1
|
Das A, Mund C, Hagag E, Garcia-Martin R, Karadima E, Witt A, Peitzsch M, Deussen A, Chavakis T, Noll T, Alexaki VI. Adenylate cyclase 10 promotes brown adipose tissue thermogenesis. iScience 2025; 28:111833. [PMID: 39949963 PMCID: PMC11821413 DOI: 10.1016/j.isci.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/01/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Brown adipose tissue (BAT) thermogenesis dissipates energy through heat production and thereby it opposes metabolic disease. It is mediated by mitochondrial membrane uncoupling, yet the mechanisms sustaining the mitochondrial membrane potential (ΔΨm) in brown adipocytes are poorly understood. Here we show that isocitrate dehydrogenase (IDH) activity and the expression of the soluble adenylate cyclase 10 (ADCY10), a CO2/bicarbonate sensor residing in mitochondria, are upregulated in BAT of cold-exposed mice. IDH inhibition or ADCY10 deficiency reduces cold resistance of mice. Mechanistically, IDH increases the ΔΨm in brown adipocytes via ADCY10. ADCY10 sustains complex I activity and the ΔΨm via exchange protein activated by cAMP1 (EPAC1). However, neither IDH nor ADCY10 inhibition affect uncoupling protein 1 (UCP1) expression. Hence, we suggest that ADCY10, acting as a CO2/bicarbonate sensor, mediates the effect of IDH on complex I activity through cAMP-EPAC1 signaling, thereby maintaining the ΔΨm and enabling thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Anupam Das
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christine Mund
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eman Hagag
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ruben Garcia-Martin
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anke Witt
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Thomas Noll
- Department of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Kasałka-Czarna N, Stachniuk A, Fornal E, Montowska M. Proteomic analysis of wild boar meat: Effect of storage method and time on muscle protein stability. Food Chem 2025; 464:141774. [PMID: 39486280 DOI: 10.1016/j.foodchem.2024.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Oxidation processes affect proteins from various molecular pathways and are crucial for wild boar meat quality, shelf life and human health. This study investigated the effects of different storage methods on the formation and composition of oxygen-induced protein aggregates in the muscles of European wild boar (Sus scrofa scrofa). Vacuum packaging (VAC), modified atmosphere packaging (MAP) and dry-ageing (DA) were compared over a 21-day storage period. The results showed significant differences in protein aggregation depending on the method and storage time. The most intense protein aggregation occurred in the MAP (80 % O2), while air DA (20.9 % O2) resulted in intermediate levels of protein aggregation. Crucial myofibrillar proteins involved in aggregate formation were titin, myosin isoforms (MYH1, MYH2 and MYH7) and nebulin, which were cross-linked with small sarcoplasmic enzymes, such as muscle creatine kinase, isocitrate dehydrogenase and ATPase 1. High‑oxygen storage conditions also promoted the oxidation of ATP synthase, beta-enolase 3, ADP/ATP translocase and myoglobin.
Collapse
Affiliation(s)
- Natalia Kasałka-Czarna
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Magdalena Montowska
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
3
|
Lee SW, Kim S, Kim B, Seong JB, Park YH, Lee HJ, Choi DK, Yeom E, Lee DS. IDH2 regulates macrophage polarization and tumorigenesis by modulating mitochondrial metabolism in macrophages. Mol Med 2024; 30:143. [PMID: 39256649 PMCID: PMC11385829 DOI: 10.1186/s10020-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Targeting the tumor microenvironment represents an emerging therapeutic strategy for cancer. Macrophages are an essential part of the tumor microenvironment. Macrophage polarization is modulated by mitochondrial metabolism, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and reactive oxygen species content. Isocitrate dehydrogenase 2 (IDH2), an enzyme involved in the TCA cycle, reportedly promotes cancer progression. However, the mechanisms through which IDH2 influences macrophage polarization and modulates tumor growth remain unknown. METHODS In this study, IDH2-deficient knockout (KO) mice and primary cultured bone marrow-derived macrophages (BMDMs) were used. Both in vivo subcutaneous tumor experiments and in vitro co-culture experiments were performed, and samples were collected for analysis. Western blotting, RNA quantitative analysis, immunohistochemistry, and flow cytometry were employed to confirm changes in mitochondrial function and the resulting polarization of macrophages exposed to the tumor microenvironment. To analyze the effect on tumor cells, subcutaneous tumor size was measured, and growth and metastasis markers were identified. RESULTS IDH2-deficient macrophages co-cultured with cancer cells were found to possess increased mitochondrial dysfunction and fission than wild-type BMDM. Additionally, the levels of M2-associated markers decreased, whereas M1-associated factor levels increased in IDH2-deficient macrophages. IDH2-deficient macrophages were predominantly M1. Tumor sizes in the IDH2-deficient mouse group were significantly smaller than in the wild-type mouse group. IDH2 deficiency in macrophages was associated with inhibited tumor growth and epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that IDH2 deficiency inhibits M2 macrophage polarization and suppresses tumorigenesis. This study underlines the potential contribution of IDH2 expression in macrophages and tumor microenvironment remodeling, which could be useful in clinical cancer research.
Collapse
Affiliation(s)
- Sung Woo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Illimis Therapeutics Inc., Seoul, 06376, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Research Institute, huMetaCELL Inc., 220 Bugwang-ro, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
4
|
Kobroob A, Kumfu S, Chattipakorn N, Wongmekiat O. Modulation of Sirtuin 3 by N-Acetylcysteine Preserves Mitochondrial Oxidative Phosphorylation and Restores Bisphenol A-Induced Kidney Damage in High-Fat-Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:4935-4950. [PMID: 38785564 PMCID: PMC11119914 DOI: 10.3390/cimb46050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Bisphenol A (BPA) and high-fat diets (HFD) are known to adversely affect the kidneys. However, the combined effects of both cases on kidney health and the potential benefits of N-acetylcysteine (NAC) in mitigating these effects have not been investigated. To explore these aspects, male Wistar rats were fed with HFD and allocated to receive a vehicle or BPA. At week twelve, the BPA-exposed rats were subdivided to receive a vehicle or NAC along with BPA until week sixteen. Rats fed HFD and exposed to BPA showed renal dysfunction and structural abnormalities, oxidative stress, inflammation, and mitochondrial dysfunction, with alterations in key proteins related to mitochondrial oxidative phosphorylation (OXPHOS), bioenergetics, oxidative balance, dynamics, apoptosis, and inflammation. Treatment with NAC for 4 weeks significantly improved these conditions. The findings suggest that NAC is beneficial in protecting renal deterioration brought on by prolonged exposure to BPA in combination with HFD, and modulation of sirtuin 3 (SIRT3) signaling by NAC appears to play a key role in the preservation of homeostasis and integrity within the mitochondria by enhancing OXPHOS activity, maintaining redox balance, and reducing inflammation. This study provides valuable insights into potential therapeutic strategies for preserving kidney health in the face of environmental and dietary challenges.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Lian WS, Wu RW, Lin YH, Chen YS, Jahr H, Wang FS. Tricarboxylic Acid Cycle Regulation of Metabolic Program, Redox System, and Epigenetic Remodeling for Bone Health and Disease. Antioxidants (Basel) 2024; 13:470. [PMID: 38671918 PMCID: PMC11047415 DOI: 10.3390/antiox13040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Imbalanced osteogenic cell-mediated bone gain and osteoclastic remodeling accelerates the development of osteoporosis, which is the leading risk factor of disability in the elderly. Harmonizing the metabolic actions of bone-making cells and bone resorbing cells to the mineralized matrix network is required to maintain bone mass homeostasis. The tricarboxylic acid (TCA) cycle in mitochondria is a crucial process for cellular energy production and redox homeostasis. The canonical actions of TCA cycle enzymes and intermediates are indispensable in oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis for osteogenic differentiation and osteoclast formation. Knockout mouse models identify these enzymes' roles in bone mass and microarchitecture. In the noncanonical processes, the metabolites as a co-factor or a substrate involve epigenetic modification, including histone acetyltransferases, DNA demethylases, RNA m6A demethylases, and histone demethylases, which affect genomic stability or chromatin accessibility for cell metabolism and bone formation and resorption. The genetic manipulation of these epigenetic regulators or TCA cycle intermediate supplementation compromises age, estrogen deficiency, or inflammation-induced bone mass loss and microstructure deterioration. This review sheds light on the metabolic functions of the TCA cycle in terms of bone integrity and highlights the crosstalk of the TCA cycle and redox and epigenetic pathways in skeletal tissue metabolism and the intermediates as treatment options for delaying osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (W.-S.L.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan;
- Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
6
|
Zhao L, Yang H, Li M, Xiao M, Li X, Cheng L, Cheng W, Chen M, Zhao Y. Global gene expression profiling of perirenal brown adipose tissue whitening in goat kids reveals novel genes linked to adipose remodeling. J Anim Sci Biotechnol 2024; 15:47. [PMID: 38481287 PMCID: PMC10938744 DOI: 10.1186/s40104-024-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is known to be capable of non-shivering thermogenesis under cold stimulation, which is related to the mortality of animals. In the previous study, we observed that goat BAT is mainly located around the kidney at birth, and changes to white adipose tissue (WAT) in the perirenal adipose tissue of goats within one month after birth. However, the regulatory factors underlying this change is remain unclear. In this study, we systematically studied the perirenal adipose tissue of goat kids in histological, cytological, and accompanying molecular level changes from 0 to 28 d after birth. RESULTS Our study found a higher mortality rate in winter-born goat kids, with goat birthing data statistics. Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d. This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids. Additionally, we found a series of changes of BAT during the first 28 d after birth, such as whitening, larger lipid droplets, decreased mitochondrial numbers, and down-regulation of key thermogenesis-related genes (UCP1, DIO2, UCP2, CIDEA, PPARGC1a, C/EBPb, and C/EBPa). Then, we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats. Furthermore, 12 candidate genes were found to potentially regulate goat BAT thermogenesis. The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes. While apoptosis may play a limited role, it is largely not critical in this transition process. CONCLUSIONS We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids, with notable species differences in the expression of adipose tissue marker genes, and we highlighted some potential marker genes for goat BAT and WAT. Additionally, the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Haili Yang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Minhao Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Min Xiao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Wenqiang Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
7
|
Xie Z, Liu J, Xie T, Liu P, Hui X, Zhang Q, Xiao X. Integration of proteomics and metabolomics reveals energy and metabolic alterations induced by glucokinase (GCK) partial inactivation in hepatocytes. Cell Signal 2024; 114:111009. [PMID: 38092300 DOI: 10.1016/j.cellsig.2023.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
AIMS Glucokinase (GCK) acts as the glucose sensor in maintaining glucose homeostasis. The inactivating mutation of the GCK gene leads to glucokinase-maturity onset diabetes of the young (GCK-MODY). This study aims to gain further insights into the molecular alterations triggered by GCK partial inactivation in hepatocytes, potentially underlying the favorable prognosis of GCK-MODY. MAIN METHODS A GCK knockdown HepG2 cell model was established, and the integration of proteomics and metabolomics was used to gain a comprehensive understanding of the molecular pathway changes caused by GCK inactivation in the liver. KEY FINDINGS Proteomic analysis identified 257 differential proteins. KEGG pathway enrichment analysis showed that protein expression changes in the GCK knockdown group were significantly enriched in central carbon metabolism, the TCA cycle, amino acid metabolism and the oxidative phosphorylation pathway. Among them, enzymes in the TCA cycle (PC, IDH2, SDH) were significantly downregulated in GCK-knockdown group. Targeted metabolomics revealed that in the GCK knockdown hepatocytes, TCA cycle intermediates were significantly decreased, including pyruvate, oxaloacetate, citrate and succinic acid, and three metabolites increased including glycine, betaine and homocysteine. These metabolic alterations in turn reduced the accumulation of reactive oxygen species in GCK knockdown hepatocytes. Correlation analysis indicated that TCA cycle metabolites were positively correlated with proteins involved in the TCA cycle, carbon metabolism, glycolysis, Ras signaling, fibrosis and inflammation. SIGNIFICANCE In conclusion, GCK knockdown reduced TCA cycle flux and oxidative stress in hepatocytes by influencing the levels of key transcription factors and enzymes, providing a comprehensive understanding of the effects of GCK partial inactivation on liver metabolism and molecular mechanisms.
Collapse
Affiliation(s)
- Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
8
|
González-Domínguez Á, Belmonte T, González-Domínguez R. Childhood obesity, metabolic syndrome, and oxidative stress: microRNAs go on stage. Rev Endocr Metab Disord 2023; 24:1147-1164. [PMID: 37672200 PMCID: PMC10698091 DOI: 10.1007/s11154-023-09834-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
The incidence of childhood obesity and metabolic syndrome has grown notably in the last years, becoming major public health burdens in developed countries. Nowadays, oxidative stress is well-recognized to be closely associated with the onset and progression of several obesity-related complications within the framework of a complex crosstalk involving other intertwined pathogenic events, such as inflammation, insulin disturbances, and dyslipidemia. Thus, understanding the molecular basis behind these oxidative dysregulations could provide new approaches for the diagnosis, prevention, and treatment of childhood obesity and associated disorders. In this respect, the transcriptomic characterization of miRNAs bares great potential because of their involvement in post-transcriptional modulation of genetic expression. Herein, we provide a comprehensive literature revision gathering state-of-the-art research into the association between childhood obesity, metabolic syndrome, and miRNAs. We put special emphasis on the potential role of miRNAs in modulating obesity-related pathogenic events, with particular focus on oxidative stress.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| | - Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
| |
Collapse
|
9
|
Torrecilhas JA, Pereira GL, Vito ES, Fiorentini G, Ramirez-Zamudio GD, Fonseca LS, Torres RDNS, Simioni TA, Duarte JM, Machado Neto OR, Curi RA, Chardulo LAL, Baldassini WA, Berchielli TT. Changes in the Lipid Metabolism of the Longissimus thoracis Muscle in Bulls When Using Different Feeding Strategies during the Growing and Finishing Phases. Metabolites 2023; 13:1042. [PMID: 37887367 PMCID: PMC10608670 DOI: 10.3390/metabo13101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The objective was to evaluate the supplementation strategy's effect on beef cattle during the growing phase and two systems during the finishing phase. One hundred and twenty young bulls were randomly divided in a 2 × 2 factorial design to receive either mineral (ad libitum) or protein + energy (3 g/kg body weight (BW)/day) during the growing phase and pasture plus concentrate supplementation (20 g/kg BW/day) or feedlot (25:75% corn silage:concentrate) during the finishing phase. Feedlot-fed bulls had meat (Longissimus thoracis-LT) with a higher content of lipids and saturated and monounsaturated fatty acids and a greater upregulation of stearoyl-CoA desaturase and sterol regulatory element-binding protein-1c than animals that fed on pasture (p < 0.05). On the other hand, pasture-fed bulls had meat with a higher content of α-linoleic acid, linolenic acid, and n6 and a greater n6:n3 ratio compared to the feedlot-fed group (p < 0.05). In addition, meat from pasture-fed bulls during the finishing phase had 17.6% more isocitrate dehydrogenase enzyme concentration than the feedlot group (p = 0.02). Mineral-fed and pasture-finished bulls showed down-regulation of peroxisome proliferator-activated receptor gamma (p < 0.05), while the bulls fed protein + energy and finished in the feedlot had higher carnitine palmitoyltransferase 2 expression (p ≤ 0.013). In conclusion, mineral or protein + energy supplementation in the growing does not affect the fatty acid composition of intramuscular fat of LT muscle. In the finishing phase, feeding bulls in the feedlot upregulates the lipogenic genes and consequently improves the intramuscular fat content in the meat.
Collapse
Affiliation(s)
- Juliana Akamine Torrecilhas
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Guilherme Luis Pereira
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Elias San Vito
- Confina Beef Cattle Consulting, Sinop 78555-603, MT, Brazil;
| | - Giovani Fiorentini
- Department of Animal Science, Federal University of Pelotas (UFPEL), Pelotas 96160-000, RS, Brazil;
| | - Germán Darío Ramirez-Zamudio
- College of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Larissa Simielli Fonseca
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Rodrigo de Nazaré Santos Torres
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Tiago Adriano Simioni
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Juliana Messana Duarte
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| | - Otavio Rodrigues Machado Neto
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Rogério Abdallah Curi
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Luis Artur Loyola Chardulo
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Welder Angelo Baldassini
- School of Veterinary e Animal Science (FMVZ), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (J.A.T.); (R.d.N.S.T.); (O.R.M.N.); (R.A.C.); (L.A.L.C.); (W.A.B.)
| | - Telma Teresinha Berchielli
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil; (L.S.F.); (T.A.S.); (J.M.D.); (T.T.B.)
| |
Collapse
|
10
|
Jeon SB, Koh H, Han AR, Kim J, Lee S, Lee JH, Im SS, Yoon YS, Lee JH, Lee JY. Ferric citrate and apo-transferrin enable erythroblast maturation with β-globin from hemogenic endothelium. NPJ Regen Med 2023; 8:46. [PMID: 37626061 PMCID: PMC10457393 DOI: 10.1038/s41536-023-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with β-globin expression in culture systems. During induction of β-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with β-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of β-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of β-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of β-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.
Collapse
Affiliation(s)
- Soo-Been Jeon
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Hyebin Koh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - A-Reum Han
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sunghun Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Emory University, Atlanta, USA
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
| | - Ji Yoon Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea.
- Department of Biomedical Science, CHA University, Seongnam, Kyunggi-do, 13488, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Zhang C, Xiao J, Fa L, Jiang F, Jiang H, Zhou L, Xu Z. Identification of co-expressed gene networks promoting CD8 + T cell infiltration and having prognostic value in uveal melanoma. BMC Ophthalmol 2023; 23:354. [PMID: 37563735 PMCID: PMC10416479 DOI: 10.1186/s12886-023-03098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Current immunotherapies are unsatisfactory against uveal melanoma (UM); however, elevated CD8+ T cell infiltration level indicates poor prognosis in UM. Here, we aimed to identify co-expressed gene networks promoting CD8+ T cell infiltration in UM and created a prognostic hazard model based on the identified hub genes. Raw data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Stromal-immune comprehensive score (ESTIMATE) was used to evaluate the immune-infiltration landscape of the tumor microenvironment. Single-Sample Gene Set Enrichment Analysis (ssGSEA) and Weighted Correlation Network Analysis (WGCNA) were used to quantify CD8+ T cell infiltration level and identify hub genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to analyze the biological processes. Least absolute shrinkage and selection operator (LASSO) Cox regression were used to establish a prognostic model, which was further validated. Finally, pan-cancer analysis evaluated these genes to be associated with CD8+ T cell infiltration in other tumors. In conclusion, the proposed four-gene (PTPN12, IDH2, P2RX4, and KDELR2) prognostic hazard model had satisfactory prognostic ability. These hub genes may promote CD8+ T cell infiltration in UM through antigen presentation, and CD8+ T cell possibly function as Treg, resulting in poor prognosis. These findings might facilitate the development of novel immunotherapies.
Collapse
Affiliation(s)
- Chun Zhang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Jing Xiao
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Luzhong Fa
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Fanwen Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Hui Jiang
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Lin Zhou
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China
| | - Zhuping Xu
- Department of ophthalmology, West China Hospital, Sichuan University, Sichuan Province, 610041, Chengdu, China.
| |
Collapse
|
12
|
Baek JH, Kim MS, Jung HR, Hwang MS, Lee CH, Han DH, Lee YH, Yi EC, Im SS, Hwang I, Kim K, Chung JY, Chun KH. Ablation of the deubiquitinase USP15 ameliorates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Exp Mol Med 2023; 55:1520-1530. [PMID: 37394587 PMCID: PMC10394025 DOI: 10.1038/s12276-023-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs due to the accumulation of fat in the liver, leading to fatal liver diseases such as nonalcoholic steatohepatitis (NASH) and cirrhosis. Elucidation of the molecular mechanisms underlying NAFLD is critical for its prevention and therapy. Here, we observed that deubiquitinase USP15 expression was upregulated in the livers of mice fed a high-fat diet (HFD) and liver biopsies of patients with NAFLD or NASH. USP15 interacts with lipid-accumulating proteins such as FABPs and perilipins to reduce ubiquitination and increase their protein stability. Furthermore, the severity of NAFLD induced by an HFD and NASH induced by a fructose/palmitate/cholesterol/trans-fat (FPC) diet was significantly ameliorated in hepatocyte-specific USP15 knockout mice. Thus, our findings reveal an unrecognized function of USP15 in the lipid accumulation of livers, which exacerbates NAFLD to NASH by overriding nutrients and inducing inflammation. Therefore, targeting USP15 can be used in the prevention and treatment of NAFLD and NASH.
Collapse
Affiliation(s)
- Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, South Korea
| | - Min-Seon Hwang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan-Ho Lee
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, 03080, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Kyungeun Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, South Korea
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
13
|
Luo Q, Qian R, Qiu Z, Yamamoto FY, Du Y, Lin X, Zhao J, Xu Q. Dietary α-ketoglutarate alleviates glycinin and β-conglycinin induced damage in the intestine of mirror carp ( Cyprinus carpio). Front Immunol 2023; 14:1140012. [PMID: 37187750 PMCID: PMC10179059 DOI: 10.3389/fimmu.2023.1140012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the glycinin and β-conglycinin induced intestinal damage and α-ketoglutarate alleviating the damage of glycinin and β-conglycinin in intestine. Carp were randomly divided into six dietary groups: containing fish meal (FM) as the protein source, soybean meal (SM), glycinin (FMG), β-conglycinin (FMc), glycinin+1.0% α-ketoglutarate (AKG) (FMGA), β-conglycinin+1.0% AKG (FMcA). The intestines were collected on 7th, and the hepatopancreas and intestines were collected on 56th. Fish treated with SM and FMc displayed reduced weight gain, specific growth rate, and protein efficiency. On 56th day, Fish fed on SM, FMG and FMc presented lower superoxide dismutase (SOD) activities. FMGA and FMcA had higher SOD activity than those fed on the FMG and FMc, respectively. In intestine, fish fed on the SM diets collected on 7th presented upregulated the expression of transforming growth factor beta (TGFβ1), AMP-activated protein kinase beta (AMPKβ), AMPKγ, and acetyl-CoA carboxylase (ACC). Fish fed FMG presented upregulated expression of tumor necrosis factor alpha (TNF-α), caspase9, and AMPKγ, while downregulated the expression of claudin7 and AMPKα. FMc group presented upregulated expression of TGFβ1, caspase3, caspase8, and ACC. Fish fed FMGA showed upregulated expression of TGFβ1, claudin3c, claudin7, while downregulating the expression of TNF-α and AMPKγ when compared to fish fed FMG diet. FMcA upregulated the expression of TGFβ1, claudin3c than fed on the FMc. In intestine, the villus height and mucosal thickness of the proximal intestine (PI) and the distal intestine (DI) were decreased and crypt depth of the PI and mid intestine (MI) were increased in SM, FMG and FMc. In addition, fish fed on SM, FMG and FMc presented lower citrate synthase (CS), isocitrate dehydrogenase (ICD), α-ketoglutarate dehydrogenase complex (α-KGDHC) Na+/K+-ATPase activity in DI. FMGA had higher CS, ICD, α-KGDHC, and Na+/K+-ATPase activity in PI and MI than those fed on the FMG. FMcA had higher Na+/K+-ATPase activity in MI. In conclusion, dietary soybean meal destroys the intestine's health, the adverse effects are related to the presence of β-conglycinin and glycinin, especially glycinin. AKG may regulate intestinal energy via tricarboxylic acid cycle, thereby alleviating the damage intestinal morphology caused by the dietary soybean antigen proteins.
Collapse
Affiliation(s)
- Qiaohua Luo
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Rendong Qian
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Zongsheng Qiu
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Fernando Y. Yamamoto
- Thad Cochran National Warmwater Aquaculture Center Agriculture and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, United States
| | - Yingying Du
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Xiaowen Lin
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Jianhua Zhao
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Qiyou Xu
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
- *Correspondence: Qiyou Xu,
| |
Collapse
|
14
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
15
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
16
|
Wang X, Wei Z, Gu M, Zhu L, Hai C, Di A, Wu D, Bai C, Su G, Liu X, Yang L, Li G. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232415707. [PMID: 36555347 PMCID: PMC9779574 DOI: 10.3390/ijms232415707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Collapse
Affiliation(s)
- Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| |
Collapse
|
17
|
Zhao L, Yang H, Li X, Zhou Y, Liu T, Zhao Y. Transcriptome-based selection and validation of optimal reference genes in perirenal adipose developing of goat ( Capra hircus). Front Vet Sci 2022; 9:1055866. [PMID: 36467654 PMCID: PMC9712442 DOI: 10.3389/fvets.2022.1055866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 06/15/2024] Open
Abstract
Brown adipose tissue (BAT) is mainly present in young mammals and is important for maintaining body temperature in neonatal mammals because of its ability to produce non-shivering thermogenesis. There is usually a large amount of BAT around the kidneys of newborn kids, but the BAT gradually "whiting" after birth. Screening and validating appropriate reference genes is a prerequisite for further studying the mechanism of goat brown adipose tissue "whiting" during the early stages. In this study, the expression stability of 17 candidate reference genes: 12 COPS8, SAP18, IGF2R, PARL, SNRNP200, ACTG1, CLTA, GANAB, GABARAP, PCBP2, CTSB, and CD151) selected based on previous transcriptome data as new candidate reference genes, 3 (PFDN5, CTNNB1, and EIF3M) recommended in previous studies, and 2 traditional reference genes (ACTB and GAPDH) was evaluated. Real-time quantitative PCR (RT-qPCR) technology was used to detect the expression level of candidate reference genes during goat BAT "whiting". Four algorithms: Normfinder, geNorm, ΔCt method, and BestKeeper, and two comprehensive algorithms: ComprFinder and RefFinder, were used to analyze the stability of each candidate reference genes. GABARAP, CLTA, GAPDH, and ACTB were identified as the most stable reference genes, while CTNNB1, CTSB, and EIF3M were the least stable. Moreover, two randomly selected target genes IDH2 and RBP4, were effectively normalized using the selected most stable reference genes. These findings collectively suggest that GABARAP, CLTA, GAPDH, and ACTB are relatively stable reference genes that can potentially be used for the development of perirenal fat in goats.
Collapse
|
18
|
Hou Y, Wei W, Li G, Sang N. Prenatal PM 2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114151. [PMID: 36228359 DOI: 10.1016/j.ecoenv.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The epidemiological evidence has linked prenatal exposure to fine particulate matter (PM2.5) pollution with neurological diseases in offspring. However, the biological process and toxicological mechanisms remain unclear. Tau protein is a neuronal microtubule-associated protein expressed in fetal brain and plays a critical role in mediating neuronal development. Aberrant expression of tau is associated with adverse neurodevelopmental outcomes. To study whether prenatal exposure to PM2.5 pollution induce tau lesion in mice offspring and elucidate the underlying pathogenic mechanism, we exposed pregnant mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day. The results indicate that prenatal PM2.5 exposure induced hyperphosphorylation of tau in the cortex of postnatal male offspring, which was accompanied by insulin resistance through the IRS-1/PI3K/AKT signaling pathway. Importantly, we further found that prenatal PM2.5 exposure induced mitochondrial dysfunction by disrupting mitochondrial ultrastructure and decreasing the expression of rate-limiting enzymes (CS, IDH2 and FH) in the Krebs cycle and the subunits of mitochondrial complex IV and V (CO1, CO4, ATP6, and ATP8) during postnatal neurodevelopment. The findings suggest that prenatal PM2.5 exposure could induce tauopathy-like changes in male offspring, in which mitochondrial dysfunction-induced insulin resistance might play an important role.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
19
|
Kim S, Lee I, Piao S, Nagar H, Choi SJ, Kim YR, Irani K, Jeon BH, Kim CS. miR204 potentially promotes non-alcoholic fatty liver disease by inhibition of cpt1a in mouse hepatocytes. Commun Biol 2022; 5:1002. [PMID: 36130994 PMCID: PMC9492679 DOI: 10.1038/s42003-022-03945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolism dysfunction. However, the mechanistic role of miR204 in the development of NAFLD is unknown. We investigate the functional significance of miR204 in the evolution of NAFLD. IDH2 KO mice feed a normal diet (ND) or HFD increased body weight, epididymal fat-pad weight, lipid droplet in liver, blood parameter and inflammation compared to WT mice fed a ND or HFD. Moreover, the expression of miR204 is increased in mice with IDH2 deficiency. Increased miR204 by IDH2 deficiency regulates carnitine palmitoyltransferase 1a (cpt1a) synthesis, which inhibits fatty acid β-oxidation. Inhibition of miR204 prevents the disassembly of two fatty acid-related genes by activating CPT1a expression, which decreases lipid droplet in liver, inflammatory cytokines, epididymal fat pad weight, blood parameters. Increased miR204 by IDH2 deficiency promotes the pathogenesis of HFD-induced NAFLD by regulating hepatic fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
20
|
Li N, Zhou X, Wang J, Chen J, Lu Y, Sun Y, Song Y, Tan X, Xie G, Chen Y, Zhang L. White tea alleviates non-alcoholic fatty liver disease by regulating energy expenditure and lipid metabolism. Gene 2022; 833:146553. [PMID: 35569768 DOI: 10.1016/j.gene.2022.146553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of liver disease, which lacks effective treatments. Abnormal lipid metabolism and inflammation are the most prominent pathological manifestations of NAFLD. Recently, it has been reported that white tea extract (WTE) can regulate lipid metabolism in human adipocytes and liver cancer cells in vitro. However, its beneficial effects on NAFLD and the underlying mechanisms remain largely unknown. Here, we showed that WTE alleviated obesity, lipid accumulation, hepatic steatosis, and liver injury in a mouse model of NAFLD. Mechanistically, we demonstrated that WTE exerted the anti-NAFLD effect by decreasing the expression of genes involved in lipid transport and synthesis processes while activating genes associated with energy expenditure. In addition, a comparison of the transcriptional responses of WTE with that of green tea extract (GTE) revealed that WTE can not only regulate lipid metabolism and stress response like GTE but also regulate antioxidant and inflammatory pathways more effectively. Taken together, our findings demonstrate that WTE inhibits the progression of NAFLD in a mouse model and indicate that WTE can be a potential dietary intervention for NAFLD.
Collapse
Affiliation(s)
- Na Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xingquan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiuchen Wang
- Department of Reproductive Medical Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jiayuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yandong Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070 PR China
| | - Guangchao Xie
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lirong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
21
|
Adipose Tissue Aging and Metabolic Disorder, and the Impact of Nutritional Interventions. Nutrients 2022; 14:nu14153134. [PMID: 35956309 PMCID: PMC9370499 DOI: 10.3390/nu14153134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is the largest and most active endocrine organ, involved in regulating energy balance, glucose and lipid homeostasis and immune function. Adipose tissue aging processes are associated with brown adipose tissue whitening, white adipose tissue redistribution and ectopic deposition, resulting in an increase in age-related inflammatory factors, which then trigger a variety of metabolic syndromes, including diabetes and hyperlipidemia. Metabolic syndrome, in turn, is associated with increased inflammatory factors, all-cause mortality and cognitive impairment. There is a growing interest in the role of nutritional interventions in adipose tissue aging. Nowadays, research has confirmed that nutritional interventions, involving caloric restriction and the use of vitamins, resveratrol and other active substances, are effective in managing adipose tissue aging’s adverse effects, such as obesity. In this review we summarized age-related physiological characteristics of adipose tissue, and focused on what nutritional interventions can do in improving the retrogradation and how they do this.
Collapse
|
22
|
Zhao C, Liang W, Yang Z, Chen Z, Du Z, Gong S. SIRT3-mediated deacetylation protects inner hair cell synapses in a H 2O 2-induced oxidative stress model in vitro. Exp Cell Res 2022; 418:113280. [PMID: 35835175 DOI: 10.1016/j.yexcr.2022.113280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
Abstract
Oxidative stress is considered a driving event in the damage to inner hair cell (IHC) synapses. Mitochondrial deacetylase Sirtuin 3 (SIRT3) is an important regulator of reactive oxygen species (ROS) production. However, the effect of SIRT3 on IHC synapses remains elusive. In this study, we treated cochlear basilar membrane (CBM) with hydrogen peroxide (H2O2) to establish an oxidative stress model in vitro. The H2O2-induced CBM exhibited decreased the number of IHC synapses with low levels of ATP and mitochondrial membrane potential. Additionally, H2O2-incuded CBM showed markedly reduced levels of forkhead box protein O 3a (FOXO3a), superoxide dismutase 2 (SOD2), and isocitrate dehydrogenase 2 (IDH2), thereby increasing ROS generation. SIRT3 overexpression via administrating nicotinamide riboside in the H2O2-induced CBM protected IHC synapses against oxidative stress and inhibited hair cell apoptosis. We further demonstrated that SIRT3 overexpression led to upregulation of IDH2, and hypoacetylation of several proteins, such as FOXO3a and SOD2, which in turn reduced the levels of ROS and improved mitochondrial function. Collectively, these findings reveal that SIRT3 may be a potential therapeutic approach for damaged IHC synapses induced by oxidative stress.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
23
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
24
|
Sohn JH, Ji Y, Cho CY, Nahmgoong H, Lim S, Jeon YG, Han SM, Han JS, Park I, Rhee HW, Kim S, Kim JB. Spatial Regulation of Reactive Oxygen Species via G6PD in Brown Adipocytes Supports Thermogenic Function. Diabetes 2021; 70:2756-2770. [PMID: 34521642 DOI: 10.2337/db21-0272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PDmut) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to extracellular signal-regulated kinase (ERK) activation. In BAT of G6PDmut mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PDmut mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yun Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Isaac Park
- Department of Chemistry, Seoul National University, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Sebag SC, Zhang Z, Qian Q, Li M, Zhu Z, Harata M, Li W, Zingman LV, Liu L, Lira VA, Potthoff MJ, Bartelt A, Yang L. ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Cell Rep 2021; 37:110003. [PMID: 34788615 PMCID: PMC8640996 DOI: 10.1016/j.celrep.2021.110003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Brown adipose tissue (BAT) thermogenic activity is tightly regulated by cellular redox status, but the underlying molecular mechanisms are incompletely understood. Protein S-nitrosylation, the nitric-oxide-mediated cysteine thiol protein modification, plays important roles in cellular redox regulation. Here we show that diet-induced obesity (DIO) and acute cold exposure elevate BAT protein S-nitrosylation, including UCP1. This thermogenic-induced nitric oxide bioactivity is regulated by S-nitrosoglutathione reductase (GSNOR; alcohol dehydrogenase 5 [ADH5]), a denitrosylase that balances the intracellular nitroso-redox status. Loss of ADH5 in BAT impairs cold-induced UCP1-dependent thermogenesis and worsens obesity-associated metabolic dysfunction. Mechanistically, we demonstrate that Adh5 expression is induced by the transcription factor heat shock factor 1 (HSF1), and administration of an HSF1 activator to BAT of DIO mice increases Adh5 expression and significantly improves UCP1-mediated respiration. Together, these data indicate that ADH5 controls BAT nitroso-redox homeostasis to regulate adipose thermogenesis, which may be therapeutically targeted to improve metabolic health.
Collapse
Affiliation(s)
- Sara C. Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,These authors contributed equally
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,These authors contributed equally
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mikako Harata
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wenxian Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Leonid V. Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Limin Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J. Potthoff
- Department of Neuroscience and Pharmacology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich Pettenkoferstr. 9, 80336 Munich, Germany,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany,Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Lead contact,Correspondence:
| |
Collapse
|
27
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
28
|
Cox N, Crozet L, Holtman IR, Loyher PL, Lazarov T, White JB, Mass E, Stanley ER, Elemento O, Glass CK, Geissmann F. Diet-regulated production of PDGFcc by macrophages controls energy storage. Science 2021; 373:373/6550/eabe9383. [PMID: 34210853 DOI: 10.1126/science.abe9383] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lucile Crozet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Inge R Holtman
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Jessica B White
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Elvira Mass
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Developmental Biology of the Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA.,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
29
|
Watt KI, Henstridge DC, Ziemann M, Sim CB, Montgomery MK, Samocha-Bonet D, Parker BL, Dodd GT, Bond ST, Salmi TM, Lee RS, Thomson RE, Hagg A, Davey JR, Qian H, Koopman R, El-Osta A, Greenfield JR, Watt MJ, Febbraio MA, Drew BG, Cox AG, Porrello ER, Harvey KF, Gregorevic P. Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nat Commun 2021; 12:2887. [PMID: 34001905 PMCID: PMC8129430 DOI: 10.1038/s41467-021-23240-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major risk factor underlying the development of metabolic disease and a growing public health concern globally. Strategies to promote skeletal muscle metabolism can be effective to limit the progression of metabolic disease. Here, we demonstrate that the levels of the Hippo pathway transcriptional co-activator YAP are decreased in muscle biopsies from obese, insulin-resistant humans and mice. Targeted disruption of Yap in adult skeletal muscle resulted in incomplete oxidation of fatty acids and lipotoxicity. Integrated 'omics analysis from isolated adult muscle nuclei revealed that Yap regulates a transcriptional profile associated with metabolic substrate utilisation. In line with these findings, increasing Yap abundance in the striated muscle of obese (db/db) mice enhanced energy expenditure and attenuated adiposity. Our results demonstrate a vital role for Yap as a mediator of skeletal muscle metabolism. Strategies to enhance Yap activity in skeletal muscle warrant consideration as part of comprehensive approaches to treat metabolic disease.
Collapse
Affiliation(s)
- K I Watt
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Dept of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - D C Henstridge
- School of Health Sciences, University of Tasmania, Hobart, Tas, Australia
| | - M Ziemann
- Deakin University, Melbourne, VIC, Australia
| | - C B Sim
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - M K Montgomery
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - D Samocha-Bonet
- Division of Healthy Aging, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - B L Parker
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - G T Dodd
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - S T Bond
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - T M Salmi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Dept of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - R S Lee
- Metabolic Disease and Obesity Phenotyping Facility, Monash University, Melbourne, VIC, Australia
| | - R E Thomson
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - A Hagg
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - J R Davey
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - H Qian
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - R Koopman
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - A El-Osta
- Dept of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Dept of Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - J R Greenfield
- Division of Healthy Aging, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Dept of Diabetes and Endocrinology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - M J Watt
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - M A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - B G Drew
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - A G Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Dept of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E R Porrello
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - K F Harvey
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Dept of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - P Gregorevic
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia.
- Dept of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Dept of Neurology, The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
30
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
31
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
32
|
Noh MR, Kong MJ, Han SJ, Kim JI, Park KM. Isocitrate dehydrogenase 2 deficiency aggravates prolonged high-fat diet intake-induced hypertension. Redox Biol 2020; 34:101548. [PMID: 32388270 PMCID: PMC7210593 DOI: 10.1016/j.redox.2020.101548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The development of hypertension is associated with mitochondrial redox balance disruptions. NADP+-dependent isocitrate dehydrogenase 2 (IDH2) plays an important role in the maintenance of mitochondrial redox balance by producing mitochondrial NADPH, which is an essential cofactor in the reduction of glutathione (from GSSG to GSH) to reduced form of glutathione (GSH). We investigated the association of IDH2 between the development of prolonged high-fat diet (HFD)-induced hypertension. Idh2 gene-deleted (Idh2-/-) male mice and wild-type (Idh2+/+) littermates were fed either HFD or low-fat diet (LFD). Some mice were administrated with Mito-TEMPO, a mitochondria-specific antioxidant. HFD feeding increased blood pressure (BP) in both Idh2-/- mice and Idh2+/+ mice. HFD-induced BP increase was greater in Idh2-/- than Idh2+/+ mice. HFD intake decreased IDH2 activity, NADPH levels, and the GSH/(GSH + GSSG) ratio in the renal mitochondria. However, HFD intake increased mitochondrial ROS levels, along with the accompanying oxidative stress and damage. HFD intake increased angiotensin II receptor 1 type 1 mRNA levels in the kidneys and plasma renin and angiotensin II concentrations. These HFD-induced changes were more prominent in Idh2-/- mice than Idh2+/+ mice. Mito-TEMPO mitigated the HFD-induced changes in both Idh2-/- and Idh2+/+ mice, with greater effects in Idh2-/- mice than Idh2+/+ mice. These results indicate that prolonged HFD intake disrupts the IDH2-NADPH-GSH-associated antioxidant system and activates the renin-angiotensin system in the kidney, leading to increased BP, suggesting that IDH2 is a critical enzyme in the development of hypertension and that the IDH2-associated antioxidant system could serve as a potential hypertension treatment target.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Anatomy, Cardiovascular Research Center and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Min Jung Kong
- Department of Anatomy, Cardiovascular Research Center and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Sang Jun Han
- Department of Anatomy, Cardiovascular Research Center and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseogu, Daegu, 42601, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Center and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
| |
Collapse
|