1
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Su Y, Wang J, Ren Y, Xu S, Si Y, Tang M, Li Y, Wang M. Epidemiological Characteristics of Neuro-Specific Antibodies Following Viral Infections. J Med Virol 2024; 96:e70050. [PMID: 39540343 DOI: 10.1002/jmv.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
This study aims to explore the epidemiological characteristics of neuro-specific antibodies (ns-Ab) induced by different viral infections within the central nervous system (CNS). Additionally, it seeks to compare the autoimmune effects following several typical viral infections in CNS. We conduct a retrospective study to compare and analyze the prevalence trends of ns-Ab in patients with different viral infections. Additionally, evaluate the intensity of CNS inflammatory responses postviral infection by correlating clinical characteristics and laboratory findings, and briefly demonstrate the immune effects in CNS following various viral infections. This study retrospectively collected data from 1037 patients hospitalized with suspected CNS infections. A total of 654 patients (63.1%) were included in the final analysis. A higher proportion of patients with pathogens present in their cerebrospinal fluid (CSF) (114 out of 332, 34.3%) tested positive for ns-Ab compared to those without pathogens (70 out of 322, 21.7%) (p = 0.0004). Specifically, the screening rate for ns-Ab in patients with CNS viral infections (83 out of 165, 50.3%) and the prevalence of ns-Ab (27 out of 83, 32.5%) were significantly higher than in those with other pathogen infections (p < 0.0001 and p = 0.016, respectively). Among these, human herpesvirus 7 (HHV7) patients had the highest detection rate of ns-Ab during the disease course (11 out of 26, 42.3%), but exhibited infection characteristics distinctly different from those of herpes simplex virus 1 (HSV1). Viral infections significantly promote the development of autoimmune responses in CNS. The production of ns-Ab and the subsequent autoimmune response vary across different viral infections. There is a strong statistical correlation between HHV7 and the presence of ns-Ab, suggesting that HHV7 may serve as an early indicator of secondary autoimmune response following CNS infections.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Songtao Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Si
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wen Y, Fu Z, Li J, Liu M, Wang X, Chen J, Chen Y, Wang H, Wen S, Zhang K, Deng Y. Targeting m 6A mRNA demethylase FTO alleviates manganese-induced cognitive memory deficits in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134969. [PMID: 38908185 DOI: 10.1016/j.jhazmat.2024.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Manganese (Mn) induced learning and memory deficits through mechanisms that are not fully understood. In this study, we discovered that the demethylase FTO was significantly downregulated in hippocampal neurons in an experimental a mouse model of Mn exposure. This decreased expression of FTO was associated with Mn-induced learning and memory impairments, as well as the dysfunction in synaptic plasticity and damage to regional neurons. The overexpression of FTO, or its positive modulation with agonists, provides protection against neurological damage and cognitive impairments. Mechanistically, FTO interacts synergistically with the reader YTHDF3 to facilitate the degradation of GRIN1 and GRIN3B through the m6A modification pathway. Additionally, Mn decreases the phosphorylation of SOX2, which specifically impairs the transcriptional regulation of FTO activity. Additionally, we found that the natural compounds artemisinin and apigenin that can bind molecularly with SOX2 and reduce Mn-induced cognitive dysfunction in mice. Our findings suggest that the SOX2-FTO-Grins axis represents a viable target for addressing Mn-induced neurotoxicity and cognitive impairments.
Collapse
Affiliation(s)
- Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Zhushan Fu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Mingyue Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jingqi Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Yue Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sihang Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Institute of Health Professions Education Assessment and Reform, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Mathias A, Perriot S, Jones S, Canales M, Bernard-Valnet R, Gimenez M, Torcida N, Oberholster L, Hottinger AF, Zekeridou A, Theaudin M, Pot C, Du Pasquier R. Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases. Front Immunol 2024; 15:1419712. [PMID: 39114659 PMCID: PMC11303155 DOI: 10.3389/fimmu.2024.1419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Background and objectives Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Methods Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Results Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Conclusion Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases.
Collapse
Affiliation(s)
- Amandine Mathias
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Sylvain Perriot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Samuel Jones
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Mathieu Canales
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Raphaël Bernard-Valnet
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Nathan Torcida
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Larise Oberholster
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
| | - Andreas F. Hottinger
- Lundin Family Brain Tumor Research Centre, Department of Clinical Neurosciences and Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology and Department of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Marie Theaudin
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Epalinges, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Papi C, Milano C, Spatola M. Mechanisms of autoimmune encephalitis. Curr Opin Neurol 2024; 37:305-315. [PMID: 38667756 DOI: 10.1097/wco.0000000000001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW To provide an overview of the pathogenic mechanisms involved in autoimmune encephalitides mediated by antibodies against neuronal surface antigens, with a focus on NMDAR and LGI1 encephalitis. RECENT FINDINGS In antibody-mediated encephalitides, binding of IgG antibodies to neuronal surface antigens results in different pathogenic effects depending on the type of antibody, IgG subclass and epitope specificity. NMDAR IgG1 antibodies cause crosslinking and internalization of the target, synaptic and brain circuitry alterations, as well as alterations of NMDAR expressing oligodendrocytes, suggesting a link with white matter lesions observed in MRI studies. LGI1 IgG4 antibodies, instead, induce neuronal dysfunction by disrupting the interaction with cognate proteins and altering AMPAR-mediated signaling. In-vitro findings have been corroborated by memory and behavioral changes in animal models obtained by passive transfer of patients' antibodies or active immunization. These models have been fundamental to identify targets for innovative therapeutic strategies, aimed at counteracting or preventing antibody effects, such as the use of soluble ephrin-B2, NMDAR modulators (e.g., pregnenolone, SGE-301) or chimeric autoantibody receptor T cells (CAART) in models of NMDAR encephalitis. SUMMARY A deep understanding of the pathogenic mechanisms underlying antibody-mediated encephalitides is crucial for the development of new therapeutic approaches targeting brain autoimmunity.
Collapse
Affiliation(s)
- Claudia Papi
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
| | - Chiara Milano
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marianna Spatola
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Vaughn M, Powell S, Risbrough V, Zhou X. A Novel Simple ImmunoAssay for Quantification of Blood Anti-NMDAR1 Autoantibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589086. [PMID: 38659751 PMCID: PMC11042199 DOI: 10.1101/2024.04.11.589086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
High titers of anti-NMDAR1 autoantibodies in human brain cause anti-NMDAR1 encephalitis, a rare disease that displays a variety of psychiatric symptoms and neurological symptoms. Currently, immunohistochemical staining and cell-based assays are the standard methods for detection and semi-quantification of the anti-NMDAR1 autoantibodies. Low titers of blood circulating anti-NMDAR1 autoantibodies have been reported in a significant subset of the general human population. However, detection and quantification of these low titers of blood circulating anti-NMDAR1 autoantibodies are problematic because of high non-specific background from less diluted serum/plasma. Development of a new method to quantify these low titers of blood anti-NMDAR1 autoantibodies is necessary to understand their potential impacts on psychiatric symptoms and cognition. Based on our previous One-Step assay, we report the development of a novel simple immunoassay to quantify cross-species blood anti-NMDAR1 autoantibodies, and its validation with immunohistochemistry and cell-based assays in both humans and mice.
Collapse
Affiliation(s)
- Melonie Vaughn
- Department of Psychiatry, University of California San Diego, La Jolla, California, CA 92093, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, CA 92093, United States of America
| | - Susan Powell
- Department of Psychiatry, University of California San Diego, La Jolla, California, CA 92093, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, California, CA 92093, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, California, CA 92093, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
7
|
Wang J, Luo L, Meng Z, Ren Y, Tang M, Huang Z, Yang B, Niu Q, Zhou D, Wang M, Li J. Blood and CSF findings of cellular immunity in anti-NMDAR encephalitis. Int Immunopharmacol 2024; 130:111743. [PMID: 38430802 DOI: 10.1016/j.intimp.2024.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES To investigate the immunopathogenic mechanisms of anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) by characterizing the changes of immune cells in both peripheral blood (PB) and cerebrospinal fluid (CSF) of patients with NMDAR-E. METHODS Cytology and flow cytometry were used to explore and compare different immunological parameters in PB and CSF of patients with NMDAR-E, viral encephalitis (VE) and healthy volunteers. Moreover, different models were established to assess the possibility of identifying NMDAR-E patients based on PB and CSF parameters. RESULTS The neutrophil counts and monocyte-to-lymphocyte ratios (MLR) in PB are higher in NMDAR-E patients than in both VEs and controls (P < 0.001, respectively), while the percentages of CD3 + T, CD4 + T lymphocytes, and the leukocytes count in CSF were lower in NMDAR-Es than in VEs (P < 0.01, respectively). The higher percentages of CD8 + T cells in blood and CSF were both correlated with more severe NMDAR-E (P < 0.05, respectively). The poor neurological status group had significantly higher PB leukocytes but lower CSF leukocyte count (P < 0.05). Longitudinal observations in patients with NMDAR-E showed a decreasing trend of leukocyte count, neutrophils count, neutrophil-to-monocyte ratios (NMR), and neutrophil-to-lymphocyte ratios (NLR) with the gradual recovery of neurological function. CONCLUSIONS The expression patterns of T lymphocyte subsets were different in patients with NMDAR-E and viral encephalitis. The changing trends of leukocyte and lymphocyte populations in peripheral blood and cerebrospinal fluid may provide clues for the diagnosis of different types of encephalitides, including NMDARE, and can be used as immunological markers to assess and predict the prognosis.
Collapse
Affiliation(s)
- Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Meng Tang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Minjin Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Jinmei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Chen Y, Ning J, Shu L, Wen L, Yan B, Wang Z, Hu J, Zhou X, Tao Y, Xia X, Huang J. CPLX2 is a novel tumor suppressor and improves the prognosis in glioma. J Neurooncol 2024; 167:63-74. [PMID: 38427133 DOI: 10.1007/s11060-023-04548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Glioma is a type of malignant cancer that affect the central nervous system. New predictive biomarkers have been investigated in recent years, but the clinical prognosis for glioma remains poor. The function of CPLX2 in glioma and the probable molecular mechanism of tumor suppression were the focus of this investigation. METHODS The glioma transcriptome profile was downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases for analysis of CPLX2 expression in glioma. RT-qPCR was performed to detect the expression of CPLX2 in 68 glioma subjects who have been followed up. Kaplan-Meier survival analyses were conducted to assess the effect of CPLX2 on the prognosis of glioma patients. The knockdown and overexpressed cell lines of CPLX2 were constructed to investigate the impact of CPLX2 on glioma. The cell growth, colony formation, and tumor formation in xenograft were performed. RESULTS The expression of CPLX2 was downregulated in glioma and was negatively correlated with the grade of glioma. The higher expression of CPLX2 predicted a longer survival, as indicated by the analysis of Kaplan-Meier survival curves. Overexpressed CPLX2 impaired tumorigenesis in glioma progression both in vivo and in vitro. Knocking down CPLX2 promoted the proliferation of glioma cells. The analysis of GSEA and co-expression analysis revealed that CPLX2 may affect the malignancy of glioma by regulating the hypoxia and inflammation pathways. CONCLUSIONS Our data indicated that CPLX2 functions as a tumor suppressor and could be used as a potential prognostic marker in glioma.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jieling Ning
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Long Shu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Lingzhi Wen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bokang Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Junhong Hu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaokun Zhou
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jun Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
9
|
Liu D, Jin Z, Wei H, Zhu C, Liu K, You P, Ju J, Xu J, Zhu W, Xu Q. Anti-SFT2D2 autoantibodies alter dendrite spine and cause psychotic behavior in mice. J Psychiatr Res 2024; 171:99-107. [PMID: 38262166 DOI: 10.1016/j.jpsychires.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongman Jin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Kejiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengsheng You
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jinming Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Gong X, Ma Y, Deng X, Li A, Li X, Kong X, Liu Y, Liu X, Guo K, Yang Y, Li Z, Wei H, Zhou D, Hong Z. Intestinal dysbiosis exacerbates susceptibility to the anti-NMDA receptor encephalitis-like phenotype by changing blood brain barrier permeability and immune homeostasis. Brain Behav Immun 2024; 116:34-51. [PMID: 38030048 DOI: 10.1016/j.bbi.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in the intestinal microbiota have been observed in patients with anti-N-methyl-D-aspartate receptor encephalitis (NMDARE). However, whether and how the intestinal microbiota is involved in the pathogenesis of NMDARE susceptibility needs to be demonstrated. Here, we first showed that germ-free (GF) mice that underwent fecal microbiota transplantation (FMT) from NMDARE patients, whose fecal microbiota exhibited low short-chain fatty acid content, decreased abundance of Lachnospiraceae, and increased abundance of Verrucomicrobiota, Akkermansia, Parabacteroides, Oscillospirales, showed significant behavioral deficits. Then, these FMT mice were actively immunized with an amino terminal domain peptide from the GluN1 subunit (GluN1356-385) to mimic the pathogenic process of NMDARE. We found that FMT mice showed an increased susceptibility to an encephalitis-like phenotype characterized by more clinical symptoms, greater pentazole (PTZ)-induced susceptibility to seizures, and higher levels of T2 weighted image (T2WI) hyperintensities following immunization. Furthermore, mice with dysbiotic microbiota had impaired blood-brain barrier integrity and a proinflammatory condition. In NMDARE-microbiota recipient mice, the levels of Evan's blue (EB) dye extravasation increased, ZO-1 and claudin-5 expression decreased, and the levels of proinflammatory cytokines (IL-1, IL-6, IL-17, TNF-α and LPS) increased. Finally, significant brain inflammation, mainly in hippocampal and cortical regions, with modest neuroinflammation, immune cell infiltration, and reduced expression of NMDA receptors were observed in NMDARE microbiota recipient mice following immunization. Overall, our findings demonstrated that intestinal dysbiosis increased NMDARE susceptibility, suggesting a new target for limiting the occurrence of the severe phenotype of NMDARE.
Collapse
Affiliation(s)
- Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yaru Ma
- Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaolin Deng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiqing Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xingjie Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xueying Kong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yue Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kundian Guo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuting Yang
- Precision Medicine Institute, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhongxin Li
- Precision Medicine Institute, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan 611730, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
12
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
13
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
14
|
Yu L, Wen Y, Yang J, Wang G, Zhang N, Gao X, Guo J, Wang Z. Autoimmune receptor encephalitis in ApoE ‑/‑ mice induced by active immunization with NMDA1. Mol Med Rep 2023; 28:233. [PMID: 37921064 PMCID: PMC10636767 DOI: 10.3892/mmr.2023.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Subacute progressive neuropsychiatric symptoms with cognitive and motor impairment and autoimmune seizures are some of the typical symptoms of anti‑N‑methyl‑D‑aspartate receptor (anti‑NMDAR) encephalitis. The mechanisms underlying this disease are yet to be elucidated, which could be partly attributed to the lack of appropriate animal models. The present study aimed to establish an active immune mouse model of anti‑NMDAR encephalitis. Mice were immunized with the extracellular segment of the NMDA1 protein, then subjected to open‑field and novel object recognition experiments. Plasma was collected after euthanasia on day 30 after immunization and anti‑NMDA1 antibodies were detected using ELISA. Furthermore, brain slices were analyzed to measure postsynaptic density protein 95 (PSD‑95) and NMDA1 expression. Western blot analysis of NMDA1 and PSD‑95 protein expression levels in the hippocampus was also performed. In addition, protein expression levels of PSD‑95 and NMDA1 in mouse neuronal HT‑22 cells were evaluated. Compared with controls, mice immunized with NMDA1 exhibited anxiety, depression and memory impairment. Moreover, high anti‑NMDA1 antibody titers were detected with ELISA and the levels of anti‑NMDA1 antibody reduced postsynaptic NMDA1 protein density in the mouse hippocampus. These findings demonstrated the successful construction of a novel mouse model of anti‑NMDAR encephalitis by actively immunizing the mice with the extracellular segment of the NMDA1 protein. This model may be useful for studying the pathogenesis and drug treatment of anti‑NMDAR encephalitis in the future.
Collapse
Affiliation(s)
- Liming Yu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
- Department of Neurology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Wuhan 435000, P.R. China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Juan Yang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guowei Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Na Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Xinlei Gao
- Department of Neurology, Shenmu Hospital, Yulin, Shanxi 719000, P.R. China
| | - Jiayu Guo
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
15
|
Qin M, Chen J, Guo X, Xiang X, Nie L, Wang Y, Mao L. Movement disorders in autoimmune encephalitis: an update. J Neurol 2023; 270:5288-5302. [PMID: 37523063 DOI: 10.1007/s00415-023-11881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Autoimmune encephalitis (AE) is a form of encephalitis resulting from an immune response targeting central nervous system antigens, which is characterized by cognitive impairment, neuropsychiatric symptoms, seizures, movement disorders (MDs), and other encephalopathy symptoms. MDs frequently manifest throughout the progression of the disease, with recurrent involuntary movements leading to discomfort and, in some cases, necessitating admission to the intensive care unit. Prompt identification and management of MDs can aid in the diagnosis and prognosis of AE. This review synthesizes current knowledge on the characteristics, underlying mechanisms, and treatment options for MDs in the context of AE.
Collapse
Affiliation(s)
- Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Hemmeter L, Bien CG, Bien CI, Tipold A, Neßler J, Bathen‐Nöthen A, Matiasek K, Dahlhoff M, Rusbridge C, Rotter Black C, Rentmeister K, Volk HA, Fischer A. Investigation of the presence of specific neural antibodies in dogs with epilepsy or dyskinesia using murine and human assays. J Vet Intern Med 2023; 37:1409-1417. [PMID: 37232512 PMCID: PMC10365065 DOI: 10.1111/jvim.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/07/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Autoimmune mechanisms represent a novel category for causes of seizures and epilepsies in humans, and LGI1-antibody associated limbic encephalitis occurs in cats. HYPOTHESIS/OBJECTIVES To investigate the presence of neural antibodies in dogs with epilepsy or dyskinesia of unknown cause using human and murine assays modified for use in dogs. ANIMALS Fifty-eight dogs with epilepsy of unknown cause or suspected dyskinesia and 57 control dogs. METHODS Serum and CSF samples were collected prospectively as part of the diagnostic work-up. Clinical data including onset and seizure/episode type were retrieved from the medical records. Screening for neural antibodies was done with cell-based assays transfected with human genes for typical autoimmune encephalitis antigens and tissue-based immunofluorescence assays on mouse hippocampus slices in serum and CSF samples from affected dogs and controls. The commercial human und murine assays were modified with canine-specific secondary antibody. Positive controls were from human samples. RESULTS The commercial assays used in this study did not provide unequivocal evidence for presence of neural antibodies in dogs including one dog with histopathologically proven limbic encephalitis. Low titer IgLON5 antibodies were present in serum from one dog from the epilepsy/dyskinesia group and in one dog from the control group. CONCLUSION AND CLINICAL IMPORTANCE Specific neural antibodies were not detected using mouse and human target antigens in dogs with epilepsy and dyskinesia of unknown origin. These findings emphasize the need for canine-specific assays and the importance of control groups.
Collapse
Affiliation(s)
- Lea Hemmeter
- Section of Neurology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara)Bielefeld University, Medical SchoolBielefeldGermany
- Laboratory KroneBad SalzuflenGermany
| | | | - Andrea Tipold
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | - Jasmin Neßler
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | | | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| | - Maik Dahlhoff
- Institute of In Vivo and In Vitro Models, University of Veterinary Medicine ViennaViennaAustria
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway LaneSurreyUK
- School of Veterinary Medicine, Faculty of Health & Medical SciencesUniversity of SurreySurreyUK
| | | | | | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary Medicine Hannover FoundationHannoverGermany
| | - Andrea Fischer
- Section of Neurology, Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| |
Collapse
|
17
|
Zhou X. Preventive and Therapeutic Autoantibodies Protect against Neuronal Excitotoxicity. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230006. [PMID: 37502631 PMCID: PMC10373126 DOI: 10.20900/jpbs.20230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High titers of anti-NMDAR1 IgG autoantibodies were found in the brains of patients with anti-NMDAR1 encephalitis that exhibits psychosis, impaired memory, and many other psychiatric symptoms in addition to neurological symptoms. Low titers of blood circulating anti-NMDAR1 IgG autoantibodies are sufficient to robustly impair spatial working memory in mice with intact blood-brain barriers (BBB). On the other hand, anti-NMDAR1 autoantibodies were reported to protect against neuronal excitotoxicity caused by excessive glutamate in neurological diseases. Activation of extrasynaptic NMDARs is responsible for neuronal excitotoxicity, whereas activation of synaptic NMDARs within the synaptic cleft is pro-survival and essential for NMDAR-mediated neurotransmission. Unlike small IgG, IgM antibodies are large and pentameric (diameter of ~30 nm). It is plausible that IgM anti-NMDAR1 autoantibodies may be restricted to bind extrasynaptic NMDARs and thereby specifically inhibit neuronal excitotoxicity, but physically too large to enter the synaptic cleft (width: 20-30 nm) to suppress synaptic NMDAR-mediated neurotransmission in modulation of cognitive function and neuronal pro-survival signaling. Hence, blood circulating anti-NMDAR1 IgM autoantibodies are both neuroprotective and pro-cognitive, whereas blood circulating anti-NMDAR1 IgG and IgA autoantibodies are detrimental to cognitive function. Investigation of anti-NMDAR1 IgM autoantibodies may open up a new avenue for the development of long-lasting preventive and therapeutic IgM anti-NMDAR1 autoantibodies that protect from neuronal excitotoxicity in many neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Zhang Y, Cheng YK, Yang CF, Jin LM, Li YM. Therapeutic plasma exchange in anti-N-methyl-D-aspartate receptor encephalitis. Ther Apher Dial 2023; 27:197-206. [PMID: 36165337 DOI: 10.1111/1744-9987.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is the most commonly identified cause of autoimmune encephalitis. Therapeutic plasma exchange has been increasingly employed to treat this disease. This expansion is a consequence of improved techniques and apheresis instruments, as well as the recognition of its applicability in neurological diseases. However, several aspects of treatment remain incompletely clarified, and treatment strategies are still heterogeneous, especially with regard to therapeutic plasma exchange in anti-NMDAR encephalitis. This review provides an overview of the use of therapeutic plasma exchange including the principle and mechanisms, the evidence, initial time, efficiency and complications in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Jilin, China
| | - Yong-Kang Cheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Jilin, China
| | - Chun-Feng Yang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Jilin, China
| | - Lin-Mei Jin
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Jilin, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
19
|
Arinrad S, Depp C, Siems SB, Sasmita AO, Eichel MA, Ronnenberg A, Hammerschmidt K, Lüders KA, Werner HB, Ehrenreich H, Nave KA. Isolated catatonia-like executive dysfunction in mice with forebrain-specific loss of myelin integrity. eLife 2023; 12:70792. [PMID: 36892455 PMCID: PMC9998085 DOI: 10.7554/elife.70792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.
Collapse
Affiliation(s)
- Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Maria A Eichel
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Katja A Lüders
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
20
|
Daguano Gastaldi V, Bh Wilke J, Weidinger CA, Walter C, Barnkothe N, Teegen B, Luessi F, Stöcker W, Lühder F, Begemann M, Zipp F, Nave KA, Ehrenreich H. Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects. Brain Behav Immun 2023; 108:135-147. [PMID: 36323361 DOI: 10.1016/j.bbi.2022.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Circulating autoantibodies (AB) against brain-antigens, often deemed pathological, receive increasing attention. We assessed predispositions and seroprevalence/characteristics of 49 AB in > 7000 individuals. METHODS Exploratory cross-sectional cohort study, investigating deeply phenotyped neuropsychiatric patients and healthy individuals of GRAS Data Collection for presence/characteristics of 49 brain-directed serum-AB. Predispositions were evaluated through GWAS of NMDAR1-AB carriers, analyses of immune check-point genotypes, APOE4 status, neurotrauma. Chi-square, Fisher's exact tests and logistic regression analyses were used. RESULTS Study of N = 7025 subjects (55.8 % male; 41 ± 16 years) revealed N = 1133 (16.13 %) carriers of any AB against 49 defined brain-antigens. Overall, age dependence of seroprevalence (OR = 1.018/year; 95 % CI [1.015-1.022]) emerged, but no disease association, neither general nor with neuropsychiatric subgroups. Males had higher AB seroprevalence (OR = 1.303; 95 % CI [1.144-1.486]). Immunoglobulin class (N for IgM:462; IgA:487; IgG:477) and titers were similar. Abundant were NMDAR1-AB (7.7 %). Low seroprevalence (1.25 %-0.02 %) was seen for most AB (e.g., amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65). Non-detectable were others. GWAS of NMDAR1-AB carriers revealed three genome-wide significant SNPs, two intergenic, one in TENM3, previously autoimmune disease-associated. Targeted analysis of immune check-point genotypes (CTLA4, PD1, PD-L1) uncovered effects on humoral anti-brain autoimmunity (OR = 1.55; 95 % CI [1.058-2.271]) and disease likelihood (OR = 1.43; 95 % CI [1.032-1.985]). APOE4 carriers (∼19 %) had lower seropositivity (OR = 0.766; 95 % CI [0.625-0.933]). Neurotrauma predisposed to NMDAR1-AB seroprevalence (IgM: OR = 1.599; 95 % CI [1.022-2.468]). CONCLUSIONS Humoral autoimmunity against brain-antigens, frequent across health and disease, is predicted by age, gender, genetic predisposition, and brain injury. Seroprevalence, immunoglobulin class, or titers do not predict disease.
Collapse
Affiliation(s)
- Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Justus Bh Wilke
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Cosima A Weidinger
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Carolin Walter
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Nadine Barnkothe
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Bianca Teegen
- Institute for Experimental Immunology, Affiliated to Euroimmun, Lübeck, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine‑Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Affiliated to Euroimmun, Lübeck, Germany
| | - Fred Lühder
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center, of the Georg August University, Göttingen, Germany
| | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine‑Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| |
Collapse
|
21
|
Ma Y, Wang J, Guo S, Meng Z, Ren Y, Xie Y, Wang M. Cytokine/chemokine levels in the CSF and serum of anti-NMDAR encephalitis: A systematic review and meta-analysis. Front Immunol 2023; 13:1064007. [PMID: 36761173 PMCID: PMC9903132 DOI: 10.3389/fimmu.2022.1064007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
Objectives To summarize the cytokine/chemokine levels of anti-N-methyl-Daspartate receptor encephalitis (NMDAR-E) and explore the potential role of these molecules and immune cells in the pathogenic mechanism. Methods The PubMed, Cochrane Library, Embase, and Web of Science databases were searched for various articles that assessed the concentrations of cytokines/chemokines in the unstimulated cerebrospinal fluid (CSF) or serum of patients with NMDAR-E in this systematic review and meta-analysis. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated by Stata17.0. Results A total of 19 articles were included in the systematic review from 260 candidate papers, and cytokine/chemokine levels reported in the CSF/serum were examined in each article. This meta-analysis included 17 eligible studies comprising 579 patients with NMDAR-E, 367 patients with noninflammatory neurological disorders, and 42 healthy controls from China, Spain, South Korea, Australia, Czechia, and Sweden. The results indicated that the levels of different cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, IL-13, IL-1β, IL-12, and IL-17 and chemokine C-X-C motif ligand (CXCL)10 in the CSF were significantly higher in NMDAR-E patients with a large effect size. In addition, B cell activating factor (BAFF), CXCL13, and interferon (IFN)-γ levels in the CSF were higher in NMDAR-E patients with a middle effect size. In contrast, levels of IL-2 and IL-4 in the CSF and CXCL13 and BAFF in the serum did not show a significant difference between cases and controls. Conclusions These analyses showed that the central immune response in NMDAR-E is a process that involves multiple immune cell interactions mediated by cytokines/chemokines, and T cells play an important role in the pathogenesis of immunity. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier (CRD42022342485).
Collapse
Affiliation(s)
- Yushan Ma
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,Department of Laboratory Medicine, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Minjin Wang, ; Yi Xie,
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China,Department of Neurology, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Minjin Wang, ; Yi Xie,
| |
Collapse
|
22
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Binks S, Lamquet S, Crawford AH, Meurs A, Irani SR, Pakozdy A. Parallel roles of neuroinflammation in feline and human epilepsies. Vet J 2022; 290:105912. [PMID: 36209994 PMCID: PMC10912827 DOI: 10.1016/j.tvjl.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Autoimmune encephalitis refers to a group of disorders characterised by a non-infectious encephalitis, often with prominent seizures and surface neuronal autoantibodies. AE is an important cause of new-onset refractory status epilepticus in humans and is frequently responsive to immunotherapies including corticosteroids, plasma exchange, intravenous immunoglobulin G and rituximab. Recent research suggests that parallel autoantibodies can be detected in non-human mammalian species. The best documented example is leucine-rich glioma-inactivated 1 (LGI1)-antibodies in domestic cats with limbic encephalitis (LE). In this review, we discuss the role of neuroinflammation and autoantibodies in human and feline epilepsy and LE.
Collapse
Affiliation(s)
- Sophie Binks
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, Oxford OX3 9DU, UK.
| | - Simon Lamquet
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Abbe H Crawford
- Clinical Science and Services, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Alfred Meurs
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, Oxford OX3 9DU, UK
| | - Akos Pakozdy
- University Clinic for Small Animals, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
24
|
Vogt-Koyanagi-Harada Disease Presenting as a Schizophrenia Spectrum Disorder: A Case Report. IRANIAN JOURNAL OF PSYCHIATRY AND BEHAVIORAL SCIENCES 2022. [DOI: 10.5812/ijpbs-100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Numerous autoimmune disorders accompany with psychosis. The Vogt-Koyanagi-Harada (VKH) disease is an autoimmune disease with no reports about its concomitance with psychosis so far. Case Presentation: We report the co-occurrence of schizophrenic spectrum diseases with VKH for the first time. They have common manifestations such as aggression, agitation, and self-talking, subsiding after chemotherapy. Workup evaluation was performed by computed tomography (CT) scan, magnetic resonance imaging (MRI), electroencephalography (EEG), lumbar puncture (LP) study, IQ test, lab tests for hepatitis and other infections, and retinal angiography and sonography. The patient underwent corticosteroid therapy, immunosuppressive therapy, risperidone, propranolol, and trihexyphenidyl. Conclusions: Our results showed the significant role of autoimmunity in the genesis of psychosis. On the other hand, unusual manifestations and slow response to treatment in these patients show that autoimmune disorders with psychosis may worsen the prognosis of psychosis.
Collapse
|
25
|
Ehrenreich H. For decades against the mainstream - From erythropoietin and hypoxia as novel treatment strategies to deep phenotyping in neuropsychiatric disorders. Psychiatry Res 2022; 317:114854. [PMID: 36170796 PMCID: PMC7613706 DOI: 10.1016/j.psychres.2022.114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences - City Campus, Hermann-Rein-Str.3, Göttingen 37075, Germany.
| |
Collapse
|
26
|
Ehrenreich H, Gastaldi VD, Wilke JBH. Quo Vaditis Anti-Brain Autoantibodies: Causes, Consequences, or Epiphenomena? Biol Psychiatry 2022; 92:254-255. [PMID: 35902135 DOI: 10.1016/j.biopsych.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Hannelore Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Vinicius Daguano Gastaldi
- Department of Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Justus B H Wilke
- Department of Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
27
|
Huenerfauth EI, Bien CG, Bien C, Volk HA, Meyerhoff N. Case Report: Anti-GABAA Receptor Encephalitis in a Dog. Front Vet Sci 2022; 9:886711. [PMID: 35812851 PMCID: PMC9262380 DOI: 10.3389/fvets.2022.886711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023] Open
Abstract
Autoantibodies against neurotransmitter receptors detected in cerebrospinal fluid (CSF) and serum are increasingly recognized in people with human autoimmune encephalitis causing severe neurological deficits, such as seizures and behavioral abnormalities. This case report describes the first encephalitis associated with antibodies against the γ-aminobutyric acid-A receptor (GABAAR) in a dog. A young male intact Cavalier King Charles Spaniel was presented with recent onset of initial multiple generalized tonic-clonic seizures progressing into a status epilepticus. Interictally, he showed alternating stupor and hyperexcitability, ataxia, pleurothotonus and circling behavior to the left side. Magnetic resonance imaging (MRI) of the brain showed breed-specific anatomical abnormalities. Standard CSF analysis was unremarkable. Despite treatment with multiple antiseizure medications (ASMs) seizures and behavior abnormalities sustained. Immunotherapy with dexamethasone was started on the fifth day after disease manifestation. This led to rapid improvement of clinical signs. An extensive antibody search in CSF and serum demonstrated a neuropil staining pattern on a tissue-based assay compatible with GABAAR antibodies. The diagnosis was confirmed by binding of serum and CSF antibodies to GABAAR transfected Human Embryonic Kidney cells. The serum titer was 1:320, the CSF titer 1:2. At the control visit 4.5 weeks after start of immunotherapy, the dog was clinically normal. The GABAAR antibody titer in serum had strongly decreased. The antibodies were no longer detectable in CSF. Based on clinical presentation and testing for GABAAR binding antibodies, this describes the first veterinary patient with an anti-GABAAR encephalitis with a good outcome following ASM and corticosteroid treatment.
Collapse
Affiliation(s)
- Enrice I. Huenerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
- *Correspondence: Enrice I. Huenerfauth
| | | | | | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
28
|
Murashko AA, Pavlov KA, Pavlova OV, Gurina OI, Shmukler A. Antibodies against N-Methyl D-Aspartate Receptor in Psychotic Disorders: A Systematic Review. Neuropsychobiology 2022; 81:1-18. [PMID: 34000730 DOI: 10.1159/000515930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study was to provide comprehensive evidence synthesis including all available up-to-date data about the prevalence of N-methyl D-aspartate receptor (NMDAR) antibodies (ABs) in psychotic patients in order to evaluate the clinical relevance of ABs as well as to specify potential explanations of the heterogeneity of the findings and determine areas for further research. METHODS A literature search was conducted using the PubMed/Medline, Web of Knowledge, and Scopus databases. RESULTS Forty-seven studies and 4 systematic reviews (including 2 meta-analyses) were included in the present review. Studies that used cell-based assays (CBAs) provided heterogeneous results on AB prevalence, obviously depending on the type of detection assay and sample characteristics. Improvement of AB detection methods is necessary to determine the real prevalence of ABs across different groups of patients and healthy people. Live CBAs seem to have better sensitivity but probably poorer specificity than fixed CBAs. Moreover, some links between AB-positive status and acute symptoms are possible. A small amount of data on immunotherapy in AB-positive patients raises the possibility of its effectiveness but obviously require further research. CONCLUSIONS NMDAR ABs are definitely present in a subset of psychotic patients. NMDAR ABs might shape psychosis and underlie some symptoms, and immunotherapy might be regarded as a treatment option for patients failing to respond to other therapies.
Collapse
Affiliation(s)
- Alexey A Murashko
- Department of Translational Psychiatry, Moscow Research Institute of Psychiatry, The Branch of V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Konstantin A Pavlov
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Olga V Pavlova
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Olga I Gurina
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Alexander Shmukler
- Department of Translational Psychiatry, Moscow Research Institute of Psychiatry, The Branch of V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
29
|
Levite M, Goldberg H. Autoimmune Epilepsy - Novel Multidisciplinary Analysis, Discoveries and Insights. Front Immunol 2022; 12:762743. [PMID: 35095841 PMCID: PMC8790247 DOI: 10.3389/fimmu.2021.762743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) 'Perspective' article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and β2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have 'frenetic character'- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different 'faces' in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Hadassa Goldberg
- Epilepsy Center, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry 2022; 27:4974-4983. [PMID: 34866134 PMCID: PMC9763107 DOI: 10.1038/s41380-021-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.
Collapse
|
31
|
Ma Y, Wang J, Guo S, Meng Z, Ren Y, Xie Y, Wang M. Cytokine/chemokine levels in the CSF and serum of anti-NMDAR encephalitis: A systematic review and meta-analysis. Front Immunol 2022; 13:1064007. [PMID: 36761173 DOI: 10.3389/fimmu.2022.919979/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/23/2022] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To summarize the cytokine/chemokine levels of anti-N-methyl-Daspartate receptor encephalitis (NMDAR-E) and explore the potential role of these molecules and immune cells in the pathogenic mechanism. METHODS The PubMed, Cochrane Library, Embase, and Web of Science databases were searched for various articles that assessed the concentrations of cytokines/chemokines in the unstimulated cerebrospinal fluid (CSF) or serum of patients with NMDAR-E in this systematic review and meta-analysis. The standardized mean difference (SMD) and 95% confidence interval (CI) were calculated by Stata17.0. RESULTS A total of 19 articles were included in the systematic review from 260 candidate papers, and cytokine/chemokine levels reported in the CSF/serum were examined in each article. This meta-analysis included 17 eligible studies comprising 579 patients with NMDAR-E, 367 patients with noninflammatory neurological disorders, and 42 healthy controls from China, Spain, South Korea, Australia, Czechia, and Sweden. The results indicated that the levels of different cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, IL-13, IL-1β, IL-12, and IL-17 and chemokine C-X-C motif ligand (CXCL)10 in the CSF were significantly higher in NMDAR-E patients with a large effect size. In addition, B cell activating factor (BAFF), CXCL13, and interferon (IFN)-γ levels in the CSF were higher in NMDAR-E patients with a middle effect size. In contrast, levels of IL-2 and IL-4 in the CSF and CXCL13 and BAFF in the serum did not show a significant difference between cases and controls. CONCLUSIONS These analyses showed that the central immune response in NMDAR-E is a process that involves multiple immune cell interactions mediated by cytokines/chemokines, and T cells play an important role in the pathogenesis of immunity. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier (CRD42022342485).
Collapse
Affiliation(s)
- Yushan Ma
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Laboratory Medicine, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Jierui Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zirui Meng
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Abstract
The realization that autoantibodies can contribute to dysfunction of the brain has brought about a paradigm shift in neurological diseases over the past decade, offering up important novel diagnostic and therapeutic opportunities. Detection of specific autoantibodies to neuronal or glial targets has resulted in a better understanding of central nervous system autoimmunity and in the reclassification of some diseases previously thought to result from infectious, 'idiopathic' or psychogenic causes. The most prominent examples, such as aquaporin 4 autoantibodies in neuromyelitis optica or NMDAR autoantibodies in encephalitis, have stimulated an entire field of clinical and experimental studies on disease mechanisms and immunological abnormalities. Also, these findings inspired the search for additional autoantibodies, which has been very successful to date and has not yet reached its peak. This Review summarizes this rapid development at a point in time where preclinical studies have started delivering fundamental new data for mechanistic understanding, where new technologies are being introduced into this field, and - most importantly - where the first specifically tailored immunotherapeutic approaches are emerging.
Collapse
Affiliation(s)
- Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
34
|
Yue W, Caldwell S, Risbrough V, Powell S, Zhou X. Chronic presence of blood circulating anti-NMDAR1 autoantibodies impairs cognitive function in mice. PLoS One 2021; 16:e0256972. [PMID: 34473764 PMCID: PMC8412244 DOI: 10.1371/journal.pone.0256972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
High titers of anti-NMDAR1 autoantibodies in brain cause anti-NMDAR1 encephalitis that displays psychiatric symptoms of schizophrenia and/or other psychiatric disorders in addition to neurological symptoms. Low titers of anti-NMDAR1 autoantibodies are reported in the blood of a subset of the general human population and psychiatric patients. Since ~0.1–0.2% of blood circulating antibodies cross the blood-brain barriers and antibodies can persist for months and years in human blood, it is important to investigate whether chronic presence of these blood circulating anti-NMDAR1 autoantibodies may impair human cognitive functions and contribute to the development of psychiatric symptoms. Here, we generated mice carrying low titers of anti-NMDAR1 autoantibodies in blood against a single antigenic epitope of mouse NMDAR1. Mice carrying the anti-NMDAR1 autoantibodies are healthy and display no differences in locomotion, sensorimotor gating, and contextual memory compared to controls. Chronic presence of the blood circulating anti-NMDAR1 autoantibodies, however, is sufficient to impair T-maze spontaneous alternation in the integrity of blood-brain barriers across all 3 independent mouse cohorts, indicating a robust cognitive deficit in spatial working memory and/or novelty detection. Our studies implicate that chronic presence of low titers of blood circulating anti-NMDAR1 autoantibodies may impair cognitive functions in both the general healthy human population and psychiatric patients.
Collapse
Affiliation(s)
- William Yue
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sorana Caldwell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Susan Powell
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- VA Research Service, VA San Diego Healthcare System, San Diego, California, United States of America
- VA Mental Illness Research and Clinical Core, VA San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wollmuth LP, Chan K, Groc L. The diverse and complex modes of action of anti-NMDA receptor autoantibodies. Neuropharmacology 2021; 194:108624. [PMID: 34081993 PMCID: PMC8693782 DOI: 10.1016/j.neuropharm.2021.108624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/21/2022]
Abstract
NMDA receptors are ligand-gated ion channels that are found throughout the brain and are required for both brain development and many higher order functions. A variety of human patients with diverse clinical phenotypes have been identified that carry autoantibodies directed against NMDA receptor subunits. Here we focus on two general classes of autoantibodies, anti-GluN1 antibodies associated with anti-NMDA receptor encephalitis and anti-GluN2 antibodies associated with systemic lupus erythematosus (SLE). These two general classes of anti-NMDA receptor autoantibodies display a wide range of pathophysiological mechanisms from altering synaptic composition to gating of NMDARs. While we have made progress in understanding how these autoantibodies work at the molecular and cellular level, many unanswered questions remain including their long-term actions on brain function, the significance of clonal variations, and their effects on different NMDA receptor-expressing cell types in local circuits. This information will be needed to define fully the transition from anti-NMDA receptor autoantibodies to a clinical phenotype.
Collapse
Affiliation(s)
- Lonnie P Wollmuth
- Department of Neurobiology & Behavior, USA; Department of Biochemistry & Cell Biology, USA; Center for Nervous System Disorders. Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| | - Kelvin Chan
- Graduate Program in Neuroscience, USA; Medical Scientist Training Program (MSTP), USA; Department of Neurobiology & Behavior, USA
| | - Laurent Groc
- Univ. de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, IINS UMR, 5297, Bordeaux, France
| |
Collapse
|
36
|
Wilke JBH, Hindermann M, Moussavi A, Butt UJ, Dadarwal R, Berghoff SA, Sarcheshmeh AK, Ronnenberg A, Zihsler S, Arinrad S, Hardeland R, Seidel J, Lühder F, Nave KA, Boretius S, Ehrenreich H. Inducing sterile pyramidal neuronal death in mice to model distinct aspects of gray matter encephalitis. Acta Neuropathol Commun 2021; 9:121. [PMID: 34215338 PMCID: PMC8253243 DOI: 10.1186/s40478-021-01214-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50-70% of unknown origin. Recognized causes amount to 20-50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCreERT2xRosa26-eGFP-DTA (= 'DTA') mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood-brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research.
Collapse
Affiliation(s)
- Justus B H Wilke
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Martin Hindermann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Amir Moussavi
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Rakshit Dadarwal
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Georg August University, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Aref Kalantari Sarcheshmeh
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Svenja Zihsler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology & Anthropology, University of Göttingen, Göttingen, Germany
| | - Jan Seidel
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Georg August University, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| |
Collapse
|
37
|
Zhou X. Cognitive Impact by Blood Circulating Anti-NMDAR1 Autoantibodies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6:e210009. [PMID: 34307898 PMCID: PMC8301263 DOI: 10.20900/jpbs.20210009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antibodies persist months and years in blood. Chronic presence of low titers of blood circulating anti-NMDAR1 autoantibodies are sufficient to impair cognitive function in the integrity of the BBB in mice, suggesting potential cognitive damaging effects of low titers of blood circulating anti-NMDAR1 autoantibodies in the general human population and psychiatric patients. Investigation of anti-NMDAR1 autoantibodies against individual NMDAR1 antigenic epitopes may potentially provide risk biomarkers and therapeutic targets for development of immunotherapy as a precision medicine for psychiatric patients in the future.
Collapse
Affiliation(s)
- Xianjin Zhou
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, California, USA
| |
Collapse
|
38
|
Maitra R, Pollak TA, Pritchard M, Shergill S. Stem cell transplant in psychotic disorders: Immunological cause or cure? Schizophr Res 2021; 230:50-52. [PMID: 33667859 DOI: 10.1016/j.schres.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Raka Maitra
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Megan Pritchard
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Vahabi Z, Etesam F, Zandifar A, Badrfam R. Psychosocial stress, blood brain barrier and the development of anti N-methyl-D-aspartate receptor (NMDAR) encephalitis. Mult Scler Relat Disord 2021; 50:102876. [PMID: 33690087 DOI: 10.1016/j.msard.2021.102876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Throughout life, mechanisms such as damage and inflammation can alter the permeability of the blood-brain barrier(BBB). According to some studies, increasing the permeability of the blood-brain barrier can occur in a time-dependent manner following restraint stress. On the other hand, there have been reports of increased N-Methyl-D-Aspartate Receptor (NMDAR) -Ab seroprevalence in chronic stress conditions. The presence of antibody-secreting cells / memory B cells in the intrathecal area of the brain and their redistribution under various environmental stresses, which can be independent of the BBB status, are other points in this area that can emphasize the role of environmental stress in Anti NMDAR encephalitis.
Collapse
Affiliation(s)
- Zahra Vahabi
- Geriatric Department, Ziaeean Hospital, Tehran University of Medical Sciences, Tehran, Iran; Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Etesam
- Psychosomatic Medicine Research Center, Department of Psychiatry, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zandifar
- Cardiovascular Research Center, Shahid Rajaei Educational & Medical Center, Alborz University of Medical Sciences, Karaj, Iran; Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahim Badrfam
- Psychosomatic Medicine Research Center, Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran; Department of Psychiatry, Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Ding Y, Zhou Z, Chen J, Peng Y, Wang H, Qiu W, Xie W, Zhang J, Wang H. Anti-NMDAR encephalitis induced in mice by active immunization with a peptide from the amino-terminal domain of the GluN1 subunit. J Neuroinflammation 2021; 18:53. [PMID: 33612107 PMCID: PMC7897387 DOI: 10.1186/s12974-021-02107-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesia, and seizures. However, the underlying mechanisms of this disease remain unclear, in part because of a lack of suitable animal models. Methods This study describes a novel female C57BL/6 mouse model of anti-NMDAR encephalitis that was induced by active immunization against NMDARs using an amino terminal domain (ATD) peptide from the GluN1 subunit (GluN1356–385). Results Twelve weeks after immunization, the immunized mice showed significant memory loss. Furthermore, antibodies from the cerebrospinal fluid of immunized mice decreased the surface NMDAR cluster density in hippocampal neurons which was similar to the effect induced by the anti-NMDAR encephalitis patients’ antibodies. Immunization also impaired long-term potentiation at Schaffer collateral–CA1 synapses and reduced NMDAR-induced calcium influx. Conclusion We established a novel anti-NMDAR encephalitis model using active immunization with peptide GluN1356–385 targeting the ATD of GluN1. This novel model may allow further research into the pathogenesis of anti-NMDAR encephalitis and aid in the development of new therapies for this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02107-0.
Collapse
Affiliation(s)
- Yuewen Ding
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China.,School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zheye Zhou
- School of Biomedical Engineering, Liuzhou Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Jun Zhang
- Department of Internal Medicine, Division of Nephrology, University of California at Davis, Houston, TX, USA.
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
41
|
Wagnon I, Hélie P, Bardou I, Regnauld C, Lesec L, Leprince J, Naveau M, Delaunay B, Toutirais O, Lemauff B, Etard O, Vivien D, Agin V, Macrez R, Maubert E, Docagne F. Autoimmune encephalitis mediated by B-cell response against N-methyl-d-aspartate receptor. Brain 2021; 143:2957-2972. [PMID: 32893288 DOI: 10.1093/brain/awaa250] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Isabelle Wagnon
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Pauline Hélie
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Isabelle Bardou
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Caroline Regnauld
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Léonie Lesec
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Jerôme Leprince
- Normandie Univ, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication, Rouen, France
| | - Mikaël Naveau
- Normandie Univ, UNICAEN, CNRS UMS 3408, Cyceron, Caen, France
| | - Barbara Delaunay
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Olivier Toutirais
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Department of Immunology, Caen University Hospital, CHU Caen, Caen, France
| | - Brigitte Lemauff
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Department of Immunology, Caen University Hospital, CHU Caen, Caen, France
| | - Olivier Etard
- Normandie Univ, UNICAEN, ISTS, EA 7466, Cyceron, Caen, France
- Service des explorations fonctionnelles du système nerveux, CHU de Caen, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| | - Véronique Agin
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Richard Macrez
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
- Emergency Department, Caen University Hospital, CHU Caen, Caen France
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain at Caen-Normandie, Cyceron, Caen, France
| |
Collapse
|
42
|
Huang YQ, Xiong H. Anti-NMDA receptor encephalitis: a review of mechanistic studies. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2021; 13:1-11. [PMID: 33815666 PMCID: PMC8012859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
NMDA receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the central nervous system. Anti-NMDA receptor (anti-NMDAR) encephalitis is an autoimmune disease characterized by the presence of autoantibodies against the NMDAR GluN1 subunit. Here we briefly review current advances in the understanding of the mechanisms underlying the pathogenesis of anti-NMDAR encephalitis. The autoantibodies bind to and cross-link the endogenous NMDARs, disrupt the interaction of NMDARs with receptor tyrosine kinase EphB2 leading to internalization and reduced function of NMDARs. Hypofunction of the NMDARs results in impairment in long-term potentiation and deficit in learning and memory, leads to development of depression-like behavior, and lowers the threshold for seizures. Recent development of active immunization models of anti-NMDAR encephalitis provides insight into the inflammation process and paves the way for further studies that may lead to better treatment.
Collapse
Affiliation(s)
- Yue-Qiao Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine GeorgiaSuwanee, GA 30024, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198, USA
| |
Collapse
|
43
|
Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis. Mol Psychiatry 2021; 26:7746-7759. [PMID: 34331009 PMCID: PMC8872987 DOI: 10.1038/s41380-021-01238-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The etiology and pathogenesis of "anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis" and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that "NMDAR encephalitis" results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a "cocktail" of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons ("DTA" mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.
Collapse
|
44
|
Ehrenreich H, Wilke J, Steixner-Kumar AA. Spontaneous serum autoantibody fluctuations: To be or not to be. Mol Psychiatry 2021; 26:1723-1725. [PMID: 32968237 PMCID: PMC8440174 DOI: 10.1038/s41380-020-00883-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Justus Wilke
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
45
|
Pan H, Steixner-Kumar AA, Seelbach A, Deutsch N, Ronnenberg A, Tapken D, von Ahsen N, Mitjans M, Worthmann H, Trippe R, Klein-Schmidt C, Schopf N, Rentzsch K, Begemann M, Wienands J, Stöcker W, Weissenborn K, Hollmann M, Nave KA, Lühder F, Ehrenreich H. Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: a translational study from chronic life stress to brain injury. Mol Psychiatry 2021; 26:2471-2482. [PMID: 32089545 PMCID: PMC8440197 DOI: 10.1038/s41380-020-0672-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/03/2022]
Abstract
Circulating autoantibodies (AB) of different immunoglobulin classes (IgM, IgA, and IgG), directed against the obligatory N-methyl-D-aspartate-receptor subunit NR1 (NMDAR1-AB), belong to the mammalian autoimmune repertoire, and appear with age-dependently high seroprevalence across health and disease. Upon access to the brain, they can exert NMDAR-antagonistic/ketamine-like actions. Still unanswered key questions, addressed here, are conditions of NMDAR1-AB formation/boosting, intraindividual persistence/course in serum over time, and (patho)physiological significance of NMDAR1-AB in modulating neuropsychiatric phenotypes. We demonstrate in a translational fashion from mouse to human that (1) serum NMDAR1-AB fluctuate upon long-term observation, independent of blood-brain barrier (BBB) perturbation; (2) a standardized small brain lesion in juvenile mice leads to increased NMDAR1-AB seroprevalence (IgM + IgG), together with enhanced Ig-class diversity; (3) CTLA4 (immune-checkpoint) genotypes, previously found associated with autoimmune disease, predispose to serum NMDAR1-AB in humans; (4) finally, pursuing our prior findings of an early increase in NMDAR1-AB seroprevalence in human migrants, which implicated chronic life stress as inducer, we independently replicate these results with prospectively recruited refugee minors. Most importantly, we here provide the first experimental evidence in mice of chronic life stress promoting serum NMDAR1-AB (IgA). Strikingly, stress-induced depressive-like behavior in mice and depression/anxiety in humans are reduced in NMDAR1-AB carriers with compromised BBB where NMDAR1-AB can readily reach the brain. To conclude, NMDAR1-AB may have a role as endogenous NMDAR antagonists, formed or boosted under various circumstances, ranging from genetic predisposition to, e.g., tumors, infection, brain injury, and stress, altogether increasing over lifetime, and exerting a spectrum of possible effects, also including beneficial functions.
Collapse
Affiliation(s)
- Hong Pan
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna Seelbach
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Deutsch
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Anja Ronnenberg
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nico von Ahsen
- grid.411984.10000 0001 0482 5331Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Mitjans
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hans Worthmann
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Christina Klein-Schmidt
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Nadine Schopf
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kristin Rentzsch
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Martin Begemann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Psychiatry & Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Wienands
- grid.7450.60000 0001 2364 4210Institute for Cellular and Molecular Immunology, Georg August University, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Euroimmun, Lübeck, Germany
| | - Karin Weissenborn
- grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- grid.5570.70000 0004 0490 981XDepartment of Biochemistry I–Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Klaus-Armin Nave
- grid.419522.90000 0001 0668 6902Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Fred Lühder
- grid.411984.10000 0001 0482 5331Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
46
|
Watson CJ, Thomas RH, Solomon T, Michael BD, Nicholson TR, Pollak TA. COVID-19 and psychosis risk: Real or delusional concern? Neurosci Lett 2020; 741:135491. [PMID: 33220366 DOI: 10.1016/j.neulet.2020.135491] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Historical epidemiological perspectives from past pandemics and recent neurobiological evidence link infections and psychoses, leading to concerns that COVID-19 will present a significant risk for the development of psychosis. But are these concerns justified, or mere sensationalism? In this article we review the historical associations between viral infection and the immune system more broadly in the development of psychosis, before critically evaluating the current evidence pertaining to SARS-CoV-2 and risk of psychosis as an acute or post-infectious manifestation of COVID-19. We review the 42 cases of psychosis reported in infected patients to date, and discuss the potential implications of in utero infection on subsequent neurodevelopment and psychiatric risk. Finally, in the context of the wider neurological and psychiatric manifestations of COVID-19 and our current understanding of the aetiology of psychotic disorders, we evaluate possible neurobiological and psychosocial mechanisms as well as the numerous challenges in ascribing a causal pathogenic role to the infection.
Collapse
Affiliation(s)
- Cameron J Watson
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University London, UK.
| | - Rhys H Thomas
- Translational and Clinical Research Institute, University of Newcastle, UK; Royal Victoria Infirmary, Newcastle, UK
| | - Tom Solomon
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, UK; Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Zoological Science, University of Liverpool, UK
| | - Benedict Daniel Michael
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infection, University of Liverpool, UK; Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Zoological Science, University of Liverpool, UK
| | - Timothy R Nicholson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Thomas A Pollak
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
47
|
Hunter D, Jamet Z, Groc L. Autoimmunity and NMDA receptor in brain disorders: Where do we stand? Neurobiol Dis 2020; 147:105161. [PMID: 33166697 DOI: 10.1016/j.nbd.2020.105161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, the identification of autoimmune encephalitis in which patients express autoantibodies directed against neurotransmitter receptors has generated great hope to shed new light on the molecular mechanisms underpinning neurological and psychiatric conditions. Among these autoimmune encephalitides, the discovery of autoantibodies directed against the glutamatergic NMDA receptor (NMDAR-Ab), in the anti-NMDAR encephalitis, has provided some key information on how complex neuropsychiatric symptoms can be caused by a deficit in NMDAR signalling. Yet, NMDAR-Abs have also been detected in several neurological and psychiatric conditions, as well as in healthy individuals. In addition, these various NMDAR-Abs appear to have different molecular properties and pathogenicities onto receptors and synaptic functions. Here, we discuss the current view on the variety of NMDAR-Abs and, in particular, how these autoantibodies can lead to receptor dysfunction in neuronal networks. Since our mechanistic understanding on patients' NMDAR-Abs is still in its infancy, several complementary processes can be proposed and further in-depth molecular and cellular investigations will surely reveal key insights. Autoantibodies represent a great opportunity to gain knowledge on the etiology of neuropsychiatric disorders and pave the way for innovative therapeutic strategies. ONE SENTENCE SUMMARY: Current view on patients' autoantibody against NMDAR.
Collapse
Affiliation(s)
- Daniel Hunter
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Zoe Jamet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France.
| |
Collapse
|
48
|
Young D. The NMDA Receptor Antibody Paradox: A Possible Approach to Developing Immunotherapies Targeting the NMDA Receptor. Front Neurol 2020; 11:635. [PMID: 32719654 PMCID: PMC7347966 DOI: 10.3389/fneur.2020.00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a key role in brain development and function, including contributing to the pathogenesis of many neurological disorders. Immunization against the GluN1 subunit of the NMDAR and the production of GluN1 antibodies is associated with neuroprotective and seizure-protective effects in rodent models of stroke and epilepsy, respectively. Whilst these data suggest the potential for the development of GluN1 antibody therapy, paradoxically GluN1 autoantibodies in humans are associated with the pathogenesis of the autoimmune disease anti-NMDA receptor encephalitis. This review discusses possible reasons for the differential effects of GluN1 antibodies on NMDAR physiology that could contribute to these phenotypes.
Collapse
Affiliation(s)
- Deborah Young
- Molecular Neurotherapeutics Laboratory, Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
50
|
Begemann M, Seidel J, Poustka L, Ehrenreich H. Accumulated environmental risk in young refugees - A prospective evaluation. EClinicalMedicine 2020; 22:100345. [PMID: 32510048 PMCID: PMC7264975 DOI: 10.1016/j.eclinm.2020.100345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recently, we reported a strong, disease-independent relationship between accumulated preadult environmental risks and violent aggression later in life. Risk factors were interchangeable, and migration was among the explored risks. Alarmed by these data, we assessed collected risk load in young 'healthy' refugees as a specific subgroup of current migration streams and evaluated first signals of behavioral abnormalities. METHODS In 9 German refugee centers, n = 133 young refugees, not previously in contact with the health system, were recruited, many of them unaccompanied minors. Risk factors experienced apart from migration/refuge were carefully assessed: Traumatic experiences before/during/after flight (including war, genocide, human trafficking, torture, murder, slavery, terrorist attacks), urbanicity, physical and sexual abuse, problematic alcohol and cannabis use (lifetime). Evaluation comprised physical exam and psychopathology screening. FINDINGS Refugees arrived in Germany via Eastern Mediterranean/Balkan route (34.6%), from Africa via Central Mediterranean route (39.1%), by plane (17.3%) or other routes, such as Western Mediterranean or Atlantic (9.0%). Flight reasons were war/expulsion (25.6%), persecution/threats to life (51.9%), economical/others (22.5%). On top of migration/refuge, 42.8% of subjects had ≥3 risk factors; only 4.5% of refugees had no additional risks. Global level of functioning and severity of psychopathology were strongly associated with number of accumulated risks (Jonckheere-Terpstra trend-test: p = 7.61 × 10-7 and p = 3.62 × 10-7, respectively). INTERPRETATION Young refugees, arriving in hosting countries with alarming 'risk burden', should be considered as highly vulnerable towards development of global functional deficits, behavioral abnormalities, and neuropsychiatric disorders. Rapid proactive integration or sustainable support of those who will return to rebuild their countries are mandatory. FUNDING The Max Planck Society supported this work.
Collapse
Affiliation(s)
- Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Psychiatry & Psychotherapy, University Medical Center, Göttingen, Germany
| | - Jan Seidel
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Luise Poustka
- Department of Child & Adolescent Psychiatry & Psychotherapy, University Medical Center Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Corresponding author.
| |
Collapse
|