1
|
Galhom RA, Ali SNS, El-Fark MMO, Ali MHM, Hussein HH. Assessment of therapeutic efficacy of adipose tissue-derived mesenchymal stem cells administration in hyperlipidemia-induced aortic atherosclerosis in adult male albino rats. Tissue Cell 2024; 90:102498. [PMID: 39079452 DOI: 10.1016/j.tice.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.
Collapse
Affiliation(s)
- Rania A Galhom
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine, Badr University in Cairo (BUC), Egypt.
| | - Saleh Nasser Saleh Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Thamar University, Thamar, Yemen.
| | - Magdy Mohamed Omar El-Fark
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona Hassan Mohammed Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Hoda Hassan Hussein
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
2
|
Momot K, Krauz K, Czarzasta K, Tomaszewski J, Dobruch J, Żera T, Zarębiński M, Cudnoch-Jędrzejewska A, Wojciechowska M. Post-myocardial infarction heart failure and long-term high-fat diet: Cardiac endoplasmic reticulum stress and unfolded protein response in Sprague Dawley rat model. PLoS One 2024; 19:e0308833. [PMID: 39292720 PMCID: PMC11410228 DOI: 10.1371/journal.pone.0308833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) significantly contributes to the global mortality rate, often leading to heart failure (HF) due to left ventricular remodeling. Key factors in the pathomechanism of HF include nitrosative/oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. Furthermore, while a high-fat diet (HFD) is known to exacerbate post-MI cardiac remodeling, its impact on these critical factors in the context of HF is not as well understood. AIMS This study aimed to assess the impact of post-MI HF and HFD on inflammation, nitro-oxidative stress, ER stress, and unfolded protein response (UPR). METHODS The study was performed on fragments of the left ventricle harvested from 30 male adult Sprague Dawley rats, which were divided into four groups based on diet (normal-fat vs. high-fat) and surgical procedure (sham operation vs. coronary artery ligation to induce MI). We assessed body weight, NT-proBNP levels, protein levels related to nitrosative/oxidative stress, ER stress, UPR, apoptosis, and nitric oxide synthases, through Western Blot and ELISA. RESULTS HFD and MI significantly influenced body weight and NT-proBNP concentrations. HFD elevated 3-nitrotyrosine and myeloperoxidase levels and altered nitric oxide synthase levels. HFD and MI significantly affected ER stress markers and activated or inhibited UPR pathways. CONCLUSIONS The study demonstrates significant impacts of post-MI HF and dietary fat content on cardiac function and stress markers in a rat model. The interaction between HFD and MI on UPR activation suggests the importance of dietary management in post-MI recovery and HF prevention.
Collapse
Affiliation(s)
- Karol Momot
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Kamil Krauz
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Tomaszewski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Dobruch
- Centre of Postgraduate Medical Education, Department of Urology, Warsaw, Poland
| | - Tymoteusz Żera
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Grodzisk Mazowiecki, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Takeuchi K, Kazumura K, Kuzawa K, Hatano Y, Nagai M, Naito M. Effect of fat ingestion on postprandial oxidative status in healthy young women: a pilot study. J Clin Biochem Nutr 2024; 74:30-36. [PMID: 38292124 PMCID: PMC10822754 DOI: 10.3164/jcbn.23-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/29/2023] [Indexed: 02/01/2024] Open
Abstract
Reactive oxygen species (ROS) and highly reactive oxygen species (hROS) secreted by leukocytes are crucial to innate immunity; however, they pose a risk of oxidative stress. To monitor their balance in daily health check-ups, optical technologies for the simultaneous measurement of ROS (superoxide radicals) and hROS (hypochlorite ions) that utilize only a few microliters of whole blood have been developed. The aim of this study was to clarify whether this system could assess the effects of fat ingestion on postprandial oxidative status. Eight healthy young Japanese women ingested a beverage containing oral fat tolerance test cream. Blood samples were collected before and 0.5, 1, 2, 4, and 6 h after fat ingestion. Blood ROS and hROS levels, oxidative stress markers, and biochemical markers were monitored. Consistent with previous studies, triglyceride levels significantly increased at 4 h (p<0.01) and returned to near-baseline levels 6 h after ingestion. ROS levels peaked significantly at 2 h (p<0.05), and hROS levels peaked significantly at 1 (p<0.05) and 2 h (p<0.01) after ingestion. This study offers an insight into the acute effects of fat ingestion on leukocyte activity and provides a methodology for monitoring postprandial oxidative status.
Collapse
Affiliation(s)
- Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kimiko Kazumura
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
- Global Strategic Challenge Center, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kaori Kuzawa
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Yukiko Hatano
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
- Global Strategic Challenge Center, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Masashi Nagai
- Research and Development Division, Healthcare Systems Co. Ltd., 1-14-18 Shirakane, Shouwa-ku, Nagoya, Aichi 466-0058, Japan
| | - Michitaka Naito
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| |
Collapse
|
4
|
Salem A, Patel RM. Blood Donor Sex and Outcomes in Transfused Infants. Clin Perinatol 2023; 50:805-820. [PMID: 37866849 PMCID: PMC10688602 DOI: 10.1016/j.clp.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Red blood cell transfusion is common in neonatal intensive care. Multiple trials have evaluated different thresholds for when to administer red blood cell transfusion. In contrast, there has been less focus on studies of the characteristics of red blood cells transfused into neonates. In this review, the authors summarize the emerging literature on the potential impact of the sex of blood donors on outcomes in transfused neonates using a systematic search strategy. The authors review the uncertainty generated from studies with conflicting findings and discuss considerations regarding the impact of blood donor sex and other characteristics on neonatal outcomes.
Collapse
Affiliation(s)
- Anand Salem
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA
| | - Ravi Mangal Patel
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Jo D, Yoon G, Lim Y, Kim Y, Song J. Profiling and Cellular Analyses of Obesity-Related circRNAs in Neurons and Glia under Obesity-like In Vitro Conditions. Int J Mol Sci 2023; 24:ijms24076235. [PMID: 37047207 PMCID: PMC10094513 DOI: 10.3390/ijms24076235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now. Herein we profiled and analyzed diverse circRNAs in mouse brain cell lines (Neuro-2A neurons, BV-2 microglia, and C8-D1a astrocytes) exposed to obesity-related in vitro conditions (high glucose, high insulin, and high levels of tumor necrosis factor-alpha, interleukin 6, palmitic acid, linoleic acid, and cholesterol). We observed that various circRNAs were differentially expressed according to cell types with many of these circRNAs conserved in humans. After suppressing the expression of these circRNAs using siRNAs, we observed that these circRNAs regulate genes related to inflammatory responses, formation of synaptic vesicles, synaptic density, and fatty acid oxidation in neurons; scavenger receptors in microglia; and fatty acid signaling, inflammatory signaling cyto that may play important roles in metabolic disorders associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yeonghwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Youngkook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence: (Y.K.); (J.S.)
| |
Collapse
|
6
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
7
|
Fewkes JJ, Kellow NJ, Cowan SF, Williamson G, Dordevic AL. A single, high-fat meal adversely affects postprandial endothelial function: a systematic review and meta-analysis. Am J Clin Nutr 2022; 116:699-729. [PMID: 35665799 PMCID: PMC9437993 DOI: 10.1093/ajcn/nqac153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/29/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is a predictive risk factor for the development of atherosclerosis and is assessed by flow-mediated dilation (FMD). Although it is known that NO-dependent endothelial dysfunction occurs after consuming a high-fat meal, the magnitude of the effect and the factors that affect the response are unquantified. OBJECTIVES We conducted a systematic review and meta-analysis exploring the quantitative effects of a single high-fat meal on endothelial function and determined the factors that modify the FMD response. METHODS Six databases were systematically searched for original research published up to January 2022. Eligible studies measured fasting and postprandial FMD following consumption of a high-fat meal. Meta-regression was used to analyze the effect of moderator variables. RESULTS There were 131 studies included, of which 90 were suitable for quantitative meta-analysis. A high-fat meal challenge transiently caused endothelial dysfunction, decreasing postprandial FMD at 2 hours [-1.02 percentage points (pp); 95% CI: -1.34 to -0.70 pp; P < 0.01; I2 = 93.3%], 3 hours [-1.04 pp; 95% CI: -1.48 to -0.59 pp; P < 0.001; I2 = 84.5%], and 4 hours [-1.19 pp; 95% CI: -1.53 to -0.84 pp; P < 0.01; I2 = 94.6%]. Younger, healthy-weight participants exhibited a greater postprandial reduction in the FMD percentage change than older, heavier, at-risk groups after a high-fat meal ( P < 0.05). The percentage of fat in the meals was inversely associated with the magnitude of postprandial changes in FMD at 3 hours (P < 0.01). CONCLUSIONS A single, high-fat meal adversely impacts endothelial function, with the magnitude of the impact on postprandial FMD moderated by the fasting FMD, participant age, BMI, and fat content of the meal. Recommendations are made to standardize the design of future postprandial FMD studies and optimize interpretation of results, as high-fat meals are commonly used in clinical studies as a challenge to assess endothelial function and therapeutics. This trial was registered at PROSPERO as CRD42020187244.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stephanie F Cowan
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Dean E, Lomi C. A health and lifestyle framework: An evidence-informed basis for contemporary physical therapist clinical practice guidelines with special reference to individuals with heart failure. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2022; 27:e1950. [PMID: 35467065 PMCID: PMC9539698 DOI: 10.1002/pri.1950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE This study proposes contemporary physical therapist clinical practice guidelines (CPGs) with special reference to heart failure (HF) be grounded in an evidence-informed integrative health and lifestyle framework to not only better reflect the totality and weighting of the literature, but also in the interest of superior patient, clinical, and economic outcomes. METHODS As an illustration, a health and lifestyle framework is described to underpin, thereby complement, recently published physical therapist CPGs for individuals with HF. RESULTS The case for the framework, an alternative to a single-disease biomedical perspective, is consistent with 21st century professional and epidemiologic indicators. Four themes that emerged from the HF CPGs and further support such a framework, emerged that is, limitations of conventionally constructed CPGs; physical therapists' scope of practice as "health" professionals; "best" practice in an era of NCDs including HF; and superior economic benefit. DISCUSSION A health and lifestyle framework underpinning contemporary physical therapist CPGs will enable clinicians to better appreciate the power of lifestyle change in maximizing the health of the heart, its healing and repair, and in mitigating and reversing signs and symptoms of cardiac dysfunction. Further, a focus on health and lifestyle will augment the benefits of the core, evidence-based, key action statements related to exercise in the HF CPGs.
Collapse
Affiliation(s)
- Elizabeth Dean
- Department of Physical TherapyFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Constantina Lomi
- Women´s Health and Allied Health Professionals ThemeMedical Unit Occupational Therapy and PhysiotherapyKarolinska University HospitalStockholmSweden
| |
Collapse
|
9
|
Jiang M, Zhao XM, Jiang ZS, Wang GX, Zhang DW. Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clin Chim Acta 2022; 529:34-41. [PMID: 35149004 DOI: 10.1016/j.cca.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Accumulation of reactive oxygen species (ROS) can induce both protein tyrosine nitration and endothelial dysfunction in atherosclerosis. Endothelial dysfunction refers to impaired endothelium-dependent vasorelaxation that can be triggered by an imbalance in nitric oxide (NO) production and consumption. ROS reacts with NO to generate peroxynitrite, decreasing NO bioavailability. Peroxynitrite also promotes protein tyrosine nitration in vivo that can affect protein structure and function and further damage endothelial function. In this review, we discuss the process of protein tyrosine nitration, increased expression of nitrated proteins in cardiovascular disease and their association with endothelial dysfunction, and the interference of tyrosine nitration with antioxidants and the protective role in endothelial dysfunction. These may lead us to the conception that protein tyrosine nitration may be one of the causes of endothelial dysfunction, and help us gain information about the mechanism of endothelial dysfunction underlying atherosclerosis.
Collapse
Affiliation(s)
- Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China.
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Valdebenito S, Bessis S, Annane D, Lorin de la Grandmaison G, Cramer–Bordé E, Prideaux B, Eugenin EA, Bomsel M. COVID-19 Lung Pathogenesis in SARS-CoV-2 Autopsy Cases. Front Immunol 2021; 12:735922. [PMID: 34671353 PMCID: PMC8521087 DOI: 10.3389/fimmu.2021.735922] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. COVID-19 is considered an airway/multi-systemic disease, and demise has been associated with an uncontrolled immune response and a cytokine storm in response to the virus. However, the lung pathology, immune response, and tissue damage associated with COVID-19 demise are poorly described and understood due to safety concerns. Using post-mortem lung tissues from uninfected and COVID-19 deadly cases as well as an unbiased combined analysis of histology, multi-viral and host markers staining, correlative microscopy, confocal, and image analysis, we identified three distinct phenotypes of COVID-19-induced lung damage. First, a COVID-19-induced hemorrhage characterized by minimal immune infiltration and large thrombus; Second, a COVID-19-induced immune infiltration with excessive immune cell infiltration but no hemorrhagic events. The third phenotype correspond to the combination of the two previous ones. We observed the loss of alveolar wall integrity, detachment of lung tissue pieces, fibroblast proliferation, and extensive fibrosis in all three phenotypes. Although lung tissues studied were from lethal COVID-19, a strong immune response was observed in all cases analyzed with significant B cell and poor T cell infiltrations, suggesting an exhausted or compromised immune cellular response in these patients. Overall, our data show that SARS-CoV-2-induced lung damage is highly heterogeneous. These individual differences need to be considered to understand the acute and long-term COVID-19 consequences.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Simon Bessis
- Service des Maladies Infectieuses, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Djillali Annane
- Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), Paris, France
- Simone Veil School of Medicine, Université of Versailles, Versailles, France
- University Paris Saclay, Garches, France
| | - Geoffroy Lorin de la Grandmaison
- Department of Forensic Medicine and Pathology, Versailles Saint-Quentin Université, AP-HP, Raymond Poincaré Hospital, Garches, France
| | | | - Brendan Prideaux
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity, and Inflammation, Institute Cochin, CNRS UMR 8104, INSERM U1016, University of Paris, Paris, France
| |
Collapse
|
11
|
Murray M, Selby-Pham S, Colton BL, Bennett L, Williamson G, Dordevic AL. Does timing of phytonutrient intake influence the suppression of postprandial oxidative stress? A systematic literature review. Redox Biol 2021; 46:102123. [PMID: 34488026 PMCID: PMC8426566 DOI: 10.1016/j.redox.2021.102123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postprandial oxidative stress markers in blood are generated transiently from various tissues and cells following high-fat and/or high-carbohydrate (HFHC) meals, and may be suppressed by certain phytonutrients, such as polyphenols and carotenoids. However, the transient presence of phytonutrients in circulation suggests that timing of consumption, relative to the meal, could be important. This systematic review investigates the effect of timing of phytonutrient intake on blood markers of postprandial oxidative processes. METHOD EMBASE, Medline, Scopus and Web of Science were searched up to December 2020. Eligible studies met the criteria: 1) healthy human adults; 2) phytonutrient(s) consumed in solid form within 24 h of a HFHC meal; 3) postprandial measurements of oxidative stress or antioxidants in blood; and 4) controlled study design. Cohen's d effect sizes were calculated to compare studies. RESULTS Nine studies, involving 256 participants, were included. Phytonutrients were consumed either at the same time, 1 h before, or the day (>12 h) before a HFHC meal. Significant decreases in blood markers - plasma lipid hydroperoxides, plasma malondialdehyde, serum sNox2-dp, serum 8-iso-PGF2α, platelet p47phox phosphorylation, and Keap-1 and p47phox protein levels in mononuclear cells (MNCs) - were observed where the phytonutrient was consumed together with the challenge meal (n = 4). Lack of any effect on oxidative stress markers was observed where phytonutrients were consumed with (n = 1), 1 h before (n = 1), and the day before (n = 2) the HFHC meal. CONCLUSION Phytonutrients consumed with a HFHC meal significantly suppressed some markers of oxidative stress in blood. Although there were only a limited number of studies, it appears that suppression appeared effective at the time of peak phytonutrient concentration in plasma. However, further studies are required to confirm the observations and systematically optimise the effect of timing.
Collapse
Affiliation(s)
- Margaret Murray
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia; Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Sophie Selby-Pham
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Beau-Luke Colton
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Louise Bennett
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - Gary Williamson
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, 3168, Victoria, Australia.
| |
Collapse
|
12
|
Ma H, Liu J, Li Z, Xiong H, Zhang Y, Song Y, Lai J. Expression profile analysis reveals hub genes that are associated with immune system dysregulation in primary myelofibrosis. ACTA ACUST UNITED AC 2021; 26:478-490. [PMID: 34238135 DOI: 10.1080/16078454.2021.1945237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTION Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.
Collapse
Affiliation(s)
- Haotian Ma
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zilong Li
- College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanping Song
- Institute of Hematology, Central Hospital of Xi'an, Xi'an, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Puri IY, Mohd Yusof BN, Abu Zaid Z, Ismail A, Haron H, Lipoeto NI. Currents Nutritional Practices of Nutritionists in the Management of Type 2 Diabetes Patients at Public Health Centres in Padang, Indonesia. Nutrients 2021; 13:nu13061975. [PMID: 34201355 PMCID: PMC8229169 DOI: 10.3390/nu13061975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The interest in nutrition practices and education is slowly gaining traction among Indonesian nutritionists. However, there is a lack of local studies that evaluate nutritional practices, especially in the management of type 2 diabetes (T2DM). This cross-sectional study aimed to determine the nutritional practices among nutritionists and the adequacy of the current practices in the management of Type 2 Diabetes Mellitus (T2DM) patients at the Public Health Clinic in Padang (PHC), Indonesia. (2) Methods: An online survey form was distributed to all the nutritionists (n = 50) involved in the management of T2DM patients in their daily practices at the PHC. Socio-demographic characteristics, the current practice of T2DM, the need for DM nutrition education, and an evaluation questionnaire on the Indonesian Non-Communicable Diseases guideline and the Public Health Centre guideline were captured in the survey. (3) Result: A total of 48 completed survey forms were received, providing a response rate of 96% from the recruited nutritionists. One-third (37.5%) of the respondents counselled between one and ten patients per day. Nearly half (41.7%) conducted a monthly follow-up session for the patients at their respective PHC in the previous three months. Each nutritionist educated five to ten T2DM patients. The most common nutrition education topics delivered included appropriate menus (89.6%) as well as the etiology and symptoms of T2DM (85.5%). Almost all the nutritionists (93.8%) used leaflets and about 35.4% used poster education. Around 70.8% of counseling sessions lasted 30 min and two-thirds (66.7%) of the sessions included nutrition education. Based on the results, about half (52.1%) of them claimed that T2DM patients were reluctant to attend individual nutrition education. One-fifth of them (20.8%) claimed that it was because the T2DM patients were not interested in the tool kits and materials used. (4) Conclusions: T2DM patients are reluctant to attend individual nutrition education due to uninteresting tool kits and materials.
Collapse
Affiliation(s)
- Ice Yolanda Puri
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (I.Y.P.); (Z.A.Z.)
- Department of Nutrition, Faculty of Public Health, Andalas University, Padang, West Sumatera 25175, Indonesia
| | - Barakatun-Nisak Mohd Yusof
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (I.Y.P.); (Z.A.Z.)
- Correspondence: ; Tel.: +60-(03)-976-926-06
| | - Zalina Abu Zaid
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (I.Y.P.); (Z.A.Z.)
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Hasnah Haron
- Nutritional Science Programme, Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nur Indrawaty Lipoeto
- Department of Nutrition Sciences, Faculty of Medicine, Andalas University, Padang, West Sumatera 25127, Indonesia;
| |
Collapse
|
14
|
Celiac Disease and the Thyroid: Highlighting the Roles of Vitamin D and Iron. Nutrients 2021; 13:nu13061755. [PMID: 34064075 PMCID: PMC8224353 DOI: 10.3390/nu13061755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Celiac disease (CD) and autoimmune thyroid diseases (AITD) like Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) frequently coexist, entailing numerous potential impacts on diagnostic and therapeutic approaches. Possible correlations might exist through gut microbiota, regulating the immune system and inflammatory responses, promoting autoimmune diseases, as well as shared cytokines in pathogenesis pathways, cross-reacting antibodies or malabsorption of micronutrients that are essential for the thyroid like iron or vitamin D. Vitamin D deficiency is a common finding in patients with AITD, but might protect from autoimmunity by wielding immunoregulatory and tolerogenic impacts. Additionally, vitamin D is assumed to be involved in the onset and progression of CD, presumably plays a substantial protective role for intestinal mucosa and affects the thyroid via its immunomodulatory effects. Iron is an essential micronutrient for the thyroid gland needed for effective iodine utilization by the iron-dependent enzyme thyroid iodine peroxidase (TPO). Despite being crucial for thyroid hormone synthesis, iron deficiency (ID) is a common finding in patients with hypothyroidism like HT and is frequently found in patients with CD. A literature research was conducted to examine the interplay between CD, AITD, vitamin D and iron deficiency. This narrative review highlights the relevant correlation of the two disease entities CD and AITD, their reciprocal impact and possible therapeutic options that should be further explored by future studies.
Collapse
|
15
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
16
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
17
|
Poisson J, Tanguy M, Davy H, Camara F, El Mdawar MB, Kheloufi M, Dagher T, Devue C, Lasselin J, Plessier A, Merchant S, Blanc-Brude O, Souyri M, Mougenot N, Dingli F, Loew D, Hatem SN, James C, Villeval JL, Boulanger CM, Rautou PE. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest 2021; 130:2630-2643. [PMID: 32045382 PMCID: PMC7190923 DOI: 10.1172/jci124566] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPNs). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPNs suggests that vascular function is altered. The consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice resulting from a disturbed endothelial NO pathway and increased endothelial oxidative stress. This response was reproduced in WT mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for their effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes suppressed their effect on oxidative stress. Antioxidants such as simvastatin and N-acetyl cysteine improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPNs are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears to be a promising therapeutic strategy in this setting.
Collapse
Affiliation(s)
- Johanne Poisson
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France.,Geriatrics Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Tanguy
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France
| | - Hortense Davy
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Fatoumata Camara
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Marie-Belle El Mdawar
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Marouane Kheloufi
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Tracy Dagher
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Cécile Devue
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Juliette Lasselin
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Aurélie Plessier
- Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, Département Hospitalo-Universitaire (DHU Unity), AP-HP, Clichy, France.,Centre de Référence des Maladies Vasculaires du Foie, French Network for Rare Liver Diseases (FILFOIE), European Reference Network (ERN), Clichy, France
| | - Salma Merchant
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Olivier Blanc-Brude
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Michèle Souyri
- Inserm UMR S1131, University Hospital Institute (IHU), Université de Paris, Paris, France
| | - Nathalie Mougenot
- Inserm UMS 28, Phénotypage du petit animal, Plateforme d'expérimentations coeur-muscle-vaisseaux (PECMV), Sorbonne University, Paris, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Université de recherche PSL, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Université de recherche PSL, Paris, France
| | - Stephane N Hatem
- Inserm, UMR 1166, Institut de cardiométabolisme et nutrition (ICAN), Sorbonne University, Paris, France
| | - Chloé James
- Inserm U1034, Biology of Cardiovascular, Pessac, France.,University of Bordeaux, Pessac, France.,Laboratory of Hematology, Bordeaux University Hospital Center, Pessac, France
| | - Jean-Luc Villeval
- Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France
| | - Chantal M Boulanger
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France
| | - Pierre-Emmanuel Rautou
- Paris-Centre de recherche cardiovasculaire (PARCC), Université de Paris, Paris, France.,Centre de recherche sur l'inflammation, Inserm, Université de Paris, Paris, France.,Inserm U1170, Institut Gustave Roussy, Université Paris XI, Villejuif, France.,Service d'Hépatologie, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, Département Hospitalo-Universitaire (DHU Unity), AP-HP, Clichy, France
| |
Collapse
|
18
|
Vasilyev V, Sokolov A, Kostevich V, Elizarova A, Gorbunov N, Panasenko O. Binding of lactoferrin to the surface of low-density lipoproteins modified by myeloperoxidase prevents intracellular cholesterol accumulation by human blood monocytes. Biochem Cell Biol 2021; 99:109-116. [DOI: 10.1139/bcb-2020-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myeloperoxidase (MPO) is a unique heme-containing peroxidase that can catalyze the formation of hypochlorous acid (HOCl). The strong interaction of MPO with low-density lipoproteins (LDL) promotes proatherogenic modification of LDL by HOCl. The MPO-modified LDL (Mox-LDL) accumulate in macrophages, resulting in the formation of foam cells, which is the pathognomonic symptom of atherosclerosis. A promising approach to prophylaxis and atherosclerosis therapy is searching for remedies that prevent the modification or accumulation of LDL in macrophages. Lactoferrin (LF) has several application points in obesity pathogenesis. We aimed to study LF binding to Mox-LDL and their accumulation in monocytes transformed into macrophages. Using surface plasmon resonance and ELISA techniques, we observed no LF interaction with intact LDL, whereas Mox-LDL strongly interacted with LF. The affinity of Mox-LDL to LF increased with the degree of oxidative modification of LDL. Moreover, an excess of MPO did not prevent interaction of Mox-LDL with LF. LF inhibits accumulation of cholesterol in macrophages exposed to Mox-LDL. The results obtained reinforce the notion of LF potency as a remedy against atherosclerosis.
Collapse
Affiliation(s)
- V.B. Vasilyev
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - A.V. Sokolov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - V.A. Kostevich
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - A.Yu. Elizarova
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
| | - N.P. Gorbunov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - O.M. Panasenko
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
19
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
20
|
Shamova EV, Gorudko IV, Grigorieva DV, Sokolov AV, Kokhan AU, Melnikova GB, Yafremau NA, Gusev SA, Sveshnikova AN, Vasilyev VB, Cherenkevich SN, Panasenko OM. The effect of myeloperoxidase isoforms on biophysical properties of red blood cells. Mol Cell Biochem 2019; 464:119-130. [PMID: 31754972 DOI: 10.1007/s11010-019-03654-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Myeloperoxidase (MPO), an oxidant-producing enzyme, stored in azurophilic granules of neutrophils has been recently shown to influence red blood cell (RBC) deformability leading to abnormalities in blood microcirculation. Native MPO is a homodimer, consisting of two identical protomers (monomeric MPO) connected by a single disulfide bond but in inflammatory foci as a result of disulfide cleavage monomeric MPO (hemi-MPO) can also be produced. This study investigated if two MPO isoforms have distinct effects on biophysical properties of RBCs. We have found that hemi-MPO, as well as the dimeric form, bind to the glycophorins A/B and band 3 protein on RBC's plasma membrane, that lead to reduced cell resistance to osmotic and acidic hemolysis, reduction in cell elasticity, significant changes in cell volume, morphology, and the conductance of RBC plasma membrane ion channels. Furthermore, we have shown for the first time that both dimeric and hemi-MPO lead to phosphatidylserine (PS) exposure on the outer leaflet of RBC membrane. However, the effects of hemi-MPO on the structural and functional properties of RBCs were lower compared to those of dimeric MPO. These findings suggest that the ability of MPO protein to influence RBC's biophysical properties depends on its conformation (dimeric or monomeric isoform). It is intriguing to speculate that hemi-MPO appearance in blood during inflammation can serve as a regulatory mechanism addressed to reduce abnormalities on RBC response, induced by dimeric MPO.
Collapse
Affiliation(s)
| | | | | | - Alexey V Sokolov
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Galina B Melnikova
- A.V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Nikolai A Yafremau
- State Institution "N.N. Alexandrov Republican Scientific and Practical Center of Oncology and Medical Radiology", Minsk, Belarus
| | - Sergey A Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Vadim B Vasilyev
- FSBSI "Institute of Experimental Medicine", St. Petersburg, Russia
- Saint-Petersburg State University, St. Petersburg, Russia
| | | | - Oleg M Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Lyle AN, Taylor WR. The pathophysiological basis of vascular disease. J Transl Med 2019; 99:284-289. [PMID: 30755702 DOI: 10.1038/s41374-019-0192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alicia N Lyle
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA. .,Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA. .,Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|