1
|
Yang L, Sui H, Ding Y, Zhu Y, Song X, Zhang Y, Fan G, Wang J, Cui X, Jiang Y, Zhao S, Hong Y, Mu N, Tian Z, Zhao Y, Li P, Zhao X. Disulfiram impairs USP21-mediated MOF-K257 deubiquitination to inhibit esophageal squamous cell carcinoma progression. Cancer Lett 2024; 611:217419. [PMID: 39725149 DOI: 10.1016/j.canlet.2024.217419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Disulfiram (DSF), primarily applied in the therapy for alcohol addiction, has been demonstrated to possess the promising capability of anti-tumor in many human cancers, including esophageal squamous cell carcinoma (ESCC). To date, almost all studies about DSF in ESCC are focusing on investigating either drug combinations or nanoparticle-based delivery systems. However, the exact molecular mechanisms mediating the response to DSF in ESCC are totally unknown. An increasing number of studies reported that aberrant expression of acetylation-related genes is closely involved in regulating the response of cancer cells to anti-tumor drugs. Here, we defined DSF-sensitive and -resistant cells by measuring the half-maximal inhibitory concentration (IC50) of DSF in four ESCC cell lines, followed by detecting the protein expression of nine dysregulated histone acetyltransferase (HAT) genes in ESCC. Our results demonstrate that MOF is responsible for the sensitivity to DSF in ESCC cells. Consistently, DSF treatment markedly abolished MOF-driving ESCC progression and Wnt/β-Catenin signaling activation. Interestingly, DSF decreased MOF protein expression via the ubiquitin-proteasome system. Further exploration verified the essential role of USP21, among three candidates (USP2, USP21, and USP10), in DSF-mediated MOF protein levels. Mechanistically, USP21 binds to MOF protein and decreases the ubiquitination of its K257 site, while DSF notably impedes MOF-mediated ESCC malignant progression and Wnt/β-Catenin signaling activation by blocking USP21-governed MOF-K257 deubiquitination. In conclusion, our study elucidates the USP21/MOF-K257 axis regulating the response to DSF in ESCC, which provides novel and key evidence for the clinical application of DSF in individualized therapy for ESCC patients.
Collapse
Affiliation(s)
- Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Ding
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangqing Song
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangyan Fan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunfeng Jiang
- Department of Thoracic Surgery, Yan Tai Yu Huang Ding Hospital, Yantai, China
| | | | | | - Ning Mu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Precision Diagnosis and Treatment of Lung Tumors in Shandong Provincial Medicine and Health, Shandong University, Jinan, China; Key Laboratory of Basic Research and Clinical Transformation of Thoracic Tumors in Shandong Provincial Colleges and Universities, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Yao P, Li X, Chai J, Dong J, Chen Y, Zhang T, Guo X. METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination. Biochem Genet 2024:10.1007/s10528-024-10992-2. [PMID: 39680331 DOI: 10.1007/s10528-024-10992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.
Collapse
Affiliation(s)
- Peng Yao
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China.
| | - Xiaozheng Li
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Jiasui Chai
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Jiejie Dong
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Yan Chen
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Tong Zhang
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Xingren Guo
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| |
Collapse
|
3
|
Rezaei S, Timani KA, Liu Y, He JJ. Ectopic USP15 expression inhibits HIV-1 transcription involving changes in YY1 deubiquitination and stability. Front Cell Infect Microbiol 2024; 14:1371655. [PMID: 39624264 PMCID: PMC11609158 DOI: 10.3389/fcimb.2024.1371655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025] Open
Abstract
Introduction Protein homeostasis is maintained by the opposing action of ubiquitin ligase and deubiquitinase, two important components of the ubiquitin-proteasome pathway, and contributes to both normal physiological and pathophysiological processes. The current study aims to delineate the roles of ubiquitin-specific protease 15 (USP15), a member of the largest deubiquitinase family, in HIV-1 gene expression and replication. Methods We took advantage of highly selective and specific ubiquitin variants (UbV), which were recently designed and developed for USP15, and ascertained the inhibitory effects of USP15 on HIV-1 gene expression and production by transfection and Western blotting. We also used real-time RT-PCR, transcription factor profiling, subcellular fractionation, immunoprecipitation followed by Western blotting to determine the transcription factors involved and the underlying molecular mechanisms. Results We first confirmed the specificity of USP15-mediated HIV-1 gene expression and virus production. We then showed that the inhibition of HIV-1 production by USP15 occurred at the transcription level, associated with an increased protein level of YY1, a known HIV-1 transcription repressor. Moreover, we demonstrated that USP15 regulated YY1 deubiquitination and stability. Lastly, we demonstrated that YY1 siRNA knockdown significantly diminished the inhibition of USP15 on HIV-1 gene expression and virus production. Conclusion These findings together demonstrate that stabilization of YY1 protein by USP15 deubiquitinating activity contributes to USP15-mediated inhibition of HIV-1 transcription and may help the development of USP15-specific UbV inhibitors as an anti-HIV strategy.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Khalid A. Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
4
|
Zhang W, Bai L, Xu W, Liu J, Chen Y, Lin W, Lu H, Wang B, Luo B, Peng G, Zhang K, Shen C. Sirt6 Mono-ADP-Ribosylates YY1 to Promote Dystrophin Expression for Neuromuscular Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406390. [PMID: 39387251 PMCID: PMC11600243 DOI: 10.1002/advs.202406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The degeneration of the neuromuscular junction (NMJ) and the decline in motor function are common features of aging, but the underlying mechanisms have remained largely unclear. This study reveals that Sirt6 is reduced in aged mouse muscles. Ablation of Sirt6 in skeletal muscle causes a reduction of Dystrophin levels, resulting in premature NMJ degeneration, compromised neuromuscular transmission, and a deterioration in motor performance. Mechanistic studies show that Sirt6 negatively regulates the stability of the Dystrophin repressor YY1 (Yin Yang 1). Specifically, Sirt6 mono-ADP-ribosylates YY1, causing its disassociation from the Dystrophin promoter and allowing YY1 to bind to the SMURF2 E3 ligase, leading to its degradation. Importantly, supplementation with nicotinamide mononucleotide (NMN) enhances the mono-ADP-ribosylation of YY1 and effectively delays NMJ degeneration and the decline in motor function in elderly mice. These findings provide valuable insights into the intricate mechanisms underlying NMJ degeneration during aging. Targeting Sirt6 could be a potential therapeutic approach to mitigate the detrimental effects on NMJ degeneration and improve motor function in the elderly population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lei Bai
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wentao Xu
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jun Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Yi Chen
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicine and International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwuChina
| | - Huasong Lu
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Binwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Benyan Luo
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Guoping Peng
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseMOE Joint International Research Laboratory of Pancreatic DiseasesFirst Affiliated HospitalHangzhou310006China
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang UniversityNanhu Brain‐Computer Interface InstituteHangzhouChina
| |
Collapse
|
5
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
6
|
Kulma M, Hofman B, Szostakowska-Rodzoś M, Dymkowska D, Serwa RA, Piwowar K, Belczyk-Ciesielska A, Grochowska J, Tuszyńska I, Muchowicz A, Drzewicka K, Zabłocki K, Zasłona Z. The ubiquitin-specific protease 21 is critical for cancer cell mitochondrial function and regulates proliferation and migration. J Biol Chem 2024; 300:107793. [PMID: 39305962 PMCID: PMC11513602 DOI: 10.1016/j.jbc.2024.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/20/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are the main members of deubiquitinases (DUBs) that catalyze removing ubiquitin chains from target proteins, thereby modulating their half-life and function. Enzymatic activity of USP21 regulates protein degradation which is critical for maintaining cell homeostasis. USP21 determines the stability of oncogenic proteins and therefore is implicated in carcinogenesis. In this study, we investigated the effect of USP21 deletion on cancer cell metabolism. Transcriptomic and proteomic analysis of USP21 KO HAP-1 cells revealed that endogenous USP21 is critical for the expression of genes and proteins involved in mitochondrial function. Additionally, we have found that the deletion of USP21 reduced STAT3 activation and STAT3-dependent gene and protein expression in cancer cells. Genetic deletion of USP21 impaired mitochondrial respiration and disturbed ATP production. This resulted in cellular consequences such as inhibition of cell proliferation and migration. Presented results provide new insights into the biology of USP21, suggesting novel mechanisms for controlling STAT3 activity and mitochondrial function in tumor cells. Taken together, our findings indicate that targeting USP21 dysregulates the energy status of cancer cells offering new perspectives for anticancer therapy.
Collapse
Affiliation(s)
| | | | | | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol, Polish Academy of Sciences, Warsaw, Poland; ReMedy International Research Agenda Unit, IMol, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
7
|
Huang T, Ren K, Ling X, Li Z, Chen L. Transcription factor Yin Yang 1 enhances epithelial-mesenchymal transition, migration, and stemness of non-small cell lung cancer cells by targeting sonic hedgehog. Mol Cell Biochem 2024:10.1007/s11010-024-05104-y. [PMID: 39261409 DOI: 10.1007/s11010-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.
Collapse
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China.
| | - Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Zeyao Li
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Lin Chen
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
8
|
Li S, Yang L, Ding X, Sun H, Dong X, Yang F, Wang M, Zhang H, Li Y, Li B, Liu C. USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. Oncogenesis 2024; 13:27. [PMID: 39030175 PMCID: PMC11271578 DOI: 10.1038/s41389-024-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, 266071, Qingdao, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, 266034, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, 266000, Qingdao, China.
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| |
Collapse
|
9
|
Ma Q, Wu F, Liu X, Zhao C, Sun Y, Li Y, Zhang W, Ju H, Wang Y. 20-hydroxyecdysone suppresses bladder cancer progression via inhibiting USP21: A mechanism associated with deubiquitination and degradation of p65. Transl Oncol 2024; 45:101958. [PMID: 38663220 PMCID: PMC11059137 DOI: 10.1016/j.tranon.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary tract and a prevalent cancer worldwide, still requiring efficient therapeutic agents and approaches. 20-Hydroxyecdysone (20-HE), a steroid hormone, can be found in insects and few plants and mediate numerous biological events to control the progression of varying diseases; however, its impacts on bladder cancer remain unclear. In the study, we found that 20-HE treatments effectively inhibited the viability and proliferation of bladder cancer cells and induced apoptosis by activating Caspase-3. The migratory and invasive potential of bladder cancer cells was markedly repressed by 20-HE in a dose-dependent manner. The inhibitory effects of 20-HE on bladder cancer were confirmed in an established xenograft mouse model, as indicated by the markedly reduced tumor growth rates and limited lung and lymph node metastasis. High-throughput RNA sequencing was performed to explore dysregulated genes in bladder cancer cells after 20-HE treatment. We identified ubiquitin-specific protease 21 (USP21) as a key deubiquitinating enzyme for bladder cancer progression and a positive correlation between USP21 and nuclear factor-κB (NF-κB)/p65 in patients. Furthermore, 20-HE treatments markedly reduced USP21 expression, NF-κB/p65 mRNA, stability and phosphorylated NF-κB/p65 expression levels in bladder cancer cells, which were validated in animal tumor tissues. Mechanistic studies showed that USP21 directly interacted with and stabilized p65 by deubiquitinating its K48-linked polyubiquitination in bladder cancer cells, which could be abolished by 20-HE treatment, contributing to p65 degradation. Finally, we found that USP21 overexpression could not only facilitate the proliferation, migration, and invasion of bladder cancer cells, but also significantly eliminated the suppressive effects of 20-HE on bladder cancer. Notably, 20-HE could still perform its anti-tumor role in bladder cancer when USP21 was knocked down with decreased NF-κB/p65 expression and activation, revealing that USP21 suppression might not be the only way for 20-HE during bladder cancer treatment. Collectively, all our results clearly demonstrated that 20-HE may function as a promising therapeutic strategy for bladder cancer treatment mainly through reducing USP21/p65 signaling expression.
Collapse
Affiliation(s)
- Qiang Ma
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Fei Wu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Xiaohui Liu
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Cuifang Zhao
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yang Sun
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuanyuan Li
- Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Wei Zhang
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Hongge Ju
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, China; Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Yukun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China; Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Guo J, Zhao Y, Sui H, Liu L, Liu F, Yang L, Gao F, Wang J, Zhu Y, Li L, Song X, Li P, Tian Z, Li P, Zhao X. USP21-mediated G3BP1 stabilization accelerates proliferation and metastasis of esophageal squamous cell carcinoma via activating Wnt/β-Catenin signaling. Oncogenesis 2024; 13:23. [PMID: 38906857 PMCID: PMC11192907 DOI: 10.1038/s41389-024-00524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Lacking effective therapeutic targets heavily restricts the improvement of clinical prognosis for patients diagnosed with esophageal squamous cell carcinoma (ESCC). Ubiquitin Specific Peptidase 21 (USP21) is dysregulated in plenty of human cancers, however, its potential function and relevant molecular mechanisms in ESCC malignant progression as well as its value in clinical translation remain largely unknown. Here, in vitro and in vivo experiments revealed that aberrant upregulation of USP21 accelerated the proliferation and metastasis of ESCC in a deubiquitinase-dependent manner. Mechanistically, we found that USP21 binds to, deubiquitinates, and stabilizes the G3BP Stress Granule Assembly Factor 1 (G3BP1) protein, which is required for USP21-mediated ESCC progression. Further molecular studies demonstrated that the USP21/G3BP1 axis played a tumor-promoting role in ESCC progression by activating the Wnt/β-Catenin signaling pathway. Additionally, disulfiram (DSF), an inhibitor against USP21 deubiquitylation activity, markedly abolished the USP21-mediated stability of G3BP1 protein and significantly displayed an anti-tumor effect on USP21-driving ESCC progression. Finally, the regulatory axis of USP21/G3BP1 was demonstrated to be aberrantly activated in ESCC tumor tissues and closely associated with advanced clinical stages and unfavorable prognoses, which provides a promising therapeutic strategy targeting USP21/G3BP1 axis for ESCC patients.
Collapse
Affiliation(s)
- Jiazhong Guo
- Department of Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinfu Wang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingbing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangqing Song
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
12
|
Tak J, Nguyen TK, Lee K, Kim SG, Ahn HC. Utilizing machine learning to identify nifuroxazide as an inhibitor of ubiquitin-specific protease 21 in a drug repositioning strategy. Biomed Pharmacother 2024; 174:116459. [PMID: 38518599 DOI: 10.1016/j.biopha.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Ubiquitin-specific protease (USP), an enzyme catalyzing protein deubiquitination, is involved in biological processes related to metabolic disorders and cancer proliferation. We focused on constructing predictive models tailored to unveil compounds boasting USP21 inhibitory attributes. Six models, Extra Trees Classifier, Random Forest Classifier, LightGBM Classifier, XGBoost Classifier, Bagging Classifier, and a convolutional neural network harnessed from empirical data were selected for the screening process. These models guided our selection of 26 compounds from the FDA-approved drug library for further evaluation. Notably, nifuroxazide emerged as the most potent inhibitor, with a half-maximal inhibitory concentration of 14.9 ± 1.63 μM. The stability of protein-ligand complexes was confirmed using molecular modeling. Furthermore, nifuroxazide treatment of HepG2 cells not only inhibited USP21 and its established substrate ACLY but also elevated p-AMPKα, a downstream functional target of USP21. Intriguingly, we unveiled the previously unknown capacity of nifuroxazide to increase the levels of miR-4458, which was identified as downregulating USP21. This discovery was substantiated by manipulating miR-4458 levels in HepG2 cells, resulting in corresponding changes in USP21 protein levels in line with its predicted interaction with ACLY. Lastly, we confirmed the in vivo efficacy of nifuroxazide in inhibiting USP21 in mice livers, observing concurrent alterations in ACLY and p-AMPKα levels. Collectively, our study establishes nifuroxazide as a promising USP21 inhibitor with potential implications for addressing metabolic disorders and cancer proliferation. This multidimensional investigation sheds light on the intricate regulatory mechanisms involving USP21 and its downstream effects, paving the way for further exploration and therapeutic development.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Tan Khanh Nguyen
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Hee-Chul Ahn
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
13
|
Huang S, Liu J, Hu J, Hou Y, Hu M, Zhang B, Luo H, Fu S, Chen Y, Liu X, Chen Z, Wang L. GHITM regulates malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling. J Cell Mol Med 2024; 28:e18290. [PMID: 38588015 PMCID: PMC11000813 DOI: 10.1111/jcmm.18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Banghua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Hongbo Luo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, The Second Hospital of Huangshi, Huangshi, China
| | - Shujie Fu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yujie Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Kim SB, Hwang S, Cha JY, Lee HJ. Programmed Death Ligand 1 Regulatory Crosstalk with Ubiquitination and Deubiquitination: Implications in Cancer Immunotherapy. Int J Mol Sci 2024; 25:2939. [PMID: 38474186 DOI: 10.3390/ijms25052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a pivotal role in cancer immune evasion and is a critical target for cancer immunotherapy. This review focuses on the regulation of PD-L1 through the dynamic processes of ubiquitination and deubiquitination, which are crucial for its stability and function. Here, we explored the intricate mechanisms involving various E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) that modulate PD-L1 expression in cancer cells. Specific ligases are discussed in detail, highlighting their roles in tagging PD-L1 for degradation. Furthermore, we discuss the actions of DUBs that stabilize PD-L1 by removing ubiquitin chains. The interplay of these enzymes not only dictates PD-L1 levels but also influences cancer progression and patient response to immunotherapies. Furthermore, we discuss the therapeutic implications of targeting these regulatory pathways and propose novel strategies to enhance the efficacy of PD-L1/PD-1-based therapies. Our review underscores the complexity of PD-L1 regulation and its significant impact on the tumor microenvironment and immunotherapy outcomes.
Collapse
Affiliation(s)
- Soon-Bin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho-Jae Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
15
|
Wu L, Zhou Z, Yu Y, Cheng C, Zhou S, Yan Y, Yu B, Zhang Y, Liu Z. Phosphorylation-dependent deubiquitinase OTUD3 regulates YY1 stability and promotes colorectal cancer progression. Cell Death Dis 2024; 15:137. [PMID: 38351178 PMCID: PMC10864350 DOI: 10.1038/s41419-024-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Yin Yang 1 (YY1) is a key transcription factor that has been implicated in the development of several malignancies. The stability of YY1 is regulated by the ubiquitin-proteasome system. The role of deubiquitinases (DUBs) and their impact on YY1 remain to be fully elucidated. In this study, we screened for ubiquitin-specific proteases that interact with YY1, and identified OTUD3 as a DUB for YY1. Over-expressed OTUD3 inhibited YY1 degradation, thereby increasing YY1 protein levels, whereas OTUD3 knockdown or knockout promoted YY1 degradation, thereby decreasing the proliferation of colorectal cancer (CRC). Furthermore, PLK1 mediates OTUD3 S326 phosphorylation, which further enhances OTUD3 binding and deubiquitination of YY1. In CRC tissues, elevated the expression level of OTUD3 and YY1 were significantly associated with poor prognostic outcomes. These findings suggest that the OTUD3-YY1 pathway has therapeutic potential in CRC, and OTUD3 plays a critical role in regulating YY1.
Collapse
Affiliation(s)
- Liang Wu
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, 230001, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Yang Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Can Cheng
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, 230001, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuan Yan
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
| | - Bofan Yu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China
| | - Yuwei Zhang
- Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, 450000, China
| | - Zhengyi Liu
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
16
|
Sun X, Yu J, Cui X, Tang Y, Yu Y. Inhibition of USP21 leads to ovarian carcinoma cell death by suppressing MAPK signaling. Biotechnol Appl Biochem 2024; 71:232-239. [PMID: 37964466 DOI: 10.1002/bab.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. Although the overexpression (OE) of ubiquitin-specific peptidase 21 (USP21) has been observed in multiple cancers, its expression profile and biological function in ovarian cancer remain unknown. The expression levels of USP21 in ovarian cancer cells and tissues as well as adjacent normal tissues were assessed by qRT-PCR or Western blot assay. The biological function of USP21 in ovarian cancer cells was assessed by cell growth assay in vitro and a tumor growth model in vivo. Our study revealed that USP21 was markedly elevated in ovarian carcinoma tissues compared with adjacent normal tissues. Downregulation of USP21 attenuated the expression levels of MEK2 and p-ERK1/2. Depletion of USP21 resulted in suppressed cell growth of ovarian cancers in vitro and inhibited tumor growth in vivo. Conversely, OE of USP21 promoted the cell proliferation of ovarian cancers and conferred resistance to BAY 11-7082. These findings provide evidences supporting the notion of USP21 as a promising therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Sun
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Jia Yu
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiaorong Cui
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yujie Tang
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yani Yu
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
17
|
Wang D, Huang L, Qian D, Cao Y, Wu X, Xu P, Ming L, Tang J, Huang Z, Yin Y, Zhou L. Low-dose radiotherapy promotes the formation of tertiary lymphoid structures in lung adenocarcinoma. Front Immunol 2024; 14:1334408. [PMID: 38259481 PMCID: PMC10800908 DOI: 10.3389/fimmu.2023.1334408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose A tertiary lymphoid structure (TLS) refers to an organized infiltration of immune cells that is linked to a positive prognosis and improved response to immunotherapy. However, methods that promote TLS formation are limited and challenging to implement in clinical settings. In this study, we aimed to promote the formation and maturation of TLSs in lung adenocarcinoma (LUAD) by combining low-dose radiotherapy (LDRT) with immunotherapy. Methods Tissue sections from 198 patients who had undergone surgery were examined. Risk factors for patient survival were assessed, and the relationship between TLSs and five-year survival was analyzed. The Kras-LSL-G12D spontaneous lung cancer mouse model was used to screen the optimal irradiation dose (0/1/2 Gy whole lung irradiation) for promoting TLS formation. LDRT combined with anti-PD-1 was used to promote the formation and maturation of TLSs. Results TLS+, TLSHigh, TLS+GC+ and CD8High within TLS+ were associated with a favorable prognosis. LDRT increased the formation of early TLSs in the Kras-LSL-G12D lung cancer mouse model. In addition, LDRT combined with anti-PD-1 treatment can significantly improve the maturity of TLSs in mouse LUAD, resulting in greater antitumor effects. This antitumor effect was strongly associated with the number of CD8+ T cells within the TLSs. Conclusion We successfully applied LDRT combined with PD-1 inhibitor therapy for the first time, which increased both the quantity and maturity of TLSs in lung cancer. This approach achieved a promising antitumor effect.
Collapse
Affiliation(s)
- Duo Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liuying Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Danqi Qian
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaohan Wu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Peiwen Xu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liang Ming
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Leyuan Zhou
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Radiation Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Park SS, Baek KH. Synergistic effect of YOD1 and USP21 on the Hippo signaling pathway. Cancer Cell Int 2023; 23:209. [PMID: 37743467 PMCID: PMC10518088 DOI: 10.1186/s12935-023-03078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) comprise a family of proteases responsible for cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. Ubiquitin is essential for regulating diverse cellular functions by attaching to target proteins. The Hippo signaling pathway plays a crucial role in controlling tissue size, cell proliferation, and apoptosis. In a previous study, we discovered that YOD1 regulates the Hippo signaling pathway by deubiquitinating the neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase of large tumor suppressor kinase 1 (LATS1). Here, our aim was to investigate potential substrates of YOD1 implicated in the Hippo signaling pathway. METHODS We employed various bioinformatics tools (BioGRID, STRING, and Cytoscape) to identify novel potential substrates of YOD1. Furthermore, we used western blotting, co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pull-down, immunocytochemistry (ICC) assays to investigate cellular interactions. To evaluate cell proliferation, we performed cell counting kit-8 (CCK-8), wound healing, colony forming, and flow cytometry assays using A549, HEK293T, and HeLa cells. Additionally, we assessed the expression levels of YAP and p-YAP in A549, HEK293T, and HeLa cells through western blotting. RESULTS Our investigations revealed that YOD1 interacts with ubiquitin-specific proteases 21 (USP21), a DUB involved in the Hippo signaling pathway, and deubiquitinates the microtubule-affinity regulating kinase (MARK). Intriguingly, YOD1 and USP21 mutually deubiquitinate each other; while YOD1 regulates the protein stability of USP21, USP21 does not exert a regulatory effect on YOD1. Moreover, we observed the synergistic effect of YOD1 and USP21 on cell proliferation through the modulation of the Hippo signaling pathway. CONCLUSIONS Our study revealed multiple cellular interactions between YOD1 and USP21. Moreover, our findings suggest that the combined activities of YOD1 and USP21 synergistically influence cell proliferation in A549 cells by regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
- Department of Bioconvergence, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seoungnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
19
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
20
|
Yu X, Duan W, Wu F, Yang D, Wang X, Wu J, Zhou D, Shen Y. LncRNA-HOTAIRM1 promotes aerobic glycolysis and proliferation in osteosarcoma via the miR-664b-3p/Rheb/mTOR pathway. Cancer Sci 2023; 114:3537-3552. [PMID: 37316683 PMCID: PMC10475784 DOI: 10.1111/cas.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Osteosarcoma (OS), which is a common and aggressive primary bone malignancy, occurs mainly in children and adolescent. Long noncoding RNAs (lncRNAs) are reported to play a pivotal role in various cancers. Here, we found that the lncRNA HOTAIRM1 is upregulated in OS cells and tissues. A set of functional experiments suggested that HOTAIRM1 knockdown attenuated the proliferation and stimulated the apoptosis of OS cells. A subsequent mechanistic study revealed that HOTAIRM1 functions as a competing endogenous RNA to elevate ras homologue enriched in brain (Rheb) expression by sponging miR-664b-3p. Immediately afterward, upregulated Rheb facilitates proliferation and suppresses apoptosis by promoting the mTOR pathway-mediated Warburg effect in OS. In summary, our findings demonstrated that HOTAIRM1 promotes the proliferation and suppresses the apoptosis of OS cells by enhancing the Warburg effect via the miR-664b-3p/Rheb/mTOR axis. Understanding the underlying mechanisms and targeting the HOTAIRM1/miR-664b-3p/Rheb/mTOR axis are essential for OS clinical treatment.
Collapse
Affiliation(s)
- Xuecheng Yu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Weihao Duan
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Furen Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Daibin Yang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Dalian Medical UniversityDalianChina
| | - Xin Wang
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Jingbin Wu
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Dong Zhou
- Changzhou No.6 People's HospitalNanjing Medical UniversityChangzhouChina
- Changzhou Medical CenterNanjing Medical UniversityChangzhouChina
- Department of OrthopedicsWuqia People's HospitalXinjiangChina
| | - Yifei Shen
- Department of OrthopedicsThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
21
|
Li M, Duan Y, Wei J, Chen S, Xue C, Zheng L, Deng H, Fan S, Xiong W, Li G, Tan M, Tang F, She K, Zhou M. Yin Yang 1 suppresses tumor invasion and metastasis in nasopharyngeal carcinoma by negatively regulating eIF4E transcriptional activity and expression. Am J Cancer Res 2023; 13:3763-3780. [PMID: 37693135 PMCID: PMC10492101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo. Furthermore, we identified eIF4E as a direct downstream target of YY1, and YY1 could negatively regulate the expression of eIF4E at transcriptional level. Moreover, we found that eIF4E promoted the migration and invasion of NPC cells as well as NPC lung metastasis, suggesting its potential as a pro-metastatic mediator in NPC. Importantly, restoring eIF4E expression could partially reverse the inhibitory effects of YY1 on NPC malignancy. In consistent with these findings, the expression of YY1 was downregulated while eIF4E was upregulated in NPC patients with metastasis, and there was a negative correlation between YY1 and eIF4E expression. Collectively, our results indicate that YY1 suppresses the invasion and metastasis of NPC by negatively regulating eIF4E transcription. Therefore, targeting the YY1/eIF4E transcriptional axis could be a potential therapeutic strategy for the treatment of patients with NPC.
Collapse
Affiliation(s)
- Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Kelin She
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Nomal UniversityChangsha 410005, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
22
|
Liang XW, Wang SZ, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Liu H, Wu JC. A review of deubiquitinases and thier roles in tumorigenesis and development. Front Bioeng Biotechnol 2023; 11:1204472. [PMID: 37251574 PMCID: PMC10213685 DOI: 10.3389/fbioe.2023.1204472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Ubiquitin is a small protein that can be added onto target protein for inducing target degradation, thereby modulating the activity and stability of protein. Relatively, deubiquitinases (DUBs), a class catalase that can remove ubiquitin from substrate protein, provide a positive regulation of the protein amount at transcription level, post-translational modification, protein interaction, etc. The reversible and dynamic ubiquitination-deubiquitination process plays an essential role in maintaining protein homeostasis, which is critical to almost all the biological processes. Therefore, the metabolic dysregulation of deubiquitinases often lead to serious consequences, including the growth and metastasis of tumors. Accordingly, deubiquitinases can be served as key drug targets for the treatment of tumors. The small molecule inhibitors targeting deubiquitinases has become one of the hot spots of anti-tumor drug research areas. This review concentrated on the function and mechanism of deubiquitinase system in the proliferation, apoptosis, metastasis and autophagy of tumor cells. The research status of small molecule inhibitors of specific deubiquitinases in tumor treatment is introduced, aiming to provide reference for the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-Ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
23
|
Wang QD, Shi T, Xu Y, Liu Y, Zhang MJ. USP21 contributes to the aggressiveness of laryngeal cancer cells by deubiquitinating and stabilizing AURKA. Kaohsiung J Med Sci 2023; 39:354-363. [PMID: 36919585 DOI: 10.1002/kjm2.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 03/16/2023] Open
Abstract
Laryngeal cancer is a usual malignant tumor of the head and neck. The role and mechanism of deubiquitinase USP21 in laryngeal cancer are still unclear. We aimed to explore whether USP21 affected laryngeal cancer progress through deubiquitinating AURKA. USP21 and AURKA levels were evaluated by qRT-PCR and Western blot. Kaplan-Meier analysis was conducted by survival package. MTT was performed to detect cell proliferation. The wound healing assay was applied to evaluate cell migration. Transwell was used to measure cell invasion. Co-IP and GST-pull down determined the interaction between USP21 and AURKA. In addition, AURKA ubiquitination levels were analyzed. USP21 was signally elevated in laryngeal cancer tissues and cells. USP21 level in clinical stages III-IV was higher than that in clinical stages I-II, and high levels of USP21 were highly correlated with poor prognosis in laryngeal cancer. USP21 inhibition suppressed AMC-HN-8 and TU686 cell proliferation, migration and invasion. Co-IP and GST-pull down confirmed the interaction between USP21 and AURKA. Knockdown of USP21 markedly increased the ubiquitination level of AURKA, and USP21 restored AURKA activity through deubiquitination. In addition, overexpression of AURKA reversed the effects of USP21 knockdown on cell growth, migration, and invasion. USP21 stabilized AURKA through deubiquitination to promote laryngeal cancer progression.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Tao Shi
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Yang Xu
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Yang Liu
- Department of Emergency, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Mei-Jia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| |
Collapse
|
24
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
25
|
Göricke F, Vu V, Smith L, Scheib U, Böhm R, Akkilic N, Wohlfahrt G, Weiske J, Bömer U, Brzezinka K, Lindner N, Lienau P, Gradl S, Beck H, Brown PJ, Santhakumar V, Vedadi M, Barsyte-Lovejoy D, Arrowsmith CH, Schmees N, Petersen K. Discovery and Characterization of BAY-805, a Potent and Selective Inhibitor of Ubiquitin-Specific Protease USP21. J Med Chem 2023; 66:3431-3447. [PMID: 36802665 PMCID: PMC10009755 DOI: 10.1021/acs.jmedchem.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.
Collapse
Affiliation(s)
- Fabian Göricke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Leanna Smith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ulrike Scheib
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Raphael Böhm
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Namik Akkilic
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Gerd Wohlfahrt
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jörg Weiske
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Ulf Bömer
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | | | - Niels Lindner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Philip Lienau
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Stefan Gradl
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Kirstin Petersen
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
26
|
Zhang Z, Kim BS, Han W, Chen X, Yan Y, Lin L, Chai G. Identifying Oxidized Lipid Metabolism-Related LncRNAs as Prognostic Biomarkers of Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13030488. [PMID: 36983670 PMCID: PMC10054813 DOI: 10.3390/jpm13030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
The relationship between oxidized lipid metabolism and the immunological function of cancer is well known. However, the functions and regulatory mechanisms of lncRNAs associated with oxidized lipid metabolism in head and neck squamous cell carcinoma (HNSCC) remain to be fully elucidated. In this study, we established an oxidized lipid metabolism-related lncRNA prognostic signature to assess the prognosis and immune infiltration of HNSCC patients. The HNSCC transcriptome was obtained from The Cancer Genome Atlas. The choice of the target genes with a relevance score greater than 10 was performed via a correlation analysis by GeneCards. Patients were categorized by risk score and generated with multivariate Cox regression, which was then validated and evaluated using the Kaplan–Meier analysis and time-dependent receiver operating characteristics (ROC). A nomogram was constructed by combining the risk score with the clinical data. We constructed a risk score with 24 oxidized lipid metabolism-related lncRNAs. The areas’ 1-, 2-, and 3-year OS under the ROC curve (AUC) were 0.765, 0.724, and 0.724, respectively. Furthermore, the nomogram clearly distinguished the survival probabilities of patients in high- and low-risk groups, between which substantial variations were revealed by immune infiltration analysis. The results supported the fact that oxidized lipid metabolism-related lncRNAs might predict prognoses and assist with differentiating amid differences in immune infiltration in HNSCC.
Collapse
|
27
|
Wang QD, Liu LL, Li D, Gao L, Zhang MJ. Salt-like transcription factor 4 promotes laryngeal cancer progression through transcriptional activation of ubiquitin-specific protease 21 to stabilize Yin Yang 1. Pathol Int 2023; 73:109-119. [PMID: 36285444 DOI: 10.1111/pin.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Li-Li Liu
- Department of Anesthesiology, Second Department of Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, P.R. China
| | - Di Li
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Li Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Mei-Jia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| |
Collapse
|
28
|
Li X, Li X. USP21 Promotes the Progression of Nasopharyngeal Carcinoma by Regulating FOXM1. Stem Cells Int 2023; 2023:9196583. [PMID: 36820242 PMCID: PMC9938788 DOI: 10.1155/2023/9196583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 02/13/2023] Open
Abstract
The purpose of this work was to explore the molecular mechanisms by which USP21 regulates nasopharyngeal carcinoma tumor growth and cancer cell stemness. In this study, the USP21 transcript data was obtained from TCGA database. Then, qPCR and western blot tests revealed that, in contrast to normal tissue or normal nasopharyngeal epithelial cells, the expression of USP21 was greater in nasopharyngeal carcinoma tissues or cell lines, respectively. CCK-8 and EdU immunofluorescent staining assays revealed that USP21 promoted the proliferation of nasopharyngeal carcinoma cells. Meanwhile, scratch and transwell assays showed that USP21 facilitated migration and invasion of nasopharyngeal carcinoma cells. Sphere formation assay was performed on nasopharyngeal carcinoma cells after knockdown of USP21, which revealed that knockdown of USP21 inhibited the stemness profiles of nasopharyngeal carcinoma cells. Then, the western blot assays indicated that knockdown of USP21 in nasopharyngeal carcinoma cells would inhibit FOXM1 expression, and overexpression of FOXM1 could reverse the cell proliferation ability, cell migration and invasion ability, and cell stemness profiles. Finally, a nasopharyngeal xenograft model suggested that USP21 facilitated tumor growth in mice. These findings proved that USP21 promoted tumor growth and cancer cell stemness in nasopharyngeal carcinoma by regulating FOXM1.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 201306, China
| | - Xia Li
- Department of Otorhinolaryngology, The Second People's Hospital of Changzhou, Changzhou, Jiangsu 213164, China
| |
Collapse
|
29
|
Sun Y, He P, Li L, Ding X. The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer. Front Oncol 2023; 12:969032. [PMID: 36727069 PMCID: PMC9884829 DOI: 10.3389/fonc.2022.969032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, with extremely high morbidity and mortality rates. Non-small cell lung cancer (NSCLC) is the most critical type of LC. It seriously threatens the life and health of patients because of its early metastasis, late clinical symptoms, limited early screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance. Several previous studies have proven that ncRNAs are vital regulators of tumorigenesis. Ubiquitination plays the most crucial role in protein post-translational modification (PTM). Deubiquitination and ubiquitination form a homeostasis. In summary, ubiquitination and deubiquitination play essential roles in mediating the degradation or overexpression of a range of crucial proteins in various cancers. A growing number of researchers have found that interactions between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in NSCLC. This review presents several typical examples of the important effects of ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more creative ideas for exploring the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Ping He,
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Ding
- General Medicine Department, Dalian Friendship Hospital, Dalian, China
| |
Collapse
|
30
|
Wu Y, Guo Y, Wang Q. USP21 accelerates the proliferation and glycolysis of esophageal cancer cells by regulating the STAT3/FOXO1 pathway. Tissue Cell 2022; 79:101916. [DOI: 10.1016/j.tice.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
31
|
Xu Y, Luan G, Li Z, Liu Z, Qin G, Chu Y. Tumour-derived exosomal lncRNA SNHG16 induces telocytes to promote metastasis of hepatocellular carcinoma via the miR-942-3p/MMP9 axis. Cell Oncol (Dordr) 2022; 46:251-264. [PMID: 36434360 DOI: 10.1007/s13402-022-00746-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cell-derived exosomal LncRNA SNHG16 is highly expressed and associated with poor overall survival of patients. Telocytes (TCs), as novel interstitial cells, have been reported to promote HCC metastasis. Therefore, in our study, we investigated whether a molecular interaction occurred between exosomal LncSNHG16 and TCs in the tumor microenvironment. METHODS LncSNHG16 expression in HCC tissues and cell lines was measured, and bioinformatics analysis was performed. Exosomes were isolated and purified from HCC cells with LncSNHG16 overexpression/knockdown vectors and cocultured with TCs. Then, markers of the LncSNHG16/miR-942-3p/MMP9 axis were tested in TCs. Transwell assays and cell wound healing assays were designed to examine the invasion and migration of HCC cells after coincubation with TCs. RNA immunoprecipitation (RIP) assays and dual-luciferase gene reporter assays were performed to verify the binding effect of LncSNHG16, miR-942-3p, and MMP9 mRNA. In vivo, experimental animal models were established to confirm the effect of exosomal LncSNHG16-induced MMP9 expression on HCC metastasis. RESULTS Exosomal LncSNHG16 was phagocytized by TCs and downregulated miR-942-3p, which induced targeted MMP9 upregulation, and it had specific binding sites with miR-942-3p in TCs to facilitate the migration of HCC cells in vitro and in vivo. Exosomal LncSNHG16 was found to act as a competing endogenous RNA of the miR-942-3p/MMP9 axis in TCs. CONCLUSION Tumour-derived exosomal LncSNHG16 modulates MMP9 via competitively binding to miR-942-3p in TCs, thus promoting the metastasis of HCC.
Collapse
Affiliation(s)
- Ying Xu
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China.
| | | | - Zhongchao Li
- Shandong Cancer Hospital and Institute, Shandong Fist Medical University and Shandong Academy of Medical Science, No 440, Jiyan Road, Ji'nan, Shandong, China
| | - Ziming Liu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Guangyang Qin
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Yifu Chu
- Shandong Fist Medical University and Shandong Academy of Medical Science, Ji'nan, Shandong, China
| |
Collapse
|
32
|
Ren L, Fang X, Shrestha SM, Ji Q, Ye H, Liang Y, Liu Y, Feng Y, Dong J, Shi R. LncRNA SNHG16 promotes development of oesophageal squamous cell carcinoma by interacting with EIF4A3 and modulating RhoU mRNA stability. Cell Mol Biol Lett 2022; 27:89. [PMID: 36221055 PMCID: PMC9552503 DOI: 10.1186/s11658-022-00386-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
Background Numerous studies have revealed that long noncoding RNAs (lncRNAs) are closely related to the development of many diseases and carcinogenesis. However, their specific biological function and molecular mechanism in oesophageal squamous cell carcinoma (ESCC) remains unclear.
Methods RNA-Seq was performed to determine the differential expressions of lncRNAs in ESCC, and the level of SNHG16 expression was detected in ESCC and intraepithelial neoplasia (IEN) samples. In vitro and in vivo experiments were performed to explore the role of SNHG16 and the interaction of EIF4A3 and Ras homologue family member U (RhoU) signalling. Results One hundred and seventy-five upregulated and 134 downregulated lncRNAs were identified by RNA-Seq. SNHG16 was highly expressed in ESCC and intraepithelial neoplasia (IEN) samples, and its expression level was correlated with tumour differentiation and T stage. Overexpression of SNHG16 can facilitate ESCC cell proliferation and metastasis. Mechanistically, we noticed that SNHG16 could bind RNA binding protein (RBP)-eukaryotic translation initiation factor (EIF4A3) and interact with it to form a complex. Importantly, the coalition of SNHG16 and EIF4A3 ultimately regulated Ras homologue family member U (RhoU). SNHG16 modulated RhoU expression by recruiting EIF4A3 to regulate the stability of RhoU mRNA. Knockdown of RhoU further alleviated the effect of the SNHG16 oncogene in ESCC cells. Conclusions The newly identified SNHG16–EIF4A3–RhoU signalling pathway directly coordinates the response in ESCC pathogenesis and suggests that SNHG16 is a promising target for potential ESCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00386-w.
Collapse
Affiliation(s)
- Lihua Ren
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Xin Fang
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Sachin Mulmi Shrestha
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Qinghua Ji
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Hui Ye
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yan Liang
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yang Liu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yadong Feng
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Jingwu Dong
- Department of Gastroenterology, Xuyi County People's Hospital, Huaian, 211700, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
33
|
Sun W, Zhang X, He X, Zhang J, Wang X, Lin W, Wang X, Wu X. Long non-coding RNA SNHG16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105325. [PMID: 35779785 DOI: 10.1016/j.meegid.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The study investigated the clinical diagnostic value of long non-coding RNA (LncRNA) small nucleolar RNA host gene 16 (SNHG16) and explored its underlying molecular mechanism through Mycobacterium tuberculosis (M. tuberculosiinfection of macrophages. METHODS RT-qPCR analysis of the serum SNHG16 levels of the 66 healthy individuals, 67 latent TB (LTB) patients, and 67 active TB (ATB) patients. The receiver-operating characteristic (ROC) curve to detect the clinical diagnostic value of SNHG16 in TB patients. In vitro, M. tuberculosis-infected macrophages, CCK-8 and ELISA to detect cell proliferation and inflammatory factor levels. Luciferase reported assay was performed to analyze the targeting relationship between SNHG16 and miR-140-5p. RESULTS SNHG16 was significantly elevated in TB patients, and among them, ATB patients were higher than LTB patients. ROC confirmed that SNHG16 could distinguish LTB patients from healthy controls, and ATB patients from LTB patients, and can be used as a good diagnostic biomarker for TB. M. tuberculosis infection increased SNHG16 levels and promoted the proliferation and inflammation in macrophages. However, SNHG16 silencing significantly reversed the effect of infection. miR-140-5p, a direct target miRNA of SNHG16, was down-regulated in TB patients and was negatively correlated with SNHG16. When miR-140-5p was inhibited, the alleviating effect of SNHG16 silencing on M. tuberculosis infection proliferation and inflammation was significantly reversed. CONCLUSION The present results suggested that SNHG16 may be a new diagnostic biomarker for TB patients and SNHG16 silencing may alleviate TB by inhibiting the proliferation of macrophages in TB by regulation miR-140-5p.
Collapse
Affiliation(s)
- Wenna Sun
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiushuang Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiong He
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Junxian Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiaomeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Wen Lin
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - XiaoFeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xueqiong Wu
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China.
| |
Collapse
|
34
|
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You Y, Wang H. USP21 promotes self-renewal and tumorigenicity of mesenchymal glioblastoma stem cells by deubiquitinating and stabilizing FOXD1. Cell Death Dis 2022; 13:712. [PMID: 35974001 PMCID: PMC9381540 DOI: 10.1038/s41419-022-05163-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that Forkhead box D1 (FOXD1) plays an indispensable role in maintaining the mesenchymal (MES) properties of glioblastoma (GBM) stem cells (GSCs). Thus, understanding the mechanisms that control FOXD1 protein expression is critical for guiding GBM treatment, particularly in patients with therapy-resistant MES subtypes. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a critical FOXD1 deubiquitinase in MES GSCs. We find that USP21 directly interacts with and stabilizes FOXD1 by reverting its proteolytic ubiquitination. Silencing of USP21 enhances polyubiquitination of FOXD1, promotes its proteasomal degradation, and ultimately attenuates MES identity in GSCs, while these effects could be largely restored by reintroduction of FOXD1. Remarkably, we show that disulfiram, a repurposed drug that could block the enzymatic activities of USP21, suppresses GSC tumorigenicity in MES GSC-derived GBM xenograft model. Additionally, we demonstrate that USP21 is overexpressed and positively correlated with FOXD1 protein levels in GBM tissues, and its expression is inversely correlated with patient survival. Collectively, our work reveals that USP21 maintains MES identity by antagonizing FOXD1 ubiquitination and degradation, suggesting that USP21 is a potential therapeutic target for the MES subtype of GBM.
Collapse
Affiliation(s)
- Qixiang Zhang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhengxin Chen
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Qikai Tang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhangjie Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jiacheng Lu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yongping You
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Huibo Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
35
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
36
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
37
|
Long Noncoding RNA SNHG16 Regulates the Growth of Human Lung Cancer Cells by Modulating the Expression of Aldehyde Dehydrogenase 2 (ALDH2). JOURNAL OF ONCOLOGY 2022; 2022:2411642. [PMID: 35646120 PMCID: PMC9142302 DOI: 10.1155/2022/2411642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
The involvement of long noncoding RNA (lncRNA) SNHG16 has been reported in several human cancers. Notwithstanding, the role of lncRNA SNHG16 is yet largely unknown in human lung cancer. Consequently, this study was undertaken to investigate the role and therapeutic potential of SNHG16 in human lung cancer. The results showed a significant (P < 0.05) transcriptional upregulation of SNHG16 in lung cancer tissues and cell lines. However, downregulation of SNHG16 resulted in significant (P < 0.05) inhibition of lung cancer A549 and SK-LU-1 cell proliferation. DAPI and annexin V/PI assays revealed apoptosis to be responsible for inhibition of cell proliferation and colony formation observed upon SNHG16 knockdown. This was accompanied by enhancement of Bax and suppression of Bcl-2 expression in A549 and SK-LU-1 cells. Transwell assays revealed that silencing of SNHG16 also significantly (P < 0.05) inhibited migration and invasion of A549 and SK-LU-1 cells. Bioinformatic analysis revealed that SNHG16 interacted with ALDH2 to exert its effects in human lung cancer cells. The expression of ALDH2 was found to be significantly (P < 0.05) suppressed in human lung cancer tissues and cell lines. Overexpression of ALDH2 inhibited the proliferation and colony formation of the A549 and SK-LU-1 cells. However, silencing of ALDH2 could avoid the tumor-suppressive effects of SNHG16 knockdown. Finally, SNHG16 silencing was also found to inhibit in vivo tumor growth. Collectively, the study unveils the molecular role of SNHG16 in regulating the development of lung cancer by interacting with ALDH2.
Collapse
|
38
|
The emerging role of ubiquitin-specific protease 20 in tumorigenesis and cancer therapeutics. Cell Death Dis 2022; 13:434. [PMID: 35508480 PMCID: PMC9068925 DOI: 10.1038/s41419-022-04853-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
As a critical member of the ubiquitin-specific proteolytic enzyme family, ubiquitin-specific peptidase 20 (USP20) regulates the stability of proteins via multiple signaling pathways. In addition, USP20 upregulation is associated with various cellular biological processes, such as cell cycle progression, proliferation, migration, and invasion. Emerging studies have revealed the pivotal role of USP20 in the tumorigenesis of various cancer types, such as breast cancer, colon cancer, lung cancer, gastric cancer and adult T cell leukemia. In our review, we highlight the different mechanisms of USP20 in various tumor types and demonstrate that USP20 regulates the stability of multiple proteins. Therefore, regulating the activity of USP20 is a novel tumor treatment. However, the clinical significance of USP20 in cancer treatment merits more evidence. Finally, different prospects exist for the continued research focus of USP20.
Collapse
|
39
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
40
|
Computational Analyses of YY1 and Its Target RKIP Reveal Their Diagnostic and Prognostic Roles in Lung Cancer. Cancers (Basel) 2022; 14:cancers14040922. [PMID: 35205667 PMCID: PMC8869872 DOI: 10.3390/cancers14040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung cancer (LC) is the tumor with the highest global mortality rate. Novel personalized therapies are currently being tested (e.g., targeted inhibitors, the immune-checkpoint inhibitors), but they cannot yet prevent the very frequent relapse and generalized metastases observed in a large population of LC patients. Currently, there is an urgent need for novel reliable biomarkers for the prognosis and diagnosis of LC. Through the systematic analysis of multiple deposited expression datasets, this report aims to explore the role of the Yin-Yang 1 (YY1) transcription factor and its target the Raf Kinase Inhibitory Protein (RKIP) in LC. The computational analysis suggested the predictive diagnostic and prognostic roles for both YY1 and RKIP stimulating further studies for proving their implication as novel biomarkers, as well as therapeutically druggable targets in LC. Abstract Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results.
Collapse
|
41
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Ma X, Wang L, Shi G, Sun S. The deubiquitinase
OTUD1
inhibits non‐small cell lung cancer progression by deubiquitinating and stabilizing
KLF4. Thorac Cancer 2022; 13:761-770. [PMID: 35098684 PMCID: PMC8888149 DOI: 10.1111/1759-7714.14320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer results in the highest mortality associated with cancer worldwide. Non‐small cell cancer (NSCLC) is the leading subtype of lung cancer. Ovarian tumor protease (OTU) domain‐containing protein 1 (OTUD1) is a member of the OTU subfamily of DUBs, and its function in NSCLC remains unclear. Methods GEPIA database was employed to reveal the expression level of OTUD1 in addition to Krüppel‐ like factor 4 (KLF4) in NSCLC tissue samples and prove the correlation between OTUD1 and KLF4. The protein level was estimated using western blot. Cell counting kit‐8 (CCK‐8) assay was used to detect cell viability and transwell assay was utilized to observe cell migration and invasion. Cycloheximide (CHX) was introduced to measure half‐lives of KLF4 and deubiquitination assay was used to detect deubiquitination ability of OTUD1. Results OTUD1 expression was downregulated in NSCLC tissues and cells. Overexpression of OTUD1 inhibited NSCLC cell progression and it was promoted by knockdown of OTUD1. OTUD1 was positively correlated with KLF4 and stabilized KLF4 at protein level by deubiquitinating KLF4. Overexpressing KLF4 dramatically eliminated the effects of OTUD1 on the development of NSCLC cells. Conclusions Our study revealed that OTUD1 suppresses NSCLC progression by mediating KLF4 stabilization, which suggests a potential gene target for the future treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Department of Critical Medicine Weifang People's Hospital Weifang China
| | - Liming Wang
- Department of Critical Medicine Weifang People's Hospital Weifang China
| | - Guifang Shi
- Department of Chinese Medicine Weifang People's Hospital Weifang China
| | - Shuqing Sun
- Department of Critical Medicine Weifang People's Hospital Weifang China
| |
Collapse
|
43
|
USP21 regulates Hippo signaling to promote radioresistance by deubiquitinating FOXM1 in cervical cancer. Hum Cell 2021; 35:333-347. [PMID: 34825342 DOI: 10.1007/s13577-021-00650-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
The ectopic expression of ubiquitin-specific peptidase 21 (USP21) is common in different types of cancer. However, its relationship with radio-sensitivity in cervical cancer (CC) remains unclear. In this study, we aimed to uncover the effect of USP21 on CC radio-resistance and its underlying mechanism. Our results showed that the expression of USP21 was markedly increased in CC tissues of radio-resistant patients and CC cells treated with radiation. Besides, knockdown of USP21 restrained the survival fractions, and facilitated apoptosis of CC cells in the absence or presence of radiation. Additionally, USP21 in combination with FOXM1 regulated the stability and ubiquitination of FOXM1. However, FOXM1 reversed the effects of USP21 knockdown on the radio-resistance of CC cells. Furthermore, FOXM1 knockdown activated the Hippo pathway by inhibiting the nuclear translocation of Yes-associated protein 1 (YAP1), and FOXM1 knockdown attenuated the radio-resistance of CC cells via inhibiting the Hippo-YAP1 pathway. USP21 activated the Hippo pathway by mediating FOXM1. Knockdown of USP21 enhanced the radio-sensitivity of CC cells in vivo. In summary, USP21 contributed to the radio-resistance of CC cells via FOXM1/Hippo signaling, and may serve as a promising target for radio-sensitizers in the radiotherapy of CC.
Collapse
|
44
|
Hsu FS, Lin WC, Kuo KL, Chiu YL, Hsu CH, Liao SM, Dong JR, Liu SH, Chang SC, Yang SP, Chen YT, Chang RJ, Huang KH. PR-619, a General Inhibitor of Deubiquitylating Enzymes, Diminishes Cisplatin Resistance in Urothelial Carcinoma Cells through the Suppression of c-Myc: An In Vitro and In Vivo Study. Int J Mol Sci 2021; 22:11706. [PMID: 34769137 PMCID: PMC8584183 DOI: 10.3390/ijms222111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin-based chemotherapy is the standard treatment for bladder urothelial carcinoma (UC). Most patients experience chemoresistance, the primary cause of treatment failure, which leads to disease relapse. The underlying mechanism of chemoresistance involves reduced apoptosis. In this study, we investigated the antitumor effect of the deubiquitylating enzyme inhibitor PR-619 in cisplatin-resistant bladder UC. Deubiquitinase (ubiquitin-specific protease 14 (USP14) and USP21) immunohistochemical staining demonstrated that deubiquitination is related to chemoresistance in patients with metastatic UC and may be a target for overcoming chemoresistance. Cytotoxicity and apoptosis were assessed using fluorescence-activated flow cytometry and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay, and PR-619 was found to enhance the cytotoxic and apoptotic effects of cisplatin in cisplatin-resistant T24/R cells. Mitigated cisplatin chemoresistance was associated with the concurrent suppression of c-Myc expression in T24/R cells. Moreover, the expression of c-Myc was upregulated in human bladder UC specimens from patients with chemoresistance. Experiments in a xenograft nude mouse model confirmed that PR-619 enhanced the antitumor effects of cisplatin. These results are promising for the development of therapeutic strategies to prevent UC chemoresistance through the combined use of chemotherapeutic agents/deubiquitination inhibitors (PR-619) by targeting the c-Myc pathway.
Collapse
Affiliation(s)
- Fu-Shun Hsu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; (F.-S.H.); (Y.-L.C.)
- Department of Urology, YangMing Branch of Taipei City Hospital, Taipei 111, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei 111, Taiwan
- Department of Food and Beverage Management, Vanung University, Taoyuan 320, Taiwan
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Yen-Ling Chiu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; (F.-S.H.); (Y.-L.C.)
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan 320, Taiwan
| | - Chen-Hsun Hsu
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Shih-Ming Liao
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Jun-Ren Dong
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Shih-Chen Chang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Shao-Ping Yang
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Yueh-Tang Chen
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Ruei-Je Chang
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| | - Kuo-How Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; (F.-S.H.); (Y.-L.C.)
- Department of Urology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; (K.-L.K.); (C.-H.H.); (S.-M.L.); (J.-R.D.); (S.-P.Y.); (Y.-T.C.); (R.-J.C.)
| |
Collapse
|
45
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Shojaei S. A Review on the Role of Small Nucleolar RNA Host Gene 6 Long Non-coding RNAs in the Carcinogenic Processes. Front Cell Dev Biol 2021; 9:741684. [PMID: 34671603 PMCID: PMC8522957 DOI: 10.3389/fcell.2021.741684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
Being located on 17q25.1, small nucleolar RNA host gene 6 (SNHG16) is a member of SNHG family of long non-coding RNAs (lncRNA) with 4 exons and 13 splice variants. This lncRNA serves as a sponge for a variety of miRNAs, namely miR-520a-3p, miR-4500, miR-146a miR-16–5p, miR-98, let-7a-5p, hsa-miR-93, miR-17-5p, miR-186, miR-302a-3p, miR-605-3p, miR-140-5p, miR-195, let-7b-5p, miR-16, miR-340, miR-1301, miR-205, miR-488, miR-1285-3p, miR-146a-5p, and miR-124-3p. This lncRNA can affect activity of TGF-β1/SMAD5, mTOR, NF-κB, Wnt, RAS/RAF/MEK/ERK and PI3K/AKT pathways. Almost all studies have reported oncogenic effect of SNHG16 in diverse cell types. Here, we explain the results of studies about the oncogenic role of SNHG16 according to three distinct sets of evidence, i.e., in vitro, animal, and clinical evidence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedpouzhia Shojaei
- Department of Critical Care Medicine, Imam Hossein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Liu Q, Gao P, Li Q, Xu C, Qu K, Zhang J. Long non-coding RNA SNHG16 as a potential biomarker in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2021; 100:e27178. [PMID: 34516515 PMCID: PMC8428724 DOI: 10.1097/md.0000000000027178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/20/2021] [Indexed: 01/27/2023] Open
Abstract
Small nucleolar RNA host gene 16 (SNHG16) has recently been reported as a potential biomarker in various cancers. However, the prognostic value of SNHG16 in hepatocellular carcinoma (HCC) has not been investigated yet. Therefore, the purpose of this study was to reveal the association between SNHG16 expression and clinicopathological characteristics of HCC.Standards-compliant literature was retrieved from multiple public databases, and data on overall survival, disease-free survival, and clinicopathological characteristics related to SNGH16 were extracted and meta-analysis was performed. Additionally, the Cancer Genome Atlas data were analyzed through the gene expression profiling interactive analysis database to verify previous results.A total of 5 reports involving 410 patients with HCC were enrolled. The high expression of SNHG16 indicated worse overall survival (hazard ratio, 2.10; 95% CI, 1.22-3.60; P = .007) and disease-free survival (hazard ratio, 3.38; 95% CI, 1.10-10.40; P = .03). Additionally, the high expression of SNHG16 predicted a larger tumor size, metastasis, and advanced TNM stage.SNHG16 could serve as a potential biomarker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Infectious Disease, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Po Gao
- Second Department of Medicine, Liaocheng Veterans Hospital, Liaocheng, Shandong Province, China
| | - Qingling Li
- Department of Clinical Laboratory, Dongchang Fu People's Hospital, Liaocheng, Shandong Province, China
| | - Chao Xu
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jie Zhang
- Department of Infectious Disease, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| |
Collapse
|
47
|
Zhou XJ, Li R, Liu X, Qu YQ. Advances in deubiquitinating enzymes in lung adenocarcinoma. J Cancer 2021; 12:5573-5582. [PMID: 34405018 PMCID: PMC8364634 DOI: 10.7150/jca.56532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The process of ubiquitination and deubiquitination is widely present in the human body's protein reactions and plays versatile roles in multiple diseases. Deubiquitinating enzymes (DUBs) are significant regulators of this process, which cleave the ubiquitin (Ub) moiety from various substrates and maintain protein stability. Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer (NSCLC) and remains refractory to treatment. To elucidate the mechanism of LUAD and advance new therapeutic targets, we review the latest research progress on DUBs in LUAD. We summarize the biological capabilities of these DUBs and further highlight those DUBs that may serve as anticancer target candidates for precision treatment. We also discuss deubiquitinase inhibitors, which are expected to play a role in targeted LUAD therapy.
Collapse
Affiliation(s)
- Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University (Jinan 250012, China)
| |
Collapse
|
48
|
Zhao W, Zhang Y, Zhu Y. Circular RNA circβ-catenin aggravates the malignant phenotype of non-small-cell lung cancer via encoding a peptide. J Clin Lab Anal 2021; 35:e23900. [PMID: 34296778 PMCID: PMC8418486 DOI: 10.1002/jcla.23900] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background More and more evidences demonstrate that circular RNAs (circNRAs) can encode protein. As a circRNA with translation capabilities, outcomes of circβ‐catenin in non‐small cell lung cancer (NSCLC) still need to be explored. Method The research methods of circβ‐catenin in the article include qRT‐PCR, wound healing assay, CCK‐8, colony formation, and Transwell assay. Western blotting and immunofluorescence were provided to detect protein expression levels and peptide encoded by circβ‐catenin, respectively. Results A prominently higher circβ‐catenin expression was found in NSCLC tissues. Silencing of circβ‐catenin was able to inhibit NSCLC cell migrating, invasive, and proliferative phenotypes. Overexpression of circβ‐catenin could enhance the migrating, invasive, and proliferative phenotypes of NSCLC cells. Importantly, circβ‐catenin was found to encode a peptide in NSCLC cells. Silencing or overexpression of circβ‐catenin could reduce or increase β‐catenin protein expression via suppressing the degradation of β‐catenin. Conclusion Circβ‐catenin could promote NSCLC cell malignant phenotypes via peptide‐regulated β‐catenin pathway. Our study provided a new understanding for the mechanisms of NSCLC.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yandan Zhang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, China
| | - Yonggang Zhu
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
49
|
Jing C, Liu D, Lai Q, Li L, Zhou M, Ye B, Wu Y, Li H, Yue K, Wu Y, Duan Y, Wang X. JOSD1 promotes proliferation and chemoresistance of head and neck squamous cell carcinoma under the epigenetic regulation of BRD4. Cancer Cell Int 2021; 21:375. [PMID: 34261480 PMCID: PMC8278721 DOI: 10.1186/s12935-021-02060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan-Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. RESULTS The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. CONCLUSIONS These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.
Collapse
Affiliation(s)
- Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dandan Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Linqi Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mengqian Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
50
|
Chen Y, Hou C, Zhao LX, Cai QC, Zhang Y, Li DL, Tang Y, Liu HY, Liu YY, Zhang YY, Yang YK, Gao CW, Yao Q, Zhu QS, Cao CH. The Association of microRNA-34a With High Incidence and Metastasis of Lung Cancer in Gejiu and Xuanwei Yunnan. Front Oncol 2021; 11:619346. [PMID: 33796457 PMCID: PMC8008071 DOI: 10.3389/fonc.2021.619346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
The incidence and associated mortality of lung cancer in tin miners in Gejiu County and farmers in Xuanwei Country, Yunnan Province have been very high in the world. Current published literatures on the molecular mechanisms of lung cancer initiation and progression in Gejiu and Xuanwei County are still controversial. Studies confirmed that microRNA-34a (miR-34a) functioned as a vital tumor suppressor in tumorigenesis and progression. However, the role and precise mechanisms of miR-34a and its regulatory gene network in initiation and progression of lung cancer in Gejiu and Xuanwei County, Yunnan Province, have not been elucidated. In the current study, we first found that miR-34a was downregulated in Gejiu lung squamous carcinoma YTMLC-90, Xuanwei lung adenocarcinoma XWLC-05, and other non-small cell lung carcinoma (NSCLC) cell lines, and miR-34a overexpression inhibited cell proliferation, migration and invasion, as well as induced cell apoptosis in YTMLC-90 and XWLC-05 cells. Our findings revealed that miR-34a is critical and cannot be considered as the area-specific non-coding RNA in initiation and progression of lung cancer in Gejiu and Xuanwei County. Next we revealed that miR-34a overexpression suppressed lung cancer growth and metastasis partially via increasing PTEN but reducing CDK6 expression that might lead to subsequent inactivation of PI3K/AKT pathway. Furthermore, our findings demonstrated that YY1 functioned as a tumor suppressor gene in initiation and progression of lung cancer in Gejiu and Xuanwei County. In conclusion, our findings in the study confirmed that miR-34a overexpression could simultaneously suppress tumor growth and metastasis and play a vital role in tumorigenesis and progression of NSCLC via increasing PTEN and YY1 expression, but decreasing CDK6. Most interestingly, our findings also raised doubts about the current ideas about these area-specific diseases.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ying Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Da-Lun Li
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yao Tang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yun-Yi Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yue-Yan Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Kun Yang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Qian Yao
- Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chuan-Hai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|