1
|
Currey J, Ellsworth C, Khatun MS, Wang C, Chen Z, Liu S, Midkiff C, Xiao M, Ren M, Liu F, Elgazzaz M, Fox S, Maness NJ, Rappaport J, Lazartigues E, Blair R, Kolls JK, Mauvais-Jarvis F, Qin X. Upregulation of inflammatory genes and pathways links obesity to severe COVID-19. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167322. [PMID: 38942338 PMCID: PMC11330358 DOI: 10.1016/j.bbadis.2024.167322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant). After infection, the WD-fed K18 mice lost significantly more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNA-seq analysis of lungs and adipose tissue revealed a diverse landscape of various immune cells, inflammatory markers, and pathways upregulated in the infected WD-fed K18 mice when compared with the infected NC-fed control mice. The transcript levels of IL-6, an important marker of COVID-19 disease severity, were upregulated in the lung at 6-9 days post-infection in the WD-fed mice when compared to NC-fed mice. Transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients found that the obese patients had an increase in the expression of genes and the activation of pathways associated with inflammation as compared to normal-weight patients (n = 2). The K18 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype. These results also indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 WA1 infection in the K18 mouse model would be a suitable model for dissecting the cellular and molecular mechanisms underlying pathogenesis.
Collapse
Affiliation(s)
- Joshua Currey
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark Xiao
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mi Ren
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mona Elgazzaz
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Sharon Fox
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Lonati C, Berezhnoy G, Lawler N, Masuda R, Kulkarni A, Sala S, Nitschke P, Zizmare L, Bucci D, Cannet C, Schäfer H, Singh Y, Gray N, Lodge S, Nicholson J, Merle U, Wist J, Trautwein C. Urinary phenotyping of SARS-CoV-2 infection connects clinical diagnostics with metabolomics and uncovers impaired NAD + pathway and SIRT1 activation. Clin Chem Lab Med 2024; 62:770-788. [PMID: 37955280 DOI: 10.1515/cclm-2023-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Nathan Lawler
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Reika Masuda
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Aditi Kulkarni
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Samuele Sala
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Daniele Bucci
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, AIC Division, Ettlingen, Germany
| | | | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Jeremy Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes 2023; 16:4147-4156. [PMID: 38145256 PMCID: PMC10749174 DOI: 10.2147/dmso.s441762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Respiratory Research Institute, Shanghai, People’s Republic of China
| | - Dongni Hou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Aderinto N, Abdulbasit MO, Tangmi ADE, Okesanya JO, Mubarak JM. Unveiling the growing significance of metabolism in modulating immune cell function: exploring mechanisms and implications; a review. Ann Med Surg (Lond) 2023; 85:5511-5522. [PMID: 37915697 PMCID: PMC10617839 DOI: 10.1097/ms9.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Immunometabolism has emerged as a rapidly growing field of research, holding significant promise for personalised medicine and precision immunotherapy. This review explores the intricate relationship between immune function and metabolic processes, emphasising their profound impact on various immune-related disorders. Understanding how metabolic dysregulation contributes to the pathogenesis of these disorders remains a critical research gap. Therefore, this review aims to bridge that gap by examining the key metabolic pathways involved and their specific implications in immune cell function. Key metabolic pathways, including glycolysis, mitochondrial metabolism, fatty acid metabolism, and amino acid metabolism, are discussed in the context of immune cell function. Dysregulation of these pathways can disrupt immune cell activation, differentiation, and overall function, contributing to disease pathogenesis. Understanding these metabolic alterations' molecular mechanisms is essential for developing targeted therapeutic interventions. The review also emphasises the importance of personalised medicine in immune-related disorders. The unique metabolic profiles of individuals can influence treatment outcomes, highlighting the need for tailored approaches. Integrating metabolic profiling into clinical practice can enhance treatment efficacy and improve patient outcomes. Investigating the clinical significance of immunometabolism in diverse disease contexts will facilitate the translation of research findings into clinical practice. Moreover, refining treatment strategies based on individual metabolic profiles will contribute to advancing precision immunotherapy.
Collapse
Affiliation(s)
- Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso
| | | | | | | | | |
Collapse
|
5
|
Moretti AIS, Schreiber R, Wanschel ABA. Editorial: COVID-19 mechanisms on cardio-vascular dysfunction: from membrane receptors to immune response, volume II. Front Cardiovasc Med 2023; 10:1278067. [PMID: 37900568 PMCID: PMC10613079 DOI: 10.3389/fcvm.2023.1278067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Ana Iochabel Soares Moretti
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Roberto Schreiber
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Amarylis B. A. Wanschel
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, United States
| |
Collapse
|
6
|
Gauthier T, Yao C, Dowdy T, Jin W, Lim YJ, Patiño LC, Liu N, Ohlemacher SI, Bynum A, Kazmi R, Bewley CA, Mitrovic M, Martin D, Morell RJ, Eckhaus M, Larion M, Tussiwand R, O’Shea J, Chen W. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal 2023; 16:eade0385. [PMID: 37552767 PMCID: PMC11145950 DOI: 10.1126/scisignal.ade0385] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Wenwen Jin
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Na Liu
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Andrew Bynum
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Rida Kazmi
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mladen Mitrovic
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Michael Eckhaus
- Division of Veterinary Resources, Pathology Service, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Roxane Tussiwand
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - John O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
7
|
Creus-Cuadros A, Tabusi MM, Carpio-Arias V, Finlay BB. Gut microbiota, malnutrition, and immunity: COVID-19's confounding triad. Cell Host Microbe 2023; 31:851-855. [PMID: 37321169 PMCID: PMC10265770 DOI: 10.1016/j.chom.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
The coronavirus disease has swept the world, bringing scientists from multiple disciplines together to work on a focused cause. In this forum, we discuss different roles that microbiota, malnutrition, and immunity have on severity of coronavirus disease and the importance of studying them from a gut-systemic perspective using multi-omics approaches.
Collapse
Affiliation(s)
- Anna Creus-Cuadros
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - M Mahebali Tabusi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Valeria Carpio-Arias
- Research Group on Human Food and Nutrition (GIANH), Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Xu SW, Ilyas I, Weng JP. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin 2023; 44:695-709. [PMID: 36253560 PMCID: PMC9574180 DOI: 10.1038/s41401-022-00998-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/11/2022] [Indexed: 12/15/2022] Open
Abstract
The fight against coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is still raging. However, the pathophysiology of acute and post-acute manifestations of COVID-19 (long COVID-19) is understudied. Endothelial cells are sentinels lining the innermost layer of blood vessel that gatekeep micro- and macro-vascular health by sensing pathogen/danger signals and secreting vasoactive molecules. SARS-CoV-2 infection primarily affects the pulmonary system, but accumulating evidence suggests that it also affects the pan-vasculature in the extrapulmonary systems by directly (via virus infection) or indirectly (via cytokine storm), causing endothelial dysfunction (endotheliitis, endothelialitis and endotheliopathy) and multi-organ injury. Mounting evidence suggests that SARS-CoV-2 infection leads to multiple instances of endothelial dysfunction, including reduced nitric oxide (NO) bioavailability, oxidative stress, endothelial injury, glycocalyx/barrier disruption, hyperpermeability, inflammation/leukocyte adhesion, senescence, endothelial-to-mesenchymal transition (EndoMT), hypercoagulability, thrombosis and many others. Thus, COVID-19 is deemed as a (micro)vascular and endothelial disease. Of translational relevance, several candidate drugs which are endothelial protective have been shown to improve clinical manifestations of COVID-19 patients. The purpose of this review is to provide a latest summary of biomarkers associated with endothelial cell activation in COVID-19 and offer mechanistic insights into the molecular basis of endothelial activation/dysfunction in macro- and micro-vasculature of COVID-19 patients. We envisage further development of cellular models and suitable animal models mimicking endothelial dysfunction aspect of COVID-19 being able to accelerate the discovery of new drugs targeting endothelial dysfunction in pan-vasculature from COVID-19 patients.
Collapse
Affiliation(s)
- Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
9
|
Hasankhani A, Bahrami A, Tavakoli-Far B, Iranshahi S, Ghaemi F, Akbarizadeh MR, Amin AH, Abedi Kiasari B, Mohammadzadeh Shabestari A. The role of peroxisome proliferator-activated receptors in the modulation of hyperinflammation induced by SARS-CoV-2 infection: A perspective for COVID-19 therapy. Front Immunol 2023; 14:1127358. [PMID: 36875108 PMCID: PMC9981974 DOI: 10.3389/fimmu.2023.1127358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that affects the lower and upper respiratory tract in humans. SARS-CoV-2 infection is associated with the induction of a cascade of uncontrolled inflammatory responses in the host, ultimately leading to hyperinflammation or cytokine storm. Indeed, cytokine storm is a hallmark of SARS-CoV-2 immunopathogenesis, directly related to the severity of the disease and mortality in COVID-19 patients. Considering the lack of any definitive treatment for COVID-19, targeting key inflammatory factors to regulate the inflammatory response in COVID-19 patients could be a fundamental step to developing effective therapeutic strategies against SARS-CoV-2 infection. Currently, in addition to well-defined metabolic actions, especially lipid metabolism and glucose utilization, there is growing evidence of a central role of the ligand-dependent nuclear receptors and peroxisome proliferator-activated receptors (PPARs) including PPARα, PPARβ/δ, and PPARγ in the control of inflammatory signals in various human inflammatory diseases. This makes them attractive targets for developing therapeutic approaches to control/suppress the hyperinflammatory response in patients with severe COVID-19. In this review, we (1) investigate the anti-inflammatory mechanisms mediated by PPARs and their ligands during SARS-CoV-2 infection, and (2) on the basis of the recent literature, highlight the importance of PPAR subtypes for the development of promising therapeutic approaches against the cytokine storm in severe COVID-19 patients.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Bahareh Tavakoli-Far
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Setare Iranshahi
- School of Pharmacy, Shahid Beheshty University of Medical Sciences, Tehran, Iran
| | - Farnaz Ghaemi
- Department of Biochemistry, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Reza Akbarizadeh
- Department of Pediatric, School of Medicine, Amir al momenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Mohammadzadeh Shabestari
- Department of Dental Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
- Khorasan Covid-19 Scientific Committee, Mashhad, Iran
| |
Collapse
|
10
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
11
|
Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines 2023; 11:biomedicines11020492. [PMID: 36831027 PMCID: PMC9953636 DOI: 10.3390/biomedicines11020492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Abnormally increased arterial and aortic stiffness (AS and AoS), which are often associated with diastolic dysfunction (DD), represent common alterations in COVID-19. In this study, we aimed to assess, by transthoracic echocardiography (TTE) and pulse-wave velocity (PWV), the frequency of these dysfunctions in patients with post-acute COVID-19 syndrome and to highlight potential correlations between their severity and multiple clinical and laboratory parameters. (2) Methods: In total, 121 women were included in our study, all of whom were younger than 55 and had been diagnosed with post-COVID-19 syndrome. Of those women, 67 also had metabolic syndrome (MS) (group A), whereas the other 54 did not (group B); 40 age-matched healthy subjects were used as controls (group C). (3) Results: Patients in group A had worse values of indexes characterizing AS and AoS and had more frequent DD compared to those from group B and group C (p < 0.0001). The statistical analysis evidenced significant associations between these indexes and the time that had elapsed since COVID-19 diagnosis, the factors that characterize the severity of the acute disease and those that specify MS. Multivariate regression analysis identified the following as the main independent predictors for DD: values of the AoS index, the C-reactive protein, and the triglyceride-glucose index. (4) Conclusions: Altered AS, AoS, and DD are common in patients with post-COVID-19 syndrome, especially with concurrent MS, and these parameters are apparently associated not only with the severity and time elapsed since COVID-19 diagnosis but also with MS.
Collapse
|
12
|
Jeyananthan P. Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients. Pathol Res Pract 2023; 242:154311. [PMID: 36657221 PMCID: PMC9840815 DOI: 10.1016/j.prp.2023.154311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 pandemic is the current threat of the world with enormous number of deceases. As most of the countries have constraints on resources, particularly for intensive care and oxygen, severity prediction with high accuracy is crucial. This prediction will help the medical society in the selection of patients with the need for these constrained resources. Literature shows that using clinical data in this study is the common trend and molecular data is rarely utilized in this prediction. As molecular data carry more disease related information, in this study, three different types of RNA molecules ( lncRNA, miRNA and mRNA) of SARS-COV-2 patients are used to predict the severity stage and treatment stage of those patients. Using seven different machine learning algorithms along with several feature selection techniques shows that in both phenotypes, feature importance selected features provides the best accuracy along with random forest classifier. Further to this, it shows that in the severity stage prediction miRNA and lncRNA give the best performance, and lncRNA data gives the best in treatment stage prediction. As most of the studies related to molecular data uses mRNA data, this is an interesting finding.
Collapse
|
13
|
Xing X, Hu X. Risk factors of cytokine release syndrome: stress, catecholamines, and beyond. Trends Immunol 2023; 44:93-100. [PMID: 36586780 DOI: 10.1016/j.it.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Cytokine release syndrome (CRS) is a severe clinical syndrome marked by drastic elevation of inflammatory cytokines such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF). Despite the current empirical therapeutic strategies, prediction of CRS onset and identification of high-risk individuals are not satisfactory due to poor understanding of the mechanisms underlying CRS-related immune dysfunction and risk factors for CRS. Recent studies have suggested that conditions such as stress, obesity, diabetes, and hypertension may contribute to the development of CRS. Here, we discuss potential connections between these conditions and CRS pathogenesis, with a focus on stress hormone catecholamine-mediated effects, hoping that the design of CRS therapeutic approaches ensues from a renewed perspective.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Wang Y, Schughart K, Pelaia TM, Chew T, Kim K, Karvunidis T, Knippenberg B, Teoh S, Phu AL, Short KR, Iredell J, Thevarajan I, Audsley J, Macdonald S, Burcham J, Tang B, McLean A, Shojaei M. Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19. Int J Mol Sci 2023; 24:ijms24032524. [PMID: 36768847 PMCID: PMC9917147 DOI: 10.3390/ijms24032524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
Collapse
Affiliation(s)
- Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute of Virology Münster, University of Münster, 48149 Münster, Germany
| | - Tiana Maria Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney NSW 2006, Australia
| | - Karan Kim
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Thomas Karvunidis
- Medical ICU, 1st Department of Internal Medicine, Charles University and Teaching Hospital Pilsen, 323 00 Plzeň, Czech Republic
| | - Ben Knippenberg
- Department of Microbiology, St. George Hospital, Sydney, NSW 2217, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Amy L. Phu
- Research and Education Network, Western Sydney Local Health District, Westmead Hospital, CNR Darcy and Hawkesbury Roads, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW 2145, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Disease, The University of Sydney, Sydney, NSW 2145, Australia
| | - Irani Thevarajan
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3050, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Royal Perth Hospital, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Jonathon Burcham
- Centre for Clinical Research in Emergency Medicine, Royal Perth Bentley Group, Perth, WA 6000, Australia
| | | | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| |
Collapse
|
15
|
Glutamine-Driven Metabolic Adaptation to COVID-19 Infection. Indian J Clin Biochem 2023; 38:83-93. [PMID: 35431470 PMCID: PMC8992789 DOI: 10.1007/s12291-022-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Background COVID-19 is known to be transmitted by direct contact, droplets or feces/orally. There are many factors which determines the clinical progression of the disease. Aminoacid disturbance in viral disease is shown in many studies. İn this study we aimed to evaluate the change of aminoacid metabolism especially the aspartate, glutamine and glycine levels which have been associated with an immune defence effect in viral disease. Methods Blood samples from 35 volunteer patients with COVID-19, concretized diagnosis was made by oropharyngeal from nazofaringeal swab specimens and reverse transcriptase-polymerase chain reaction, and 35 control group were analyzed. The amino acid levels were measured with liquid chromatography-mass spectrometry technology. Two groups were compared by Kolmogorov-Smirnov analysis, Kruskal-Wallis and the Mann-Whitney U. The square test was used to evaluate the tests obtained by counting, and the error level was taken as 0.05. Results The average age of the patient and control group were 48.5 ± 14.9 and 48.8 ± 14.6 years respectively. The decrease in aspartate (p = 5.5 × 10-9) and glutamine levels (p = 9.0 × 10-17) were significiantly in COVID group, whereas Glycine (p = 0.243) increase was not significiant. Conclusions Metabolic pathways, are affected in rapidly dividing cells in viral diseases which are important for immun defence. We determined that aspartate, glutamine and glycine levels in Covid 19 patients were affected by the warburg effect, malate aspartate shuttle, glutaminolysis and pentose phosphate pathway. Enteral or parenteral administration of these plasma amino acid levels will correct the duration and pathophysiology of the patients' stay in hospital and intensive care.
Collapse
|
16
|
Rössler T, Berezhnoy G, Singh Y, Cannet C, Reinsperger T, Schäfer H, Spraul M, Kneilling M, Merle U, Trautwein C. Quantitative Serum NMR Spectroscopy Stratifies COVID-19 Patients and Sheds Light on Interfaces of Host Metabolism and the Immune Response with Cytokines and Clinical Parameters. Metabolites 2022; 12:metabo12121277. [PMID: 36557315 PMCID: PMC9781847 DOI: 10.3390/metabo12121277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The complex manifestations of COVID-19 are still not fully decoded on the molecular level. We combined quantitative the nuclear magnetic resonance (NMR) spectroscopy serum analysis of metabolites, lipoproteins and inflammation markers with clinical parameters and a targeted cytokine panel to characterize COVID-19 in a large (534 patient samples, 305 controls) outpatient cohort of recently tested PCR-positive patients. The COVID-19 cohort consisted of patients who were predominantly in the initial phase of the disease and mostly exhibited a milder disease course. Concerning the metabolic profiles of SARS-CoV-2-infected patients, we identified markers of oxidative stress and a severe dysregulation of energy metabolism. NMR markers, such as phenylalanine, inflammatory glycoproteins (Glyc) and their ratio with the previously reported supramolecular phospholipid composite (Glyc/SPC), showed a predictive power comparable to laboratory parameters such as C-reactive protein (CRP) or ferritin. We demonstrated interfaces between the metabolism and the immune system, e.g., we could trace an interleukin (IL-6)-induced transformation of a high-density lipoprotein (HDL) to a pro-inflammatory actor. Finally, we showed that metadata such as age, sex and constitution (e.g., body mass index, BMI) need to be considered when exploring new biomarkers and that adding NMR parameters to existing diagnoses expands the diagnostic toolbox for patient stratification and personalized medicine.
Collapse
Affiliation(s)
- Titus Rössler
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Tony Reinsperger
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Hartmut Schäfer
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Manfred Spraul
- Bruker BioSpin GmbH, Applied Industrial and Clinical Division, 76275 Ettlingen, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-guided and Functionally Instructed Tumor Therapies”, Medical Faculty, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
17
|
Qiu W, Shi Q, Chen F, Wu Q, Yu X, Xiong L. The derived neutrophil to lymphocyte ratio can be the predictor of prognosis for COVID-19 Omicron BA.2 infected patients. Front Immunol 2022; 13:1065345. [PMID: 36405724 PMCID: PMC9666892 DOI: 10.3389/fimmu.2022.1065345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Several systemic inflammatory biomarkers have been associated with poor overall survival (OS) and disease severity in patients with coronavirus disease 2019 (COVID-19). However, it remains unclear which markers are better for predicting prognosis, especially for COVID-19 Omicron BA.2 infected patients. The present study aimed to identify reliable predictors of prognosis of COVID-19 Omicron BA.2 from inflammatory indicators. METHODS A cohort of 2645 COVID-19 Omicron BA.2 infected patients were retrospectively analyzed during the Omicron BA.2 surge in Shanghai between April 12, 2022, and June 17, 2022. The patients were admitted to the Shanghai Fourth People's Hospital, School of Medicine, Tongji University. Six systemic inflammatory indicators were included, and their cut-off points were calculated using maximally selected rank statistics. The analysis involved Kaplan-Meier curves, univariate and multivariate Cox proportional hazard models, and time-dependent receiver operating characteristic curves (time-ROC) for OS-associated inflammatory indicators. RESULTS A total of 2347 COVID-19 Omicron BA.2 infected patients were included. All selected indicators proved to be independent predictors of OS in the multivariate analysis (all P < 0.01). A high derived neutrophil to lymphocyte ratio (dNLR) was associated with a higher mortality risk of COVID-19 [hazard ratio, 4.272; 95% confidence interval (CI), 2.417-7.552]. The analyses of time-AUC and C-index showed that the dNLR (C-index: 0.844, 0.824, and 0.718 for the 5th, 10th, and 15th day, respectively) had the best predictive power for OS in COVID-19 Omicron BA.2 infected patients. Among different sub-groups, the dNLR was the best predictor for OS regardless of age (0.811 for patients aged ≥70 years), gender (C-index, 0.880 for men and 0.793 for women) and disease severity (C-index, 0.932 for non-severe patients and 0.658 for severe patients). However, the platelet to lymphocyte ratio was superior to the other indicators in patients aged <70 years. CONCLUSIONS The prognostic ability of the dNLR was higher than the other evaluated inflammatory indicators for all COVID-19 Omicron BA.2 infected patients.
Collapse
Affiliation(s)
- Weiji Qiu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Qiqing Shi
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Fang Chen
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Qian Wu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China
| | - Xiya Yu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China,*Correspondence: Xiya Yu, ; Lize Xiong,
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, China,*Correspondence: Xiya Yu, ; Lize Xiong,
| |
Collapse
|
18
|
Kumar R, Kumar V, Arya R, Anand U, Priyadarshi RN. Association of COVID-19 with hepatic metabolic dysfunction. World J Virol 2022; 11:237-251. [PMID: 36188741 PMCID: PMC9523326 DOI: 10.5501/wjv.v11.i5.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to be a global problem with over 438 million cases reported so far. Although it mostly affects the respiratory system, the involvement of extrapulmonary organs, including the liver, is not uncommon. Since the beginning of the pandemic, metabolic com-orbidities, such as obesity, diabetes, hypertension, and dyslipidemia, have been identified as poor prognostic indicators. Subsequent metabolic and lipidomic studies have identified several metabolic dysfunctions in patients with COVID-19. The metabolic alterations appear to be linked to the course of the disease and inflammatory reaction in the body. The liver is an important organ with high metabolic activity, and a significant proportion of COVID-19 patients have metabolic comorbidities; thus, this factor could play a key role in orchestrating systemic metabolic changes during infection. Evidence suggests that metabolic dysregulation in COVID-19 has both short- and long-term metabolic implications. Furthermore, COVID-19 has adverse associations with metabolic-associated fatty liver disease. Due to the ensuing effects on the renin-angiotensin-aldosterone system and ammonia metabolism, COVID-19 can have significant implications in patients with advanced chronic liver disease. A thorough understanding of COVID-19-associated metabolic dysfunction could lead to the identification of important plasma biomarkers and novel treatment targets. In this review, we discuss the current understanding of metabolic dysfunction in COVID-19, focusing on the liver and exploring the underlying mechanistic pathogenesis and clinical implications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Vijay Kumar
- Department of Medicine, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rahul Arya
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rajeev Nayan Priyadarshi
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| |
Collapse
|
19
|
Jegal KH, Yoon J, Kim S, Jang S, Jin YH, Lee JH, Choi SM, Kim TH, Kwon S. Herbal Medicines for Post-Acute Sequelae (Fatigue or Cognitive Dysfunction) of SARS-CoV-2 Infection: A Phase 2 Pilot Clinical Study Protocol. Healthcare (Basel) 2022; 10:healthcare10101839. [PMID: 36292286 PMCID: PMC9601660 DOI: 10.3390/healthcare10101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Long-term sequelae refer to persistent symptoms or signs for >6 months after SARS-CoV-2 infection. The most common symptoms of sequelae are fatigue and neuropsychiatric symptoms (concentration difficulty, amnesia, cognitive dysfunction, anxiety, and depression). However, approved treatments have not been fully established. Herbal medicines are administered for 12 weeks to patients who continuously complain of fatigue or cognitive dysfunction for >4 weeks that only occurred after COVID-19 diagnoses. Based on the Korean Medicine syndrome differentiation diagnosis, patients with fatigue will be administered Bojungikgi-tang or Kyungok-go, whereas those with cognitive dysfunction will be administered Cheonwangbosim-dan. Results could support evidence that herbal medicines may mitigate fatigue and cognitive dysfunction caused by COVID-19. Furthermore, by investigating the effects of herbal medicines on changes in metabolite and immune response due to COVID-19, which may be responsible for sequelae, the potential of herbal medicines as one of the therapeutic interventions for post-acute sequelae of SARS-CoV-2 infection can be evaluated. Therefore, the effects of herbal medicine on fatigue and cognitive dysfunction sequelae due to COVID-19 will be elucidated in this study to provide an insight into the preparation of medical management for the post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kyung Hwan Jegal
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Jiwon Yoon
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sanghyun Kim
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Soobin Jang
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Young-Hee Jin
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
| | - Jun-Hwan Lee
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- UST KIOM School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Sun-Mi Choi
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- UST KIOM School, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Tae Hun Kim
- Korean Medicine Clinical Trial Center, Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.H.K.); (S.K.); Tel.: +82-2-958-9088 (T.H.K.); +82-42-868-9675 (S.K.)
| | - Sunoh Kwon
- UST KIOM School, University of Science and Technology (UST), Daejeon 34113, Korea
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
- Correspondence: (T.H.K.); (S.K.); Tel.: +82-2-958-9088 (T.H.K.); +82-42-868-9675 (S.K.)
| |
Collapse
|
20
|
Chudzik M, Babicki M, Kapusta J, Kałuzińska-Kołat Ż, Kołat D, Jankowski P, Mastalerz-Migas A. Long-COVID Clinical Features and Risk Factors: A Retrospective Analysis of Patients from the STOP-COVID Registry of the PoLoCOV Study. Viruses 2022; 14:1755. [PMID: 36016376 PMCID: PMC9415629 DOI: 10.3390/v14081755] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite recovering from the acute phase of coronavirus disease (COVID-19), many patients report continuing symptoms that most commonly include fatigue, cough, neurologic problems, hair loss, headache, and musculoskeletal pain, a condition termed long-COVID syndrome. Neither its etiopathogenesis, nor its clinical presentation or risk factors are fully understood. Therefore, the purpose of this study was to retrospectively evaluate the most common symptoms of long-COVID among patients from the STOP COVID registry of the PoLoCOV study, and to search for risk factors for development of the syndrome. The registry includes patients who presented to the medical center for persistent clinical symptoms following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The analysis included data from initial presentation and at three-month follow-up. Of the 2218 patients, 1569 (70.7%) reported having at least one symptom classified as long-COVID syndrome three months after recovery from the initial SARS-CoV-2 infection. The most common symptoms included chronic fatigue (35.6%\), cough (23.0%), and a set of neurological symptoms referred to as brain fog (12.1%). Risk factors for developing long-COVID syndrome included female gender (odds ratio [OR]: 1.48, 95% confidence intervals [CI] [1.19-1.84]), severe COVID-19 (OR: 1.56, CI: 1.00-2.42), dyspnea (OR: 1.31, CI: 1.02-1.69), and chest pain (OR: 1.48, CI: 1.14-1.92). Long-COVID syndrome represents a significant clinical and social problem. The most common clinical manifestations are chronic fatigue, cough, and brain fog. Given the still-limited knowledge of long-COVID syndrome, further research and observation are needed to better understand the mechanisms and risk factors of the disease.
Collapse
Affiliation(s)
- Michał Chudzik
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, 01-813 Warsaw, Poland
| | - Mateusz Babicki
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wrocław, Poland
| | - Joanna Kapusta
- Department of Internal Medicine and Cardiac Rehabilitation, Medical University of Lodz, 70-445 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
- Boruta Medical Center, 95-100 Zgierz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
- Boruta Medical Center, 95-100 Zgierz, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, 01-813 Warsaw, Poland
| | | |
Collapse
|
21
|
Abbasher Hussien Mohamed Ahmed K, Hasabo EA, Haroun MS, Mah. Fadelallah Eljack M, Salih EH, Altayeb YFO, Nour AB, Abdallah AM, Osman WAM, Yousif MYE. Clinical characteristics, complications, and predictors of outcome of hospitalized adult Sudanese patients with COVID-19 and malaria coinfection in Sudan: A multicenter retrospective cross-sectional study. J Med Virol 2022; 94:3685-3697. [PMID: 35415939 PMCID: PMC9088527 DOI: 10.1002/jmv.27771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/08/2023]
Abstract
Malaria and coronavirus disease 2019 (COVID-19) share several characteristics that could lead to cross-infection, particularly in malaria-endemic areas. Early COVID-19 symptoms might be misdiagnosed for malaria in clinical settings. Also, both diseases can cause fatal complications. So, laboratory testing for both diseases was recommended by the World Health Organization. To study the clinical characteristics and outcomes of Adult Sudanese patients with COVID-19 and malaria coinfection. This retrospective cross-sectional study was conducted from January 2021 to October 2021 in Wad Medani. Total coverage of all Sudanese patients above 18 years old with a confirmed diagnosis of coinfection with COVID-19 and malaria was included, and data were collected using a data collection sheet. Data were analyzed using R software version 4.0.2. Data were described and presented as mean, standard deviation, and number (percentage). To find associated factors with in-hospital outcome, χ2 test, fisher exact test, and independent t test or Wilcoxon rank-sum test were used. In this study, 156 participants were diagnosed with COVID-19 and malaria coinfection. Most of them were between 60 and 70 years (30.8%), the majority were males (59%). Shortness of breath (76.3%) and acute respiratory distress syndrome (35.3%) were the most common symptom and complications among coinfected patients, respectively. Ground glass opacity (n = 47/49, 95.9%) is the most common result for computed tomography scan. Atrial fibrillation was the most common abnormal electrocardiogram finding (n = 6/62, 9.7%). Overall mortality among all participants was (63/156, 40.4%). High mortality rate was found among the coinfected patients. More attention is needed towards fighting COVID-19 and malaria coinfection. There may be a link between malaria and COVID-19.
Collapse
|
22
|
Pérez MM, Pimentel VE, Fuzo CA, da Silva-Neto PV, Toro DM, Fraga-Silva TFC, Gardinassi LG, Oliveira CNS, Souza COS, Torre-Neto NT, de Carvalho JCS, De Leo TC, Nardini V, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Constant LF, Ostini FM, Degiovani AM, Amorim AP, Viana AL, Fernandes APM, Maruyama SR, Russo EMS, Santos IKFM, Bonato VLD, Cardoso CRB, Sorgi CA, Dias-Baruffi M, Faccioli LH. Acetylcholine, Fatty Acids, and Lipid Mediators Are Linked to COVID-19 Severity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:250-261. [PMID: 35768148 DOI: 10.4049/jimmunol.2200079] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1β, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.
Collapse
Affiliation(s)
- Malena M Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius E Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Carlos A Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Thais F C Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz G Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Camilla N S Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Camila O S Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto São Paulo, Brazil
| | - Nicola T Torre-Neto
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thais C De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marley R Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rogerio S Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José J R da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.,Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando C Vilar
- Hospital São Paulo, Ribeirão Preto, São Paulo, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto G Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leticia F Constant
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Fátima M Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Augusto M Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Alessandro P Amorim
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Angelina L Viana
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P M Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra R Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Elisa M S Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabel K F M Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Vânia L D Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil;
| | | | | |
Collapse
|
23
|
Tudoran C, Tudoran M, Cut TG, Lazureanu VE, Bende F, Fofiu R, Enache A, Pescariu SA, Novacescu D. The Impact of Metabolic Syndrome and Obesity on the Evolution of Diastolic Dysfunction in Apparently Healthy Patients Suffering from Post-COVID-19 Syndrome. Biomedicines 2022; 10:1519. [PMID: 35884823 PMCID: PMC9312435 DOI: 10.3390/biomedicines10071519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Coronavirus disease 2019 (COVID-19) has a worse prognosis in individuals with obesity and metabolic syndrome (MS), who often develop cardiovascular complications that last throughout recovery. (2) Methods: This study aimed to analyze the evolution of diastolic dysfunction (DD), assessed by transthoracic echocardiography (TTE), in 203 individuals with and without obesity and/or MS diagnosed with post-COVID-19 syndrome. (3) Results: DD was frequently diagnosed in patients with MS and obesity, but also in those without obesity (62.71% and 56.6%, respectively), in comparison to 21.97% of subjects without MS (p ˂ 0.001). Almost half of the patients with obesity and MS had more severe DD (types 2 and 3). As for evolution, the prevalence and severity of DD, particularly types 1 and 2, decreased gradually, in parallel with the improvement of symptoms, progress being more evident in subjects without MS. DD of type 3 did not show a significant reduction (p = 0.47), suggesting irreversible myocardial damages. Multivariate regression analysis indicated that the number of MS factors, the severity of initial pulmonary injury, and protein C levels could explain DD evolution. (4) Conclusions: DD was commonly diagnosed in individuals with post-COVID-19 syndrome, particularly in those with MS and obesity. After 6 months, DD evolution, excepting that of type 3, showed a significant improvement, mostly in patients without MS.
Collapse
Affiliation(s)
- Cristina Tudoran
- Department VII, Internal Medicine II, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (C.T.); (F.B.)
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babeș” Timișoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital, L. Rebreanu Str., Nr. 156, 300723 Timisoara, Romania; (R.F.); (D.N.)
- Academy of Romanian Scientists, Splaiul Independentei Nr. 54, 50085 Bucuresti, Romania;
| | - Mariana Tudoran
- Department VII, Internal Medicine II, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (C.T.); (F.B.)
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babeș” Timișoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital, L. Rebreanu Str., Nr. 156, 300723 Timisoara, Romania; (R.F.); (D.N.)
| | - Talida Georgiana Cut
- Academy of Romanian Scientists, Splaiul Independentei Nr. 54, 50085 Bucuresti, Romania;
- Department XIII, Discipline of Infectious Diseases, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identification, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Doctoral School, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
| | - Felix Bende
- Department VII, Internal Medicine II, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania; (C.T.); (F.B.)
- County Emergency Hospital, L. Rebreanu Str., Nr. 156, 300723 Timisoara, Romania; (R.F.); (D.N.)
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Renata Fofiu
- County Emergency Hospital, L. Rebreanu Str., Nr. 156, 300723 Timisoara, Romania; (R.F.); (D.N.)
- Doctoral School, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Alexandra Enache
- Center for Ethics in Human Genetic Identification, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania;
- Department VIII, Discipline of Forensic Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Silvius Alexandru Pescariu
- Academy of Romanian Scientists, Splaiul Independentei Nr. 54, 50085 Bucuresti, Romania;
- Department VI, Cardiology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- County Emergency Hospital, L. Rebreanu Str., Nr. 156, 300723 Timisoara, Romania; (R.F.); (D.N.)
- Academy of Romanian Scientists, Splaiul Independentei Nr. 54, 50085 Bucuresti, Romania;
- Doctoral School, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania
| |
Collapse
|
24
|
Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, Jalil AT, Bokov DO, Mustafa YF, Noroozbeygi M, Karampoor S, Mirzaei R. Coronavirus disease 2019 (COVID-19) update: From metabolic reprogramming to immunometabolism. J Med Virol 2022; 94:4611-4627. [PMID: 35689351 PMCID: PMC9350347 DOI: 10.1002/jmv.27929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
The field of immunometabolism investigates and describes the effects of metabolic rewiring in immune cells throughout activation and the fates of these cells. Recently, it has been appreciated that immunometabolism plays an essential role in the progression of viral infections, cancer, and autoimmune diseases. Regarding COVID‐19, the aberrant immune response underlying the progression of diseases establishes two major respiratory pathologies, including acute respiratory distress syndrome (ARDS) or pneumonia‐induced acute lung injury (ALI). Both innate and adaptive immunity (T cell‐based) were impaired in the course of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. Current findings have deciphered that macrophages (innate immune cells) are involved in the inflammatory response seen in COVID‐19. It has been demonstrated that immune system cells can change metabolic reprogramming in some conditions, including autoimmune diseases, cancer, and infectious disease, including COVID‐19. The growing findings on metabolic reprogramming in COVID‐19 allow an exploration of metabolites with immunomodulatory properties as future therapies to combat this hyperinflammatory response. The elucidation of the exact role and mechanism underlying this metabolic reprograming in immune cells could help apply more precise approaches to initial diagnosis, prognosis, and in‐hospital therapy. This report discusses the latest findings from COVID‐19 on host metabolic reprogramming and immunometabolic responses.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat/Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | - Sara Sohrabi Athar
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.,Department of Human Nutrition, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rumi Iqbal Doewes
- Faculty of Sport, Universitas Sebelas Maret, Kentingan, Surakarta, Indonesia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - D O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Smaha J, Kužma M, Jackuliak P, Nachtmann S, Max F, Tibenská E, Binkley N, Payer J. Serum 25-hydroxyvitamin D Concentration Significantly Decreases in Patients with COVID-19 Pneumonia during the First 48 Hours after Hospital Admission. Nutrients 2022; 14:2362. [PMID: 35745092 PMCID: PMC9228147 DOI: 10.3390/nu14122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022] Open
Abstract
It is unclear how ongoing inflammation in Coronavirus Disease 2019 (COVID-19) affects 25-hydroxyvitamin D (25[OH]D) concentration. The objective of our study was to examine serum 25(OH)D levels during COVID-19 pneumonia. Patients were admitted between 1 November and 31 December 2021. Blood samples were taken on admission (day 0) and every 24 h for the subsequent four days (day 1−4). On admission, 59% of patients were 25(OH)D sufficient (>30 ng/mL), and 41% had 25(OH)D inadequacy (<30 ng/mL). A significant fall in mean 25(OH)D concentration from admission to day 2 (first 48 h) was observed (30.7 ng/mL vs. 26.4 ng/mL; p < 0.0001). No subsequent significant change in 25(OH)D concentration was observed between day 2 and 3 (26.4 ng/mL vs. 25.9 ng/mL; p = 0.230) and day 3 and day 4 (25.8 ng/mL vs. 25.9 ng/mL; p = 0.703). The absolute 25(OH)D change between hospital admission and day 4 was 16% (4.8 ng/mL; p < 0.0001). On day 4, the number of patients with 25(OH)D inadequacy increased by 18% (p = 0.018). Therefore, serum 25(OH)D concentration after hospital admission in acutely ill COVID-19 patients should be interpreted with caution. Whether low 25(OH)D in COVID-19 reflects tissue level vitamin D deficiency or represents only a laboratory phenomenon remains to be elucidated in further prospective trials of vitamin D supplementation.
Collapse
Affiliation(s)
- Juraj Smaha
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
| | - Martin Kužma
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
| | - Peter Jackuliak
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
| | - Samuel Nachtmann
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
| | - Filip Max
- Department of Pharmacology and Toxicology, Comenius University Faculty of Pharmacy, Odbojarov 10, 832 32 Bratislava, Slovakia;
| | - Elena Tibenská
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
- Medirex, a.s., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | - Neil Binkley
- Department of Medicine, Geriatrics Faculty, Medical Sciences Center, University of Wisconsin, 1300 University Ave, Madison, WI 53706-1510, USA;
| | - Juraj Payer
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital, Ruzinovska 6, 826 06 Bratislava, Slovakia; (M.K.); (P.J.); (S.N.); (E.T.); (J.P.)
| |
Collapse
|
26
|
Bailly M, Evrard B, Coudeyre E, Rochette C, Meriade L, Blavignac C, Fournier AC, Bignon YJ, Dutheil F, Duclos M, Thivel D. Health management of patients with COVID-19: is there a room for hydrotherapeutic approaches? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1031-1038. [PMID: 35079866 PMCID: PMC8789204 DOI: 10.1007/s00484-022-02246-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
With highly variable types of coronavirus disease 2019 (COVID-19) symptoms in both severity and duration, there is today an important need for early, individualized, and multidisciplinary strategies of rehabilitation. Some patients present persistent affections of the respiratory function, digestive system, cardiovascular function, locomotor system, mental health, sleep, nervous system, immune system, taste, smell, metabolism, inflammation, and skin. In this context, we highlight here that hydrothermal centers should be considered today as medically and economically relevant alternatives to face the urgent need for interventions among COVID-19 patients. We raise the potential benefits of hydrotherapy programs already existing which combine alternative medicine with respiratory care, physical activity, nutritional advice, psychological support, and physiotherapy, in relaxing environments and under medical supervision. Beyond the virtues of thermal waters, many studies reported medical benefits of natural mineral waters through compressing, buoyancy, resistance, temperature changes, hydrostatic pressure, inhalations, or drinking. Thermal institutions might offer individualized follow-up helping to unclog hospitals while ensuring the continuity of health care for the different clinical manifestations of COVID-19 in both post-acute and chronic COVID-19 patients. Our present review underlines the need to further explore the medical effectiveness, clinical and territorial feasibility, and medico-economic impacts of the implementation of post-COVID-19 patient management in hydrotherapeutic establishments.
Collapse
Affiliation(s)
- Mélina Bailly
- Université Clermont Auvergne, CRNH, AME2P, F-63000 Clermont-Ferrand, France
| | - Bertrand Evrard
- CHU Clermont-Ferrand, Service d’Immunologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
- Université Clermont Auvergne, INRA, UMR 1019, Clermont-Ferrand, France
| | - Emmanuel Coudeyre
- Service de Médecine Physique Et de Réadaptation, INRAE, UNH, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Corinne Rochette
- Université Clermont Auvergne, Health and Terrirory Chair, CleRMa, 63000 Clermont-Ferrand, France
| | - Laurent Meriade
- Université Clermont Auvergne, Health and Terrirory Chair, CleRMa, 63000 Clermont-Ferrand, France
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anne-Cécile Fournier
- Cluster Auvergne-Rhône-Alpes Innovation Innovatherm, 63000 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d’Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine, Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Witty Fit, 63000 Clermont-Ferrand, France
| | - Martine Duclos
- Service de Médecine du Sport Et Des Explorations Fonctionnelles, CHU de Clermont-Ferrand, Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Université Clermont Auvergne, CRNH, AME2P, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Bui TI, Gill AL, Mooney RA, Gill SR. Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiol Spectr 2022; 10:e0017022. [PMID: 35315698 PMCID: PMC9045376 DOI: 10.1128/spectrum.00170-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
28
|
Topical Administration of Lactiplantibacillus plantarum Accelerates the Healing of Chronic Diabetic Foot Ulcers through Modifications of Infection, Angiogenesis, Macrophage Phenotype and Neutrophil Response. Microorganisms 2022; 10:microorganisms10030634. [PMID: 35336209 PMCID: PMC8955315 DOI: 10.3390/microorganisms10030634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
This work aimed to evaluate the adjuvant treatment to surgical debridement using topical applications of Lactiplantibacillus plantarum ATCC 10241 cultures in complicated diabetic foot ulcers as compared to diabetic foot ulcers receiving surgical wound debridement. A randomised controlled trial was performed involving 22 outpatients with complicated diabetic foot ulcers that either received surgical debridement (SuDe, n = 12) or surgical debridement plus topical applications of L. plantarum cultures (SuDe + Lp, n = 10) every week during a 12 week treatment period. Compared to patients receiving SuDe, patients treated with SuDe + Lp exhibited significantly increased fibroplasia and angiogenesis, as determined by Masson’s trichrome staining and the study of CD34 cells, α-smooth muscle actin to semi-quantify vascular area, number of vessels and endothelial cells. In addition, a promotion of the polarisation of macrophages from M1 (CD68) to M2 (CD163) phenotype was observed in SuDe + Lp patients with remarkable differences in the tissue localisation. Bacterial counts were significantly diminished in the SuDe + Lp group compared to the SuDe group. Ex vivo assays, using polymorphonuclears isolated from peripheral blood of patients with diabetes and healthy individuals and challenged with Staphylococcus aureus demonstrated that the addition of L. plantarum supernatants significantly improved the phagocytosis of these cells. L. plantarum-secreted components increased the neutrophils bactericidal activity and regulated the netosis induced by S. aureus. At day 49, the average wound area reduction with SuDe + Lp was 73.5% compared with 45.8% for SuDe (p < 0.05). More patients progressed to closure with SuDe + Lp compared with SuDe treatment, indicating the ability of L. plantarum to accelerate the healing. At day 60, 60% of patients treated with SuDe + Lp achieved 100% of wound area reduction compared with 40% for SuDe. We propose that SuDe + Lp could be an effective adjuvant to surgical debridement when SuDe is not satisfactory for patients with complicated diabetic foot ulcers. The treatment is cheap and easy to apply and the product is easy to obtain.
Collapse
|
29
|
Kim NH, Kim KJ, Choi J, Kim SG. Metabolically unhealthy individuals, either with obesity or not, have a higher risk of critical coronavirus disease 2019 outcomes than metabolically healthy individuals without obesity. Metabolism 2022; 128:154894. [PMID: 34600905 PMCID: PMC8482539 DOI: 10.1016/j.metabol.2021.154894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study aimed to determine the relative and independent contributions of impaired metabolic health and obesity to critical coronavirus disease 2019 (COVID-19). METHODS We analyzed 4069 COVID-19 patients between January and June 2020 in South Korea, classified into four groups according to metabolic health status and body mass index (BMI): metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). The primary outcome was a composite of intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), extracorporeal membrane oxygenation (ECMO), and death. Multivariable Cox proportional hazard regression models were used to estimate the hazard ratio (HR) for the outcome. RESULTS The incidence rate (per 100 person-months) of critical COVID-19 was the lowest in the MHNW group (0.90), followed by the MHO (1.64), MUNW (3.37), and MUO (3.37) groups. Compared with MHNW, a significantly increased risk of critical COVID-19 was observed in MUNW (HR, 1.41; 95% CI, 1.01-1.98) and MUO (HR, 1.77; 95% CI, 1.39-2.44) but not in MHO (HR, 1.48; 95% CI, 0.98-2.23). The risk of ICU admission or IMV/ECMO was increased only in MUO; however, the risk of death was significantly higher in MUNW and MUO. The risk of critical COVID-19 increased insignificantly by 2% per 1 kg/m2 BMI increase but significantly by 13% per 1 metabolically unhealthy component increase, even after mutually adjusting for BMI and metabolic health status. CONCLUSIONS Metabolic health is more important to COVID-19 outcomes than obesity itself, suggesting that metabolic health status should be considered for a precise and tailored management of COVID-19 patients.
Collapse
Affiliation(s)
- Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Kyeong Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Jimi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
31
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Azevedo RB, Wandermurem DC, Libório FC, Machado MK, Ushijima NM, Narde RS, Pecly IMD, Muxfeldt ES. Impact of Metabolic Risk Factors on COVID-19 Clinical Outcomes: An Extensive Review. Curr Cardiol Rev 2022; 18:e090522204452. [PMID: 35579126 PMCID: PMC9893150 DOI: 10.2174/1573403x18666220509154236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cardiovascular (CV) risk factors, particularly cardiometabolic, seem to be associated with heightened severity and increased morbimortality in patients infected with the novel Coronavirus disease-2019 (COVID-19). METHODS A thorough scoping review was conducted to elucidate and summarize the latest evidence for the effects of adverse cardiac metabolic profiles on the severity, morbidity, and prognosis of COVID-19 infection. RESULTS The pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is complex, being characterized by viral-induced immune dysregulation and hypercytokinemia, particularly in patients with critical disease, evolving with profound endothelial dysfunction, systemic inflammation, and prothrombotic state. Moreover, cardiovascular comorbidities such as diabetes are the most prevalent amongst individuals requiring hospitalization, raising concerns towards the clinical evolution and prognosis of these patients. The chronic proinflammatory state observed in patients with cardiovascular risk factors may contribute to the immune dysregulation mediated by SARS-CoV-2, favoring more adverse clinical outcomes and increased severity. Cardiometabolism is defined as a combination of interrelated risk factors and metabolic dysfunctions such as dyslipidemia, insulin resistance, impaired glucose tolerance, and central adiposity, which increase the likelihood of vascular events, being imperative to specifically analyze its clinical association with COVID-19 outcomes. CONCLUSION DM and obesity appears to be important risk factors for severe COVID-19. The chronic proinflammatory state observed in patients with excess visceral adipose tissue (VAT) possibly augments COVID-19 immune hyperactivity leading to more adverse clinical outcomes in these patients.
Collapse
Affiliation(s)
- Rafael B. Azevedo
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Débora C.R. Wandermurem
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Flávia C.F. Libório
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Maíra K. Machado
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Natália M. Ushijima
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Ramon S. Narde
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Inah Maria D. Pecly
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| | - Elizabeth S. Muxfeldt
- Medicine Course, IDOMED - Universidade Estácio de Sá - Campus Presidente Vargas, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Colca JR, Scherer PE. The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Mol Metab 2022; 55:101409. [PMID: 34863942 PMCID: PMC8688722 DOI: 10.1016/j.molmet.2021.101409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic disease appears connected to obesity. However, evidence suggests that chronic metabolic diseases are more specifically related to adipose dysfunction rather than to body weight itself. SCOPE OF REVIEW Further study of the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes. The growing understanding of the mechanism of action of these agents together with advances in the pathophysiology of chronic metabolic disease offers a new approach to treat chronic conditions, such as type 2 diabetes, fatty liver disease, and their common organ and vascular sequelae. MAJOR CONCLUSIONS We hypothesize that treating adipocyte dysfunction with new insulin sensitizers might significantly impact the interface of infectious disease and chronic metabolic disease.
Collapse
Affiliation(s)
- Jerry R Colca
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI 49008, USA; Cirius Therapeutics, Kalamazoo, MI 49007, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
34
|
Awad K, Maghraby AS, Abd-Elshafy DN, Bahgat MM. Carbohydrates Metabolic Signatures in Immune Cells: Response to Infection. Front Immunol 2022; 13:912899. [PMID: 35983037 PMCID: PMC9380592 DOI: 10.3389/fimmu.2022.912899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Metabolic reprogramming in immune cells is diverse and distinctive in terms of complexity and flexibility in response to heterogeneous pathogenic stimuli. We studied the carbohydrate metabolic changes in immune cells in different types of infectious diseases. This could help build reasonable strategies when understanding the diagnostics, prognostics, and biological relevance of immune cells under alternative metabolic burdens. METHODS Search and analysis were conducted on published peer-reviewed papers on immune cell metabolism of a single pathogen infection from the four known types (bacteria, fungi, parasites, and viruses). Out of the 131 selected papers based on the PIC algorithm (pathogen type/immune cell/carbohydrate metabolism), 30 explored immune cell metabolic changes in well-studied bacterial infections, 17 were on fungal infections of known medical importance, and 12 and 57 were on parasitic and viral infections, respectively. RESULTS AND DISCUSSION While carbohydrate metabolism in immune cells is signaled by glycolytic shift during a bacterial or viral infection, it is widely evident that effector surface proteins are expressed on the surface of parasites and fungi to modulate metabolism in these cells. CONCLUSIONS Carbohydrate metabolism in immune cells can be categorized according to the pathogen or the disease type. Accordingly, this classification can be used to adopt new strategies in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kareem Awad
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- Department of Water Pollution Research, Institute of Environmental Research, National Research Center, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| |
Collapse
|
35
|
Khwatenge CN, Pate M, Miller LC, Sang Y. Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Front Immunol 2021; 12:732913. [PMID: 34737743 PMCID: PMC8560738 DOI: 10.3389/fimmu.2021.732913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity prevails worldwide to an increasing effect. For example, up to 42% of American adults are considered obese. Obese individuals are prone to a variety of complications of metabolic disorders including diabetes mellitus, hypertension, cardiovascular disease, and chronic kidney disease. Recent meta-analyses of clinical studies in patient cohorts in the ongoing coronavirus-disease 2019 (COVID-19) pandemic indicate that the presence of obesity and relevant disorders is linked to a more severe prognosis of COVID-19. Given the significance of obesity in COVID-19 progression, we provide a review of host metabolic and immune responses in the immunometabolic dysregulation exaggerated by obesity and the viral infection that develops into a severe course of COVID-19. Moreover, sequela studies of individuals 6 months after having COVID-19 show a higher risk of metabolic comorbidities including obesity, diabetes, and kidney disease. These collectively implicate an inter-systemic dimension to understanding the association between obesity and COVID-19 and suggest an interdisciplinary intervention for relief of obesity-COVID-19 complications beyond the phase of acute infection.
Collapse
Affiliation(s)
- Collins N Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marquette Pate
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
36
|
Asadi-Pooya AA, Akbari A, Emami A, Lotfi M, Rostamihosseinkhani M, Nemati H, Barzegar Z, Kabiri M, Zeraatpisheh Z, Farjoud-Kouhanjani M, Jafari A, Sasannia F, Ashrafi S, Nazeri M, Nasiri S, Shahisavandi M. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:428-436. [PMID: 34840383 PMCID: PMC8611223 DOI: 10.30476/ijms.2021.92080.2326] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Background Recently, people have recognized the post-acute phase symptoms of the COVID-19. We investigated the long-term symptoms associated with COVID-19, (Long COVID Syndrome), and the risk factors associated with it. Methods This was a retrospective observational study. All the consecutive adult patients referred to the healthcare facilities anywhere in Fars province from 19 February 2020 until 20 November 2020 were included. All the patients had a confirmed COVID-19 diagnosis. In a phone call to the patients, at least three months after their discharge from the hospital, we obtained their current information. The IBM SPSS Statistics (version 25.0) was used. Pearson Chi square, Fisher's exact test, t test, and binary logistic regression analysis model were employed. A P value of less than 0.05 was considered to be significant. Results In total, 4,681 patients were studied, 2915 of whom (62.3%) reported symptoms. The most common symptoms of long COVID syndrome were fatigue, exercise intolerance, walking intolerance, muscle pain, and shortness of breath. Women were more likely to experience long-term COVID syndrome than men (Odds Ratio: 1,268; 95% Confidence Interval: 1,122-1,432; P=0.0001), which was significant. Presentation with respiratory problems at the onset of illness was also significantly associated with long COVID syndrome (Odds Ratio: 1.425; 95% Confidence Interval: 1.177-1.724; P=0.0001). A shorter length of hospital stay was inversely associated with long COVID syndrome (Odds Ratio: 0.953; 95% Confidence Interval: 0.941-0.965; P=0.0001). Conclusion Long COVID syndrome is a frequent and disabling condition and has significant associations with sex (female), respiratory symptoms at the onset, and the severity of the illness.
Collapse
Affiliation(s)
- Ali Akbar Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ali Akbari
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Nemati
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Barzegar
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Anahita Jafari
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sasannia
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Ashrafi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoume Nazeri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Nasiri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, Tkachuk VA, Markov AG, Lehnert H, de Angelis MH, Rietzsch H, Rodionov RN, Khunti K, Hopkins D, Birkenfeld AL, Boehm B, Holt RIG, Skyler JS, DeVries JH, Renard E, Eckel RH, Alberti KGMM, Geloneze B, Chan JC, Mbanya JC, Onyegbutulem HC, Ramachandran A, Basit A, Hassanein M, Bewick G, Spinas GA, Beuschlein F, Landgraf R, Rubino F, Mingrone G, Bornstein SR. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol 2021; 9:786-798. [PMID: 34619105 PMCID: PMC8489878 DOI: 10.1016/s2213-8587(21)00244-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Up to 50% of the people who have died from COVID-19 had metabolic and vascular disorders. Notably, there are many direct links between COVID-19 and the metabolic and endocrine systems. Thus, not only are patients with metabolic dysfunction (eg, obesity, hypertension, non-alcoholic fatty liver disease, and diabetes) at an increased risk of developing severe COVID-19 but also infection with SARS-CoV-2 might lead to new-onset diabetes or aggravation of pre-existing metabolic disorders. In this Review, we provide an update on the mechanisms of how metabolic and endocrine disorders might predispose patients to develop severe COVID-19. Additionally, we update the practical recommendations and management of patients with COVID-19 and post-pandemic. Furthermore, we summarise new treatment options for patients with both COVID-19 and diabetes, and highlight current challenges in clinical management.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Konstantin Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander G Markov
- Department of General Physiology, St Petersburg State University, St Petersburg, Russia
| | | | - Martin Hrabě de Angelis
- German Center for Diabetes Research, Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hannes Rietzsch
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David Hopkins
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Andreas L Birkenfeld
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Bernhard Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, Netherlands; Profil Institute for Metabolic Research, Neuss, Germany
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bruno Geloneze
- Obesity and Comorbidities Research Center, Universidade de Campinas, Campinas, Brazil
| | - Juliana C Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong and Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaounde, Cameroon
| | - Henry C Onyegbutulem
- Endocrine, Diabetes and Metabolic Unit, Department of Internal Medicine, Nile University of Nigeria-Asokoro Hospital, Abuja, Nigeria
| | - Ambady Ramachandran
- India Diabetes Research Foundation, Dr A Ramachandran's Diabetes Hospitals, Chennai, India
| | - Abdul Basit
- Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Mohamed Hassanein
- Dubai Hospital, Dubai Health Authority and Gulf Medical University, Dubai, United Arab Emirates
| | - Gavin Bewick
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | | | - Francesco Rubino
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Bariatric and Metabolic Surgery, King's College Hospital, London, UK
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK.
| |
Collapse
|
38
|
Asadi-Pooya AA, Akbari A, Emami A, Lotfi M, Rostamihosseinkhani M, Nemati H, Barzegar Z, Kabiri M, Zeraatpisheh Z, Farjoud-Kouhanjani M, Jafari A, Sasannia F, Ashrafi S, Nazeri M, Nasiri S, Shahisavandi M. Long COVID syndrome-associated brain fog. J Med Virol 2021; 94:979-984. [PMID: 34672377 PMCID: PMC8662118 DOI: 10.1002/jmv.27404] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
We investigated the frequency of brain fog in a large cohort of patients with documented coronavirus disease-2019 (COVID-19) who have survived the illness. We also scrutinized the potential risk factors associated with the development of brain fog. Adult patients (18-55 years of age), who were referred to the healthcare facilities anywhere in Fars province from February 19, 2020 to November 20, 2020 were included. All patients had a confirmed COVID-19 diagnosis. In a phone call, at least 3 months after their discharge from the hospital, we obtained their current information. A questionnaire was specifically designed for data collection. In total, 2696 patients had the inclusion criteria; 1680 (62.3%) people reported long COVID syndrome (LCS). LCS-associated brain fog was reported by 194 (7.2%) patients. Female sex (odds ratio [OR]: 1.4), respiratory problems at the onset (OR: 1.9), and intensive care unit (ICU) admission (OR: 1.7) were significantly associated with reporting chronic post-COVID "brain fog" by the patients. In this large population-based study, we report that chronic post-COVID "brain fog" has significant associations with sex (female), respiratory symptoms at the onset, and the severity of the illness (ICU admission).
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ali Akbari
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Nemati
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Barzegar
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Anahita Jafari
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sasannia
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Ashrafi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoume Nazeri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Nasiri
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Chachkhiani D, Isakadze M, Villemarette-Pittman NR, Devier DJ, Lovera JF. Altered mental status predicts length of stay but not death in a community-based cohort of hospitalized COVID-19 patients. Clin Neurol Neurosurg 2021; 210:106977. [PMID: 34649040 PMCID: PMC8496922 DOI: 10.1016/j.clineuro.2021.106977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
Introduction Altered Mental Status (AMS) is a common neurological complication in patients hospitalized with the diagnosis of COVID-19 (Umapathi et al., 2020; Liotta et al., 2020). Studies show that AMS is associated with death and prolonged hospital stay. In addition to respiratory insufficiency, COVID-19 causes multi-organ failure and multiple metabolic derangements, which can cause AMS, and the multi-system involvement could account for the prolonged hospital stay and increased mortality. In this study, we built on our previous publication (Chachkhiani et al., 2020) using a new, larger cohort to investigate whether we could reproduce our previous findings while addressing some of the prior study’s limitations. Most notably, we sought to determine whether AMS still predicted prolonged hospital stay and increased mortality after controlling for systemic complications such as sepsis, liver failure, kidney failure, and electrolyte abnormalities. Objectives The primary purpose was to document the frequency of AMS in patients with COVID-19 at the time of presentation to the emergency room. Secondary aims were to determine: 1) if AMS at presentation was associated with worse outcomes as measured by prolonged hospitalization and death; and 2) if AMS remained a predictor of worse outcome after adjusting for concomitant organ failure and metabolic derangements. Results Out of 367 patients, 95 (26%) had AMS as a main or one of the presenting symptoms. Our sample has a higher representation of African Americans (53%) than the US average and a high frequency of comorbidities, such as obesity (average BMI 29.1), hypertension (53%), and diabetes (30%). Similar to our previous report, AMS was the most frequent neurological chief complaint. At their admission, out of 95 patients with AMS, 83 (88%) had organ failure or one of the systemic problems that could have caused AMS. However, a similar proportion (86%) of patients without AMS had one or more of these same problems. Age, race, and ethnicity were the main demographic predictors. African Americans had shorter hospital stay [HR1.3(1.0,1.7),p = 0.02] than Caucasians. Hispanics also had shorter hospital stay than non-Hispanics [HR1.6(1.2,2.1), p = 0.001]. Hypoxia, liver failure, hypernatremia, and kidney failure were also predictors of prolonged hospital stay. In the multivariate model, hypoxia, liver failure, and acute kidney injury were the remaining predictors of longer hospital stay, as well as people with AMS at baseline [HR0.7(0.6,0.9), p < 0.02] after adjusting for the demographic characteristics and clinical predictors. AMS at baseline predicted death, but not after adjusting for demographics and clinical variables in the multivariate model. Hypoxia and hyperglycemia at baseline were the strongest predictors of death. Conclusion Altered mental status is an independent predictor of prolonged hospital stay, but not death. Further studies are needed to evaluate the causes of AMS in patients with COVID-19.
Collapse
Affiliation(s)
- David Chachkhiani
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Marine Isakadze
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Deidre J Devier
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jesus F Lovera
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
40
|
Pathak GA, Singh K, Miller-Fleming TW, Wendt FR, Ehsan N, Hou K, Johnson R, Lu Z, Gopalan S, Yengo L, Mohammadi P, Pasaniuc B, Polimanti R, Davis LK, Mancuso N. Integrative genomic analyses identify susceptibility genes underlying COVID-19 hospitalization. Nat Commun 2021; 12:4569. [PMID: 34315903 PMCID: PMC8316582 DOI: 10.1038/s41467-021-24824-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Despite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrate a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels (n = 18,502). We identify 27 genes related to inflammation and coagulation pathways whose genetically predicted expression was associated with COVID-19 hospitalization. We functionally characterize the 27 genes using phenome- and laboratory-wide association scans in Vanderbilt Biobank (n = 85,460) and identified coagulation-related clinical symptoms, immunologic, and blood-cell-related biomarkers. We replicate these findings across trans-ethnic studies and observed consistent effects in individuals of diverse ancestral backgrounds in Vanderbilt Biobank, pan-UK Biobank, and Biobank Japan. Our study highlights and reconfirms putative causal genes impacting COVID-19 severity and symptomology through the host inflammatory response.
Collapse
Affiliation(s)
- Gita A Pathak
- Yale School of Medicine, Department of Psychiatry, Division of Human Genetics, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank R Wendt
- Yale School of Medicine, Department of Psychiatry, Division of Human Genetics, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Nava Ehsan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Ruth Johnson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Zeyun Lu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shyamalika Gopalan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Renato Polimanti
- Yale School of Medicine, Department of Psychiatry, Division of Human Genetics, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas Mancuso
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
42
|
Gu R, Mao T, Lu Q, Tianjiao Su T, Wang J. Myeloid dysregulation and therapeutic intervention in COVID-19. Semin Immunol 2021; 55:101524. [PMID: 34823995 PMCID: PMC8576142 DOI: 10.1016/j.smim.2021.101524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The dysregulation of myeloid cell responses is increasingly demonstrated to be a major mechanism of pathogenesis for COVID-19. The pathological cellular and cytokine signatures associated with this disease point to a critical role of a hyperactivated innate immune response in driving pathology. Unique immunopathological features of COVID-19 include myeloid-cell dominant inflammation and cytokine release syndrome (CRS) alongside lymphopenia and acute respiratory distress syndrome (ARDS), all of which correlate with severe disease. Studies suggest a range of causes mediating myeloid hyperactivation, such as aberrant innate sensing, asynchronized immune cellular responses, as well as direct viral protein/host interactions. These include the recent identification of new myeloid cell receptors that bind SARS-CoV-2, which drive myeloid cell hyperinflammatory responses independently of lung epithelial cell infection via the canonical receptor, angiotensin-converting enzyme 2 (ACE2). The spectrum and nature of myeloid cell dysregulation in COVID-19 also differs from, at least to some extent, what is observed in other infectious diseases involving myeloid cell activation. While much of the therapeutic effort has focused on preventative measures with vaccines or neutralizing antibodies that block viral infection, recent clinical trials have also targeted myeloid cells and the associated cytokines as a means to resolve CRS and severe disease, with promising but thus far modest effects. In this review, we critically examine potential mechanisms driving myeloid cell dysregulation, leading to immunopathology and severe disease, and discuss potential therapeutic strategies targeting myeloid cells as a new paradigm for COVID-19 treatment.
Collapse
Affiliation(s)
- Runxia Gu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Tina Tianjiao Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
43
|
Liu X, Zhao J, Wang H, Wang W, Su X, Liao X, Zhang S, Sun J, Zhang Z. Metabolic Defects of Peripheral T Cells in COVID-19 Patients. THE JOURNAL OF IMMUNOLOGY 2021; 206:2900-2908. [PMID: 34049969 DOI: 10.4049/jimmunol.2100068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
The relatively low partial pressure of oxygen, reduced oxygen saturation, and aberrant plasma metabolites in COVID-19 may alter energy metabolism in peripheral immune cells. However, little is known regarding the immunometabolic defects of T cells in COVID-19 patients, which may contribute to the deregulated immune functions of these cells. In this study, we longitudinally characterized the metabolic profiles of resting and activated T cells from acutely infected and convalescent COVID-19 patients by flow cytometry and confirmed the metabolic profiles with a Seahorse analyzer. Non-COVID-19 and healthy subjects were enrolled as controls. We found that ex vivo T cells from acutely infected COVID-19 patients were highly activated and apoptotic and displayed more extensive mitochondrial metabolic dysfunction, especially cells in CD8+ T cell lineages, than those from convalescent COVID-19 patients or healthy controls, but slightly disturbed mitochondrial metabolic activity was observed in non-COVID-19 patients. Importantly, plasma IL-6 and C-reactive protein (CRP) levels positively correlated with mitochondrial mass and negatively correlated with fatty acid uptake in T cells from COVID-19 patients. Additionally, compared with those from healthy controls, in vitro-activated T cells from acutely infected COVID-19 patients showed signs of lower glycolysis, a reduced glycolytic capacity, and a decreased glycolytic reserve, accompanied by lower activation of mTOR signaling. Thus, newly identified defects in T cell mitochondrial metabolic functions and metabolic reprogramming upon activation might contribute to immune deficiency in COVID-19.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xu Su
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xuejiao Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; and
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China;
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen, Guangdong Province, China; .,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China
| |
Collapse
|
44
|
Asadi-Pooya AA, Nemati H, Shahisavandi M, Akbari A, Emami A, Lotfi M, Rostamihosseinkhani M, Barzegar Z, Kabiri M, Zeraatpisheh Z, Farjoud-Kouhanjani M, Jafari A, Sasannia F, Ashrafi S, Nazeri M, Nasiri S. Long COVID in children and adolescents. World J Pediatr 2021; 17:495-499. [PMID: 34478045 PMCID: PMC8414448 DOI: 10.1007/s12519-021-00457-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND To identify the prevalence and also the full spectrum of symptoms/complaints of children and adolescents who are suffering from long COVID. Furthermore, we investigated the risk factors of long COVID in children and adolescents. METHODS All consecutive children and adolescents who were referred to the hospitals anywhere in Fars province, Iran, from 19 February 2020 until 20 November 2020 were included. All patients had a confirmed diagnosis of COVID-19. In a phone call to patients/parents, at least 3 months after their discharge from the hospital, we obtained their current status and information if their parents agreed to participate. RESULTS In total, 58 children and adolescents fulfilled the inclusion criteria. Twenty-six (44·8%) children/adolescents reported symptoms/complaints of long COVID. These symptoms included fatigue in 12 (21%), shortness of breath in 7 (12%), exercise intolerance in 7 (12%), weakness in 6 (10%), and walking intolerance in 5 (9%) individuals. Older age, muscle pain on admission, and intensive care unit admission were significantly associated with long COVID. CONCLUSIONS Long COVID is a frequent condition in children and adolescents. The scientific community should investigate and explore the pathophysiology of long COVID to ensure that these patients receive appropriate treatments for their condition.
Collapse
Affiliation(s)
- Ali A. Asadi-Pooya
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.265008.90000 0001 2166 5843Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Hamid Nemati
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Akbari
- grid.412571.40000 0000 8819 4698Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- grid.412571.40000 0000 8819 4698Burn & Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- grid.412571.40000 0000 8819 4698Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Rostamihosseinkhani
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Barzegar
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kabiri
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Farjoud-Kouhanjani
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahita Jafari
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sasannia
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Ashrafi
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoume Nazeri
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Nasiri
- grid.412571.40000 0000 8819 4698Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|