR, PREX1, DOCK2 and DOCK4, were downregulated in NSCLC tissues compared to normal tissues. The downregulation of ABR, PREX1, DOCK2 and DOCK4, which can be attributfed to promoter methylation, is correlated with poor prognosis. The underexpression of the four key Rho GEFs might be related to the upregulation of MYC signaling and DNA repair pathways, leading to carcinogenesis and poor prognosis. Moreover, overexpression of ABR was shown to have a tumor-suppressive effect in PC9 and H1703 cells. In conclusion, the data reveal the unprecedented role of ABR as tumor suppressor in NSCLC. The previously unnoticed functions of Rho GEFs in NSCLC will inspire researchers to investigate the distinct roles of Rho GEFs in cancers, in order to provide critical strategies in clinical practice.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, GuangzhouChina
| | - Wei-Jie Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Si-Meng Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Chi-Bin Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- Institute of Oncologic Pathology, Shantou University Medical College, ShantouChina
- CONTACT Li-Yan Xu Institute of Oncologic Pathology, Shantou University Medical College, Shantou515041, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, ShantouChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, ShantouChina
- En-Min Li The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Shantou University Medical College, Shantou515041, China
| |
Collapse
|
15
|
Chen W, Dai G, Qian Y, Wen L, He X, Liu H, Gao Y, Tang X, Dong B. PIK3CA mutation affects the proliferation of colorectal cancer cells through the PI3K-MEK/PDK1-GPT2 pathway. Oncol Rep 2021; 47:11. [PMID: 34751411 DOI: 10.3892/or.2021.8222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol‑3‑kinase catalytic subunit α (PIK3CA) gene is mutated in numerous human cancers. This mutation promotes the proliferation of tumor cells; however, the underlying mechanism is still not clear. In the present study, it was revealed that the PIK3CA mutation in colorectal cancer (CRC) HCT116 (MUT) rendered the cells more dependent on glutamine by regulating the glutamic‑pyruvate transaminase 2 (GPT2). The dependence of glutamine increased the proliferation of cells in a normal environment and resistance to a suboptimal environment. Further study revealed that the mutated PIK3CA could regulate GPT2 expression not only through signal transduction molecule 3‑phosphoinositide‑dependent kinase (PDK1) but also through mitogen‑activated protein kinase (MEK) molecules. In HCT116 cells, MEK inhibitor treatment could reduce the expression of GPT2 signaling molecules, thereby inhibiting the proliferation of CRC cells. A new signal transduction pathway, the PI3K/MEK/GPT2 pathway was identified. Based on these findings, MEK and PDK1 inhibitors were combined to inhibit the aforementioned pathway. It was revealed that the combined application of MEK and PDK1 inhibitors could promisingly inhibit the proliferation of MUT compared with the application of PI3K inhibitors, PDK1 inhibitors, or MEK inhibitors alone. In vivo, MEK inhibitors alone and combined inhibitors had stronger tumor‑suppressing effects. There was no significant difference between the PDK1‑inhibitor group and normal group in vivo. Thus, these results indicated that mutated PI3K affected GPT2 mediated by the MEK/PDK1 dual pathway, and that the PI3K/MEK/GPT2 pathway was more important in vivo. Inhibiting MEK and PDK1 concurrently could effectively inhibit the proliferation of CRC cells. Targeting the MEK and PDK1 signaling pathway may provide a novel strategy for the treatment of PIK3CA‑mutated CRC.
Collapse
Affiliation(s)
- Wenli Chen
- Department of Biochemistry, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Guangli Dai
- Department of Obstetrics and Gynecology, Wuhu Traditional Chinese Medicine Hospital, Wuhu, Anhui 241003, P.R. China
| | - Yike Qian
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lian Wen
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xueqing He
- Department of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hui Liu
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yunxing Gao
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Xingli Tang
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Bohan Dong
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
16
|
Liu Z, Liu Y, Qian L, Jiang S, Gai X, Ye S, Chen Y, Wang X, Zhai L, Xu J, Pu C, Li J, He F, Huang M, Tan M. A proteomic and phosphoproteomic landscape of KRAS mutant cancers identifies combination therapies. Mol Cell 2021; 81:4076-4090.e8. [PMID: 34375582 DOI: 10.1016/j.molcel.2021.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lili Qian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiameng Gai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuehong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Congying Pu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
17
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
18
|
Alsherbiny MA, Bhuyan DJ, Low MN, Chang D, Li CG. Synergistic Interactions of Cannabidiol with Chemotherapeutic Drugs in MCF7 Cells: Mode of Interaction and Proteomics Analysis of Mechanisms. Int J Mol Sci 2021; 22:ijms221810103. [PMID: 34576262 PMCID: PMC8469885 DOI: 10.3390/ijms221810103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has recently emerged as a potential cytotoxic agent in addition to its ameliorative activity in chemotherapy-associated side effects. In this work, the potential interactions of CBD with docetaxel (DOC), doxorubicin (DOX), paclitaxel (PTX), vinorelbine (VIN), and 7-ethyl-10-hydroxycamptothecin (SN-38) were explored in MCF7 breast adenocarcinoma cells using different synergy quantification models. The apoptotic profiles of MCF7 cells after the treatments were assessed via flow cytometry. The molecular mechanisms of CBD and the most promising combinations were investigated via label-free quantification proteomics. A strong synergy was observed across all synergy models at different molar ratios of CBD in combination with SN-38 and VIN. Intriguingly, synergy was observed for CBD with all chemotherapeutic drugs at a molar ratio of 636:1 in almost all synergy models. However, discording synergy trends warranted the validation of the selected combinations against different models. Enhanced apoptosis was observed for all synergistic CBD combinations compared to monotherapies or negative controls. A shotgun proteomics study highlighted 121 dysregulated proteins in CBD-treated MCF7 cells compared to the negative controls. We reported the inhibition of topoisomerase II β and α, cullin 1, V-type proton ATPase, and CDK-6 in CBD-treated MCF7 cells for the first time as additional cytotoxic mechanisms of CBD, alongside sabotaged energy production and reduced mitochondrial translation. We observed 91 significantly dysregulated proteins in MCF7 cells treated with the synergistic combination of CBD with SN-38 (CSN-38), compared to the monotherapies. Regulation of telomerase, cell cycle, topoisomerase I, EGFR1, protein metabolism, TP53 regulation of DNA repair, death receptor signalling, and RHO GTPase signalling pathways contributed to the proteome-wide synergistic molecular mechanisms of CSN-38. In conclusion, we identified significant synergistic interactions between CBD and the five important chemotherapeutic drugs and the key molecular pathways of CBD and its synergistic combination with SN-38 in MCF7 cells. Further in vivo and clinical studies are warranted to evaluate the implementation of CBD-based synergistic adjuvant therapies for breast cancer.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia; (D.J.B.); (M.N.L.); (D.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (C.G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia; (D.J.B.); (M.N.L.); (D.C.)
| | - Mitchell N. Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia; (D.J.B.); (M.N.L.); (D.C.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia; (D.J.B.); (M.N.L.); (D.C.)
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2747, Australia; (D.J.B.); (M.N.L.); (D.C.)
- Correspondence: (M.A.A.); (C.G.L.)
| |
Collapse
|
19
|
The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22147682. [PMID: 34299300 PMCID: PMC8307237 DOI: 10.3390/ijms22147682] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.
Collapse
|
20
|
Funakoshi-Tago M, Tago K, Li C, Hokimoto S, Tamura H. Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep 2020; 10:19588. [PMID: 33177647 PMCID: PMC7659352 DOI: 10.1038/s41598-020-76445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of coffee has been suggested to effectively enhance the therapeutic effects of tamoxifen against breast cancer; however, the underlying molecular mechanisms remain unclear. We herein attempted to clarify how coffee decoction exerts anti-cancer effects in cooperation with tamoxifen using the estrogen receptor α (ERα)-positive breast cancer cell line, MCF-7. The results obtained showed that coffee decoction down-regulated the expression of ERα, which was attributed to caffeine inhibiting its transcription. Coffee decoction cooperated with tamoxifen to induce cell-cycle arrest and apoptotic cell death, which may have been mediated by decreases in cyclin D1 expression and the activation of p53 tumor suppressor. The inclusion of caffeine in coffee decoction was essential, but not sufficient, to induce cell-cycle arrest and apoptotic cell death, suggesting the requirement of unknown compound(s) in coffee decoction to decrease cyclin D1 expression and activate apoptotic signaling cascades including p53. The activation of p53 through the cooperative effects of these unidentified component(s), caffeine, and tamoxifen appeared to be due to the suppression of the ERK and Akt pathways. Although the mechanisms by which the suppression of these pathways induces p53-mediated apoptotic cell death remain unclear, the combination of decaffeinated coffee, caffeine, and tamoxifen also caused cell-cycle arrest and apoptotic cell death, suggesting that unknown compound(s) present in decaffeinated coffee cooperate with caffeine and tamoxifen.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Chin Li
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shingo Hokimoto
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
21
|
Srijakotre N, Liu HJ, Nobis M, Man J, Yip HYK, Papa A, Abud HE, Anderson KI, Welch HCE, Tiganis T, Timpson P, McLean CA, Ooms LM, Mitchell CA. PtdIns(3,4,5)P 3-dependent Rac exchanger 1 (P-Rex1) promotes mammary tumor initiation and metastasis. Proc Natl Acad Sci U S A 2020; 117:28056-28067. [PMID: 33097662 PMCID: PMC7668035 DOI: 10.1073/pnas.2006445117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function. Analysis of PREX1 mRNA expression in breast cancer cDNA arrays and a METABRIC cohort revealed that higher PREX1 mRNA in ER+ve/luminal tumors was associated with poor outcome in luminal B cancers. Prex1 deletion in MMTV-neu or MMTV-PyMT mice reduced Rac1 activation in vivo and improved survival. High level MMTV-driven transgenic PREX1 expression resulted in apicobasal polarity defects and increased mammary epithelial cell proliferation associated with hyperplasia and development of de novo mammary tumors. MMTV-PREX1 expression in MMTV-neu mice increased tumor initiation and enhanced metastasis in vivo, but had no effect on primary tumor growth. Pharmacological inhibition of Rac1 or MEK1/2 reduced P-Rex1-driven tumoroid formation and cell invasion. Therefore, P-Rex1 can act as an oncogene and cooperate with HER2/neu to enhance breast cancer initiation and metastasis, despite having no effect on primary tumor growth.
Collapse
Affiliation(s)
- Nuthasuda Srijakotre
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Heng-Jia Liu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Max Nobis
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Joey Man
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Hon Yan Kelvin Yip
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helen E Abud
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kurt I Anderson
- Tumour Cell Migration, Cancer Research UK Beatson Institute, G611BD Glasgow, United Kingdom
- Crick Advanced Light Microscopy, Francis Crick Institute, NW11AT London, United Kingdom
| | - Heidi C E Welch
- Signalling Programme, Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Tony Tiganis
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Faculty of Medicine, St Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Darlinghurst, NSW 2010, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3181, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
22
|
Kramer MM, Mühlhäuser WWD, Weber W, Radziwill G. Multichromatic Control of Signaling Pathways in Mammalian Cells. Adv Biol (Weinh) 2020; 5:e2000196. [PMID: 33045139 DOI: 10.1002/adbi.202000196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/16/2020] [Indexed: 01/13/2023]
Abstract
The precise control of signaling proteins is a prerequisite to decipher the complexity of the signaling network and to reveal and to study pathways involved in regulating cellular metabolism and gene expression. Optogenetic approaches play an emerging role as they enable the spatiotemporal control of signaling processes. Herein, a multichromatic system is developed by combining the blue light cryptochrome 2 system and the red/far-red light phytochrome B system. The use of three wavelengths allows the orthogonal control of the RAF/ERK and the AKT signaling pathway. Continuous exposure of cells to blue light leads to activation of AKT while simultaneous pulses of red and far-red light enable the modulation of ERK signaling in cells with constantly active AKT signaling. The optimized, orthogonal multichromatic system presented here is a valuable tool to better understand the fine grained and intricate processes involved in cell fate decisions.
Collapse
Affiliation(s)
- Markus M Kramer
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, SGBM-Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Wignand W D Mühlhäuser
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, SGBM-Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, 79104, Germany
| | - Gerald Radziwill
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| |
Collapse
|
23
|
Cai Y, Zheng Q, Yao DJ. Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 is a diagnostic and prognostic biomarker for hepatocellular carcinoma. World J Clin Cases 2020; 8:3774-3785. [PMID: 32953853 PMCID: PMC7479560 DOI: 10.12998/wjcc.v8.i17.3774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 (P-Rex1) was reported to be a risk factor in several cancers, including breast cancer, lung cancer, and melanoma, but its expression and role in hepatocellular carcinoma (HCC) have not yet been fully studied.
AIM To explore the expression of P-Rex1 in HCC, and further evaluate its potential application in the diagnosis and prognosis of HCC, especially in hepatitis B virus (HBV)-related patients.
METHODS P-Rex1 expression in HCC was evaluated by real-time-quantitative polymerase chain reaction. The expression of P-Rex1 was subjected to correlation analysis with clinical features, such as lymph node invasion, distant metastasis, HBV infection, patient's age and gender. Receiver operating characteristic analysis was used to examine the potential role of P-Rex1 as a diagnostic biomarker in HCC. Kaplan-Meier analysis was used to determine the association between P-Rex1 expression and overall survival, progression-free survival and relapse-free survival. Bioinformatic analysis was used to validate the clinical findings.
RESULTS P-Rex1 expression was significantly increased in HCC tumors than adjacent tissues. The expression of P-Rex1 was higher in HCC patients with lymph node invasion, distant metastasis, HBV infection and positive alpha-fetoprotein, respectively. The receiver operating characteristic analysis showed that P-Rex1 was a diagnostic biomarker with a higher area under the curve value, especially in patients with HBV infection. Survival analysis showed that patients with higher P-Rex1 expression had a favorable survival rate, even in early-stage patients.
CONCLUSION P-Rex1 expression was highly increased in HCC, and the expression level of P-Rex1 was positively correlated with tumor progression. P-Rex1 has a higher efficiency in the diagnosis of HBV-related HCC, and could also be used as a favorable prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| | - De-Jiao Yao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
24
|
Zhang M, Zhang L, Li Y, Sun F, Fang Y, Zhang R, Wu J, Zhou G, Song H, Xue L, Han B, Zheng C. Exome sequencing identifies somatic mutations in novel driver genes in non-small cell lung cancer. Aging (Albany NY) 2020; 12:13701-13715. [PMID: 32629428 PMCID: PMC7377869 DOI: 10.18632/aging.103500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide and accounts for more than one-third of all newly diagnosed cancer cases in China. Therefore, it is of great clinical significance to explore new driver gene mutations in non-small-cell lung cancer (NSCLC). Using an initial bioinformatic analysis, we identified somatic gene mutations in 13 patients with NSCLC and confirmed these mutations by targeted sequencing in an extended validation group of 88 patients. Recurrent mutations were detected in UNC5D (7.9%), PREX1 (5.0%), HECW1 (4.0%), DACH1 (2.0%), and GPC5 (2.0%). A functional study was also performed in UNC5D mutants. Mutations in UNC5D promoted tumorigenesis by abolishing the tumor suppressor function of the encoded protein. Additionally, in ten patients with lung squamous cell carcinoma, we identified mutations in KEAP1/NFE2L2 that influenced the expression of target genes in vivo and in vitro. Overall, the results of our study expanded the known spectrum of driver mutations involved in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Manman Zhang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lele Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijia Zhang
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wu
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaidong Song
- Clinical Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqiong Xue
- Department of Oncology, Dongfang Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Zheng
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
26
|
Shao Q, Chen ZM. Feedback regulation between phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 and transforming growth factor β1 and prognostic value in gastric cancer. World J Gastroenterol 2020; 26:21-34. [PMID: 31933512 PMCID: PMC6952301 DOI: 10.3748/wjg.v26.i1.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 (PREX1) was reported to be overexpressed in some cancers and involved in cancer development, but its expression and significance in gastric cancer remain unclear.
AIM To evaluate the expression of PREX1 in gastric cancer and its significance in the development of gastric cancer, especially to evaluate the potential mechanism of PREX1 in gastric cancer.
METHODS Bioinformatic analysis was performed in order to examine the expression of PREX1 in gastric cancer. The relationship between the survival rate of gastric cancer patients and PREX1 expression was assessed by Kaplan Meier portal. The Gene Set Enrichment Analysis and the correlation between PREX1 and transforming growth factor (TGF) β1 pathway-related mediators were evaluated by cBioPortal for Cancer Genomics. Western blotting and reverse transcriptase polymerase chain reaction assay were used to test the role of TGFβ1 on the expression of PREX1. Western blotting and dual-luciferase reporter system was used to evaluate the effect of PREX1 on the activation of TGFβ1 pathway. Wound healing and Transwell assay were used to assess the effect of PREX1 on the metastasis activity of gastric cancer cells.
RESULTS PREX1 was overexpressed in the gastric tumors, and the expression levels were positively associated with the development of gastric cancer. Also, the high expression of PREX1 revealed poor prognosis, especially for those advanced and specific intestinal gastric cancer patients. PREX1 was closely involved in the positive regulation of cell adhesion and positively correlated with TGFβ1-related mediators. Furthermore, TGFβ1 could induce the expression of PREX1 at both the protein and mRNA level. Also, PREX1 could activate the TGFβ1 pathway. The induced PREX1 could increase the migration and invasion activity of gastric cancer cells.
CONCLUSION PREX1 is overexpressed in gastric cancer, and the high level of PREX1 predicts poor prognosis. PREX1 is closely associated with TGFβ signaling and promotes the metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Qi Shao
- Department of Chemotherapy/Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhi-Ming Chen
- Department of Chemotherapy/Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
27
|
Zhao X, Shen P, Li H, Yang Y, Guo J, Chen S, Ma Y, Sheng J, Shen S, Liu G, Fang X. Carbonic Anhydrase 12 Protects Endplate Cartilage From Degeneration Regulated by IGF-1/PI3K/CREB Signaling Pathway. Front Cell Dev Biol 2020; 8:595969. [PMID: 33178705 PMCID: PMC7596245 DOI: 10.3389/fcell.2020.595969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Lumbar intervertebral disc degeneration (IVDD) is the most common cause of low back pain (LBP). Among all the factors leading to IVDD, lumbar cartilage endplate (LCE) degeneration is considered a key factor. In the present study, we investigate the effect and regulation of carbonic anhydrase 12 (CA12) in LCE, which catalyzes hydration of CO2 and participates in a variety of biological processes, including acid-base balance and calcification. Our results show that CA12, downregulated in degenerated LCE, could maintain anabolism and prevent calcification in the endplate. Furthermore, CA12 is regulated by the IGF-1/IGF-1R/PI3K/CREB signaling pathway. When we overexpressed CA12 in LCE, the decreased anabolism induced by inflammatory cytokine could be rescued. In contrast, reducing CA12 expression, either with siRNA, PI3Kinhibitor, or CREB inhibitor, could downregulate anabolism and cause apoptosis and then calcification in LCE. The protective effects of IGF-1 are even diminished with low-expressed CA12. Similar results are also obtained in an ex vivo model. Consequently, our results reveal a novel pathway, IGF-1/IGF-1R/PI3K/CREB/CA12, that takes a protective role in LCE degeneration by maintaining anabolism and preventing calcification and apoptosis. This study proposes a novel molecular target, CA12, to delay LCE degeneration.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haidong Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Department of Spine Surgery, First People’s Hospital Affiliated to the Huzhou University Medical College, Huzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiandong Guo
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiamin Sheng
- The Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Shuying Shen,
| | - Gang Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- Gang Liu,
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Xiangqian Fang,
| |
Collapse
|
28
|
Ma Y, Yu J, Li Q, Su Q, Cao B. Addition of docosahexaenoic acid synergistically enhances the efficacy of apatinib for triple-negative breast cancer therapy. Biosci Biotechnol Biochem 2019; 84:743-756. [PMID: 31889475 DOI: 10.1080/09168451.2019.1709789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study aimed to investigate the antitumor and antiangiogenesis effects of apatinib in triple-negative breast cancer in vitro and also whether the combination of docosahexaenoic acid (DHA) and apatinib is more effective than apatinib monotherapy. The cell counting kit-8 assay was used to measure cell proliferation. Flow cytometry was utilized to determine the cell apoptosis rate. A wound healing assay was utilized to assess cell migration. Western blot analysis was carried out to determine the effects of apatinib and DHA on Bcl-2, BAX, cleaved caspase-3, caspase-3, phosphorylated protein kinase B (p-Akt), and Akt expression. DHA in combination with apatinib showed enhanced inhibitory effects on cell proliferation and migration compared with apatinib or DHA monotherapy. Meanwhile, DHA combined with apatinib strongly increased the cell apoptosis percentage. DHA was observed to enhance the antitumor and antiangiogenesis effects of apatinib via further downregulation of p-Akt expression.Abbreviations: FITC: fluorescein isothiocyanate; PI: propidium iodide.
Collapse
Affiliation(s)
- Yingjie Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Junxian Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China
| | - Qin Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qiang Su
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
29
|
Korkmaz G, Manber Z, Lopes R, Prekovic S, Schuurman K, Kim Y, Teunissen H, Flach K, Wit ED, Galli GG, Zwart W, Elkon R, Agami R. A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Res 2019; 47:9557-9572. [PMID: 31372638 PMCID: PMC6765117 DOI: 10.1093/nar/gkz675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023] Open
Abstract
Estrogen receptor α (ERα) is an enhancer activating transcription factor, a key driver of breast cancer and a main target for cancer therapy. ERα-mediated gene regulation requires proper chromatin-conformation to facilitate interactions between ERα-bound enhancers and their target promoters. A major determinant of chromatin structure is the CCCTC-binding factor (CTCF), that dimerizes and together with cohesin stabilizes chromatin loops and forms the boundaries of topologically associated domains. However, whether CTCF-binding elements (CBEs) are essential for ERα-driven cell proliferation is unknown. To address this question in a global manner, we implemented a CRISPR-based functional genetic screen targeting CBEs located in the vicinity of ERα-bound enhancers. We identified four functional CBEs and demonstrated the role of one of them in inducing chromatin conformation changes in favor of activation of PREX1, a key ERα target gene in breast cancer. Indeed, high PREX1 expression is a bona-fide marker of ERα-dependency in cell lines, and is associated with good outcome after anti-hormonal treatment. Altogether, our data show that distinct CTCF-mediated chromatin structures are required for ERα- driven breast cancer cell proliferation.
Collapse
Affiliation(s)
- Gozde Korkmaz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rui Lopes
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Yongsoo Kim
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Koen Flach
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Giorgio G Galli
- Disease area Oncology, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Ran Elkon
- Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Erasmus MC, Rotterdam University, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
30
|
McMackin MZ, Durbin-Johnson B, Napierala M, Napierala JS, Ruiz L, Napoli E, Perlman S, Giulivi C, Cortopassi GA. Potential biomarker identification for Friedreich's ataxia using overlapping gene expression patterns in patient cells and mouse dorsal root ganglion. PLoS One 2019; 14:e0223209. [PMID: 31665133 PMCID: PMC6821053 DOI: 10.1371/journal.pone.0223209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Friedreich's ataxia (FA) is a neurodegenerative disease with no approved therapy that is the result of frataxin deficiency. The identification of human FA blood biomarkers related to disease severity and neuro-pathomechanism could support clinical trials of drug efficacy. To try to identify human biomarkers of neuro-pathomechanistic relevance, we compared the overlapping gene expression changes of primary blood and skin cells of FA patients with changes in the Dorsal Root Ganglion (DRG) of the KIKO FA mouse model. As DRG is the primary site of neurodegeneration in FA, our goal was to identify which changes in blood and skin of FA patients provide a 'window' into the FA neuropathomechanism inside the nervous system. In addition, gene expression in frataxin-deficient neuroglial cells and FA mouse hearts were compared for a total of 5 data sets. The overlap of these changes strongly supports mitochondrial changes, apoptosis and alterations of selenium metabolism. Consistent biomarkers were observed, including three genes of mitochondrial stress (MTIF2, ENO2), apoptosis (DDIT3/CHOP), oxidative stress (PREX1), and selenometabolism (SEPW1). These results prompted our investigation of the GPX1 activity as a marker of selenium and oxidative stress, in which we observed a significant change in FA patients. We believe these lead biomarkers that could be assayed in FA patient blood as indicators of disease severity and progression, and also support the involvement of mitochondria, apoptosis and selenium in the neurodegenerative process.
Collapse
Affiliation(s)
- Marissa Z. McMackin
- Department of Molecular Biosciences, University of California, Davis, Davis, California, United States of America
| | - Blythe Durbin-Johnson
- Bioinformatics, University of California, Davis, Davis, California, United States of America
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Luis Ruiz
- Department of Molecular Biosciences, University of California, Davis, Davis, California, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, California, United States of America
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, California, United States of America
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
31
|
PREX1 drives spontaneous bone dissemination of ER+ breast cancer cells. Oncogene 2019; 39:1318-1334. [PMID: 31636389 PMCID: PMC7007387 DOI: 10.1038/s41388-019-1064-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
A significant proportion of breast cancer patients develop bone metastases, but the mechanisms regulating tumor cell dissemination from the primary site to the skeleton remain largely unknown. Using a novel model of spontaneous bone metastasis derived from human ER+ MCF7 cells, molecular profiling revealed increased PREX1 expression in a cell line established from bone-disseminated MCF7 cells (MCF7b), which were more migratory, invasive, and adhesive in vitro compared to parental MCF7 cells, and this phenotype was mediated by PREX1. MCF7b cells grew poorly in the primary tumor site when re-inoculated in vivo, suggesting these cells are primed to grow in the bone, and were enriched in skeletal sites of metastasis over soft tissue sites. Skeletal dissemination from the primary tumor was reversed with PREX1 knockdown, indicating that PREX1 is a key driver of spontaneous dissemination of tumor cells from the primary site to the bone marrow. In breast cancer patients, PREX1 levels are significantly increased in ER+ tumors and associated with invasive disease and distant metastasis. Together, these findings implicate PREX1 in spontaneous bone dissemination and provide a significant advance to the molecular mechanisms by which breast cancer cells disseminate from the primary tumor site to bone.
Collapse
|
32
|
Zhong Y, Zhang J, Zhou Y, Mao F, Lin Y, Xu Y, Guan J, Shen S, Pan B, Wang C, Peng L, Huang X, Li Y, Cao X, Sun Q. Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1) is a Novel Predictor of Prognosis for Breast Cancer Patients: A Retrospective Case Series. Med Sci Monit 2019; 25:6554-6562. [PMID: 31473760 PMCID: PMC6738004 DOI: 10.12659/msm.915845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background In previous studies, higher expression of PREX1 (PtdIns (3,4,5)P3-dependent Rac exchanger 1) has been detected in some subsets of breast cancer, and activation of PREX1 has been associated with tumor progression in vivo. However, an association between PREX1 and breast cancer prognosis has not been examined. Material/Methods In this study, we investigated the expression and correlation of PREX1 with important clinical factors and prognosis of patients with breast cancer. Immunohistochemical staining was performed for 121 tumor tissue specimens obtained from primary breast cancer lesions. Results We found that 55 tissues exhibited positive staining for PREX1. Moreover, tumors positive for PREX1 were found to have significant association with recurrence rate (P=0.000) and metastasis rate (P=0.001). Univariate and multivariate regression analyses also identified PREX1 expression as an independent variable of disease-free survival. Our analyses indicate that high levels of PREX1 expression were related to longer disease-free survival in patients with breast cancer (P=0.013). Conclusions PREX1 is a favorable variable of prognosis for breast cancer patients, these study results need to be confirmed in larger research studies.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jing Zhang
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yidong Zhou
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Feng Mao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Lin
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yali Xu
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Jinghong Guan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Songjie Shen
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Bo Pan
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Changjun Wang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Li Peng
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xin Huang
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Yan Li
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Xi Cao
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| | - Qiang Sun
- Department of Breast Disease, Peking Union Medical College Hospital, Beijing, China (mainland)
| |
Collapse
|
33
|
Ding Q, Li X, Sun Y, Zhang X. Schizandrin A inhibits proliferation, migration and invasion of thyroid cancer cell line TPC-1 by down regulation of microRNA-429. Cancer Biomark 2019; 24:497-508. [PMID: 30909188 DOI: 10.3233/cbm-182222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Schizandrin A (SchA) exerts anticancer potential. However, the effects of SchA on thyroid cancer (TC) have not been clear illuminated. Therefore, we investigated the effects of SchA on TC cell line TPC-1 and the underlying mechanisms. METHODS TPC-1 cells were treated with SchA and/or transfected with miR-429 mimic, anti-miR-429 and their corresponding negative controls (NC). Cell viability, proliferation, migration, invasion and cell apoptosis were examined by CCK-8 assay, bromodeoxyuridine, modified two-chamber migration assay, Millicell Hanging Cell Culture and flow cytometry analysis, respectively. The expression of miR-429, p16, Cyclin D1, cyclin-dependent kinases 4 (CDK4), matrix metalloprotein (MMP)-2, MMP-9 and Vimentin was detected by qRT-PCR. All protein expression was examined by western blot. RESULTS SchA inhibited cell proliferation, metastasis and induced cell apoptosis. Moreover, SchA negatively regulated miR-429 expression. Treatment with miR-429 mimic and SchA reversed the results led by SchA and NC. Furthermore, the phosphorylation β-catenin, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) were statistically down-regulated by SchA while co-treatment with miR-429 mimic and SchA led to the opposite trend. Moreover, miR-429 knockdown showed contrary results. CONCLUSION SchA inhibits cell proliferation, migration, invasion and inactivates Wnt/β-catenin and MEK/ERK signaling pathways by down regulating miR-429.
Collapse
|
34
|
Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett 2019; 459:30-40. [PMID: 31128213 DOI: 10.1016/j.canlet.2019.05.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT pathway regulates cell growth, proliferation, survival, mobility and invasion. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is also an important mitogenic signaling pathway involved in various cellular progresses. AKT, also named protein kinase B (PKB), is a primary mediator of the PI3K signaling pathway; and ERK at the end of MAPK signaling is the unique substrate and downstream effector of mitogen-activated protein/extracellular signal-regulated kinase (MEK). The AKT and ERK signaling are both aberrantly activated in a wide range of human cancers and have long been targeted for cancer therapy, but the clinical benefits of these targeted therapies have been limited due to complex cross-talk. Novel strategies, such as AKT/ERK dual inhibitors, may be needed.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Kai Huang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China; Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL, 62794, USA.
| |
Collapse
|
35
|
Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide‑3 kinase/protein kinase B signaling pathway. Mol Med Rep 2019; 19:4019-4026. [PMID: 30942438 PMCID: PMC6471319 DOI: 10.3892/mmr.2019.10093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 12/03/2022] Open
Abstract
The role of ginsenoside in the prevention of cancer has been well established. Ginsenoside Rg5 is one of the main components isolated from red ginseng, which has been demonstrated to have anti-tumor effects by inhibiting cell proliferation and causing DNA damage. However, the role of ginsenoside Rg5 and its molecular mechanisms remain unclear in human esophageal cancer. In the present study, Rg5 was investigated as a novel drug for the chemotherapy of esophageal cancer in in vitro experiments. Esophageal cancer Eca109 cells were exposed to various concentrations of ginsenoside Rg5 (0–32 µΜ) for 24 h. Subsequent cell proliferation assays demonstrated that treatment with ginsenoside Rg5 resulted in the dose-dependent inhibition of proliferation, while a significant increase in apoptotic rate and increased activities of caspase-3, −8 and −9 were observed. In addition, the mitochondrial membrane potential was decreased and the cytoplasmic free calcium level increased following treatment with ginsenoside Rg5. Furthermore, the expression of B-cell lymphoma 2 and phosphorylated-protein kinase B (p-Akt) decreased. The specific phosphoinositide-3 kinase (PI3K) inhibitor LY294002 promoted this effect, while insulin-like growth factor-1, a specific PI3K activator, inhibited this action. Taken together, the results suggested that ginsenoside Rg5 may have a tumor-suppressive effect on esophageal cancer by promoting apoptosis and may be associated with the downregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Aifu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jueping Feng
- Department of Oncology, Wuhan Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430035, P.R. China
| | - Qi Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hui Ren
- Department of General Surgery, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
36
|
Kelly MJ, So J, Rogers AJ, Gregory G, Li J, Zethoven M, Gearhart MD, Bardwell VJ, Johnstone RW, Vervoort SJ, Kats LM. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun 2019; 10:1347. [PMID: 30902969 PMCID: PMC6430802 DOI: 10.1038/s41467-019-09250-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
The BCL6 Corepressor (BCOR) is a component of a variant Polycomb repressive complex 1 (PRC1) that is essential for normal development. Recurrent mutations in the BCOR gene have been identified in acute myeloid leukaemia and myelodysplastic syndrome among other cancers; however, its function remains poorly understood. Here we examine the role of BCOR in haematopoiesis in vivo using a conditional mouse model that mimics the mutations observed in haematological malignancies. Inactivation of Bcor in haematopoietic stem cells (HSCs) results in expansion of myeloid progenitors and co-operates with oncogenic KrasG12D in the initiation of an aggressive and fully transplantable acute leukaemia. Gene expression analysis and chromatin immunoprecipitation sequencing reveals differential regulation of a subset of PRC1-target genes including HSC-associated transcription factors such as Hoxa7/9. This study provides mechanistic understanding of how BCOR regulates cell fate decisions and how loss of function contributes to the development of leukaemia.
Collapse
Affiliation(s)
- Madison J Kelly
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joan So
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Amy J Rogers
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Gareth Gregory
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.,Monash Haematology, Monash Health and School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Jason Li
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Magnus Zethoven
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
37
|
Rosmaninho P, Mükusch S, Piscopo V, Teixeira V, Raposo AA, Warta R, Bennewitz R, Tang Y, Herold-Mende C, Stifani S, Momma S, Castro DS. Zeb1 potentiates genome-wide gene transcription with Lef1 to promote glioblastoma cell invasion. EMBO J 2018; 37:e97115. [PMID: 29903919 PMCID: PMC6068449 DOI: 10.15252/embj.201797115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells. Transcriptional repression requires direct DNA binding of Zeb1, while indirect recruitment to regulatory regions by the Wnt pathway effector Lef1 results in gene activation, independently of Wnt signaling. Amongst glioblastoma genes activated by Zeb1 are predicted mediators of tumor cell migration and invasion, including the guanine nucleotide exchange factor Prex1, whose elevated expression is predictive of shorter glioblastoma patient survival. Prex1 promotes invasiveness of glioblastoma cells in vivo highlighting the importance of Zeb1/Lef1 gene regulatory mechanisms in gliomagenesis.
Collapse
Affiliation(s)
- Pedro Rosmaninho
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Susanne Mükusch
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valerio Piscopo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vera Teixeira
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre Asf Raposo
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Romina Bennewitz
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yeman Tang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Diogo S Castro
- Molecular Neurobiology Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
38
|
P-Rex1 is dispensable for Erk activation and mitogenesis in breast cancer. Oncotarget 2018; 9:28612-28624. [PMID: 29983884 PMCID: PMC6033363 DOI: 10.18632/oncotarget.25584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/19/2018] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy. To tackle the discrepancies among various reports, we carried out an exhaustive analysis of the potential involvement of P-Rex1 on the activation of the mitogenic Erk pathway. Using a range of luminal breast cancer cellular models, we unequivocally showed that silencing P-Rex1 (transiently, stably, using multiple siRNA sequences) had no effect on the phospho-Erk response upon stimulation with growth factors (EGF, heregulin, IGF-I) or a GPCR ligand (SDF-1). The lack of involvement of P-Rex1 in Erk activation was confirmed at the single cell level using a fluorescent biosensor of Erk kinase activity. Depletion of P-Rex1 from breast cancer cells failed to affect cell cycle progression, cyclin D1 induction, Akt activation and apoptotic responses. In addition, mammary-specific P-Rex1 transgenic mice (MMTV-P-Rex1) did not show any obvious hyperproliferative phenotype. Therefore, despite its crucial role in Rac1 activation and cell motility, P-Rex1 is dispensable for mitogenic or survival responses in breast cancer cells.
Collapse
|
39
|
Zhang Z, Luo Z, Min W, Zhang L, Wu Y, Hu X. An anti-cancer WxxxE-containing azurin polypeptide inhibits Rac1-dependent STAT3 and ERK/GSK-3β signaling in breast cancer cells. Oncotarget 2018; 8:43091-43103. [PMID: 28549350 PMCID: PMC5522130 DOI: 10.18632/oncotarget.17759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
In our previous study, we characterized a mycoplasmal small GTPase-like polypeptide of 240 amino acids that possesses an N-terminal WVLGE sequence. The N-terminal WVLGE sequence promotes activation of Rac1 and subsequent host cancer cell proliferation. To investigate the function of the WxxxE motif in the interaction with Rac1 and host tumor progression, we synthesized a 35-amino acid WVLGE-containing polypeptide derived from a cell-penetrating peptide derived from the azurin protein. We verified that the WVLGE-containing polypeptide targeted MCF-7 cells rather than MCF-10A cells. However, the WVLGE-containing polypeptide inhibited activation of Rac1 and induced cellular phenotypes that resulted from inhibition of Rac1. In addition, the WVLGE-containing polypeptide down-regulated phosphorylation of the STAT3 and ERK/GSK-3β signaling pathways, and this effect was abolished by either stimulation or inhibition of Rac1 activity. We also found that the WVLGE-containing polypeptide has a Rac1-dependent potential to suppress breast cancer growth in vitro and in vivo. We suggest that by acting as a Rac1 inhibitor, this novel polypeptide may be useful for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhiyong Luo
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenpu Min
- The First People's Hospital of Jingzhou, Jingzhou, People's Republic of China
| | - Lin Zhang
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yaqun Wu
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaopeng Hu
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
40
|
Montero JC, Seoane S, García-Alonso S, Pandiella A. Multisite phosphorylation of P-Rex1 by protein kinase C. Oncotarget 2018; 7:77937-77949. [PMID: 27788493 PMCID: PMC5363633 DOI: 10.18632/oncotarget.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
P-Rex proteins are guanine nucleotide exchange factors (GEFs) that act on the Rho/Rac family of GTP binding proteins. The activity of P-Rex proteins is regulated by several extracellular stimuli. In fact, activation of growth factor receptors has been reported to activate a phosphorylation/dephosphorylation cycle of P-Rex1. Such cycle includes dephosphorylation of serines 313 and 319 which negatively regulate the GEF activity of P-Rex1, together with phosphorylation of serines 605 and 1169 which favour P-Rex1 GEF activity. However, the kinases that regulate phosphorylation at these different regulatory sites are largely unknown. Here we have investigated the potential regulatory action of several kinases on the phosphorylation of P-Rex1 at S313, S319, S605 and S1169. We show that activation of protein kinase C (PKC) caused phosphorylation of S313, S319 and S1169. Activation of growth factor receptors induced phosphorylation of S1169 through a mechanism that was independent of PKC, indicating that distinct kinases and mechanisms control the phosphorylation of P-Rex1 at different regulatory serines. Genetic and biochemical studies confirmed that the PKC isoform PKCδ was able to directly phosphorylate P-Rex1 at S313. Functional studies using cells with very low endogenous P-Rex1 expression, transfected with wild type P-Rex1 or a mutant form in which S313 was substituted by alanine, indicated that phosphorylation at that residue negatively regulated P-Rex1 exchange activity. We suggest that control of P-Rex1 activity depends on a highly dynamic interplay among distinct signalling routes and its multisite phosphorylation is controlled by the action of different kinases.
Collapse
Affiliation(s)
- Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Samuel Seoane
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Sara García-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| |
Collapse
|
41
|
Barrio-Real L, Wertheimer E, Garg R, Abba MC, Kazanietz MG. Characterization of a P-Rex1 gene signature in breast cancer cells. Oncotarget 2018; 7:51335-51348. [PMID: 27351228 PMCID: PMC5239479 DOI: 10.18632/oncotarget.10285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
The Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG. In T-47D breast cancer cells, HRG treatment caused major changes in gene expression, including genes associated with motility, adhesion, invasiveness and metastasis. Silencing P-Rex1 expression from T-47D cells using RNAi altered the induction and repression of a subset of HRG-regulated genes, among them genes associated with extracellular matrix organization, migration, and chemotaxis. HRG induction of MMP10 (matrix metalloproteinase 10) was found to be highly sensitive both to P-Rex1 depletion and inhibition of Rac1 function by the GTPase Activating Protein (GAP) β2-chimaerin, suggesting the dependence of the P-Rex1/Rac1 pathway for the induction of genes critical for breast cancer invasiveness. Notably, there is a significant association in the expression of P-Rex1 and MMP10 in human luminal breast cancer, and their co-expression is indicative of poor prognosis.
Collapse
Affiliation(s)
- Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Eva Wertheimer
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
42
|
Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics 2018; 15:131-152. [PMID: 29271260 PMCID: PMC6104835 DOI: 10.1080/14789450.2018.1421071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breast cancer subtypes are currently defined by a combination of morphologic, genomic, and proteomic characteristics. These subtypes provide a molecular portrait of the tumor that aids diagnosis, prognosis, and treatment escalation/de-escalation options. Gene expression signatures describing intrinsic breast cancer subtypes for predicting risk of recurrence have been rapidly adopted in the clinic. Despite the use of subtype classifications, many patients develop drug resistance, breast cancer recurrence, or therapy failure. Areas covered: This review provides a summary of immunohistochemistry, reverse phase protein array, mass spectrometry, and integrative studies that are revealing differences in biological functions within and between breast cancer subtypes. We conclude with a discussion of rigor and reproducibility for proteomic-based biomarker discovery. Expert commentary: Innovations in proteomics, including implementation of assay guidelines and standards, are facilitating refinement of breast cancer subtypes. Proteomic and phosphoproteomic information distinguish biologically functional subtypes, are predictive of recurrence, and indicate likelihood of drug resistance. Actionable, activated signal transduction pathways can now be quantified and characterized. Proteomic biomarker validation in large, well-designed studies should become a public health priority to capitalize on the wealth of information gleaned from the proteome.
Collapse
Affiliation(s)
- Claudius Mueller
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Amanda Haymond
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin B Davis
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alexa Williams
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
43
|
Yang W, Schwartz GN, Marotti JD, Chen V, Traphagen NA, Gui J, Miller TW. Estrogen receptor alpha drives mTORC1 inhibitor-induced feedback activation of PI3K/AKT in ER+ breast cancer. Oncotarget 2018; 9:8810-8822. [PMID: 29507656 PMCID: PMC5823630 DOI: 10.18632/oncotarget.24256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
The mTORC1 inhibitor RAD001 (everolimus) is approved for treatment of recurrent/metastatic estrogen receptor (ER)-positive breast cancer in combination with the aromatase inhibitor (AI) exemestane. The benefits of A) continued anti-estrogen therapy for anti-estrogen-resistant disease in the context of mTORC1 inhibition, and B) adjuvant everolimus in combination with anti-estrogen therapy for early-stage disease are being tested clinically, but molecular rationale remains unclear. We hypothesized that mTORC1 inhibition activates the IGF-1R/InsR/IRS-1/2 axis in an ER-dependent manner to drive PI3K/AKT and promote cancer cell survival, implicating ER in survival signaling induced by mTORC1 inhibition. Anti-estrogen treatment synergized with RAD001 to inhibit ER+ breast cancer cell growth. Inhibition of ER, IGF-1R/InsR, or IRS-1/2 suppressed AKT activation induced by mTORC1 inhibition. RAD001 primed IGF-1R/InsR for activation, which was enhanced by ER signaling. Post-menopausal patients with early-stage ER+ breast cancer were treated presurgically +/- the AI letrozole. Viable tumor fragments from surgical specimens were treated with RAD001 and/or OSI-906 ex vivo; RAD001 increased AKT activation, which was abrogated by presurgical letrozole. Letrozole decreased IGF-1R and IRS-1/2 tumor levels. These data suggest that ER drives PI3K/AKT activation in response to mTORC1 inhibition, providing molecular rationale for therapeutic combinations of anti-estrogens and mTORC1 inhibitors in endocrine-sensitive disease.
Collapse
Affiliation(s)
- Wei Yang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Gary N Schwartz
- Department of Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Comprehensive Breast Program, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jonathan D Marotti
- Department of Pathology and Laboratory Medicine, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Comprehensive Breast Program, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Vivian Chen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Comprehensive Breast Program, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
44
|
Yang W, Hosford SR, Traphagen NA, Shee K, Demidenko E, Liu S, Miller TW. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer. FASEB J 2018; 32:1222-1235. [PMID: 29127189 DOI: 10.1096/fj.201700477r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER+ breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER+ breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER+ breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Wei Yang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sarah R Hosford
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kevin Shee
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eugene Demidenko
- Community and Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; and
| | - Stephanie Liu
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
45
|
Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2218-2227. [PMID: 29277326 DOI: 10.1016/j.bbadis.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations have been identified, and the mutation signatures have been uncovered across different cancer types. However, somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma (COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the aforementioned cancer types, patients they were encoded into a large number of numerical values based upon the enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the incremental feature selection (IFS) method to identify functional alteration features that could be used to build the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coefficient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498 for the classification of the five cancer types. Further analysis indicated that some of these features and rules were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
|
46
|
Wang J, Hirose H, Du G, Chong K, Kiyohara E, Witz IP, Hoon DSB. P-REX1 amplification promotes progression of cutaneous melanoma via the PAK1/P38/MMP-2 pathway. Cancer Lett 2017; 407:66-75. [PMID: 28803992 DOI: 10.1016/j.canlet.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
P-REX1 (PIP3-dependent Rac exchange factor-1) is a guanine nucleotide exchange factor that activates Rac by catalyzing exchange of GDP for GTP bound to Rac. Aberrant up-regulation of P-REX1 expression has a role in metastasis however, copy number (CN) and function of P-REX1 in cutaneous melanoma are unclear. To explore the role of P-REX1 in melanoma, SNP 6.0 and Exon 1.0 ST microarrays were assessed. There was a higher CN (2.82-fold change) of P-REX1 in melanoma cells than in melanocytes, and P-REX1 expression was significantly correlated with P-REX1 CN. When P-REX1 was knocked down in cells by P-REX1 shRNA, proliferation, colony formation, 3D matrigel growth, and migration/invasiveness were inhibited. Loss of P-REX1 inhibited cell proliferation by inhibiting cyclin D1, blocking cell cycle, and increased cell apoptosis by reducing expression of the protein survivin. Knockdown of P-REX1 expression inhibited cell migration/invasiveness by disrupting P-REX1/RAC1/PAK1/p38/MMP-2 pathway. Assessment of patient tumors and disease outcome demonstrated lower distant metastasis-free survival among AJCC stage I/II/III patients with high P-REX1 expression compared to patients with low P-REX1 expression. These results suggest P-REX1 plays an important role in tumor progression and a potential theranostic target.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research, Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hajime Hirose
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research, Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Kelly Chong
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Eiji Kiyohara
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Isaac P Witz
- Department of Cell Research and Immunology, George S Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Dave S B Hoon
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA.
| |
Collapse
|
47
|
Hampsch RA, Shee K, Bates D, Lewis LD, Désiré L, Leblond B, Demidenko E, Stefan K, Huang YH, Miller TW. Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget 2017; 8:21806-21817. [PMID: 28423521 PMCID: PMC5400625 DOI: 10.18632/oncotarget.15586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
Rac GTPases have oncogenic roles in cell growth, survival, and migration. We tested response to the Rac inhibitor EHT1864 in a panel of breast cancer cell lines. EHT1864-induced growth inhibition was associated with dual inhibition of the PI3K/AKT/mTORC1 and MEK/ERK pathways. Breast cancer cells harboring PIK3CA mutations or HER2 overexpression were most sensitive to Rac inhibition, suggesting that such oncogenic alterations link Rac activation with PI3K/AKT/mTORC1 and MEK/ERK signaling. Interestingly, EHT1864 decreased activation of the mTORC1 substrate p70S6K earlier than AKT inhibition, suggesting that Rac may activate mTORC1/p70S6K independently of AKT. Comparison of the growth-inhibitory profile of EHT1864 to 137 other anti-cancer drugs across 656 cancer cell lines revealed significant correlation with the p70S6K inhibitor PF-4708671. We confirmed that Rac complexes contain MEK1/2 and ERK1/2, but also contain p70S6K; these interactions were disrupted by EHT1864. Pharmacokinetic profiles revealed that EHT1864 was present in mouse plasma at concentrations effective in vitro for approximately 1 h after intraperitoneal administration. EHT1864 suppressed growth of HER2+ tumors, and enhanced response to anti-estrogen treatment in ER+ tumors. Further therapeutic development of Rac inhibitors for HER2+ and PIK3CA-mutant cancers is warranted.
Collapse
Affiliation(s)
- Riley A Hampsch
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kevin Shee
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Darcy Bates
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lionel D Lewis
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - Eugene Demidenko
- Department of Community & Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kurtis Stefan
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
48
|
Pizzuti L, Marchetti P, Natoli C, Gamucci T, Santini D, Scinto AF, Iezzi L, Mentuccia L, D'Onofrio L, Botticelli A, Moscetti L, Sperati F, Botti C, Ferranti F, Buglioni S, Sanguineti G, Di Filippo S, di Lauro L, Sergi D, Catenaro T, Tomao S, Giordano A, Maugeri-Saccà M, Barba M, Vici P. Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: The EverExt study. Sci Rep 2017; 7:10597. [PMID: 28878375 PMCID: PMC5587713 DOI: 10.1038/s41598-017-10061-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Evidence on everolimus in breast cancer has placed hyperglycemia among the most common high grade adverse events. Anthropometrics and biomarkers of glucose metabolism were investigated in a observational study of 102 postmenopausal, HR + HER2- metastatic breast cancer patients treated with everolimus-exemestane in first and subsequent lines. Best overall response (BR) and clinical benefit rate (CBR) were assessed across subgroups defined upon fasting glucose (FG) and body mass index (BMI). Survival was estimated by Kaplan-Meier method and log-rank test. Survival predictors were tested in Cox models. Median follow up was 12.4 months (1.0–41.0). The overall cohort showed increasing levels of FG and decreasing BMI (p < 0.001). Lower FG fasting glucose at BR was more commonly associated with C/PR or SD compared with PD (p < 0.001). We also observed a somewhat higher BMI associated with better response (p = 0.052). More patients in the lowest FG category achieved clinical benefit compared to the highest (p < 0.001), while no relevant differences emerged for BMI. Fasting glucose at re-assessment was also predictive of PFS (p = 0.037), as confirmed in models including BMI and line of therapy (p = 0.049). Treatment discontinuation was significantly associated with changes in FG (p = 0.014). Further research is warranted to corroborate these findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Laura Pizzuti
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paolo Marchetti
- Medical Oncology Unit Policlinico Sant'Andrea, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy
| | - Teresa Gamucci
- Medical Oncology Unit, SS Trinità Hospital, S.Marciano, 03039, Sora, Frosinone, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 200, 00128, Roma, Italy
| | - Angelo Fedele Scinto
- Medical Oncology, Ospedale San Giovanni Calibita Fatebenefratelli, ISOLA TIBERINA, Piazza In Piscinula 13 -, 00153, Roma, Italy
| | - Laura Iezzi
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy
| | - Lucia Mentuccia
- Medical Oncology Unit, SS Trinità Hospital, S.Marciano, 03039, Sora, Frosinone, Italy
| | - Loretta D'Onofrio
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 200, 00128, Roma, Italy
| | - Andrea Botticelli
- Medical Oncology Unit Policlinico Sant'Andrea, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Luca Moscetti
- Department of Oncology and Haematology, Azienda Ospedaliera Policlinico, Via del Pozzo 71, 41124, Modena, Italy
| | - Francesca Sperati
- Biostatistics Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Claudio Botti
- Department of Surgery, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesca Ferranti
- Department of Radiology, Regina Elena National Cancer Institue, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simonetta Buglioni
- Department of Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Simona Di Filippo
- Emergency Department, Santa Maria Goretti Hospital, Via Canova 3, 04100, Latina, Italy
| | - Luigi di Lauro
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Domenico Sergi
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Teresa Catenaro
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silverio Tomao
- Department of Medico-Surgical Sciences and Biotechnologies, La "Sapienza" University of Rome, Oncology Unit, Istituto Chirurgico Ortopedico Traumatologico, Via Franco Faggiana 1668, 04100, Latina, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine e del Center for Biotechnology, College of Science and Technology, 1900 N, 12th Street, Temple University, Philadelphia, PA, USA
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.,Scientific Direction, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy. .,Scientific Direction, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Patrizia Vici
- Division of Medical Oncology 2, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
49
|
P-Rex1 and P-Rex2 RacGEFs and cancer. Biochem Soc Trans 2017; 45:963-77. [PMID: 28710285 DOI: 10.1042/bst20160269] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gβγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.
Collapse
|
50
|
P-Rex1 Expression in Invasive Breast Cancer in relation to Receptor Status and Distant Metastatic Site. Int J Breast Cancer 2017; 2017:4537532. [PMID: 28698809 PMCID: PMC5494073 DOI: 10.1155/2017/4537532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/07/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-Rex1) has been implicated in cancer growth, metastasis, and response to phosphatidylinositol 3-kinase (PI3K) inhibitor therapy. The aim of this study was to determine whether P-Rex1 expression differs between primary and metastatic human breast tumors and between breast cancer subtypes. DESIGN P-Rex1 expression was measured in 133 specimens by immunohistochemistry: 40 and 42 primary breast tumors from patients who did versus did not develop metastasis, respectively, and 51 breast-derived tumors from metastatic sites (36 of which had matching primary tumors available for analysis). RESULTS Primary breast tumors showed significant differences in P-Rex1 expression based on receptor subtype. ER+ and HER2+ primary tumors showed higher P-Rex1 expression than primary triple-negative tumors. HER2+ metastases from all sites showed significantly higher P-Rex1 expression compared to other metastatic receptor subtypes. Solid organ (i.e., brain, lung, and liver) metastases showed higher P-Rex1 expression compared to bone metastases. CONCLUSIONS P-Rex1 expression is increased in ER+ and HER2+ breast cancers compared to triple-negative tumors. P-Rex1 may be differentially expressed in metastatic tumors based on site and receptor status. The role of P-Rex1 in the development of breast cancer metastases and as a predictive biomarker of therapeutic response warrants further investigation.
Collapse
|