1
|
Lv C, Kong Q, Yu Z, Feng W, Zhao K, Sun Z. Medium optimization of three marine probiotics and their application in the culture of Sebastes schlegelii. Microb Pathog 2025; 204:107599. [PMID: 40250497 DOI: 10.1016/j.micpath.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
To investigate the impact of marine probiotics on the marine fish farming environment, this study isolated Lactobacillus sakei LC 32183, Pediococcus acidilactici LC 32184 and Bacillus subtilis LC 550 from the healthy gut of Scophthalmus maximus using the selective medium. The findings indicate that L. sakei effectively inhibited the growth of Staphylococcus aureus, Vibrio parahaemolyticus, Escherichia coli, and Salmonella typhimurium. The diameter of the inhibition zone was measured to be 16.75 ± 0.14 mm, 16.68 ± 0.22 mm, 11.90 ± 0.10 mm, and 14.12 ± 0.08 mm for each respective sample. It was observed that P. acidilactici exhibited inhibitory effects on S. aureus (21.04 ± 0.28 mm) and V. parahaemolyticus (15.13 ± 0.13 mm). The metabolites produced by two strains of lactic acid bacteria have been shown to compromise the cellular structure of pathogenic bacteria. The fermentation supernatant is rich in organic acids, esters, and other bioactive compounds. The carbon source and nitrogen source in MRS and nutrient broth medium were optimized by using molasses and soybean meal. The spray drying process was employed to prepare microecologics, with whey protein powder selected as the protective wall material. The survival rate of L. sakei and P. acidilactici was about 60 %, while B. subtilis was 30 %. The marine probiotics were added to the Sebastes schlegelii culture. The findings revealed that the experimental group survival rate increased by 5 %, and the weight gain rate increased by 6 %. The probiotics inhibited the growth of pathogenic bacteria in simulated seawater. The pH level of the water, along with the chemical oxygen demand and nitrite concentrations in the experimental group were significantly lower than those observed in the control group. The results of this study have the application value of inhibiting the growth of aquatic pathogens, and provide reference for the application of probiotics. The subsequent step will involve investigating the therapeutic efficacy of this marine probiotic on bacterial diseases in marine fish.
Collapse
Affiliation(s)
- Chao Lv
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China.
| | - Zengyu Yu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China
| | - Weihuan Feng
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China
| | - Ke Zhao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China
| | - Ziting Sun
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266404, China
| |
Collapse
|
2
|
Steegmans A, Plitzko M, Luy B, Lebeer S, Kiekens F. Spray freeze drying as a novel drying process for the formulation of probiotic powders containing Lacticaseibacillus rhamnosus GG. Eur J Pharm Biopharm 2025; 212:114748. [PMID: 40393557 DOI: 10.1016/j.ejpb.2025.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/28/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Spray freeze drying was evaluated as a drying process for the formulation and stabilization of probiotic powders This technology combines spray freezing into cold vapour followed by rotational bulk freeze drying, and was investigated to combine the benefits of both spray drying and freeze-drying. What sets this system apart from other studies using this technology, is that the feed suspension was sprayed into cooled atmosphere instead of spraying directly into liquid nitrogen. To ensure droplet formation, a rather more dripping than spraying technique known as laminar jet break up is used, whereas other spray freeze drying techniques use binary nozzles, single fluid pressure nozzles, ultrasonic nozzles or rotary nozzles. Moreover, the principles of rotatory freeze-drying were used for bulk lyophilization which results in freeze dried microparticles instead of a freeze dried cake. This study examined the parameters related to the spraying head and their impact on bacterial viability and powder particle size. Secondly, the feasibility of dynamic lyophilization by applying rotary freeze drying to the frozen substrate was studied. Furthermore, the powder density, flow and hygroscopic properties were monitored to assess the downstream processability for industrial manufacturing. Cell reduction of at least 1,0 log CFU/g was reported, with a maximum remaining cell concentration of 7,4 log CFU/g in the dried product. The particle size of the almost perfect microspheres ranged from 532 ± 35 µm using a 300 µm nozzle orifice and 739 ± 57 µm using a 400 µm nozzle orifice with a mean sphericity of 0,97. Hygroscopicity investigations reported a critical point at 40 % relative humidity where collapse of the microspheres occurred. The overall process yield was 92,1 ± 4,2 % on average.
Collapse
Affiliation(s)
- A Steegmans
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Wilrijk, Belgium
| | - M Plitzko
- Meridion Technologies GmbH, Müllheim, Germany
| | - B Luy
- Meridion Technologies GmbH, Müllheim, Germany
| | - S Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - F Kiekens
- Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
3
|
Leeflang J, Wright JA, Worthley DL, Din MO, Woods SL. Evolutionary adaptation of probiotics in the gut: selection pressures, optimization strategies, and regulatory challenges. NPJ Biofilms Microbiomes 2025; 11:96. [PMID: 40483298 PMCID: PMC12145451 DOI: 10.1038/s41522-025-00734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 05/15/2025] [Indexed: 06/11/2025] Open
Abstract
Probiotics and live bacterial therapeutics are garnering increased attention for use in human health and have the potential to revolutionise the treatment of gastrointestinal diseases. However, a pervasive feature of bacteria that must be considered in the design of safe and effective probiotics and live bacterial therapeutics is their capacity for rapid evolution, both at the individual (epi)genetic level and in terms of population dynamics. Here we summarise gastrointestinal-specific evolution of bacteria, focussing on genetic and population levels of adaptation to factors such as carbon source availability, environmental stressors, and interactions with the native microbiome. We also address regulatory and safety considerations for the development of probiotics and live biotherapeutics from an evolutionary perspective, with a discussion of methods that utilise evolution to improve probiotic safety and efficacy via directed evolution, in comparison to another popular approach, genetic engineering.
Collapse
Affiliation(s)
- Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Josephine A Wright
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | | | - M Omar Din
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
4
|
Jiang JN, Kong FH, Lei Q, Zhang XZ. Surface-functionalized bacteria: Frontier explorations in next-generation live biotherapeutics. Biomaterials 2025; 317:123029. [PMID: 39736217 DOI: 10.1016/j.biomaterials.2024.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025]
Abstract
Screening robust living bacteria to produce living biotherapeutic products (LBPs) represents a burgeoning research field in biomedical applications. Despite their natural abilities to colonize bio-interfaces and proliferate, harnessing bacteria for such applications is hindered by considerable challenges in unsatisfied functionalities and safety concerns. Leveraging the high degree of customization and adaptability on the surface of bacteria demonstrates significant potential to improve therapeutic outcomes and achieve tailored functionalities of LBPs. This review focuses on the recent laboratory strategies of bacterial surface functionalization, which aims to address these challenges and potentiate the therapeutic effects in biomedicine. Firstly, we introduce various functional materials that are used for bacterial surface functionalization involving organic, inorganic, and biological materials. Secondly, the methodologies for achieving bacterial surface functionalization are categorized into three primary approaches including covalent bonding, non-covalent interactions, and hybrid techniques, while various advantages and limitations of different modification strategies are compared from multiple perspectives. Subsequently, the current status of the applications of surface-functionalized bacteria in bioimaging and disease treatments, especially in the treatment of inflammatory bowel disease (IBD) and cancer is summarized. Finally, challenges and pressing issues in the development of surface-functionalized bacteria as LBPs are presented.
Collapse
Affiliation(s)
- Jia-Ni Jiang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fan-Hui Kong
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China; Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Qi Lei
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
5
|
Han KS, Lee KY, Kim SH, Lee HG. Anti-adipogenic effect of Latilactobacillus curvatus CK17 isolated from kimchi and its potential probiotic properties. Food Sci Biotechnol 2025; 34:1995-2004. [PMID: 40196344 PMCID: PMC11972260 DOI: 10.1007/s10068-025-01819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 04/09/2025] Open
Abstract
Probiotics and their cellular constituents are pivotal in modulating lipid metabolism in adipocytes, potentially offering novel approaches to obesity prevention. This study investigates the probiotic characteristics and anti-adipogenic effects of lactic acid bacteria (LAB) strains isolated from kimchi. Twenty LAB strains, identified as Latilactobacillus sakei, Latilactobacillus curvatus, and Leuconostoc mesenteroides, were evaluated for lipase inhibitory activity. Among them, L. sakei CKC1 and L. curvatus CK17 exhibited the strongest inhibition and were selected for further study. Notably, L. curvatus CK17 significantly reduced lipid accumulation in 3T3-L1 adipocytes and downregulated key adipogenic markers, including PPARγ, C/EBPα, aP2, SREBP1c, ACC, and FAS (p < 0.05). Additionally, CK17 survived simulated digestive conditions, adhered effectively to Caco-2 cells, and exhibited antibacterial activity. These findings suggest that L. curvatus CK17 as a promising probiotic candidate for obesity prevention, with potent anti-adipogenic properties.
Collapse
Affiliation(s)
- Ki Soo Han
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Kwang Yeon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Su Hyun Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| |
Collapse
|
6
|
Yang S, Qiao J, Zhang M, Kwok LY, Matijašić BB, Zhang H, Zhang W. Prevention and treatment of antibiotics-associated adverse effects through the use of probiotics: A review. J Adv Res 2025; 71:209-226. [PMID: 38844120 DOI: 10.1016/j.jare.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The human gut hosts a diverse microbial community, essential for maintaining overall health. However, antibiotics, commonly prescribed for infections, can disrupt this delicate balance, leading to antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and even neurological disorders. Recognizing this, probiotics have emerged as a promising strategy to counteract these adverse effects. AIM OF REVIEW This review aims to offer a comprehensive overview of the latest evidence concerning the utilization of probiotics in managing antibiotic-associated side effects. KEY SCIENTIFIC CONCEPTS OF REVIEW Probiotics play a crucial role in preserving gut homeostasis, regulating intestinal function and metabolism, and modulating the host immune system. These mechanisms serve to effectively alleviate antibiotic-associated adverse effects and enhance overall well-being.
Collapse
Affiliation(s)
- Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
7
|
Koretz RL. JPEN Journal Club 89. Signal-finding studies. JPEN J Parenter Enteral Nutr 2025; 49:534-536. [PMID: 39659167 DOI: 10.1002/jpen.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Ronald L Koretz
- UCLA Medical Center Olive View, Sylmar, California, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
8
|
Kamath S, Bryant RV, Costello SP, Day AS, Forbes B, Haifer C, Hold G, Kelly CR, Li A, Pakuwal E, Stringer A, Tucker EC, Wardill HR, Joyce P. Translational strategies for oral delivery of faecal microbiota transplantation. Gut 2025:gutjnl-2025-335077. [PMID: 40301116 DOI: 10.1136/gutjnl-2025-335077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy for Clostridioides difficile infections and shows promise for various GI and systemic diseases. However, the poor patient acceptability and accessibility of 'conventional' FMT, typically administered via colonoscopies or enemas, hinders its widespread clinical adoption, particularly for chronic conditions. Oral administration of FMT (OralFMT) overcomes these limitations, yet faces distinct challenges, including a significant capsule burden, palatability concerns and poor microbial viability during gastric transit. This review provides a comprehensive analysis of emerging strategies that aim to advance OralFMT by: (1) refining processing technologies (eg, lyophilisation) that enable manufacturing of low-volume FMT formulations for reducing capsule burden and (2) developing delivery technologies that improve organoleptic acceptability and safeguard the microbiota for targeted colonic release. These advancements present opportunities for OralFMT to expand its therapeutic scope, beyond C. difficile infections, towards chronic GI conditions requiring frequent dosing regimens. While this review primarily focuses on optimising OralFMT delivery, it is important to contextualise these advancements within the broader shift towards defined microbial consortia. Live biotherapeutic products (LBPs) offer an alternative approach, yet the interplay between OralFMT and LBPs in clinical practice remains unresolved. We postulate that continued innovation in OralFMT and LBPs via a multidisciplinary approach can further increase therapeutic efficacy and scalability by enabling disease site targeting, co-delivery of therapeutic compounds and overcoming colonisation resistance. Realising these goals positions OralFMT as a cornerstone of personalised care across a range of diseases rooted in microbiome health.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Alice S Day
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anna Li
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evance Pakuwal
- Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Stringer
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emily C Tucker
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Infectious Diseases Unit, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Hannah Rose Wardill
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul Joyce
- University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Tseng CH, Wong S, Yu J, Lee YY, Terauchi J, Lai HC, Luo JC, Kao CY, Yu SL, Liou JM, Wu DC, Hou MC, Wu MS, Wu JJ, Sung JJY, El-Omar EM, Wu CY. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut 2025; 74:706-713. [PMID: 40011030 PMCID: PMC12013581 DOI: 10.1136/gutjnl-2024-334501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Live biotherapeutic products (LBPs) are biological products composed of living micro-organisms, developed to prevent, treat, or cure diseases. Examples include cultured strains of Akkermansia muciniphila and Christensenella minuta, as well as treatments using purified Firmicutes spores for recurrent Clostridioides difficile infections. There is a need for guidelines over the increasing interest in developing LBPs. A panel of microbiome experts from Asia-Pacific countries articulates their perspectives on key considerations for LBP development. DESIGN Experts in microbiome research, microbiology, gastroenterology, internal medicine and biotherapeutics industry were invited to form a panel. During the 2023 Inauguration Conference of the Asia-Pacific Microbiota Consortium, an organised, iterative roundtable discussion was conducted to build expert consensus on critical issues surrounding the development of LBP. RESULTS The consensus statements were organised into three main aspects: (a) rationales of LBP development, (b) preclinical studies and (c) preparation for clinical studies. The panel strongly recommended to prioritise human-derived and food-sourced strains for development, with indications based on clinical need and efficacy shown in studies. Preclinical evaluation should involve thorough screening, genotyping and phenotyping, as well as comprehensive in vitro and animal studies to assess functional mechanisms and microbiological safety. Rigorous cell banking practices and genetic monitoring are essential to ensure product consistency and safety throughout the manufacturing process. Clinical trials, including postmarketing surveillance, must be carefully designed and closely monitored, with robust safety and risk management protocols in place. CONCLUSIONS The development of LBP should be approached with a strong emphasis on microbiological evaluation, clinical relevance, scientific mechanisms and safety at every stage. These measures are essential to ensure the safety, effectiveness and long-term success of the product.
Collapse
Affiliation(s)
| | - Sunny Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, and The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Jun Terauchi
- Japan Microbiome Consortium (JMBC), Osaka, Japan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng Yen Kao
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Chun-Ying Wu
- Microbiota Research Center, Health Innovation Center, and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
11
|
Yoon J, Lee Y, Kim M, Park JY, Jang J. Enhanced Bioprinting of 3D Corneal Stroma Patches with Reliability, Assessing Product Consistency and Quality through Optimized Electron Beam Sterilization. Adv Healthc Mater 2025; 14:e2403118. [PMID: 39930756 PMCID: PMC11973947 DOI: 10.1002/adhm.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/31/2025] [Indexed: 04/08/2025]
Abstract
This study focuses on the optimization of sterilization methods for bioprinted three-dimensional (3D) corneal stroma patches prepared using cornea-derived decellularized extracellular matrix (Co-dECM) hydrogels and human keratocytes, with the aim of enhancing clinical applications in corneal tissue engineering. An essential aspect of this study is to refine the sterilization processes, particularly focusing on electron beam (EB) sterilization, to maintain the structural and functional integrity of the Co-dECM hydrogels while ensuring sterility. The study reveals that EB sterilization outperformed traditional methods like ethylene oxide (EtO) gas and autoclaving, which tend to degrade the biochemical properties of hydrogels. By optimizing the EB-sterilization process, the essential mechanical and biochemical characteristics needed for successful 3D bioprinting are retained, reducing batch variability in bioprinted 3D corneal stroma patches. Consistency in production is vital for meeting regulatory standards and ensuring patient safety. Moreover, the study investigates the immunomodulatory properties of sterilized hydrogels, emphasizing their potential to minimize inflammatory responses, which is crucial for maintaining keratocyte phenotype. These findings significantly advance biomedical engineering by providing a sterilization method that preserves material integrity, minimizes immunogenicity, and supports the clinical translation of bioprinted corneal stroma patches, offering a promising alternative to donor transplants and synthetic substitutes.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | | | - Minji Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | | | - Jinah Jang
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- BioBricks Co., LtdPohang37673South Korea
- Department of Convergence IT EngineeringPOSTECHPohang37673South Korea
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673South Korea
- Institute of Convergence ScienceYonsei UniversitySeoul220‐710South Korea
| |
Collapse
|
12
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Fang X, Wang Y, Wei H, Huang Y. Precision Microbiome: A New Era of Targeted Therapy with Core Probiotics. RESEARCH (WASHINGTON, D.C.) 2025; 8:0658. [PMID: 40143943 PMCID: PMC11938712 DOI: 10.34133/research.0658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, China
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Hong Wei
- Yu-Yue Pathology Scientific Research Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
14
|
Heidrich V, Valles-Colomer M, Segata N. Human microbiome acquisition and transmission. Nat Rev Microbiol 2025:10.1038/s41579-025-01166-x. [PMID: 40119155 DOI: 10.1038/s41579-025-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
As humans, we host personal microbiomes intricately connected to our biology and health. Far from being isolated entities, our microbiomes are dynamically shaped by microbial exchange with the surroundings, in lifelong microbiome acquisition and transmission processes. In this Review, we explore recent studies on how our microbiomes are transmitted, beginning at birth and during interactions with other humans and the environment. We also describe the key methodological aspects of transmission inference, based on the uniqueness of the building blocks of the microbiome - single microbial strains. A better understanding of human microbiome transmission will have implications for studies of microbial host regulation, of microbiome-associated diseases, and for effective microbiome-targeting strategies. Besides exchanging strains with other humans, there is also preliminary evidence we acquire microorganisms from animals and food, and thus a complete understanding of microbiome acquisition and transmission can only be attained by adopting a One Health perspective.
Collapse
Affiliation(s)
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
15
|
Min H, Choi KS, Yun S, Jang S. Live Biotherapeutic Products for Metabolic Diseases: Development Strategies, Challenges, and Future Directions. J Microbiol Biotechnol 2025; 35:e2410054. [PMID: 40081885 PMCID: PMC11925753 DOI: 10.4014/jmb.2410.10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have emerged as major global health challenges. Recent research has revealed that the gut microbiome is closely associated with the development of these conditions. The Food and Drug Administration has recognized certain probiotic strains with therapeutic potential, classifying them as live biotherapeutic products (LBPs). LBPs, which are derived from naturally occurring microorganisms, may present an effective strategy for treating metabolic diseases by restoring gut microbiota balance and regulating metabolic functions. This review explores the development of LBPs specifically for metabolic disease treatments, covering every phase from strain identification, non-clinical and clinical trials, manufacturing and formulation to regulatory approval. Furthermore, it addresses the challenges involved in the commercialization of these therapies. By offering critical insights into the research and development of LBPs for metabolic disease treatment, this review aims to contribute to the progress of these promising therapies.
Collapse
Affiliation(s)
- Heonhae Min
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyu-Sung Choi
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Saebom Yun
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
16
|
Shremo Msdi A, Haghparast A, Garey KW, Wang EM. Microbiome-Based Therapeutics for Salt-Sensitive Hypertension: A Scoping Review. Nutrients 2025; 17:825. [PMID: 40077695 PMCID: PMC11901721 DOI: 10.3390/nu17050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The purpose of this scoping review was to provide a comprehensive understanding of the current knowledge concerning the gut microbiome and SCFAs as emerging treatments for salt-sensitive hypertension. Relevant animal and human studies were identified via PubMed through August 2024. Twenty-four human (n = 9) and animal (n = 15) trials were included. Most human studies were observational (n = 6), aiming to compare gut microbiota differences between hypertensive and normotensive individuals. Three human studies evaluated microbiome-based interventions either via a sodium-restricted diet (n = 2) or prebiotic supplementation (n = 1). Fifteen animal trials involving either mice or rats were identified, all of which were interventional. These included dietary changes (n = 9), probiotic treatments (n = 1), postbiotic primarily bacterial metabolites (n = 4), and live biotherapeutic products (n = 4). All interventions were effective in decreasing blood pressure. Microbiome-based therapies as biologic modifiers for salt-sensitive hypertension are emerging. Substantial knowledge gaps remain, warranting further research to fully explore this promising therapeutic avenue.
Collapse
Affiliation(s)
- Abdulwhab Shremo Msdi
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
17
|
Davido B, Merrick B, Kuijper E, Benech N, Biehl LM, Corcione S. How can the gut microbiome be targeted to fight multidrug-resistant organisms? THE LANCET. MICROBE 2025:101063. [PMID: 39983749 DOI: 10.1016/j.lanmic.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
The rise of antimicrobial resistance presents a challenge to public health, undermines the efficacy of antibiotics, and compromises the management of infectious diseases. Gut colonisation by multidrug-resistant organisms, such as multidrug-resistant Enterobacterales and vancomycin-resistant enterococci, is associated with increased morbidity and mortality rates, as well as health-care costs. Of late, the role of the gut microbiome in combating colonisation by multidrug-resistant organisms, which could precede invasive infection, has garnered interest. Innovative interventions, including faecal microbiota transplantation, probiotics, phage therapy, and bacterial consortia, represent potential preventive or therapeutic options to counteract colonisation by multidrug-resistant organisms. In this Personal View, we have synthesised the current findings on these interventions and elucidated their potential as solutions to the crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Benjamin Davido
- Infectious Diseases Department, Raymond-Poincaré University Hospital, AP-HP, Paris-Saclay University, Garches, France.
| | - Blair Merrick
- Clinical Infection and Diagnostics Research Group, Guy's and St Thomas' NHS Foundation Trust and King's College, London, UK
| | - Ed Kuijper
- Center for Microbiota Analysis and Therapeutics, Leiden University Center for Infectious Disease, Leiden University Medical Center, Leiden, Netherlands
| | - Nicolas Benech
- Hepato-Gastroenterology Department, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Claude Bernard Lyon 1 University, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Lena M Biehl
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Bonn-Cologne, Cologne, Germany
| | - Silvia Corcione
- Department of Medical Sciences, University of Turin, Torino, Italy; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Cui H, Zhang Y, Yu H, Hollenbeck RG, Nyasae L, Wang Y, Han Y, Yang Z, Feng H, Hoag SW. Rodent Diets Incorporated with Live Biotherapeutic Products (LBPs): An Innovative Dosing Strategy to Support Preclinical Animal Studies on LBP Intervention. AAPS PharmSciTech 2025; 26:55. [PMID: 39904931 DOI: 10.1208/s12249-025-03050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Currently, the administration of live biotherapeutic products (LBPs) in animal-based pre-clinical studies is achieved via oral gavage or voluntary consumption through the water supply. Oral gavage provides the most accurate and precise dosing for the administration of LBPs to laboratory animals; however, it induces stress responses and is labor-intensive, especially when long-term dosing is needed, placing a significant burden on both lab personnel and the subject animals. On the other hand, voluntary LBP consumption through water supply requires less effort and reduces animal stress, but still puts challenges concerning uncontrolled dosing, variations in LBP viability during the dosing period, uneven dosing due to sedimentation of LBPs, and the need for frequent refreshments due to stability and viability concerns in an aqueous environment. To address these problems, we developed lyophilized rodent diet pellets incorporated with stabilized Bioengineered Probiotic Yeast Medicines (BioPYM™), with customizable pellet size, robust mechanical strength, low friability, uniform BioPYM distribution, and proved stability for 10 weeks at 4 to 8°C storage, ensuring easy handling and more reliable dosing. Optimal cell viability preservation in dry diets was achieved through optimization of lyoprotectant and blending methods. Pharmacokinetic studies of the shedding of live BioPYM cells and their therapeutic payloads revealed the effective delivery of therapeutic agents targeting rodent gastrointestinal system. Overall, BioPYM-diet pellets represent an improved method for the delivery of LBP, and provide convenient and precise dosing. In addition, this method improves laboratory animal welfare and decreases laboratory workload.
Collapse
Affiliation(s)
- Haixi Cui
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Hua Yu
- FZata Inc, Halethorpe, Maryland, 21227, USA
| | - R Gary Hollenbeck
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201, USA
| | | | - Yihan Wang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Yiguang Han
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, 21201, USA
| | | | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, 21201, USA.
- FZata Inc, Halethorpe, Maryland, 21227, USA.
| | - Stephen W Hoag
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
19
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
20
|
Li K, Li B, Li J, Wu X, Zhao Y, Yu J, Guo J, Huang C. Chairside live biotherapeutic hydrogel for comprehensive periodontitis therapy. Trends Biotechnol 2025; 43:408-432. [PMID: 39505614 DOI: 10.1016/j.tibtech.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Periodontitis, characterized by microbial dysbiosis and immune dysregulation, destroys tooth-supporting tissues and negatively affects overall health. Current strategies face significant challenges in restoring damaged tissues while halting periodontitis progression. In this study, we introduce a live biotherapeutic product (LBP) in an engineered living hydrogel for comprehensive periodontitis therapy. A dental blue light-responsive hydrogel (LRG) was fabricated to deliver and confine live Lactobacillus rhamnosus GG (LGG) in periodontal pockets, endowing the LRG with sustained antibacterial and immunomodulatory effects. The LRG was engineered through peptide modification to also promote tissue regeneration. Both in vitro and in vivo evaluations confirmed the effectiveness of this integrated therapeutic strategy, which combines antibacterial, anti-inflammatory, and regenerative properties with an underlying immunomodulatory mechanism that involves suppressor of cytokine signaling (SOCS)3 upregulation and the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway suppression in macrophages. Demonstrating a new paradigm, this proof of concept highlights the synergistic integration of live organisms and synthetic material engineering in a chairside treatment to address the multifaceted etiology of periodontitis.
Collapse
Affiliation(s)
- Kaifeng Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Boyi Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jiyun Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaoyi Wu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian Yu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Cui Huang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
21
|
Ananthakrishnan AN, Whelan K, Allegretti JR, Sokol H. Diet and Microbiome-Directed Therapy 2.0 for IBD. Clin Gastroenterol Hepatol 2025; 23:406-418. [PMID: 38992408 DOI: 10.1016/j.cgh.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic and relapsing disorders of the gastrointestinal tract, characterized by dysregulated immune responses to the gut microbiome. The gut microbiome and diet are key environmental factors that influence the onset and progression of IBD and can be leveraged for treatment. In this review, we summarize the current evidence on the role of the gut microbiome and diet in IBD pathogenesis, and the potential of microbiome-directed therapies and dietary interventions to improve IBD outcomes. We discuss available data and the advantages and drawbacks of the different approaches to manipulate the gut microbiome, such as fecal microbiota transplantation, next-generation and conventional probiotics, and postbiotics. We also review the use of diet as a therapeutic tool in IBD, including the effects in induction and maintenance, special diets, and exclusive enteral nutrition. Finally, we highlight the challenges and opportunities for the translation of diet and microbiome interventions into clinical practice, such as the need for personalization, manufacturing and regulatory hurdles, and the specificity to take into account for clinical trial design.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Jessica R Allegretti
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Univeresitaire, Paris, France; Micalis Institute, AgroParisTech, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
22
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
23
|
Abstract
Consumption of probiotic products continues to increase, perhaps driven by an interest in gut health. However, the field is filled with controversy, inconsistencies, misuse of terminology, and poor communication. While the probiotic concept is biologically plausible and in some cases mechanistically well established, extrapolation of preclinical results to humans has seldom been proven in well-conducted clinical trials. With noteworthy exceptions, clinical guidance has often been derived not from large, adequately powered clinical trials but rather from comparisons of disparate, small studies with insufficient power to identify the optimal strain. The separation of probiotics from live biotherapeutic products has brought some clarity from a regulatory perspective, but in both cases, consumers should expect scientific rigor and strong supporting evidence for health claims.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas, USA
| | - Fergus Shanahan
- Department of Medicine and Alimentary Pharmabiotic Centre, Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland;
| |
Collapse
|
24
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
25
|
Seo H, Kim S, Beck S, Song HY. Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology. Cells 2024; 13:2003. [PMID: 39682751 PMCID: PMC11640688 DOI: 10.3390/cells13232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Although global life expectancy has increased over the past 20 years due to advancements in managing infectious diseases, one-fifth of people still die from infections. In response to this ongoing threat, significant efforts are underway to develop vaccines and antimicrobial agents. However, pathogens evolve resistance mechanisms, complicating their control. The COVID-19 pandemic has underscored the limitations of focusing solely on the pathogen-killing strategies of immunology and microbiology to address complex, multisystemic infectious diseases. This highlights the urgent need for practical advancements, such as microbiome therapeutics, that address these limitations while complementing traditional approaches. Our review emphasizes key outcomes in the field, including evidence of probiotics reducing disease severity and insights into host-microbiome crosstalk that have informed novel therapeutic strategies. These findings underscore the potential of microbiome-based interventions to promote physiological function alongside existing strategies aimed at enhancing host immune responses and pathogen destruction. This narrative review explores microbiome therapeutics as next-generation treatments for infectious diseases, focusing on the application of probiotics and their role in host-microbiome interactions. While offering a novel perspective grounded in a cooperative defense system, this review also addresses the practical challenges and limitations in translating these advancements into clinical settings.
Collapse
Affiliation(s)
- Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Samuel Beck
- Center for Aging Research, Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, J-607, 609 Albany, Boston, MA 02118, USA
| | - Ho-Yeon Song
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Cheonan-si 31151, Chungnam-do, Republic of Korea
| |
Collapse
|
26
|
Oh VKS, Li RW. Wise Roles and Future Visionary Endeavors of Current Emperor: Advancing Dynamic Methods for Longitudinal Microbiome Meta-Omics Data in Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400458. [PMID: 39535493 DOI: 10.1002/advs.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Understanding the etiological complexity of diseases requires identifying biomarkers longitudinally associated with specific phenotypes. Advanced sequencing tools generate dynamic microbiome data, providing insights into microbial community functions and their impact on health. This review aims to explore the current roles and future visionary endeavors of dynamic methods for integrating longitudinal microbiome multi-omics data in personalized and precision medicine. This work seeks to synthesize existing research, propose best practices, and highlight innovative techniques. The development and application of advanced dynamic methods, including the unified analytical frameworks and deep learning tools in artificial intelligence, are critically examined. Aggregating data on microbes, metabolites, genes, and other entities offers profound insights into the interactions among microorganisms, host physiology, and external stimuli. Despite progress, the absence of gold standards for validating analytical protocols and data resources of various longitudinal multi-omics studies remains a significant challenge. The interdependence of workflow steps critically affects overall outcomes. This work provides a comprehensive roadmap for best practices, addressing current challenges with advanced dynamic methods. The review underscores the biological effects of clinical, experimental, and analytical protocol settings on outcomes. Establishing consensus on dynamic microbiome inter-studies and advancing reliable analytical protocols are pivotal for the future of personalized and precision medicine.
Collapse
Affiliation(s)
- Vera-Khlara S Oh
- Big Biomedical Data Integration and Statistical Analysis (DIANA) Research Center, Department of Data Science, College of Natural Sciences, Jeju National University, Jeju City, Jeju Do, 63243, South Korea
| | - Robert W Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
27
|
Kim YH, Choi YK, Kim MG, Seo HS, Park S, Lee SH. Key factors for the survival of Lactiplantibacillus plantarum IDCC 3501 in manufacturing and storage. Appl Microbiol Biotechnol 2024; 108:12. [PMID: 38157004 DOI: 10.1007/s00253-023-12854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Functional microbiome development has steadily increased; with this, the viability of microbial strains must be maintained not only after the manufacturing process but also at the time of consumption. Survival is threatened by various unavoidable factors during freeze-drying and shelf storage. Here, the aim was to optimize the manufacturing process of the functional strain Lactiplantibacillus plantarum IDCC 3501 after freeze-drying and storage. Explosive growth was achieved using a medium composition with two nitrogen sources and a mineral, and growth was drastically improved by neutralizing the medium pH during the culture of L. plantarum IDCC 3501. Culture optimization involved a smaller cell size, leading to less intracellular free water. Moreover, when maltodextrin (MD) powder was directly added to the harvested cells, some intracellular free water was extracted from the bacterial cells, resulting in a dramatic increase in the viability of L. plantarum IDCC 3501 after freeze-drying and subsequent storage. Furthermore, MD enhanced survival in a dose-dependent manner. Bacterial survival was correlated with lysozyme tolerance; therefore, the positive result might have been caused by the osmotic dehydration of intracellular free water, which would potentially damage the bacterial cells via ice crystallization and/or a phase transition during freeze-drying. These critical factors of L. plantarum IDCC 3501 processing provide perspectives on survival issues for manufacturing microbiome strains. KEY POINTS: • Culture conditions for probiotic bacteria were optimized for high growth yield. • Osmotic dehydration improved bacterial survival after manufacturing and shelf storage. • Reduction in intracellular free water content is crucial for intact survival.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, 18449, South Korea
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Min-Goo Kim
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, 18449, South Korea
| | - Han Sol Seo
- Research Laboratories, ILDONG Pharmaceutical Co., Ltd., Hwaseong, 18449, South Korea
| | - Saerom Park
- R&D Team, Choi Lab Inc, Seoul, 01811, South Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
28
|
Wu G, Xu T, Zhao N, Lam YY, Ding X, Wei D, Fan J, Shi Y, Li X, Li M, Ji S, Wang X, Fu H, Zhang F, Shi Y, Zhang C, Peng Y, Zhao L. A core microbiome signature as an indicator of health. Cell 2024; 187:6550-6565.e11. [PMID: 39378879 DOI: 10.1016/j.cell.2024.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Yan Y Lam
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Dongqin Wei
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Jian Fan
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Yajuan Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xiaofeng Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Mi Li
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Shenjie Ji
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhang
- Nutrition Department (Clinical Study Center of Functional Food), The Affiliated Hospital of Jiangnan University Wuxi, Wuxi, Jiangsu 214122, China
| | - Yu Shi
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Qidong, Jiangsu 226200, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
| |
Collapse
|
29
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
30
|
Van den Berghe L, Masschelein J, Pinheiro VB. From competition to cure: the development of live biotherapeutic products for anticancer therapy in the iGEM competition. Front Bioeng Biotechnol 2024; 12:1447176. [PMID: 39351063 PMCID: PMC11439766 DOI: 10.3389/fbioe.2024.1447176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a leading cause of mortality globally, often diagnosed at advanced stages with metastases already present, complicating treatment efficacy. Traditional treatments like chemotherapy and radiotherapy face challenges such as lack of specificity and drug resistance. The hallmarks of cancer, as defined by Hanahan and Weinberg, describe tumors as complex entities capable of evolving traits that promote malignancy, including sustained proliferation, resistance to cell death, and metastasis. Emerging research highlights the significant role of the microbiome in cancer development and treatment, influencing tumor progression and immune responses. This review explores the potential of live biotherapeutic products (LBPs) for cancer diagnosis and therapy, focusing on projects from the International Genetically Engineered Machines (iGEM) competition that aim to innovate LBPs for cancer treatment. Analyzing 77 projects from 2022, we highlight the progress and ongoing challenges within this research field.
Collapse
Affiliation(s)
- Luka Van den Berghe
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Joleen Masschelein
- Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Vitor B Pinheiro
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Kostic T, Schloter M, Arruda P, Berg G, Charles TC, Cotter PD, Kiran GS, Lange L, Maguin E, Meisner A, van Overbeek L, Sanz Y, Sarand I, Selvin J, Tsakalidou E, Smidt H, Wagner M, Sessitsch A. Concepts and criteria defining emerging microbiome applications. Microb Biotechnol 2024; 17:e14550. [PMID: 39236296 PMCID: PMC11376781 DOI: 10.1111/1751-7915.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, microbiomes and their potential applications for human, animal or plant health, food production and environmental management came into the spotlight of major national and international policies and strategies. This has been accompanied by substantial R&D investments in both public and private sectors, with an increasing number of products entering the market. Despite widespread agreement on the potential of microbiomes and their uses across disciplines, stakeholders and countries, there is no consensus on what defines a microbiome application. This often results in non-comprehensive communication or insufficient documentation making commercialisation and acceptance of the novel products challenging. To showcase the complexity of this issue we discuss two selected, well-established applications and propose criteria defining a microbiome application and their conditions of use for clear communication, facilitating suitable regulatory frameworks and building trust among stakeholders.
Collapse
Affiliation(s)
- Tanja Kostic
- AIT Austrian Institute of Technology GmbHViennaAustria
| | | | | | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, MooreparkAPC Microbiome Ireland and VistaMilkCorkIreland
| | | | - Lene Lange
- LL‐BioEconomy, Research and AdvisoryCopenhagenDenmark
| | - Emmanuelle Maguin
- Université Paris‐Saclay, INRAE, AgroParisTech, MICALIS UMR1319Jouy‐en‐JosasFrance
| | - Annelein Meisner
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Leo van Overbeek
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA‐CSIC)PaternaValenciaSpain
| | - Inga Sarand
- Tallinn University of TechnologyTallinnEstonia
| | | | | | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Martin Wagner
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
| | | |
Collapse
|
32
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
33
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
34
|
Zavišić G, Ristić S, Petričević S, Janković D, Petković B. Microbial Contamination of Food: Probiotics and Postbiotics as Potential Biopreservatives. Foods 2024; 13:2487. [PMID: 39200415 PMCID: PMC11353716 DOI: 10.3390/foods13162487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Microbial contamination of food and alimentary toxoinfection/intoxication in humans are commonly caused by bacteria such as Salmonella spp., Escherichia coli, Yersinia spp., Campylobacter spp., Listeria monocytogenes, and fungi (Aspergillus, Fusarium). The addition of probiotic cultures (bacterial strains Lactobacillus and Bifidobacterium and the yeast Saccharomyces cerevisiae var. boulardii) to food contributes primarily to food enrichment and obtaining a functional product, but also to food preservation. Reducing the number of viable pathogenic microorganisms and eliminating or neutralizing their toxins in food is achieved by probiotic-produced antimicrobial substances such as organic acids (lactic acid, acetic acid, propionic acid, phenylacetic acid, and phenyllactic acid), fatty acids (linoleic acid, butyric acid, caproic acid, and caprylic acid), aromatic compounds (diacetyl, acetaldehyde, reuterin), hydrogen peroxide, cyclic dipeptides, bacteriocins, and salivabactin. This review summarizes the basic facts on microbial contamination and preservation of food and the potential of different probiotic strains and their metabolites (postbiotics), including the mechanisms of their antimicrobial action against various foodborne pathogens. Literature data on this topic over the last three decades was searched in the PubMed, Scopus, and Google Scholar databases, systematically presented, and critically discussed, with particular attention to the advantages and disadvantages of using probiotics and postbiotics as food biopreservatives.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy in Novi Sad, Heroja Pinkija 4, 21101 Novi Sad, Serbia
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Saša Petričević
- Faculty of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia; (S.R.); (S.P.)
| | - Drina Janković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia;
| | - Branka Petković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| |
Collapse
|
35
|
Locker J, Serrage HJ, Ledder RG, Deshmukh S, O'Neill CA, McBain AJ. Microbiological insights and dermatological applications of live biotherapeutic products. J Appl Microbiol 2024; 135:lxae181. [PMID: 39090975 DOI: 10.1093/jambio/lxae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
As our understanding of dermatological conditions advances, it becomes increasingly evident that traditional pharmaceutical interventions are not universally effective. The intricate balance of the skin microbiota plays a pivotal role in the development of various skin conditions, prompting a growing interest in probiotics, or live biotherapeutic products (LBPs), as potential remedies. Specifically, the topical application of LBPs to modulate bacterial populations on the skin has emerged as a promising approach to alleviate symptoms associated with common skin conditions. This review considers LBPs and their application in addressing a wide spectrum of dermatological conditions with particular emphasis on three key areas: acne, atopic dermatitis, and wound healing. Within this context, the critical role of strain selection is presented as a pivotal factor in effectively managing these dermatological concerns. Additionally, the review considers formulation challenges associated with probiotic viability and proposes a personalised approach to facilitate compatibility with the skin's unique microenvironment. This analysis offers valuable insights into the potential of LBPs in dermatological applications, underlining their promise in reshaping the landscape of dermatological treatments while acknowledging the hurdles that must be overcome to unlock their full potential.
Collapse
Affiliation(s)
- Jessica Locker
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
36
|
Endo HM, Bandeca SCS, Olchanheski LR, Schemczssen-Graeff Z, Pileggi M. Probiotics and the reduction of SARS-CoV-2 infection through regulation of host cell calcium dynamics. Life Sci 2024; 350:122784. [PMID: 38848939 DOI: 10.1016/j.lfs.2024.122784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.
Collapse
Affiliation(s)
- Hugo Massami Endo
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | | | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
37
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
38
|
Jung H, Lee HH, Kang H, Cho H. Immune Boosting Effect of Limosilactobacillus Reuteri in Immunocompetent C57BL/6J Mice. J Med Food 2024; 27:713-719. [PMID: 38919987 DOI: 10.1089/jmf.2024.k.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Probiotics are well-known to be directly or indirectly involved in the host immune system. In this study, we analyzed the immune-boosting effects of lactic acid bacteria, including Limosilactobacillus and Lactococcus, in immunocompetent C57BL/6J mice. Three different lactic acid bacteria strains were orally administered to C57BL/6J mice for 8 weeks. Then, liver, spleen, and whole blood were harvested after sacrificing the animals. There were no significant changes in whole-body weight, weight of organs, or complete blood cell count by oral administration of lactic acid bacteria. The frequencies of CD3+, CD4+, and CD8+ T cells were significantly increased in the Limosilactobacillus reuteri MG5462 group compared to control. The frequency of NK1.1+ cells was significantly increased in the Lactococcus lactis MG5474 group compared to control. On the other hand, splenocyte proliferations and natural killer cytotoxicity did not differ between groups. In addition, the MG5462 group had a significant increase in the production of TNF-α compared to the control, which is consistent with the upregulation of T cells in the MG5462 group. Therefore, Limosilactobacillus reuteri could be a functional food additive to boost immunity by positively affecting T cell populations.
Collapse
Affiliation(s)
- Hyunna Jung
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Hwan Hee Lee
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Hyojeung Kang
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Abouelkhair AA, Seleem MN. Exploring novel microbial metabolites and drugs for inhibiting Clostridioides difficile. mSphere 2024; 9:e0027324. [PMID: 38940508 PMCID: PMC11288027 DOI: 10.1128/msphere.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Clostridioides difficile is an enteric pathogen that can cause a range of illnesses from mild diarrhea to pseudomembranous colitis and even death. This pathogen often takes advantage of microbial dysbiosis provoked by antibiotic use. With the increasing incidence and severity of infections, coupled with high recurrence rates, there is an urgent need to identify innovative therapies that can preserve the healthy state of the gut microbiota. In this study, we screened a microbial metabolite library against C. difficile. From a collection of 527 metabolites, we identified 18 compounds with no previously identified antimicrobial activity and metabolites that exhibited potent activity against C. difficile growth. Of these 18 hits, five drugs and three metabolites displayed the most potent anti-C. difficile activity and were subsequently assessed against 20 clinical isolates of C. difficile. These potent agents included ecteinascidin 770 (minimum inhibitory concentration against 50% of isolates [MIC50] ≤0.06 µg/mL); 8-hydroxyquinoline derivatives, such as broxyquinoline and choloroquinaldol (MIC50 = 0.125 µg/mL); ionomycin calcium salt, carbadox, and robenidine hydrochloride (MIC50 = 1 µg/mL); and dronedarone and milbemycin oxime (MIC50 = 4 µg/mL). Unlike vancomycin and fidaxomicin, which are the standard-of-care anti-C. difficile antibiotics, most of these metabolites showed robust bactericidal activity within 2-8 h with minimal impact on the growth of representative members of the normal gut microbiota. These results suggest that the drugs and microbial metabolite scaffolds may offer alternative avenues to address unmet needs in C. difficile disease prevention and treatment. IMPORTANCE The most frequent infection associated with hospital settings is Clostridioides difficile, which can cause fatal diarrhea and severe colitis, toxic megacolon, sepsis, and leaky gut. Those who have taken antibiotics for other illnesses that affect the gut's healthy microbiota are more susceptible to C. difficile infection (CDI). Recently, some reports showed higher recurrence rates and resistance to anti-C. difficile, which may compromise the efficacy of CDI treatment. Our study is significant because it is anticipated to discover novel microbial metabolites and drugs with microbial origins that are safe for the intestinal flora, effective against C. difficile, and reduce the risk of recurrence associated with CDI.
Collapse
Affiliation(s)
- Ahmed A. Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
40
|
Feng P, Bai X, Ma X, Kong H, Yang R. Interfacial-engineered living drugs with "ON/OFF" switching for oral delivery. NANOSCALE 2024; 16:13399-13406. [PMID: 38953700 DOI: 10.1039/d4nr01927j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Living drugs offer a new frontier in medicine, paving the way for personalized and potentially curative treatments. A customized living drug generally requires specialized technologies for highly effective and selective delivery to lesion locations. In this study, we explored an interfacial engineering method for living drugs by wrapping them with a "stealth coating", achieving "ON/OFF" switching of the communications between probiotics and the gastrointesinal (GI) tract. This maximized the bioactivity of living drugs following oral administration to exempt acidic insults and then significantly improved the retention through the gastrointestinal tract. With the notable ability to improve oral availability, the interfacial-engineered living drugs represent remarkable effects for enhanced oral delivery and treatment efficacy in the dextran sulfate sodium (DSS)-induced acute colitis model. We believe that this work has the potential to revolutionize medicine by precisely targeting and increasing curative activity in the future of disease treatment.
Collapse
Affiliation(s)
- Pingping Feng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, No. 292 Chengfu Road, Haidian District, Beijing, 100871 P. R. China.
| | - Xuefei Bai
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Xiaofei Ma
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Han Kong
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| | - Rui Yang
- College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, P. R. China.
| |
Collapse
|
41
|
Ku S, Haque MA, Jang MJ, Ahn J, Choe D, Jeon JI, Park MS. The role of Bifidobacterium in longevity and the future of probiotics. Food Sci Biotechnol 2024; 33:2097-2110. [PMID: 39130652 PMCID: PMC11315853 DOI: 10.1007/s10068-024-01631-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
This review explores the role and health impacts of probiotics, focusing specifically on Bifidobacterium spp. It highlights the functionalities that Bifidobacteria can provide, underscored by the historical evolution of definitions and technological advancements related to probiotics. By examining the association between Bifidobacteria and longevity, this review suggests new avenues for health enhancement. Highlighting case studies of centenarians, it presents examples related to human aging, illuminating the potential links to longevity through research on Bifidobacterium strains found in centenarians. This review not only emphasizes the importance of current research but also advocates for further investigation into the health benefits of Bifidobacteria, underlining the necessity for continuous study in the nutraceutical field.
Collapse
Affiliation(s)
- Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843 USA
| | - Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843 USA
| | - Min Ji Jang
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843 USA
| | - Jaehyun Ahn
- Department of Agricultural Leadership, Education and Communications, Texas A&M University, College Station, TX 77843 USA
| | - Deokyeong Choe
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Korea
| | - Jong Ik Jeon
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117 South Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117 South Korea
| |
Collapse
|
42
|
Herman K, Brough HA, Pier J, Venter C, Järvinen KM. Prevention of IgE-Mediated Food Allergy: Emerging Strategies Through Maternal and Neonatal Interventions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1686-1694. [PMID: 38677585 PMCID: PMC11420814 DOI: 10.1016/j.jaip.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Whereas the early introduction of highly allergenic foods has been shown to be effective at preventing the onset of food allergy (FA) in high-risk infants, sensitization to food antigens can occur prior to complementary food introduction, and thus, additional earlier FA prevention strategies are urgently needed. Currently, aside from early introduction of peanut and egg, no therapies are strongly recommended by international professional allergy societies for the primary prevention of FA. This review focuses on maternal- and neonatal-directed interventions that are being actively investigated and developed, including maternal dietary factors and supplementation, specific elimination diets, breastfeeding, cow's milk formula supplementation, microbiome manipulations, bacterial lysate therapy, and skin barrier therapies. Evaluating how these factors and various prenatal/early life environmental exposures may impact the development of FA is crucial for accurately counseling caregivers in the prevention of FA.
Collapse
Affiliation(s)
- Katherine Herman
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Helen A Brough
- Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, Children's Allergy Service. King's College London, Pediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, London, UK
| | - Jennifer Pier
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY
| | - Carina Venter
- Section of Pediatric Allergy and Immunology, Children's Hospital Colorado/University of Colorado, Denver, Colo
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Center for Food Allergy, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
43
|
Montrose JA, Kurada S, Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr Opin Gastroenterol 2024; 40:258-267. [PMID: 38841848 DOI: 10.1097/mog.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW The role of the microbiome and dysbiosis is increasingly recognized in the pathogenesis of inflammatory bowel disease (IBD). Intestinal microbiota transplant (IMT), previously termed fecal microbiota transplant has demonstrated efficacy in restoring a healthy microbiome and promoting gut health in recurrent Clostridioides difficile infection. Several randomized trials (RCTs) highlighted IMT's potential in treating ulcerative colitis, while smaller studies reported on its application in managing Crohn's disease and pouchitis. RECENT FINDINGS This review delves into the current understanding of dysbiosis in IBD, highlighting the distinctions in the microbiota of patients with IBD compared to healthy controls. It explores the mechanisms by which IMT can restore a healthy microbiome and provides a focused analysis of recent RCTs using IMT for inducing and maintaining remission in IBD. Lastly, we discuss the current knowledge gaps that limit its widespread use. SUMMARY The body of evidence supporting the use of IMT in IBD is growing. The lack of a standardized protocol impedes its application beyond clinical trials. Further research is needed to identify patient profile and disease phenotypes that benefit from IMT, to delineate key donor characteristics, optimize the delivery route, dosage, and frequency.
Collapse
Affiliation(s)
| | - Satya Kurada
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monika Fischer
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
45
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
46
|
Fukushima K, Kudo H, Oka K, Hayashi A, Onizuka M, Kusakabe S, Hino A, Takahashi M, Takeda K, Mori M, Ando K, Hosen N. Clostridium butyricum MIYAIRI 588 contributes to the maintenance of intestinal microbiota diversity early after haematopoietic cell transplantation. Bone Marrow Transplant 2024; 59:795-802. [PMID: 38431763 PMCID: PMC11161410 DOI: 10.1038/s41409-024-02250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, β-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
| | - Hayami Kudo
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kentaro Oka
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Atsushi Hayashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Shinsuke Kusakabe
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Akihisa Hino
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Motomichi Takahashi
- R&D Division, Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., Saitama, 331-0804, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| | - Masaki Mori
- Faculty of Medicine, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Naoki Hosen
- Department of Haematology and Oncology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- World Premier International Immunology Frontier Research Centre, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
47
|
van den Akker CHP, Embleton ND, Lapillonne A, Mihatsch WA, Salvatore S, Canani RB, Dinleyici EC, Domellöf M, Guarino A, Gutiérrez-Castrellón P, Hojsak I, Indrio F, Mosca A, Orel R, van Goudoever JHB, Weizman Z, Mader S, Zimmermann LJI, Shamir R, Vandenplas Y, Szajewska H. Reevaluating the FDA's warning against the use of probiotics in preterm neonates: A societal statement by ESPGHAN and EFCNI. J Pediatr Gastroenterol Nutr 2024; 78:1403-1408. [PMID: 38572770 DOI: 10.1002/jpn3.12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The recent advisory issued by the United States Food and Drug Administration, cautioning against the routine administration of probiotics in preterm neonates, has sparked a lively debate within the scientific community. This commentary presents a perspective from members of the Special Interest Group on Gut Microbiota and Modifications within the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and other authors who contributed to the ESPGHAN position paper on probiotics for preterm infants, as well as representatives from the European Foundation for the Care of Newborn Infants. We advocate for a more nuanced and supportive approach to the use of certain probiotics in this vulnerable population, balancing the demonstrated benefits and risks.
Collapse
Affiliation(s)
- Chris H P van den Akker
- Department of Pediatrics-Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, and Amsterdam Gastroenterology Endocrinology Metabolism Research Institutes, Amsterdam, The Netherlands
| | - Nicholas D Embleton
- Neonatal Unit, Royal Victoria Infirmary, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexandre Lapillonne
- Department of Neonatology, APHP Necker University Hospital, Paris Cite University, Paris, France
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Walter A Mihatsch
- Department of Pediatrics, Ulm University, Ulm, Germany
- Department of Health Management, Neu-Ulm University of Applied Sciences, Neu-Ulm, Germany
- Department of Pediatrics, Zollernalb Klinikum, Balingen, Germany
| | - Silva Salvatore
- Department of Medicine and Technological Innovation, Pediatrics, Hospital "F. Del Ponte", University of Insubria, Varese, Italy
| | - Roberto B Canani
- Department of Translational Medical Science and the ImmunoNutritionLab at the Ceinge Research Center and Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ener C Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | | | - Iva Hojsak
- Department of Pediatrics, University of Zagreb Medical School, Children's Hospital Zagreb, Zagreb, Croatia
| | - Flavia Indrio
- Department of Experimental Medicine, Pediatric Section, Medical School MedTech, University of Salento, Lecce, Italy
| | - Alexis Mosca
- Department Pediatric Gastroenterology and Nutrition, Robert-Debré Hospital, APHP, Paris, France
| | - Rok Orel
- Department of Gastroenterology, Hepatology and Nutrition, University Medical Center Ljubljana, University Children's Hospital Ljubljana, Medical Faculty, University of Ljubljana, Ljubeljana, Slovenia
| | - Johannes Hans B van Goudoever
- Department of Pediatrics, Amsterdam UMC, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Zvi Weizman
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Silke Mader
- European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
| | - Luc J I Zimmermann
- European Foundation for the Care of Newborn Infants (EFCNI), Munich, Germany
- Department of Pediatrics, School for Oncology and Reproduction (GROW), Maastricht UMC+, Maastricht, The Netherlands
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yvan Vandenplas
- Department of Pediatrics, UZ Brussel, KidZ Health Castle, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hania Szajewska
- Department of Pediatrics, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
49
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
50
|
Gervason S, Meleine M, Lolignier S, Meynier M, Daugey V, Birer A, Aissouni Y, Berthon JY, Ardid D, Filaire E, Carvalho FA. Antihyperalgesic properties of gut microbiota: Parabacteroides distasonis as a new probiotic strategy to alleviate chronic abdominal pain. Pain 2024; 165:e39-e54. [PMID: 37756665 DOI: 10.1097/j.pain.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023]
Abstract
ABSTRACT The potential role of gut microbiota in pain modulation is arousing an emerging interest since recent years. This study investigated neuromodulatory properties of gut microbiota to identify next-generation probiotics to propose alternative therapies for visceral pain management. Neuromodulation ability of 10 bacterial strains isolated from a healthy donor was assessed both on ND7/23 immortalized cell line and primary neuronal cells from rat dorsal root ganglia. This screening highlighted the neuroinhibitory property of Parabacteroides distasonis (F1-2) strain, supported both by its intracellular content and membrane fraction, which was further investigated in visceral pain mouse models. Oral administration of F1-2 resulted in a significant decrease of colonic hypersensitivity (CHS) in dextran sulfate sodium (0.5%) model associated with low-grade inflammation and a significant decrease of CHS in Citrobacter rodentium postinfectious models. No effect of F1-2 oral administration on CHS was observed in a neonatal maternal separation stress model. Antihyperalgesic effect unlikely involved modulation of inflammatory processes or restoration of intestinal barrier. Exploration of direct dialogue mechanisms between this strain and nervous system, assessed by calcium imaging experiments, revealed that F1-2 interacts directly with nociceptors by reducing activation level on capsaicin, inflammatory soup, and bradykinin stimulations. Our study provides new insights about bacteria-host interaction and places P distasonis as a potential therapeutic strategy in the treatment of visceral pain observed in leaky gut-associated pathologies.
Collapse
Affiliation(s)
- Sandie Gervason
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Mathieu Meleine
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Stéphane Lolignier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Maëva Meynier
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Valentine Daugey
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélien Birer
- M2iSH, UMR 1071 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
- Centre National de Référence de la Résisitance aux Antibiotiques, Service de Bactériologie, Clermont-Ferrand, France
| | - Youssef Aissouni
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Denis Ardid
- NeuroDol, UMR 1107 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Edith Filaire
- ECREIN Team, Human Nutrition Unit (UNH), UMR 1019 INRAE-UCA, University of Clermont-Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|