1
|
van den Berg J, Meloni C, Halter J, Passweg JR, Holbro A. The Changing Role of Allogeneic Stem Cell Transplantation in Adult B-ALL in the Era of CAR T Cell Therapy. Curr Oncol 2025; 32:177. [PMID: 40136381 PMCID: PMC11941108 DOI: 10.3390/curroncol32030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
The treatment of B-cell acute lymphoblastic leukemia (B-ALL) in adults remains a significant therapeutic challenge. While advances in chemotherapy and targeted and immunotherapies have improved overall survival, relapsed or refractory (r/r) adult ALL is associated with poor outcomes. CD19-directed chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative option, achieving high remission rates even in heavily pretreated patients. However, relapse is common. Allogeneic hematopoietic stem cell transplantation (allo-HCT), a traditional cornerstone of remission consolidation, may improve long-term outcomes but carries risks of transplant-related mortality (TRM) and morbidity. Most evidence for HCT after CAR T therapy comes from retrospective analyses of subgroups from CAR T cell trials, with small sample sizes and inconsistent data on transplant procedures and outcomes. Despite these limitations, consolidative allo-HCT appears to prolong relapse-free survival (RFS). While overall survival (OS) benefits are in question, extended remission duration has been observed. Nonrelapse mortality (including TRM), ranging from 2.4 to 35%, underscores the need for careful patient selection. Emerging real-world data affirm these findings but highlight the importance of individualized decisions based on disease and treatment history. This review examines current evidence on the sequential use of CD19-directed CAR T-cell therapy and allo-HCT in adults with r/r B-ALL.
Collapse
Affiliation(s)
- Jana van den Berg
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
- Innovation Focus Cell Therapies, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Claudia Meloni
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Jörg Halter
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Jakob R. Passweg
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
| | - Andreas Holbro
- Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland (J.R.P.); (A.H.)
- Innovation Focus Cell Therapies, University Hospital Basel, CH-4031 Basel, Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
de Oliveira Canedo G, Roddie C, Amrolia PJ. Dual-targeting CAR T cells for B-cell acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma. Blood Adv 2025; 9:704-721. [PMID: 39631066 PMCID: PMC11869864 DOI: 10.1182/bloodadvances.2024013586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
ABSTRACT Relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy remains a major challenge in B-cell acute lymphoblastic leukemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL). One of the main strategies to avoid CD19-negative relapse has been the development of dual CAR T cells targeting CD19 and an additional target, such as CD22 or CD20. Different methods have been used to achieve this, including coadministration of 2 products targeting 1 single antigen, cotransduction of autologous T cells, use of a bicistronic vector, or the development of bivalent CARs. Phase 1 and 2 trials across all manufacturing strategies have shown this to be a safe approach with equivalent remission rates and initial product expansion. CAR T-cell persistence remains a significant issue, with the majority of relapses being antigen-positive after CAR T-cell infusion. Further, despite adding a second antigen, antigen-negative relapses have not yet been eliminated. This review summarizes the state of the art with dual-targeting CAR T cells for B-cell ALL and B-NHL, the challenges encountered, and possible next steps to overcome them.
Collapse
Affiliation(s)
- Gustavo de Oliveira Canedo
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| | - Claire Roddie
- Department of Haematology, University College London Hospitals, London, United Kingdom
| | - Persis J. Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
3
|
Jamil A, Qureshi Z, Siddique R, Altaf F, Jamil R, Wali N. A Meta-analysis on Effects of Chimeric Antigen Receptor T-cell Therapy in Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia. Am J Clin Oncol 2025:00000421-990000000-00258. [PMID: 39956997 DOI: 10.1097/coc.0000000000001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
OBJECTIVES This review evaluates the long-term outcomes and adverse events associated with chimeric antigen receptor (CAR) T-cell therapy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL). METHODS We conducted the search in relevant databases up to June 2024. We included clinical trials on CAR T-cell therapy for patients with r/r B-ALL. Meta-analyses were conducted using Comprehensive Meta-Analysis V3 and Review Manager 5.4. RESULTS Out of 2659 identified studies, 10 were included in this review. The pooled analysis demonstrated a high minimal residual disease-negative complete remission, with an overall event rate (ER) of 70% (95% CI: 61%-78%, I2 =8 8.35%). Anti-CD19 CAR T-cell therapy showed the highest efficacy with an ER of 74.75% (95% CI: 61%-80%, I2 = 89.84%). Combination therapies targeting CD19 and CD22 had an ER of 69% (95% CI: 53%-83%, I2 = 82.56%). Significant adverse effects included cytokine release syndrome with a mean incidence of 81.8% (95% CI: 76.7%-86.9%), neurotoxicity at 33.2% (95% CI: 28.1%-38.3%), and hematologic toxicities at 71.9% (95% CI: 66.4%-77.4%). CONCLUSIONS CAR T-cell therapy is a groundbreaking advancement in treating r/r B-ALL, offering high rates of durable remissions.
Collapse
Affiliation(s)
- Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | - Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | | | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY
| | | | - Neehal Wali
- Vituity Hospitalist Group, HSHS St. John's Hospital Springfield, IL
| |
Collapse
|
4
|
Hu Y, Yang R, Ni S, Song Z. Bibliometric analysis of targeted immunotherapy for osteosarcoma-current knowledge, hotspots and future perspectives. Front Immunol 2025; 15:1485053. [PMID: 39995821 PMCID: PMC11847827 DOI: 10.3389/fimmu.2024.1485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis on examining the current condition, areas of interest, and rising trends of immunotherapy for osteosarcoma (ITFOS), as well as its importance in associated research domains. Methods An extensive collection of academic papers on the use of ITFOS was obtained from the Web of Science between January 1, 2000 and October 20, 2023. Then, using a variety of tools like HisCite, VOSviewer, CiteSpace, and the bibliometrix package, a bibliometric study was carried out. This study included the collection of information on country, institution, author, journal, and keywords. Results A comprehensive analysis was undertaken on a total of 616 publications obtained from 247 journals, encompassing the contributions of 3725 authors affiliated with 831 institutes spanning across 43 countries/regions. Notably, China exhibited the highest quantity of published 277 (44.99%) articles on ITFOS. The most productive institution was Zhejiang University, with 26 (4.22%) publications. The author with the highest publication output was Tsukahara, Tomohide from Japan with 15 (2.44%) publications. The article with the most citation was "DOI: 10.1200/JCO.2014.58.0225". Frontiers in Immunology demonstrated the highest level of productivity, having published a total of 31 (5.03%) articles. The most frequently used were "osteosarcoma," "immunotherapy," and "cancer,". Meanwhile, "sequencing", "prognostic signature" and "immune microenvironment" have been identified as the research frontiers for the forthcoming years. Conclusion This paper provides a thorough evaluation of current research trends and advancements in ITFOS. It includes relevant research findings and emphasizes collaborative efforts among authors, institutions, and countries.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
5
|
Yang T, Dong Y, Zhang M, Feng J, Fu S, Xiao P, Hong R, Xu H, Cui J, Huang S, Wei G, Kong D, Geng J, Chang AH, Huang H, Hu Y. Prominent efficacy and good safety of sequential CD19 and CD22 CAR-T therapy in relapsed/refractory adult B-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2025; 14:2. [PMID: 39754190 PMCID: PMC11697943 DOI: 10.1186/s40164-024-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited. METHODS This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS). RESULTS Twenty-three patients with a median age of 58.1 years (range 25.9-75.0) were enrolled. High-risk cytogenetic and genomic aberrations were identified in 43.5% of patients, and five patients had baseline extramedullary disease (EMD). The median interval between the two infusions was 3.8 months. Grade ≥ 3 hematological adverse events occurred at comparable rates after both infusions. Cytokine release syndrome was observed in 78.3% and 39.1% of patients after CD19 and CD22 CAR-T therapy, respectively. Two patients experienced grade 2 immune effector cell-associated neurotoxicity syndrome (ICANS) during CD19 CAR-T, and no ICANS was reported during CD22 CAR-T. The median OS was not reached with a median follow-up of 19.4 months (range 8.7-45.6), while the median LFS was 20.8 months. OS and LFS rates were 91.3% and 67.1% at 1 year and 58.6% and 47.0% at 2 years, respectively. Eight patients experienced relapse, with the cumulative incidence of relapse being 28.6% at 1 year and 42.5% at 2 years. Higher baseline leukemia burden (≥ 64% bone marrow blasts) and the presence of EMD were significant risk factors for inferior OS and LFS, respectively. CONCLUSIONS Sequential CAR-T cell therapy demonstrated durable efficacy and a manageable safety profile in R/R B-ALL, providing a viable option to address antigen-loss relapse and improve long-term outcomes in high-risk adult patients.
Collapse
Affiliation(s)
- Tingting Yang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Yetian Dong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Pingnan Xiao
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Huijun Xu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Simao Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Delin Kong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jia Geng
- Department of Radiology of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Alex H Chang
- Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai YaKe Biotechnology Ltd., Shanghai, China.
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Willyanto SE, Alimsjah YA, Tanjaya K, Tuekprakhon A, Pawestri AR. Comprehensive analysis of the efficacy and safety of CAR T-cell therapy in patients with relapsed or refractory B-cell acute lymphoblastic leukaemia: a systematic review and meta-analysis. Ann Med 2024; 56:2349796. [PMID: 38738799 PMCID: PMC11095278 DOI: 10.1080/07853890.2024.2349796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Relapse/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL) represents paediatric cancer with a challenging prognosis. CAR T-cell treatment, considered an advanced treatment, remains controversial due to high relapse rates and adverse events. This study assessed the efficacy and safety of CAR T-cell therapy for r/r B-ALL. METHODS The literature search was performed on four databases. Efficacy parameters included minimal residual disease negative complete remission (MRD-CR) and relapse rate (RR). Safety parameters constituted cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). RESULTS Anti-CD22 showed superior efficacy with the highest MRD-CR event rate and lowest RR, compared to anti-CD19. Combining CAR T-cell therapy with haploidentical stem cell transplantation improved RR. Safety-wise, bispecific anti-CD19/22 had the lowest CRS rate, and anti-CD22 showed the fewest ICANS. Analysis of the costimulatory receptors showed that adding CD28ζ to anti-CD19 CAR T-cell demonstrated superior efficacy in reducing relapses with favorable safety profiles. CONCLUSION Choosing a more efficacious and safer CAR T-cell treatment is crucial for improving overall survival in acute leukaemia. Beyond the promising anti-CD22 CAR T-cell, exploring costimulatory domains and new CD targets could enhance treatment effectiveness for r/r B-ALL.
Collapse
Affiliation(s)
| | - Yohanes Audric Alimsjah
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Krisanto Tanjaya
- Bachelor Study Program of Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aekkachai Tuekprakhon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Aulia Rahmi Pawestri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
7
|
Amiri M, Moaveni AK, Majidi Zolbin M, Shademan B, Nourazarian A. Optimizing cancer treatment: the synergistic potential of CAR-T cell therapy and CRISPR/Cas9. Front Immunol 2024; 15:1462697. [PMID: 39582866 PMCID: PMC11581867 DOI: 10.3389/fimmu.2024.1462697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/26/2024] Open
Abstract
Optimizing cancer treatment has become a pivotal goal in modern oncology, with advancements in immunotherapy and genetic engineering offering promising avenues. CAR-T cell therapy, a revolutionary approach that harnesses the body's own immune cells to target and destroy cancer cells, has shown remarkable success, particularly in treating acute lymphoblastic leukemia (ALL), and in treating other hematologic malignancies. While CAR-T cell therapy has shown promise, challenges such as high cost and manufacturing complexity remain. However, its efficacy in solid tumors remains limited. The integration of CRISPR/Cas9 technology, a powerful and precise genome-editing tool, also raises safety concerns regarding unintended edits and off-target effects, offers a synergistic potential to overcome these limitations. CRISPR/Cas9 can enhance CAR-T cell therapy by improving the specificity and persistence of CAR-T cells, reducing off-target effects, and engineering resistance to tumor-induced immunosuppression. This combination can also facilitate the knockout of immune checkpoint inhibitors, boosting the anti-tumor activity of CAR-T cells. Recent studies have demonstrated that CRISPR/Cas9-edited CAR-T cells can target previously untreatable cancer types, offering new hope for patients with refractory cancers. This synergistic approach not only enhances the efficacy of cancer treatment but also paves the way for personalized therapies tailored to individual genetic profiles. This review highlights the ongoing research efforts to refine this approach and explores its potential to revolutionize cancer treatment across a broader range of malignancies. As research progresses, the integration of CAR-T cell therapy and CRISPR/Cas9 holds the promise of transforming cancer treatment, making it more effective and accessible. This review explores the current advancements, challenges, and future prospects of this innovative therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Medical Journalism, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
8
|
Karimi-Googheri M, Gholipourmalekabadi M, Madjd Z, Shabani Z, Rostami Z, Kazemi Arababadi M, Kiani J. The mechanisms of B-cell acute lymphoblastic leukemia relapsing following chimeric antigen receptor-T cell therapy; the plausible future strategies. Mol Biol Rep 2024; 51:1135. [PMID: 39514017 DOI: 10.1007/s11033-024-10061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Research has demonstrated the high mortality and morbidity associated with B-Acute lymphoblastic lymphoma (B-ALL). Researchers have developed several therapeutic approaches to combat the disorder. Recently, researchers developed chimeric antigen receptors (CARs)-T cells, which recognize antigens independently of major histocompatibility complexes (MHCs) and activate at a higher level with additional persistence. However, relapsing B-ALL has been reported in several cases. This review article was aimed to collecting recent information regarding the mechanisms used by B-ALL-related lymphocytes to escape from CAR-T cells and the plausible resolution projects.
Collapse
Affiliation(s)
- Masoud Karimi-Googheri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ziba Shabani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zhila Rostami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Departmant of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Deng L, Yu X, Song X, Guan R, Li W, Hou Y, Shao Y, Zhao Y, Wang J, Liu Y, Xiao Q, Xin B, Zhou F. Efficacy and risk of donor-derived CAR-T treatment of relapsed B-cell acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Cytotherapy 2024; 26:1301-1307. [PMID: 38888526 DOI: 10.1016/j.jcyt.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
The one-year survival rate for patients experiencing a relapse of B-cell acute lymphocytic leukemia (B-ALL) following hematopoietic stem cell transplantation (HSCT) is approximately 30%. Patients experiencing a relapse after allogeneic HSCT frequently encounter difficulties in obtaining autologous CAR-T products. We conducted a study involving 14 patients who received donor-derived CAR-T therapy for relapsed B-ALL following HSCT between August 2019 and May 2023 in our center. The results revealed a CR/CRi rate of 78.6% (11/14), a GVHD rate of 21.4% (3/14), and a 1-year overall survival (OS) rate of 56%. Decreased bone marrow donor cell chimerism in 9 patients recovered after CAR-T therapy. The main causes of death were disease progression and infection. Further analysis showed that GVHD (HR 7.224, 95% CI 1.42-36.82, P = 0.017) and platelet recovery at 30 days (HR 6.807, 95% CI 1.61-28.83, P = 0.009) are significantly associated with OS after CAR-T therapy. Based on the findings, we conclude that donor-derived CAR-T cells are effective in treating relapsed B-ALL patients following HSCT. Additionally, GVHD and poor platelet recovery impact OS, but further verification with a larger sample size is needed.
Collapse
Affiliation(s)
- Lei Deng
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiaolin Yu
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Xiaocheng Song
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Rui Guan
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Wenjun Li
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Yixi Hou
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Yan Shao
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Yuerong Zhao
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Jing Wang
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Yue Liu
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Qianqian Xiao
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Bo Xin
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China
| | - Fang Zhou
- Department of Hematology, The 960th Hospital of The Chinese People's Liberation Army Joint Logistics Support Force, Jinan, China.
| |
Collapse
|
10
|
Campos-Aguilar M, Tapia-Sánchez WD, Saucedo-Campos AD, Duarte-Martínez CL, Olivas-Quintero S, Ruiz-Ochoa A, Méndez-Cruz AR, Reyes-Reali J, Mendoza-Ramos MI, Jimenez-Flores R, Pozo-Molina G, Piedra-Ibarra E, Vega Hernandez ME, Santos-Argumedo L, Rosales-García VH, Ponciano-Gómez A. Distinct Immunophenotypes in the DNA Index-Based Stratification of Pediatric B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:3585. [PMID: 39518027 PMCID: PMC11545691 DOI: 10.3390/cancers16213585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES B-cell acute lymphoblastic leukemia (B-ALL) presents a challenge in hematological malignancies due to its heterogeneity, which impacts treatment outcomes. Stratification based on the DNA index (DNAi) categorizes patients into favorable prognosis (hyperploid), standard prognosis (normoploid), and uncertain or poor prognosis (hypoploid) groups. In this study, we explored whether specific immunophenotypic markers are associated with each DNAi-based group and their potential connection to prognostic categories, aiming to provide new insights that may contribute to a better understanding of prognosis in B-ALL. METHODS In this study, we utilized flow cytometry to analyze immunophenotypic markers and combined this with DNA index (DNAi) measurements to stratify pediatric B-ALL patients into distinct risk categories. Our methodology focused on accurately classifying patients into hyperploid, normoploid, and hypoploid groups based on their DNA content, facilitating a comparative analysis of immunophenotypic characteristics across these groups. RESULTS Our analysis revealed that hypoploid B-ALL patients displayed a significantly lower percentage of cells in the S phase of the cell cycle compared to normoploid and hyperploid groups. Additionally, distinct immunophenotypic profiles were observed in hypoploid patients, characterized by higher expression levels of HLA-DR and a notable co-expression of CD34 and CD22. CONCLUSIONS This study found that hypoploid B-ALL patients have distinct characteristics, such as lower S-phase cell percentages and specific immunophenotypic profiles, including higher HLA-DR expression and CD34/CD22 co-expression. These differences across DNA index-based prognostic categories warrant further research to explore their potential prognostic significance.
Collapse
Affiliation(s)
- Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Wilfrido David Tapia-Sánchez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Alberto Daniel Saucedo-Campos
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Carlos Leonardo Duarte-Martínez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Sandra Olivas-Quintero
- Departamento de Ciencias de la Salud Culiacán, Universidad Autónoma de Occidente, Culiacan 80020, Sinaloa, Mexico;
| | - Almarosa Ruiz-Ochoa
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Adolfo Rene Méndez-Cruz
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Julia Reyes-Reali
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - María Isabel Mendoza-Ramos
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Rafael Jimenez-Flores
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Elias Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | | | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Victor Hugo Rosales-García
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 14330, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
11
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Short NJ, Kantarjian H, Jabbour E. Advances in the treatment of adults with newly diagnosed B-cell acute lymphoblastic leukemia: the role of frontline immunotherapy-based regimens. Leuk Lymphoma 2024; 65:1405-1417. [PMID: 38850572 DOI: 10.1080/10428194.2024.2364043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Blinatumomab and inotuzumab ozogamicin (INO) are both active in relapsed/refractory B-cell acute lymphoblastic leukemia (ALL) and improve outcomes compared with conventional chemotherapy in this setting. Several prospective clinical trials have explored the use of these agents in adults with newly diagnosed B-cell ALL, with promising outcomes observed in younger and older adults and in both Philadelphia chromosome (Ph)-positive and Ph-negative ALL. These novel regimens result in high rates of deep measurable residual disease (MRD) negativity and may improve survival compared with chemotherapy-only approaches, allowing for less reliance on intensive chemotherapy and allogeneic hematopoietic stem cell transplantation (HSCT). This review discusses novel approaches to integrating INO and/or blinatumomab into frontline ALL regimens, including the potential role of chemotherapy-free regimens in some subgroups. The role of MRD monitoring is also discussed, including how this can inform decisions for consolidative allogeneic HSCT or investigational approaches with CD19 CAR T-cells.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Zhou S, Yang Y, Jing Y, Zhu X. Generating advanced CAR-based therapy for hematological malignancies in clinical practice: targets to cell sources to combinational strategies. Front Immunol 2024; 15:1435635. [PMID: 39372412 PMCID: PMC11449748 DOI: 10.3389/fimmu.2024.1435635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been a milestone breakthrough in the treatment of hematological malignancies, offering an effective therapeutic option for multi-line therapy-refractory patients. So far, abundant CAR-T products have been approved by the United States Food and Drug Administration or China National Medical Products Administration to treat relapsed or refractory hematological malignancies and exhibited unprecedented clinical efficiency. However, there were still several significant unmet needs to be progressed, such as the life-threatening toxicities, the high cost, the labor-intensive manufacturing process and the poor long-term therapeutic efficacy. According to the demands, many researches, relating to notable technical progress and the replenishment of alternative targets or cells, have been performed with promising results. In this review, we will summarize the current research progress in CAR-T eras from the "targets" to "alternative cells", to "combinational drugs" in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical Medical College, Wuhan University, Wuhan, China
| | - Yulu Jing
- The Second Clinical Medical College, Wuhan University, Wuhan, China
| | - Xiaoying Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Ma R, Woods M, Burkhardt P, Crooks N, van Leeuwen DG, Shmidt D, Couturier J, Chaumette A, Popat D, Hill LC, Rouce RH, Thakkar S, Orozco AF, Carisey AF, Brenner MK, Mamonkin M. Chimeric antigen receptor-induced antigen loss protects CD5.CART cells from fratricide without compromising on-target cytotoxicity. Cell Rep Med 2024; 5:101628. [PMID: 38986621 PMCID: PMC11293353 DOI: 10.1016/j.xcrm.2024.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.
Collapse
Affiliation(s)
- Royce Ma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Phillip Burkhardt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah Crooks
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dayenne G van Leeuwen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniil Shmidt
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jacob Couturier
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexandre Chaumette
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Divya Popat
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - LaQuisa C Hill
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sachin Thakkar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Aaron F Orozco
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Brillembourg H, Martínez-Cibrián N, Bachiller M, Alserawan L, Ortiz-Maldonado V, Guedan S, Delgado J. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; 204:1649-1659. [PMID: 38362778 DOI: 10.1111/bjh.19348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.
Collapse
Affiliation(s)
| | - Núria Martínez-Cibrián
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Mireia Bachiller
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clínic, Barcelona, Spain
| | | | - Valentín Ortiz-Maldonado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
16
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
17
|
McComb S, Arbabi-Ghahroudi M, Hay KA, Keller BA, Faulkes S, Rutherford M, Nguyen T, Shepherd A, Wu C, Marcil A, Aubry A, Hussack G, Pinto DM, Ryan S, Raphael S, van Faassen H, Zafer A, Zhu Q, Maclean S, Chattopadhyay A, Gurnani K, Gilbert R, Gadoury C, Iqbal U, Fatehi D, Jezierski A, Huang J, Pon RA, Sigrist M, Holt RA, Nelson BH, Atkins H, Kekre N, Yung E, Webb J, Nielsen JS, Weeratna RD. Discovery and preclinical development of a therapeutically active nanobody-based chimeric antigen receptor targeting human CD22. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200775. [PMID: 38596311 PMCID: PMC10914482 DOI: 10.1016/j.omton.2024.200775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kevin A. Hay
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Division of Hematology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian A. Keller
- Division of Anatomical Pathology, The Ottawa Hospital/University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Sharlene Faulkes
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael Rutherford
- Division of Anatomical Pathology, The Ottawa Hospital/University of Ottawa, Ottawa, ON, Canada
- Division of Hematopathology and Transfusion Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON, Canada
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Alex Shepherd
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Annie Aubry
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Devanand M. Pinto
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Qin Zhu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Susanne Maclean
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anindita Chattopadhyay
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Komal Gurnani
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Dorothy Fatehi
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Robert A. Pon
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Mhairi Sigrist
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Robert A. Holt
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Harold Atkins
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Natasha Kekre
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Eric Yung
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - John Webb
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
| | - Julie S. Nielsen
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
| | - Risini D. Weeratna
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
18
|
Agrawal V, Murphy L, Pourhassan H, Pullarkat V, Aldoss I. Optimizing CAR-T cell therapy in adults with B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:236-247. [PMID: 37772976 DOI: 10.1111/ejh.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated unprecedented success in the treatment of various hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). Currently, there are two FDA-approved CD19-directed CAR-T cell products for the treatment of adults with R/R B-ALL. Despite high remission rates following CD19 CAR-T cell therapy in R/R B-ALL, remission durability remains limited in most adult patients, with relapse observed frequently in the absence of additional consolidation therapy. Furthermore, the burden of CAR-T cell toxicity remains significant in adults with R/R B-ALL and further limits the wide utilization of this effective therapy. In this review, we discuss patient and disease factors that are linked to CAR-T cell therapy outcomes in R/R B-ALL and strategies to optimize durability of response to reduce relapse and mitigate toxicity in the adult population. We additionally discuss future approaches being explored to maximize the benefit of CAR-T in adults with B-ALL.
Collapse
Affiliation(s)
- Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
19
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Li C, Zuo S, Shan L, Huang H, Cui H, Feng X. Myeloid leukemia-derived galectin-1 downregulates CAR expression to hinder cytotoxicity of CAR T cells. J Transl Med 2024; 22:32. [PMID: 38184596 PMCID: PMC10771695 DOI: 10.1186/s12967-023-04832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have shown significant activity in B-lineage malignancies. However, their efficacy in myeloid leukemia has not been successful due to unclear molecular mechanisms. METHODS We conducted in vitro and in vivo experiments to investigate whether myeloid leukemia cells directly induce CAR down-regulation. Furthermore, we designed a CD33 CARKR in which all lysines in the cytoplasmic domain of CAR were mutated to arginine and verified through in vitro experiments that it could reduce the down-regulation of surface CARs and enhance the killing ability. Transcriptome sequencing was performed on various AML and ALL cell lines and primary samples, and the galectin-1-specific inhibitory peptide (anginex) successfully rescued the killing defect and T-cell activation in in vitro assays. RESULTS CAR down-regulation induced by myeloid leukemia cells under conditions of low effector-to-tumor ratio, which in turn impairs the cytotoxicity of CAR T cells. In contrast, lysosomal degradation or actin polymerization inhibitors can effectively alleviate CAR down-regulation and restore CAR T cell-mediated anti-tumor functions. In addition, this study identified galectin-1 as a critical factor used by myeloid leukemia cells to induce CAR down-regulation, resulting in impaired T-cell activation. CONCLUSION The discovery of the role of galectin-1 in cell surface CAR down-regulation provides important insights for developing strategies to restore anti-tumor functions.
Collapse
Affiliation(s)
- Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Haidong Cui
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
21
|
Acharya L, Garg A, Rai M, Kshetri R, Grewal US, Dhakal P. Novel chimeric antigen receptor targets and constructs for acute lymphoblastic leukemia: Moving beyond CD19. J Investig Med 2024; 72:32-46. [PMID: 37497999 DOI: 10.1177/10815589231191811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults with a poor prognosis with relapsed or refractory (R/R) B-cell lineage ALL (B-ALL). Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has shown excellent response rates in RR B-ALL, but most patients relapse due to poor persistence of CAR T-cell therapy or other tumor-associated escape mechanisms. In addition, anti-CD19 CAR T-cell therapy causes several serious side effects such as cytokine release syndrome and neurotoxicity. In this review, we will discuss novel CAR targets, CAR constructs, and various strategies to boost CARs for the treatment of RR B-ALL. In addition, we discuss a few novel strategies developed to reduce the side effects of CAR.
Collapse
Affiliation(s)
- Luna Acharya
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alpana Garg
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Manoj Rai
- Department of Internal Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rupesh Kshetri
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Udhayvir S Grewal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Prajwal Dhakal
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
22
|
Testa U, Sica S, Pelosi E, Castelli G, Leone G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024010. [PMID: 38223477 PMCID: PMC10786140 DOI: 10.4084/mjhid.2024.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Collapse
Affiliation(s)
| | - Simona Sica
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
23
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
24
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
25
|
Pan J, Tang K, Luo Y, Seery S, Tan Y, Deng B, Liu F, Xu X, Ling Z, Song W, Xu J, Duan J, Wang Z, Li C, Wang K, Zhang Y, Yu X, Zheng Q, Zhao L, Zhang J, Chang AH, Feng X. Sequential CD19 and CD22 chimeric antigen receptor T-cell therapy for childhood refractory or relapsed B-cell acute lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol 2023; 24:1229-1241. [PMID: 37863088 DOI: 10.1016/s1470-2045(23)00436-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Relapses frequently occur following CD19-directed chimeric antigen receptor (CAR) T-cell treatment for relapsed or refractory B-cell acute lymphocytic leukaemia in children. We aimed to assess the activity and safety of sequential CD19-directed and CD22-directed CAR T-cell treatments. METHODS This single-centre, single-arm, phase 2 trial, done at Beijing GoBroad Boren Hospital, Beijing, China, included patients aged 1-18 years who had relapsed or refractory B-cell acute lymphocytic leukaemia with CD19 and CD22 positivity greater than 95% and an Eastern Cooperative Oncology Group performance status of 0-2. Patients were initially infused with CD19-directed CAR T cells intravenously, followed by CD22-directed CAR T-cell infusion after minimal residual disease-negative complete remission (or complete remission with incomplete haematological recovery) was reached and all adverse events (except haematological adverse events) were grade 2 or better. The target dose for each infusion was 0·5 × 106 to 5·0 × 106 cells per kg. The primary endpoint was objective response rate at 3 months after the first infusion. Secondary endpoints were duration of remission, event-free survival, disease-free survival, overall survival, safety, pharmacokinetics, and B-cell quantification. The prespecified activity analysis included patients who received the target dose and the safety analysis included all treated patients. This study is registered with ClinicalTrials.gov, NCT04340154, and enrolment has ended. FINDINGS Between May 28, 2020, and Aug 16, 2022, 81 participants were enrolled, of whom 31 (38%) were female and 50 (62%) were male. Median age was 8 years (IQR 6-10), all patients were Asian. All 81 patients received the first infusion and 79 (98%) patients received sequential infusions, CD19-directed CAR T cells at a median dose of 2·7 × 106 per kg (IQR 1·1 × 106 to 3·7 × 106) and CD22-directed CAR T cells at a median dose of 2·2 × 106 per kg (1·1 × 106 to 3·7 × 106), with a median interval of 39 days (37-41) between the two infusions. 62 (77%) patients received the target dose, including two patients who did not receive CD22 CAR T cells. At 3 months, 60 (97%, 95% CI 89-100) of the 62 patients who received the target dose had an objective response. Median follow-up was 17·7 months (IQR 11·4-20·9). 18-month event-free survival for patients who received the target dose was 79% (95% CI 66-91), duration of remission was 80% (68-92), and disease-free survival was 80% (68-92) with transplantation censoring; overall survival was 96% (91-100). Common adverse events of grade 3 or 4 between CD19-directed CAR T-cell infusion and 30 days after CD22-directed CAR T-cell infusion included cytopenias (64 [79%] of 81 patients), cytokine release syndrome (15 [19%]), neurotoxicity (four [5%]), and infections (five [6%]). Non-haematological adverse events of grade 3 or worse more than 30 days after CD22-directed CAR T-cell infusion occurred in six (8%) of 79 patients. No treatment-related deaths occurred. CAR T-cell expansion was observed in all patients, with a median peak at 9 days (IQR 7-14) after CD19-directed and 12 days (10-15) after CD22-directed CAR T-cell infusion. At data cutoff, 35 (45%) of 77 evaluable patients had CAR transgenes and 59 (77%) had B-cell aplasia. INTERPRETATION This sequential strategy induced deep and sustained responses with an acceptable toxicity profile, and thus potentially provides long-term benefits for children with this condition. FUNDING The National Key Research & Development Program of China, the CAMS Innovation Fund for Medical Sciences (CIFMS), and the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Kaiting Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, UK
| | - Yue Tan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Biping Deng
- Cytology Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Feng Liu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zhuojun Ling
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Weiliang Song
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jinlong Xu
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiajia Duan
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zelin Wang
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Chunyu Li
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Kai Wang
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yibing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Xinjian Yu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Liping Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Jiecheng Zhang
- Department of Hospital Management, GoBroad Medical Group, Beijing, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology, Shanghai, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China; Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China; Chinese Academy of Medical Sciences Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Tianjin, China
| |
Collapse
|
26
|
Saleh K, Pasquier F, Bigenwald C, De Botton S, Ribrag V, Castilla-Llorente C. CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. J Clin Med 2023; 12:6883. [PMID: 37959347 PMCID: PMC10647582 DOI: 10.3390/jcm12216883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is the most common subtype of acute leukemia in the pediatric population. The prognosis and treatment of B-ALL have dramatically improved over the past decade with the adoption of intensive and prolonged combination chemotherapy regimens. The advent of novel immunologic agents such as blinatumomab and inotuzumab has changed the treatment landscape of B-ALL. However, patients have continued to relapse, raising the need for novel therapies. Chimeric antigen receptor (CAR) T-cells have achieved a milestone in the treatment of B-ALL. Two CD19-targeting CAR T-cells were approved by the Food and Drug Administration and the European Medicines Agency for the treatment of relapsed and/or refractory B-ALL. In this review, we review the available data regarding CD19-targeting CAR T-cells with their safety profile as well as the mechanism of resistance to these agents and the way to overcome this resistance.
Collapse
Affiliation(s)
- Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.P.); (C.B.); (S.D.B.); (V.R.)
| | - Camille Bigenwald
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.P.); (C.B.); (S.D.B.); (V.R.)
| | - Stéphane De Botton
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.P.); (C.B.); (S.D.B.); (V.R.)
| | - Vincent Ribrag
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.P.); (C.B.); (S.D.B.); (V.R.)
- Département D’innovation Thérapeutique et D’essais Précoces (DITEP), Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Cristina Castilla-Llorente
- Department of Hematology, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.P.); (C.B.); (S.D.B.); (V.R.)
| |
Collapse
|
27
|
Yang C, Nguyen J, Yen Y. Complete spectrum of adverse events associated with chimeric antigen receptor (CAR)-T cell therapies. J Biomed Sci 2023; 30:89. [PMID: 37864230 PMCID: PMC10590030 DOI: 10.1186/s12929-023-00982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have been approved by FDA to treat relapsed or refractory hematological malignancies. However, the adverse effects of CAR-T cell therapies are complex and can be challenging to diagnose and treat. In this review, we summarize the major adverse events, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and CAR T-cell associated HLH (carHLH), and discuss their pathophysiology, symptoms, grading, and diagnosis systems, as well as management. In a future outlook, we also provide an overview of measures and modifications to CAR-T cells that are currently being explored to limit toxicity.
Collapse
Affiliation(s)
- Chieh Yang
- Department of Internal Medicine, School of Medicine, University of California Riverside, Riverside, CA USA
| | - John Nguyen
- Covina Discovery Center, Theragent Inc., Covina, CA USA
| | - Yun Yen
- College of Medical Technology, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
28
|
Xu J, Luo W, Li C, Mei H. Targeting CD22 for B-cell hematologic malignancies. Exp Hematol Oncol 2023; 12:90. [PMID: 37821931 PMCID: PMC10566133 DOI: 10.1186/s40164-023-00454-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
CD19-targeted chimeric receptor antigen (CAR)-T cell therapy has shown remarkable clinical efficacy in the treatment of relapsed or refractory (R/R) B-cell malignancies. However, 30%-60% of patients eventually relapsed, with the CD19-negative relapse being an important hurdle to sustained remission. CD22 expression is independent of CD19 expression in malignant B cells. Consequently, CD22 is a potential alternative target for CD19 CAR-T cell-resistant patients. CD22-targeted therapies, mainly including the antibody-drug conjugates (ADCs) and CAR-T cells, have come into wide clinical use with acceptable toxicities and promising efficacy. In this review, we explore the molecular and physiological characteristics of CD22, development of CD22 ADCs and CAR-T cells, and the available clinical data on CD22 ADCs and CAR-T cell therapies. Furthermore, we propose some perspectives for overcoming tumor escape and enhancing the efficacy of CD22-targeted therapies.
Collapse
Affiliation(s)
- Jia Xu
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Wenjing Luo
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Chenggong Li
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Heng Mei
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
29
|
Liu T, Dai X, Xu Y, Guan T, Hong L, Zaib T, Zhou Q, Cheng K, Zhou X, Ma C, Sun P. CD22 is a potential target of CAR-NK cell therapy for esophageal squamous cell carcinoma. J Transl Med 2023; 21:710. [PMID: 37817249 PMCID: PMC10563326 DOI: 10.1186/s12967-023-04409-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor NK (CAR-NK) cell therapy is one of the most promising immunotherapies. Although it has shown a significant therapeutic effect in hematologic malignancies, few successes have been obtained in solid tumors including esophageal squamous cell carcinoma (ESCC). The major reasons are lack of specific cell surface antigens and complex tumor microenvironment. Here we identify CD22, a well-known tumor surface marker in hematologic malignancies, is expressed in ESCC, possibly serving as a potential target of CAR-NK cell therapy. METHODS The expression of 13 tumor cell surface antigens used clinically was analyzed in patients from The Cancer Genome Atlas (TCGA) database. Also, mRNA expression were detected in 2 ESCC cell lines and 2 patients samples by qCPR. Then according to Venn diagram, CD22 was selected for further investigation. Following this, the expression of CD22 by immunofluorescence (IF) in ESCC cell lines and by immunohistochemistry (IHC) in 87 cases of human ESCC samples was detected respectively. On the basis of H-score results, the correlation between CD22 expression and clinical parameters was analyzed. As a proof, the efficacy of CD22-targeted CAR-NK cells against ESCC cell lines was performed by a real-time cell analyzer (RTCA) platform. RESULTS KYSE-140 and KYSE-150 cell lines displayed surface expression of CD22. IHC showed an 80.46% (70/87) positive rate in ESCC patient samples. Among these, cell membranous expression of CD22 was observed in 27.59% (24/87) patient samples. Through chi-square test, expression of CD22 in ESCC was associated with lymph node metastasis while it was no related to the depth of tumor invasion and clinical stage. Engineered CD22-targeted CAR-NK cells exhibited inhibitory growth capability against ESCC cell lines (p < 0.0001). CONCLUSIONS CD22 is a potential tumor surface antigen capable of being targeted by CAR-NK cells in ESCC. And potential therapeutics for ESCC may be developed based on immune cells expressing anti-CD22 CAR. The study also indicates that CD22 CAR-NK cells could be used in other cancers and more in vivo experiments are needed.
Collapse
Affiliation(s)
- Tingdang Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Ximing Dai
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Yien Xu
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
- Cancer Hospital, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Tian Guan
- Guangdong Procapzoom Biosciences, Inc., Shantou, 515041, Guangdong Province, China
| | - Liangli Hong
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Qi Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Ke Cheng
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Changchun Ma
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
- Cancer Hospital, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
30
|
Almaeen AH, Abouelkheir M. CAR T-Cells in Acute Lymphoblastic Leukemia: Current Status and Future Prospects. Biomedicines 2023; 11:2693. [PMID: 37893067 PMCID: PMC10604728 DOI: 10.3390/biomedicines11102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The currently available treatment for acute lymphoblastic leukemia (ALL) is mainly dependent on the combination of chemotherapy, steroids, and allogeneic stem cell transplantation. However, refractoriness and relapse (R/R) after initial complete remission may reach up to 20% in pediatrics. This percentage may even reach 60% in adults. To overcome R/R, a new therapeutic approach was developed using what is called chimeric antigen receptor-modified (CAR) T-cell therapy. The Food and Drug Administration (FDA) in the United States has so far approved four CAR T-cells for the treatment of ALL. Using this new therapeutic strategy has shown a remarkable success in treating R/R ALL. However, the use of CAR T-cells is expensive, has many imitations, and is associated with some adverse effects. Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are two common examples of these adverse effects. Moreover, R/R to CAR T-cell therapy can take place during treatment. Continuous development of this therapeutic strategy is ongoing to overcome these limitations and adverse effects. The present article overviews the use of CAR T-cell in the treatment of ALL, summarizing the results of relevant clinical trials and discussing future prospects intended to improve the efficacy of this therapeutic strategy and overcome its limitations.
Collapse
Affiliation(s)
- Abdulrahman H. Almaeen
- Department of Pathology, Pathology Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
31
|
Kanate AS, Majhail N, DeFilipp Z, Dhakal B, Dholaria B, Hamilton B, Herrera AF, Inamoto Y, Jain T, Perales MA, Carpenter PA, Hamadani M. Updated Indications for Immune Effector Cell Therapy: 2023 Guidelines from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 2023; 29:594-597. [PMID: 37422194 DOI: 10.1016/j.jtct.2023.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The American Society for Transplantation and Cellular Therapy (ASTCT) published its guidelines on indications for autologous and allogeneic hematopoietic cell transplantation (HCT) and immune effector cell therapy (IECT) in 2020. Since then, we have witnessed rapid advancements in the field of IECT, resulting in several new chimeric antigen receptor T cell (CAR-T) products and disease indications being approved by the US Food and Drug Administration (FDA). To keep abreast of these practice changes, the ASTCT Committee on Practice Guidelines commissioned a focused update covering CAR-T therapy indications. Here we present updated ASTCT recommendations on indications for CAR-T therapy. Only FDA-approved indications for CAR-T were recommended and categorized as "standard of care," where the indication is well defined and supported by evidence. The ASTCT will continue to periodically review these guidelines and update them as new evidence becomes available.
Collapse
Affiliation(s)
| | - Navneet Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Binod Dhakal
- BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bhagirathbhai Dholaria
- Department of Hematology- Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alex F Herrera
- Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, California
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, Washington
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Scherer LD, Rouce RH. Targeted cellular therapy for treatment of relapsed or refractory leukemia. Best Pract Res Clin Haematol 2023; 36:101481. [PMID: 37612000 DOI: 10.1016/j.beha.2023.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
While the mainstay of treatment for high-risk or relapsed, refractory leukemia has historically revolved around allogeneic hematopoietic stem cell transplant (allo-HSCT), targeted immunotherapies have emerged as a promising therapeutic option, especially given the poor prognosis of patients who relapse after allo-HSCT. Novel cellular immunotherapies that harness the cytotoxic abilities of the immune system in a targeted manner (often called "adoptive" cell therapy), have changed the way we treat r/r hematologic malignancies and continue to change the treatment landscape given the rapid evolution of these powerful, yet sophisticated precision therapies that often offer a less toxic alternative to conventional salvage therapies. Importantly, adoptive cell therapy can be allo-HSCT-enabling or a therapeutic option for patients in whom transplantation has failed or is contraindicated. A solid understanding of the core concepts of adoptive cell therapy is necessary for stem cell transplant physicians, nurses and ancillary staff given its proximity to the transplant field as well as its inherent complexities that require specific expertise in compliant manufacturing, clinical application, and risk mitigation. Here we will review use of targeted cellular therapy for the treatment of r/r leukemia, focusing on chimeric antigen receptor T-cells (CAR T-cells) given the remarkable sustained clinical responses leading to commercial approval for several hematologic indications including leukemia, with brief discussion of other promising investigational cellular immunotherapies and special considerations for sustainability and scalability.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA
| | - Rayne H Rouce
- Texas Children's Cancer Center, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, USA.
| |
Collapse
|
33
|
Nguyen TT, Thanh Nhu N, Chen C, Lin C. Effectiveness and safety of CD22 and CD19 dual-targeting chimeric antigen receptor T-cell therapy in patients with relapsed or refractory B-cell malignancies: A meta-analysis. Cancer Med 2023; 12:18767-18785. [PMID: 37667978 PMCID: PMC10557829 DOI: 10.1002/cam4.6497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The efficacy of CD22 or CD19 chimeric antigen receptor T (CAR-T) cells in the management of acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) was observed. Because antigen loss and lack of CAR-T-cell persistence are the leading causes of progressive disease following single-antigen targeting, we evaluated CD22/CD19 dual-targeting CAR-T-cell therapy efficacy and safety in relapsed/refractory B-cell malignancies. METHODS The Web of Science, PubMed, Cochrane, and Embase databases were searched until July 2022. Patients confirmed with any relapsed/refractory B-cell hematological malignancies were included regardless of age, gender, or ethnicity, receiving CD22 and CD19-dual-targeting CAR-T-cell therapy. The studies conducted on patients with coexisting other cancer were excluded. We used random-effect models to explore the outcome, and heterogeneity was investigated by subgroup analysis. RESULTS Fourteen studies (405 patients) were included. The pooled overall response (OR) and complete remission (CR) were 97% and 93%, respectively, for ALL patients. The 1-year proportions of overall survival (OS) and progression-free survival (PFS) were 70% and 49%, respectively. For NHL, OR occurred in 85% of patients, and 57% experienced CR. The results illustrated that the 1-year OS and 1-year PFS were 77% and 65%, respectively. The subgroup analysis showed that the dual-targeting modality achieved higher CR in the following cases: coadministration of CD22/CD19-CAR-T cells and third-generation CAR-T cells combined with ASCT and BEAM pretreatment. The ALL and NHL groups seemed similar in treatment-related toxicity: all grade cytokine release syndrome (CRS), severe CRS, and neurotoxicity occurred in 86%, 7%, and 12% of patients, respectively. CONCLUSIONS Our meta-analysis demonstrated that the CD22/CD19 dual-targeting CAR-T-cell strategy has high efficiency with tolerable adverse effects in B-cell malignancies.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- International Ph.D. Program in Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of OncologyHue University of Medicine and Pharmacy, Hue UniversityHueVietnam
- Department of Microbiology and Immunology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Nguyen Thanh Nhu
- International Ph.D. Program in Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Faculty of MedicineCan Tho University of Medicine and PharmacyCan ThoVietnam
| | - Chia‐Ling Chen
- School of Respiratory Therapy, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chiou‐Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Core Laboratory of Immune Monitoring, Office of Research & DevelopmentTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
34
|
Meckler JF, Levis DJ, Vang DP, Tuscano JM. A Novel bispecific T-cell engager (BiTE) targeting CD22 and CD3 has both in vitro and in vivo activity and synergizes with blinatumomab in an acute lymphoblastic leukemia (ALL) tumor model. Cancer Immunol Immunother 2023; 72:2939-2948. [PMID: 37247022 PMCID: PMC10412491 DOI: 10.1007/s00262-023-03444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 05/30/2023]
Abstract
Immunotherapy has revolutionized cancer therapy. Two recently FDA-approved immunotherapies for B-cell malignancies target CD19, in the form of a Bispecific T-Cell Engager (BiTE) antibody construct or chimeric antigen receptor T (CAR-T) cells. Blinatumomab, an FDA-approved BiTE, binds to CD19 on B cells and to CD3 on T cells, mediating effector-target cell contact and T-cell activation that results in effective elimination of target B cells. Although CD19 is expressed by essentially all B-cell malignancies at clinical presentation, relapses with loss or reduction in CD19 surface expression are increasingly recognized as a cause of treatment failure. Therefore, there is a clear need to develop therapeutics for alternate targets. We have developed a novel BiTE consisting of humanized anti-CD22 and anti-CD3 single chain variable fragments. Target binding of the anti-CD22 and anti-CD3 moieties was confirmed by flow cytometry. CD22-BiTE promoted in vitro cell-mediated cytotoxicity in a dose and effector: target (E:T)-dependent fashion. Additionally, in an established acute lymphoblastic leukemia (ALL) xenograft mouse model, CD22-BiTE demonstrated tumor growth inhibition, comparable to blinatumomab. Further, the combination of blinatumomab and CD22-BiTE yielded increased efficacy in vivo when compared to the single agents. In conclusion, we report here the development of a new BiTE with cytotoxic activity against CD22+ cells which could represent an alternate or complementary therapeutic option for B-cell malignancies.
Collapse
Affiliation(s)
- Joshua F Meckler
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel J Levis
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Daniel P Vang
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Joseph M Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA.
- Department of Veterans Affairs, Northern California Healthcare System, Sacramento, CA, USA.
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Health System, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| |
Collapse
|
35
|
Meng S, Li M, Qin L, Lv J, Wu D, Zheng D, Jia H, Chen D, Wu Q, Long Y, Tang Z, Tang Y, Yang L, Yao Y, Luo X, Li P. The onco-embryonic antigen ROR1 is a target of chimeric antigen T cells for colorectal cancer. Int Immunopharmacol 2023; 121:110402. [PMID: 37301125 DOI: 10.1016/j.intimp.2023.110402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer is globally ranked second in both incidence and mortality rate. It usually develops during the middle or late stages of diagnosis, and is characterized by easy metastasis, poor prognosis, and a significant decline in postoperative quality of life. ROR1 is an excellent oncoembryonic antigen in numerous immunotherapy treatments for tumors. Additionally, it is overexpressed in colorectal cancer. To fill the void in CRC treatment with ROR1 as a target of CAR-T immunotherapy, we designed and prepared antiROR1-CART. This third-generation CAR-T cell can effectively inhibit the growth of colorectal cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Shangsen Meng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Heng Jia
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongmei Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhaoyang Tang
- Guangdong Zhaotai In Vivo Biomedicine Co. Ltd., Guangzhou 510700, China
| | - Yanlai Tang
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lihua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuequn Luo
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Peng Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, China; Department of Surgery of the Faculty of Medicine, The Chinese University of Hong Kong (CUHK), China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
36
|
Pasvolsky O, Kebriaei P, Shah BD, Jabbour E, Jain N. Chimeric antigen receptor T-cell therapy for adult B-cell acute lymphoblastic leukemia: state-of-the-(C)ART and the road ahead. Blood Adv 2023; 7:3350-3360. [PMID: 36912764 PMCID: PMC10345854 DOI: 10.1182/bloodadvances.2022009462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has recently been added to the armamentarium in the battle against B-cell acute lymphoblastic leukemia (B-ALL). In this review, we discuss the trials that led to US Food and Drug Administration approval of CAR T-cell therapies in patients with B-ALL. We evaluate the evolving role of allogeneic hematopoietic stem cell transplant in the CAR T-cell era and discuss lessons learned from the first steps with CAR T-cell therapy in ALL. Upcoming innovations in CAR technology, including combined and alternative targets and off-the-shelf allogeneic CAR T-cell strategies are presented. Finally, we envision the role that CAR T cells could take in the management of adult patients with B-ALL in the near future.
Collapse
Affiliation(s)
- Oren Pasvolsky
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bijal D. Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
37
|
Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute Lymphoblastic Leukemia Immunotherapy Treatment: Now, Next, and Beyond. Cancers (Basel) 2023; 15:3346. [PMID: 37444456 DOI: 10.3390/cancers15133346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a blood cancer that primarily affects children but also adults. It is due to the malignant proliferation of lymphoid precursor cells that invade the bone marrow and can spread to extramedullary sites. ALL is divided into B cell (85%) and T cell lineages (10 to 15%); rare cases are associated with the natural killer (NK) cell lineage (<1%). To date, the survival rate in children with ALL is excellent while in adults continues to be poor. Despite the therapeutic progress, there are subsets of patients that still have high relapse rates after chemotherapy or hematopoietic stem cell transplantation (HSCT) and an unsatisfactory cure rate. Hence, the identification of more effective and safer therapy choices represents a primary issue. In this review, we will discuss novel therapeutic options including bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor (CAR)-based therapies, and other promising treatments for both pediatric and adult patients.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| | - Beatrice Marziani
- Emergency Medicine Department, Sant'Anna University Hospital, Via A. Moro, 8, Cona, 44124 Ferrara, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, The University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| |
Collapse
|
38
|
Casey NP, Klee CH, Fåne A, Caulier B, Graczyk-Jarzynka A, Krawczyk M, Fidyt K, Josefsson SE, Köksal H, Dillard P, Patkowska E, Firczuk M, Smeland EB, Winiarska M, Myklebust JH, Inderberg EM, Wälchli S. Efficient chimeric antigen receptor (CAR) targeting of a central epitope of CD22. J Biol Chem 2023:104883. [PMID: 37269947 PMCID: PMC10331463 DOI: 10.1016/j.jbc.2023.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has had considerable success in the treatment of B cell malignancies. Targeting the B-lineage markerCD19 has brought great advances to treatment of acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse remains an issue in many cases. Such relapse can result from downregulation or loss of CD19 from the malignant cell population, or expression of alternate isoforms. Consequently, there remains a need to target alternative B-cell antigens and diversify the spectrum of epitopes targeted within the same antigen. CD22 has been identified as a substitute target in cases of CD19-negative relapse. One anti-CD22 antibody - clone m971 - targets a membrane-proximal epitope of CD22 and has been widely validated and used in the clinic. Here we have compared m971-CAR with a novel CAR derived from IS7, an antibody that targets a central epitope on CD22. The IS7-CAR has superior avidity, and is active and specific against CD22 positive targets, including B-ALL patient-derived xenograft (PDX) samples. Side-by-side comparisons indicated that while IS7-CAR killed less rapidly than m971-CAR in vitro, it remains efficient in controlling lymphoma xenograft models in vivo. Thus, IS7-CAR presents a potential alternative candidate for treatment of refractory B-cell malignancies.
Collapse
Affiliation(s)
- Nicholas Paul Casey
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Clara Helena Klee
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Benjamin Caulier
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway; Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Sarah E Josefsson
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hakan Köksal
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pierre Dillard
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Erlend B Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - June H Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| | - Sébastien Wälchli
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
39
|
Jess J, Yates B, Dulau-Florea A, Parker K, Inglefield J, Lichtenstein D, Schischlik F, Ongkeko M, Wang Y, Shahani S, Cullinane A, Smith H, Kane E, Little L, Chen D, Fry TJ, Shalabi H, Wang HW, Satpathy A, Lozier J, Shah NN. CD22 CAR T-cell associated hematologic toxicities, endothelial activation and relationship to neurotoxicity. J Immunother Cancer 2023; 11:e005898. [PMID: 37295816 PMCID: PMC10277551 DOI: 10.1136/jitc-2022-005898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hematologic toxicities, including coagulopathy, endothelial activation, and cytopenias, with CD19-targeted chimeric antigen receptor (CAR) T-cell therapies correlate with cytokine release syndrome (CRS) and neurotoxicity severity, but little is known about the extended toxicity profiles of CAR T-cells targeting alternative antigens. This report characterizes hematologic toxicities seen following CD22 CAR T-cells and their relationship to CRS and neurotoxicity. METHODS We retrospectively characterized hematologic toxicities associated with CRS seen on a phase 1 study of anti-CD22 CAR T-cells for children and young adults with relapsed/refractory CD22+ hematologic malignancies. Additional analyses included correlation of hematologic toxicities with neurotoxicity and exploring effects of hemophagocytic lymphohistiocytosis-like toxicities (HLH) on bone marrow recovery and cytopenias. Coagulopathy was defined as evidence of bleeding or abnormal coagulation parameters. Hematologic toxicities were graded by Common Terminology Criteria for Adverse Events V.4.0. RESULTS Across 53 patients receiving CD22 CAR T-cells who experienced CRS, 43 (81.1%) patients achieved complete remission. Eighteen (34.0%) patients experienced coagulopathy, of whom 16 had clinical manifestations of mild bleeding (typically mucosal bleeding) which generally subsided following CRS resolution. Three had manifestations of thrombotic microangiopathy. Patients with coagulopathy had higher peak ferritin, D-dimer, prothrombin time, international normalized ratio (INR), lactate dehydrogenase (LDH), tissue factor, prothrombin fragment F1+2 and soluble vascular cell adhesion molecule-1 (s-VCAM-1). Despite a relatively higher incidence of HLH-like toxicities and endothelial activation, overall neurotoxicity was generally less severe than reported with CD19 CAR T-cells, prompting additional analysis to explore CD22 expression in the central nervous system (CNS). Single-cell analysis revealed that in contrast to CD19 expression, CD22 is not on oligodendrocyte precursor cells or on neurovascular cells but is seen on mature oligodendrocytes. Lastly, among those attaining CR, grade 3-4 neutropenia and thrombocytopenia were seen in 65% of patients at D28. CONCLUSION With rising incidence of CD19 negative relapse, CD22 CAR T-cells are increasingly important for the treatment of B-cell malignancies. In characterizing hematologic toxicities on CD22 CAR T-cells, we demonstrate that despite endothelial activation, coagulopathy, and cytopenias, neurotoxicity was relatively mild and that CD22 and CD19 expression in the CNS differed, providing one potential hypothesis for divergent neurotoxicity profiles. Systematic characterization of on-target off-tumor toxicities of novel CAR T-cell constructs will be vital as new antigens are targeted. TRIAL REGISTRATION NUMBER NCT02315612.
Collapse
Affiliation(s)
- Jennifer Jess
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Parker
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dan Lichtenstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - Martin Ongkeko
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shilpa Shahani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ann Cullinane
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eli Kane
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren Little
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Chen
- Mayo Clinic, Rochester, Minnesota, USA
| | - Terry J Fry
- University of Colorado Denver Children's Hospital Colorado Research Institute, Aurora, Colorado, USA
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Ansuman Satpathy
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jay Lozier
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Obiorah I, Courville EL. Diagnostic Flow Cytometry in the Era of Targeted Therapies: Lessons from Therapeutic Monoclonal Antibodies and Chimeric Antigen Receptor T-cell Adoptive Immunotherapy. Surg Pathol Clin 2023; 16:423-431. [PMID: 37149367 DOI: 10.1016/j.path.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies (therapeutic mAb) and adoptive immunotherapy have become increasingly more common in the treatment of hematolymphoid neoplasms, with practical implications for diagnostic flow cytometry. Their use can reduce the sensitivity of flow cytometry for populations of interest owing to downregulation/loss of the target antigen, competition for the target antigen, or lineage switch. Expanded flow panels, marker redundancy, and exhaustive gating strategies can overcome this limitation. Therapeutic mAb have been reported to cause pseudo-light chain restriction, and awareness of this potential artifact is key. Established guidelines do not yet exist for antigen expression by flow cytometry for therapeutic purposes.
Collapse
Affiliation(s)
- Ifeyinwa Obiorah
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA
| | - Elizabeth L Courville
- Department of Pathology, University of Virginia Health, PO Box 800214, Charlottesville, VA 22908, USA.
| |
Collapse
|
41
|
Li W, Ding L, Shi W, Wan X, Yang X, Yang J, Wang T, Song L, Wang X, Ma Y, Luo C, Tang J, Gu L, Chen J, Lu J, Tang Y, Li B. Safety and efficacy of co-administration of CD19 and CD22 CAR-T cells in children with B-ALL relapse after CD19 CAR-T therapy. J Transl Med 2023; 21:213. [PMID: 36949487 PMCID: PMC10031882 DOI: 10.1186/s12967-023-04019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND CD19-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable efficacy in treating relapsed or refractory pediatric B-lineage acute lymphoblastic leukemia (B-ALL). However, poor results are obtained when the same product is reused in patients who relapse after CAR-T. Therefore, there is a need to explore the safety and efficacy of co-administration of CD19- and CD22-targeted CAR-T as a salvage second CAR-T therapy (CART2) in B-ALL patients who relapse after their first CD19 CAR-T treatment (CART1). METHODS In this study, we recruited five patients who relapsed after CD19-targeted CAR-T. CD19- and CD22-CAR lentivirus-transfected T cells were cultured separately and mixed before infusion in an approximate ratio of 1:1. The total dose range of CD19 and CD22 CAR-T was 4.3 × 106-1.5 × 107/kg. Throughout the trial, we evaluated the patients' clinical responses, side effects, and the expansion and persistence of CAR-T cells. RESULTS After CART2, all five patients had minimal residual disease (MRD)-negative complete remission (CR). The 6- and 12-month overall survival (OS) rates were 100%. The median follow-up time was 26.3 months. Three of the five patients bridged to consolidated allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CART2 and remained in MRD-negative CR at the cut-off time. In patient No. 3 (pt03), CAR-T cells were still detected in the peripheral blood (PB) at 347 days post-CART2. Cytokine release syndrome (CRS) only occurred with a grade of ≤ 2, and no patients experienced symptoms of neurologic toxicity during CART2. CONCLUSIONS Mixed infusion of CD19- and CD22-targeted CAR-T cells is a safe and effective regimen for children with B-ALL who relapse after prior CD19-targeted CAR-T therapy. Salvage CART2 provides an opportunity for bridging to transplantation and long-term survival. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2000032211. Retrospectively registered: April 23, 2020.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Ding
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Shi
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Wan
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomin Yang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Song
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Ma
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyan Tang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longjun Gu
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yanjing Tang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Benshang Li
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
42
|
Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, Xie Z, Qiao X, Jiang H, Shao J, Yang F, Ren H, Cao Q, Qian J, Zhang J, An K, Wang J, Luo C, Liang H, Miao Y, Ma Y, Wang X, Ding L, Song L, He H, Shi W, Xiao P, Yang X, Yang J, Li W, Zhu Y, Wang N, Gu L, Chen Q, Tang J, Yang JJ, Cheng C, Leung W, Chen J, Lu J, Li B, Pui CH. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. J Clin Oncol 2023; 41:1670-1683. [PMID: 36346962 PMCID: PMC10419349 DOI: 10.1200/jco.22.01214] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE We determined the safety and efficacy of coadministration of CD19- and CD22-chimeric antigen receptor (CAR) T cells in patients with refractory disease or high-risk hematologic or isolated extramedullary relapse of B-acute lymphoblastic leukemia. PATIENTS AND METHODS This phase II trial enrolled 225 evaluable patients age ≤ 20 years between September 17, 2019, and December 31, 2021. We first conducted a safety run-in stage to determine the recommended dose. After interim analysis of the first 30 patients treated (27 at the recommended dose) showing that the treatment was safe and effective, the study enrolled additional patients according to the study design. RESULTS Complete remission was achieved in 99.0% of the 194 patients with refractory leukemia or hematologic relapse, all negative for minimal residual disease. Their overall 12-month event-free survival (EFS) was 73.5% (95% CI, 67.3 to 80.3). Relapse occurred in 43 patients (24 with CD19+/CD22+ relapse, 16 CD19-/CD22+, one CD19-/CD22-, and two unknown). Consolidative transplantation and persistent B-cell aplasia at 6 months were associated with favorable outcomes. The 12-month EFS was 85.0% (95% CI, 77.2 to 93.6) for the 78 patients treated with transplantation and 69.2% (95% CI, 60.8 to 78.8) for the 116 nontransplanted patients (P = .03, time-dependent covariate Cox model). All 25 patients with persistent B-cell aplasia at 6 months remained in remission at 12 months. The 12-month EFS for the 20 patients with isolated testicular relapse was 95.0% (95% CI, 85.9 to 100), and for the 10 patients with isolated CNS relapse, it was 68.6% (95% CI, 44.5 to 100). Cytokine release syndrome developed in 198 (88.0%) patients, and CAR T-cell neurotoxicity in 47 (20.9%), resulting in three deaths. CONCLUSION CD19-/CD22-CAR T-cell therapy achieved relatively durable remission in children with relapsed or refractory B-acute lymphoblastic leukemia, including those with isolated or combined extramedullary relapse. [Media: see text].
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wan
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhiwei Xie
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Anhui, China
| | - Xiaohong Qiao
- Department of Pediatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Jiang
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai, China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai, China
| | - Fan Yang
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ren
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Qian
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang An
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Wang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Liang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Miao
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yani Ma
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Song
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Wenhua Shi
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Peifang Xiao
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaomin Yang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Zhu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Anhui, China
| | - Longjun Gu
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Chen
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyan Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN
| | - Wing Leung
- Department of Pediatrics, University of Hong Kong, Hong Kong SAR, China
| | - Jing Chen
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Benshang Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ching-Hon Pui
- Departments of Oncology, Pathology, and Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
43
|
Zhang Q, Zhu X, Liu B, Zhang Y, Xiao Y. Case report: Sandwich therapy of CAR-T combined with ASCT: Sequential CAR-T cell therapy with ASCT after remission with CAR-T therapy caused long-term survival in a patient with relapsed/refractory Burkitt’s lymphoma with TP53 mutations. Front Immunol 2023; 14:1127868. [PMID: 37006273 PMCID: PMC10063779 DOI: 10.3389/fimmu.2023.1127868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Burkitt’s lymphoma (BL) with TP53 mutation often has poor outcome after standard chemoimmunotherapy. Adoptive chimeric antigen receptor (CAR)-T cell therapy may be a new paradigm for treating refractory/relapsed (r/r) BL, but its therapeutic effects remain inconclusive. Here, we report a patient with r/r BL who failed to achieve complete remission (CR) and progressed rapidly after multiple protocol chemotherapy. The patient achieved CR with CAR19 and CAR22 T-cell cocktail therapy and obtained long-term disease-free survival after autologous hematopoietic stem cells (ASCT) and subsequential CAR19 and CAR22 T-cell cocktail therapy. The clinical evolution and genetic features of this case may provide some guidance for CAR-T therapy in overcoming relapses associated with TP53 gene mutations.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaojian Zhu, ; Bo Liu, ; Yicheng Zhang, ; Yi Xiao,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaojian Zhu, ; Bo Liu, ; Yicheng Zhang, ; Yi Xiao,
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaojian Zhu, ; Bo Liu, ; Yicheng Zhang, ; Yi Xiao,
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaojian Zhu, ; Bo Liu, ; Yicheng Zhang, ; Yi Xiao,
| |
Collapse
|
44
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
45
|
Cao X, Jin X, Zhang X, Utsav P, Zhang Y, Guo R, Lu W, Zhao M. Small-Molecule Compounds Boost CAR-T Cell Therapy in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:184-211. [PMID: 36701037 PMCID: PMC9992085 DOI: 10.1007/s11864-023-01049-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
OPINION STATEMENT Although chimeric antigen receptor T cell immunotherapy has been successfully applied in patients with hematological malignancies, several obstacles still need to be overcome, such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be addressed. The exploration of small-molecule compounds in combination with CAR-T cell therapies has achieved promising success in pre-clinical and clinical studies in recent years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors, immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited potential synergy in combination with CAR-T cell therapy. In this review, we will discuss the recent application of these combination therapies for improved outcomes of CAR-T cell therapy.
Collapse
Affiliation(s)
- Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiaomei Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Paudel Utsav
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
46
|
Zhang Y, Xu Y, Dang X, Zhu Z, Qian W, Liang A, Han W. Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chin Med J (Engl) 2023; 136:269-279. [PMID: 36848181 PMCID: PMC10106177 DOI: 10.1097/cm9.0000000000002476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Remarkable improvement relative to traditional approaches in the treatment of hematological malignancies by chimeric antigen receptor (CAR) T-cell therapy has promoted sequential approvals of eight commercial CAR T products within last 5 years. Although CAR T cells' productization is now rapidly boosting their extensive clinical application in real-world patients, the limitation of their clinical efficacy and related toxicities inspire further optimization of CAR structure and substantial development of innovative trials in various scenarios. Herein, we first summarized the current status and major progress in CAR T therapy for hematological malignancies, then described crucial factors which possibly compromise the clinical efficacies of CAR T cells, such as CAR T cell exhaustion and loss of antigen, and finally, we discussed the potential optimization strategies to tackle the challenges in the field of CAR T therapy.
Collapse
Affiliation(s)
- Yajing Zhang
- Department of Bio-Therapeutics, The First Medical Centre, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiuyong Dang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Zeyu Zhu
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Weidong Han
- Department of Bio-Therapeutics, The First Medical Centre, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| |
Collapse
|
47
|
Zaib T, Cheng K, Liu T, Mei R, Liu Q, Zhou X, He L, Rashid H, Xie Q, Khan H, Xu Y, Sun P, Wu J. Expression of CD22 in Triple-Negative Breast Cancer: A Novel Prognostic Biomarker and Potential Target for CAR Therapy. Int J Mol Sci 2023; 24:ijms24032152. [PMID: 36768478 PMCID: PMC9917013 DOI: 10.3390/ijms24032152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer cases. Due to the lack of expression of well-known molecular targets [estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)], there is a need for more alternative treatment approaches in TNBC. Chimeric antigen receptor (CAR)-T cell-based immunotherapy treatment is one of the latest treatment technologies with outstanding therapeutic advances in the past decade, especially in the treatment of hematologic malignancies, but the therapeutic effects of CAR-T cells against solid tumors have not yet shown significant clinical benefits. Identification of highly specific CAR-T targets in solid tumors is also crucial for its successful treatment. CD22 is reported to be a multifunctional receptor that is mainly expressed on the surface of mature B-cells (lymphocytes) and is also highly expressed in most B-cell malignancies. This study aimed to investigate the expression of CD22 in TNBC. Bioinformatic analysis was performed to evaluate the expression of CD22 in breast carcinoma and normal tissues. RNA-seq data of normal and breast carcinoma patients were downloaded from The Cancer Genome Atlas (TCGA), and differential gene expression was performed using R language. Additionally, online bioinformatics web tools (GEPIA and TNM plot) were used to evaluate the expression of CD22 in breast carcinoma and normal tissues. Western blot (WB) analysis and immunofluorescence (IF) were performed to characterize the expression of CD22 in TNBC cell lines. Immunohistochemical (IHC) staining was performed on tumor specimens from 97 TNBC patients for CD22 expression. Moreover, statistical analysis was performed to analyze the association of clinical pathological parameters with CD22 expression. Correlation analysis between overall survival data of TNBC patients and CD22 expression was also performed. Differential gene expression analysis of TCGA data revealed that CD22 is among the upregulated differentially expressed genes (DEGs) with high expression in breast cancer, as compared to normal breast tissues. WB and IF analysis revealed high expression of CD22 in TNBC cell lines. IHC results also showed that approximately 62.89% (61/97) of TNBC specimens were stained positive for CD22. Cell membrane expression of CD22 was evident in 23.71% (23/97) of TNBC specimens, and 39.18% (38/97) of TNBC specimens showed cytoplasmic/membrane expression, while 37.11% (36/97) specimens were negative for CD22. Furthermore, significant associations were found between the size of tumors in TNBC patients and CD22 expression, which unveils its potential as a prognostic biomarker. No significant correlation was found between the overall survival of TNBC patients and CD22 expression. In conclusion, we demonstrated for the first time that CD22 is highly expressed in TNBC. Based on our findings, we anticipated that CD22 could be used as a prognostic biomarker in TNBC, and it might be a potential CAR-T target in TNBC for whom few therapeutic options exist. However, more large-scale studies and clinical trials will ensure its potential usefulness as a CAR-T target in TNBC.
Collapse
Affiliation(s)
- Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Ke Cheng
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Tingdang Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Ruyi Mei
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Qin Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Lifang He
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515031, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
| | - Hibba Rashid
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Qingdong Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hanif Khan
- Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yien Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: (P.S.); (J.W.)
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515031, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
- Correspondence: (P.S.); (J.W.)
| |
Collapse
|
48
|
Li Z, Yang K, Song Y, Zhao Y, Wu F, Wen X, Li J, Wang X, Xu T, Zheng X, Zheng Q, Wu T. CAR-T therapy followed by allogeneic hematopoietic stem cell transplantation for refractory/relapsed acute B lymphocytic leukemia: Long-term follow-up results. Front Oncol 2023; 12:1048296. [PMID: 36686744 PMCID: PMC9846489 DOI: 10.3389/fonc.2022.1048296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
Background Patients with refractory/relapsed (r/r) acute B lymphocytic leukemia (B-ALL) can achieve complete response (CR) after chimeric antigen receptor T-cell (CAR-T) therapy, but recurrence occurs in the short term. To reduce recurrence and improve survival, CAR-T therapy followed by transplantation is a feasible option. We analyzed the long-term follow-up outcomes and the risk factors for allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CR by CAR-T therapy in this study. Methods A total of 144 patients who underwent allo-HSCT after CAR-T therapy in our hospital were enrolled in this study. Target gene analysis was performed in 137 r/r B-ALL patients receiving allo-HSCT after CR by CAR-T therapy. Among the 137 patients, 87 were evaluated for germline predisposition gene mutations, and 92 were evaluated for tumor somatic gene mutations using NGS. The clinical factors, germline predisposition gene and somatic gene mutations associated with the prognosis of patients receiving transplantation after CAR-T therapy were analyzed using univariate Cox regression. Factors related to disease-free survival (DFS) and overall survival (OS) were analyzed using multivariate Cox regression analysis. Results In 137 r/r B-ALL patients, the 2-year cumulative incidence of recurrence (CIR), OS and DFS in patients receiving allo-HSCT after CAR-T therapy was 31.5%, 71.4%, and 60.5%, respectively. The 2-year OS and DFS in MRD-negative patients were 80.9% and 69.3%, respectively. Univariate Cox analysis showed that pretransplant MRD positivity, fungal infection, germline EP300 mutation and somatic TP53 mutation were associated with a poor prognosis after transplantation; a TBI-based regimen was a protective factor for survival and recurrence after transplantation. Multivariate Cox regression analysis showed that the TBI-based regimen was an independent protective factor for DFS, fungal infection and MRD positivity were independent risk factors for DFS, and tumor somatic TP53 mutation and germline EP300 mutation were independent risk factors for DFS and OS. Conclusion Germline EP300 mutation and tumor somatic TP53 mutation are poor prognostic factors for posttransplant recurrence and survival in r/r B-ALL patients achieving CR after CAR-T therapy. The prognostic risk factors should be considered in adjusting treatment strategies to improve the efficacy of clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Keyan Yang
- Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Yanzhi Song
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Yongqiang Zhao
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Fan Wu
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Xiaopei Wen
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Jing Li
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Xianxuan Wang
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Teng Xu
- Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Xiaoyu Zheng
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Qinglong Zheng
- Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China,*Correspondence: Tong Wu, ; Qinglong Zheng,
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China,*Correspondence: Tong Wu, ; Qinglong Zheng,
| |
Collapse
|
49
|
Fergusson NJ, Adeel K, Kekre N, Atkins H, Hay KA. A systematic review and meta-analysis of CD22 CAR T-cells alone or in combination with CD19 CAR T-cells. Front Immunol 2023; 14:1178403. [PMID: 37180149 PMCID: PMC10174241 DOI: 10.3389/fimmu.2023.1178403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cells are an emerging therapy for the treatment of relapsed/refractory B-cell malignancies. While CD19 CAR-T cells have been FDA-approved, CAR T-cells targeting CD22, as well as dual-targeting CD19/CD22 CAR T-cells, are currently being evaluated in clinical trials. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of CD22-targeting CAR T-cell therapies. We searched MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials from inception to March 3rd 2022 for full-length articles and conference abstracts of clinical trials employing CD22-targeting CAR T-cells in acute lymphocytic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The primary outcome was best complete response (bCR). A DerSimonian and Laird random-effects model with arcsine transformation was used to pool outcome proportions. From 1068 references screened, 100 were included, representing 30 early phase studies with 637 patients, investigating CD22 or CD19/CD22 CAR T-cells. CD22 CAR T-cells had a bCR of 68% [95% CI, 53-81%] in ALL (n= 116), and 64% [95% CI, 46-81%] in NHL (n= 28) with 74% and 96% of patients having received anti-CD19 CAR T-cells previously in ALL and NHL studies respectively. CD19/CD22 CAR T-cells had a bCR rate of 90% [95% CI, 84-95%] in ALL (n= 297) and 47% [95% CI, 34-61%] in NHL (n= 137). The estimated incidence of total and severe (grade ≥3) CRS were 87% [95% CI, 80-92%] and 6% [95% CI, 3-9%] respectively. ICANS and severe ICANS had an estimated incidence of 16% [95% CI, 9-25%] and 3% [95% CI, 1-5%] respectively. Early phase trials of CD22 and CD19/CD22 CAR T-cells show high remission rates in ALL and NHL. Severe CRS or ICANS were (1)rare and dual-targeting did not increase toxicity. Variability in CAR construct, dose, and patient factors amongst studies limits comparisons, with long-term outcomes yet to be reported. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42020193027.
Collapse
Affiliation(s)
- Nathan J. Fergusson
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Komal Adeel
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Natasha Kekre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Harold Atkins
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Kevin A. Hay
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
- Vancouver General Hospital, Leukemia and Bone Marrow Transplant Program of British Columbia, Vancouver, BC, Canada
- *Correspondence: Kevin A. Hay,
| |
Collapse
|
50
|
Li L, Wang L, Liu Q, Wu Z, Zhang Y, Xia R. Efficacy and safety of CD22-specific and CD19/CD22-bispecific CAR-T cell therapy in patients with hematologic malignancies: A systematic review and meta-analysis. Front Oncol 2022; 12:954345. [PMID: 36644638 PMCID: PMC9837739 DOI: 10.3389/fonc.2022.954345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Background CD22 single and CD19/CD22 bispecific targeted chimeric antigen receptor T (CAR-T) cell therapy are promising immunotherapy modalities for the treatment of hematologic malignancies. The aim of this study was to assess the efficacy and safety of CD22 and CD19/CD22 targeted CAR-T cell therapy by summarizing the existing evidence. Methods Electronic databases including PubMed, Embase, and Scopus were comprehensively searched from inception up to November 30, 2022. Pooled response rates and minimal residual disease (MRD) negative response rates, cytokine release syndrome (CRS) rates and neurotoxicity rates were calculated. Subgroup analysis was performed based on the type of immunotherapy. Results Ten clinical studies including 194 patients with hematologic malignancies were included after a systematical screening of literature. The pooled complete response (CR) rates of CD22 and CD19/CD22 CAR-T cell therapy for relapsed or refractory B-cell lymphoblastic leukemia (B-ALL) were 0.75 (95% CI: 0.60 - 0.88) and 0.87 (95% CI: 0.76 - 0.96). The overall MRD negative response rates of CD22 and CD19/CD22 CAR-T were 0.54 (95% CI: 0.42 - 0.66) and 0.91 (95% CI: 0.47 - 0.88). Pooled CRS rates of CD22 targeted and CD19/CD22 targeted immunotherapy were 0.92 (95% CI: 0.82 - 0.98) and 0.94 (95% CI: 0.82 - 1.00), respectively. Conclusion Both CD22 and CD19/CD22 CAR-T immunotherapy demonstrated favorable efficacy and acceptable adverse events in the treatment of hematologic malignancies. Well-designed and large sample-sized clinical trials are warranted.
Collapse
Affiliation(s)
- Lili Li
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Luqin Wang
- Department of Bioinformatics, Precedo Pharmaceuticals Co. Ltd., Hefei, China
| | - Qinhua Liu
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhonghui Wu
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yulong Zhang
- Department of Bioinformatics, Precedo Pharmaceuticals Co. Ltd., Hefei, China,*Correspondence: Yulong Zhang, ; Ruixiang Xia,
| | - Ruixiang Xia
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,*Correspondence: Yulong Zhang, ; Ruixiang Xia,
| |
Collapse
|