1
|
Carnicero-Senabre D, Jiménez-Villegas J, Álvarez-Garrote S, Escoll M, Cuadrado A, Rojo AI. NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17. Free Radic Biol Med 2025; 227:94-102. [PMID: 39613049 DOI: 10.1016/j.freeradbiomed.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Better knowledge of the molecular actors governing sequential amyloid precursor protein (APP) proteolysis is crucial to endorse novel therapies aimed to delay Alzheimer's disease (AD) progression. ADAM17 (A Disintegrin and Metalloproteinase 17) is a type-I transmembrane protease involved in the non-amyloidogenic processing of APP that contributes to the maintenance of synaptic functions. In this work, we analyzed the 5'-flanking region and first intron of ADAM17 gene employing an in silico analysis. This strategy evidenced two regions which concentrate the binding sites of diverse transcription factor-families, including members of the b-ZIP small MAF, NRF2 and BACH1 proteins. Then, we found that the natural isothiocyanate 6-MSITC (6 methylsulfinyl hexyl isothiocyanate) increased both mRNA and protein levels of ADAM17 in an NRF2-dependent manner. In line, SH-SY5Y neurons released higher levels of the soluble APPα peptide as a result of ADAM17 activation. Overall, our study identifies inducible expression of ADAM17, and consequently protease activity, by NRF2.
Collapse
Affiliation(s)
- Daniel Carnicero-Senabre
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Álvarez-Garrote
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain, Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Cao J, Zhang C, Lo CYZ, Guo Q, Ding J, Luo X, Zhang ZC, Chen F, Cheng TL, Chen J, Zhao XM. Integrating rare pathogenic variant prioritization with gene-based association analysis to identify novel genes and relevant multimodal traits for Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39713882 DOI: 10.1002/alz.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Increasing evidence has highlighted rare variants in Alzheimer's disease (AD). However, insufficient sample sizes, especially in underrepresented ethnic groups, hinder their investigation. Additionally, their impact on endophenotypes remains largely unexplored. METHODS We prioritized rare likely-deleterious variants based on whole-genome sequencing data from a Chinese AD cohort (n = 988). Gene-based optimal sequence kernel association tests were conducted between AD cases and normal controls to identify AD-related genes. Network clustering, endophenotype association, and cellular experiments were conducted to evaluate their functional consequences. RESULTS We identified 11 novel AD candidate genes, which captured AD-related pathways and enhanced AD risk prediction performance. Key genes (RABEP1, VIPR1, RPL3L, and CABIN1) were linked to cognitive decline and brain atrophy. Experiments showed RABEP1 p.R845W inducing endocytosis dysregulation and exacerbating toxic amyloid β accumulation, underscoring its therapeutic potential. DISCUSSION Our findings highlighted the contributions of rare variants to AD and provided novel insights into AD therapeutics. HIGHLIGHTS Identified 11 novel AD candidate genes in a Chinese AD cohort. Correlated candidate genes with AD-related cognitive and brain imaging traits. Indicated RABEP1 p.R845W as a critical AD contributor in the endocytic pathway.
Collapse
Affiliation(s)
- Jixin Cao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Cheng Zhang
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Chun-Yi Zac Lo
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiaohui Luo
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zi-Chao Zhang
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jingqi Chen
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| |
Collapse
|
3
|
Ramirez AM, Bertholim-Nasciben L, Moura S, Coombs LE, Rajabli F, DeRosa BA, Whitehead PG, Adams LD, Starks TD, Mena P, Illannes-Manrique M, Tejada SJ, Byrd GS, Caban-Holt A, Cuccaro M, McInerney K, Cornejo-Olivas M, Feliciano-Astacio B, Wang L, Robayo MC, Xu W, Jin F, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM, Young JI, Vance JM. Ancestral Genomic Functional Differences in Oligodendroglia: Implications for Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5338140. [PMID: 39678342 PMCID: PMC11643296 DOI: 10.21203/rs.3.rs-5338140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European). Methods We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying APOE genotypes (APOE3/3 and APOE4/4). These lines were differentiated into neural spheroids containing oligodendrocyte lineage cells. Single-nuclei RNA sequencing and ATAC sequencing were employed to analyze transcriptional and chromatin accessibility profiles, respectively. Differential gene expression, chromatin accessibility, and Hi-C analyses were conducted, followed by pathway analysis to interpret the results. Results We identified ancestry-specific differences in gene expression and chromatin accessibility. Notably, numerous AD GWAS-associated genes were differentially expressed across ancestries. The largest number of differentially expressed genes (DEGs) were found in European vs. Amerindian and African vs. Amerindian iPSC-derived oligodendrocyte progenitor cells (OPCs). Pathway analysis of APOE4/4 carriers vs APOE3/3 carriers exhibited upregulation of a large number of disease and metabolic pathways in APOE4/4 individuals of all ancestries. Of particular interest was that APOE4/4 carriers had significantly upregulated cholesterol biosynthesis genes relative to APOE3/3 individuals across all ancestries, strongest in iOPCs. Comparison of iOPC and iOL transcriptome data with corresponding human frontal cortex data demonstrated a high correlation (R2 > 0.85). Conclusions This research emphasizes the importance of including diverse ancestries in AD research to uncover critical gene expression differences between populations and ancestries that may influence disease susceptibility and therapeutic interventions. The upregulation of cholesterol biosynthesis genes in APOE4/4 carriers of all three ancestries supports the concept that APOE4 may produce disease effects early in life, which could have therapeutic implications as we move forward towards specific therapy for APOE4 carriers. These findings and the high correlation between brain and iPSC-derived OPC and OL transcriptomes support the relevance of this approach as a model for disease study.
Collapse
Affiliation(s)
- Aura M Ramirez
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sofia Moura
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Lauren E Coombs
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Farid Rajabli
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Brooke A DeRosa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Patrice G Whitehead
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Larry D Adams
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Takiyah D Starks
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Pedro Mena
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sergio J Tejada
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Goldie S Byrd
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Allison Caban-Holt
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Michael Cuccaro
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Katalina McInerney
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Mario Cornejo-Olivas
- Universidad Científica del Sur Facultad de Ciencias de la Salud: Universidad Cientifica del Sur Facultad de Ciencias de la Salud
| | | | - Liyong Wang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Maria C Robayo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wanying Xu
- Case Western Reserve University School of Medicine
| | - Fulai Jin
- Case Western Reserve University School of Medicine
| | | | - Anthony J Griswold
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Derek M Dykxhoorn
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Juan I Young
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jeffery M Vance
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
4
|
Choi HS, Kim J, Lee SB, Zhang L, Kwon D, Tran HNK, Zhang S, Huang T, Yu JS, Lee G, Yang HO. Euonymus hamiltonianus Extract Improves Amnesia in APPswe/Tau Transgenic and Scopolamine-Induced Dementia Models. Mol Neurobiol 2024; 61:10845-10860. [PMID: 38801629 DOI: 10.1007/s12035-024-04242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Dementia is a syndrome exhibiting progressive impairments on cognition and behavior beyond the normal course of aging, and Alzheimer's disease (AD) is one of the neurodegenerative diseases known to cause dementia. We investigated the effect of KGC07EH, the 30% ethanol extract of Euonymus hamiltonianus, against amyloid-β (Aβ) production and cognitive dysfunction in dementia models. KGC07EH was treated on Hela cells expressing the Swedish mutant form of amyloid precursor protein (APP), and the AD triple transgenic (3× TG) mice were given KGC07EH orally during 11-14 months of age (100 and 300 mg/kg/day). SH-SY5Y cell line was used to test KGC07EH on scopolamine-induced elevation of acetylcholinesterase (AChE) activity. ICR mice were intraperitoneally injected with scopolamine, and KGC07EH was administered orally (50, 100, and 200 mg/kg/day) for 4 weeks. KGC07EH treatment decreased Aβ, sAPPβ-sw, and sAPPβ-wt levels and APP protein expressions while sAPPα was increased in Swedish mutant-transfected HeLa cells. KGC07EH treatment also significantly reduced the accumulation of Aβ plaques and tau tangles in the brain of 3× TG mice as well as improving the cognitive function. In SH-SY5Y cells cultured with scopolamine, KGC07EH dose-dependently attenuated the increase of AChE activity. KGC07EH also improved scopolamine-induced learning and memory impairment in scopolamine-injected mice, and in their cerebral cortex and hippocampus, the expression levels of p-ERK, p-CREB, p-Akt, and BDNF were attenuated. KGC07EH inhibits APP processing and Aβ production both in vitro and in vivo, while enhancing acetylcholine signaling and cognitive dysfunction which are the major symptoms of dementia.
Collapse
Affiliation(s)
- Hyo-Sun Choi
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Republic of Korea
| | - Sang-Bin Lee
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Lijun Zhang
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dowan Kwon
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea
| | - Huynh Nguyen Khanh Tran
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea
| | - Siqi Zhang
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Republic of Korea
| | - Tianqi Huang
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae Sik Yu
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry & Convergence Research Center for Natural Products, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
- Natural Product Research Center, Korea Institute of Science and Technology, 679 Saimdang-ro, Gangneung, 25451, Gangwon-do, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
5
|
Gao S, Fan C, Wang Y, Yang W, Jiang H. LncRNA ENST00000440246.1 Promotes Alzheimer's Disease Progression by Targeting PP2A. Biochem Genet 2024; 62:2100-2116. [PMID: 37856039 DOI: 10.1007/s10528-023-10552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aβ expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.
Collapse
Affiliation(s)
- Shang Gao
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Department of pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
6
|
Wang X, Pan C, Zheng L, Wang J, Zou Q, Sun P, Zhou K, Zhao A, Cao Q, He W, Wang Y, Cheng R, Yao Z, Zhang S, Zhang H, Li M. ADAM17 variant causes hair loss via ubiquitin ligase TRIM47-mediated degradation. JCI Insight 2024; 9:e177588. [PMID: 38771644 PMCID: PMC11383180 DOI: 10.1172/jci.insight.177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Hypotrichosis is a genetic disorder characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in a disintegrin and a metalloproteinase domain 17 (ADAM17) gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knockin mice mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cell (HFSC) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase tripartite motif-containing protein 47 (TRIM47). ADAM17 variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected the Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of Notch intracellular domain rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Luyao Zheng
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jianbo Wang
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, and Henan University People's Hospital, Zhengzhou, China
| | - Quan Zou
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyi Sun
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Zhou
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, and
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Xinhua Hospital, and
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Wei He
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruhong Cheng
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, and
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Dermatology, Xinhua Hospital, and
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, and
- Department of Dermatology, The Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
8
|
Cruchaga C, Ali M, Shen Y, Do A, Wang L, Western D, Liu M, Beric A, Budde J, Gentsch J, Schindler S, Morris J, Holtzman D, Fernández M, Ruiz A, Alvarez I, Aguilar M, Pastor P, Rutledge J, Oh H, Wilson E, Le Guen Y, Khalid R, Robins C, Pulford D, Ibanez L, Wyss-Coray T, Ju Sung Y. Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures for asymptomatic and symptomatic Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-3631708. [PMID: 38410465 PMCID: PMC10896368 DOI: 10.21203/rs.3.rs-3631708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Changes in Amyloid-β (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).
Collapse
Affiliation(s)
| | | | | | - Anh Do
- Washington University School of Medicine
| | - Lihua Wang
- Washington University School of Medicine
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas "Margarita Salas", Spanish National Research Council, Madrid, Spain
| | - Eric A Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Pereira VM, Pradhanang S, Prather JF, Nair S. Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment. Curr Neuropharmacol 2024; 23:58-74. [PMID: 38963109 PMCID: PMC11519823 DOI: 10.2174/1570159x22666240517090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Suyasha Pradhanang
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
12
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
13
|
Rollo J, Crawford J, Hardy J. A dynamical systems approach for multiscale synthesis of Alzheimer's pathogenesis. Neuron 2023; 111:2126-2139. [PMID: 37172582 DOI: 10.1016/j.neuron.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/15/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is a spatially dynamic pathology that implicates a growing volume of multiscale data spanning genetic, cellular, tissue, and organ levels of the organization. These data and bioinformatics analyses provide clear evidence for the interactions within and between these levels. The resulting heterarchy precludes a linear neuron-centric approach and necessitates that the numerous interactions are measured in a way that predicts their impact on the emergent dynamics of the disease. This level of complexity confounds intuition, and we propose a new methodology that uses non-linear dynamical systems modeling to augment intuition and that links with a community-wide participatory platform to co-create and test system-level hypotheses and interventions. In addition to enabling the integration of multiscale knowledge, key benefits include a more rapid innovation cycle and a rational process for prioritization of data campaigns. We argue that such an approach is essential to support the discovery of multilevel-coordinated polypharmaceutical interventions.
Collapse
Affiliation(s)
- Jennifer Rollo
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - John Crawford
- Adam Smith Business School, University of Glasgow, Glasgow G12 8QQ, UK
| | - John Hardy
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
14
|
Iemmolo M, Ghersi G, Bivona G. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098026. [PMID: 37175729 PMCID: PMC10179166 DOI: 10.3390/ijms24098026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
15
|
Tian Y, Fopiano KA, Buncha V, Lang L, Suggs HA, Wang R, Rudic RD, Filosa JA, Bagi Z. The role of ADAM17 in cerebrovascular and cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Front Mol Neurosci 2023; 16:1125932. [PMID: 36937050 PMCID: PMC10018024 DOI: 10.3389/fnmol.2023.1125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The disintegrin and metalloproteinase 17 (ADAM17) exhibits α-secretase activity, whereby it can prevent the production of neurotoxic amyloid precursor protein-α (APP). ADAM17 is abundantly expressed in vascular endothelial cells and may act to regulate vascular homeostatic responses, including vasomotor function, vascular wall morphology, and formation of new blood vessels. The role of vascular ADAM17 in neurodegenerative diseases remains poorly understood. Here, we hypothesized that cerebrovascular ADAM17 plays a role in the pathogenesis of Alzheimer's disease (AD). Methods and results We found that 9-10 months old APP/PS1 mice with b-amyloid accumulation and short-term memory and cognitive deficits display a markedly reduced expression of ADAM17 in cerebral microvessels. Systemic delivery and adeno-associated virus (AAV)-mediated re-expression of ADAM17 in APP/PS1 mice improved cognitive functioning, without affecting b-amyloid plaque density. In isolated and pressurized cerebral arteries of APP/PS1 mice the endothelium-dependent dilation to acetylcholine was significantly reduced, whereas the vascular smooth muscle-dependent dilation to the nitric oxide donor, sodium nitroprusside was maintained when compared to WT mice. The impaired endothelium-dependent vasodilation of cerebral arteries in APP/PS1 mice was restored to normal level by ADAM17 re-expression. The cerebral artery biomechanical properties (wall stress and elasticity) and microvascular network density was not affected by ADAM17 re-expression in the APP/PS1 mice. Additionally, proteomic analysis identified several differentially expressed molecules involved in AD neurodegeneration and neuronal repair mechanisms that were reversed by ADAM17 re-expression. Discussion Thus, we propose that a reduced ADAM17 expression in cerebral microvessels impairs vasodilator function, which may contribute to the development of cognitive dysfunction in APP/PS1 mice, and that ADAM17 can potentially be targeted for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hayden A. Suggs
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rongrong Wang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. Daniel Rudic
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
16
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
17
|
Dobrowolska Zakaria JA, Bateman RJ, Lysakowska M, Khatri A, Jean-Gilles D, Kennedy ME, Vassar R. The metabolism of human soluble amyloid precursor protein isoforms is quantifiable by a stable isotope labeling-tandem mass spectrometry method. Sci Rep 2022; 12:14985. [PMID: 36056033 PMCID: PMC9440206 DOI: 10.1038/s41598-022-18869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that β-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPβ and amyloid-β, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPβ, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPβ and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPβ and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Collapse
Affiliation(s)
- Justyna A Dobrowolska Zakaria
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Lysakowska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ammaarah Khatri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Matthew E Kennedy
- Deparment of Neuroscience, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022; 12:996. [PMID: 35883551 PMCID: PMC9312829 DOI: 10.3390/biom12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. In the past decade, there has been a greater degree of investigation on therapeutic small peptides. This group of biomolecules have a profile of fundamentally sound characteristics which make them an intriguing area for drug development. Among these biomolecules, there are four modulatory mechanisms of interest in this review: alpha-, beta-, gamma-secretases, and amylin. These protease-based biomolecules all have a contributory role in the amyloid cascade hypothesis. Moreover, the involvement of various biochemical pathways intertwines these peptides to have shared regulators (i.e., retinoids). Further clinical and translational investigation must occur to gain a greater understanding of its potential application in patient care. The aim of this narrative review is to evaluate the contemporary literature on these protease biomolecule modulators and determine its utility in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA; (S.S.); (F.Y.); (A.S.); (V.C.)
| |
Collapse
|
19
|
Fung TY, Iyaswamy A, Sreenivasmurthy SG, Krishnamoorthi S, Guan XJ, Zhu Z, Su CF, Liu J, Kan Y, Zhang Y, Wong HLX, Li M. Klotho an Autophagy Stimulator as a Potential Therapeutic Target for Alzheimer’s Disease: A Review. Biomedicines 2022; 10:biomedicines10030705. [PMID: 35327507 PMCID: PMC8945569 DOI: 10.3390/biomedicines10030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-associated neurodegenerative disease; it is the most common cause of senile dementia. Klotho, a single-pass transmembrane protein primarily generated in the brain and kidney, is active in a variety of metabolic pathways involved in controlling neurodegeneration and ageing. Recently, many studies have found that the upregulation of Klotho can improve pathological cognitive deficits in an AD mice model and have demonstrated that Klotho plays a role in the induction of autophagy, a major contributing factor for AD. Despite the close association between Klotho and neurodegenerative diseases, such as AD, the underlying mechanism by which Klotho contributes to AD remains poorly understood. In this paper, we will introduce the expression, location and structure of Klotho and its biological functions. Specifically, this review is devoted to the correlation of Klotho protein and the AD phenotype, such as the effect of Klotho in upregulating the amyloid-beta clearance and in inducing autophagy for the clearance of toxic proteins, by regulating the autophagy lysosomal pathway (ALP). In summary, the results of multiple studies point out that targeting Klotho would be a potential therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
- Tsz Yan Fung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| | - Sravan G. Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Centre for Trans-Disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai 600077, Tamil Nadu, India
| | - Xin-Jie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Cheng-Fu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
| | - Yuan Zhang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China;
| | - Hoi Leong Xavier Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (T.Y.F.); (S.G.S.); (S.K.); (X.-J.G.); (Z.Z.); (C.-F.S.); (J.L.); (Y.K.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: or (A.I.); (H.L.X.W.); (M.L.); Tel.: +852-3411-2919 (M.L.); Fax: +852-3411-2461 (M.L.)
| |
Collapse
|
20
|
Song H, Yang J, Yu W. Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Front Cell Dev Biol 2022; 9:825729. [PMID: 35310542 PMCID: PMC8924075 DOI: 10.3389/fcell.2021.825729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the abnormal deposition of amyloid-β (Aβ) plaques and tau tangles in the brain and accompanied with cognitive impairment. However, the fundamental cause of this disease remains elusive. To elucidate the molecular processes related to AD, we carried out an integrated analysis utilizing gene expression microarrays (GSE36980 and GSE5281) and DNA methylation microarray (GSE66351) in temporal cortex of AD patients from the Gene Expression Omnibus (GEO) database. We totally discovered 409 aberrantly methylated and differentially expressed genes. These dysregulated genes were significantly enriched in biological processes including cell part morphogenesis, chemical synaptic transmission and regulation of Aβ formation. Through convergent functional genomic (CFG) analysis, expression cross-validation and clinicopathological correlation analysis, higher TGFBR3 level was observed in AD and positively correlated with Aβ accumulation. Meanwhile, the promoter methylation level of TGFBR3 was reduced in AD and negatively associated with Aβ level and advanced Braak stage. Mechanically, TGFBR3 might promote Aβ production by enhancing β- and γ-secretase activities. Further investigation revealed that TGFBR3 may exert its functions via Synaptic vesicle cycle, Calcium signaling pathway and MAPK signal pathway by regulating hub genes GNB1, GNG3, CDC5L, DYNC1H1 and FBXW7. Overall, our findings highlighted TGFBR3 as an AD risk gene and might be used as a diagnostic biomarker and therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Hui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jue Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenfeng Yu,
| |
Collapse
|
21
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E Barreto
- Department of Biological Sciences; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Elfiky AM, Mahmoud AA, Elreedy HA, Ibrahim KS, Ghazy MA. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer's disease rat model. Life Sci 2021; 285:119964. [PMID: 34537230 DOI: 10.1016/j.lfs.2021.119964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by declined cognitive functions in the elderly. Quercetin (Q) is a potent flavonol that has neuroprotective effects on AD derangements. The present study aimed to evaluate the α-secretase stimulatory function of Q through activation of ADAM10 and ADAM17 gene expression in the aluminum chloride (AlCl3)-induced AD rat model. MAIN METHODS After induction of AD in rats by oral administration of AlCl3 (50 mg/kg) for 28 days, the Q doses (25 and 50 mg/kg) were orally administered for 28 days. Rats performed the behavioral assessments during the last week of the treatment period. Hippocampi were harvested for assessments of the neurochemical and histopathological examinations and gene expression analysis. KEY FINDINGS Administration of Q to AlCl3-induced AD rat model attenuated behavioral deficits, improved cholinergic and dopaminergic dysfunctions, and diminished insoluble amyloid β (Aβ) plaques aggregation in the hippocampus. These ameliorative effects of Q were associated with down-regulation of APP, BACE1, APH1, and PSEN1 and up-regulation of ADAM10 and ADAM17 gene expression levels in the hippocampus. SIGNIFICANCE The present study suggests that Q might attenuate neurotransmission impairment, Aβ aggregation in the hippocampus, and behavioral deficits in the AlCl3-induce AD rat model via up-regulating ADAM 10 and ADAM 17 (α-secretase) gene expression, leading to the inhibition of the amyloidogenic pathway. In support of the present finding, we suggest that ADAM10 and ADAM17 activation might be potential drug targets for AD to counteract the Aβ aggregation and cognitive deterioration.
Collapse
Affiliation(s)
- Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala A Elreedy
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Khadiga S Ibrahim
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt; Biotechnology Program, Basic and applied Science Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
23
|
Lichtenthaler SF, Tschirner SK, Steiner H. Secretases in Alzheimer's disease: Novel insights into proteolysis of APP and TREM2. Curr Opin Neurobiol 2021; 72:101-110. [PMID: 34689040 DOI: 10.1016/j.conb.2021.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Secretases are a group of proteases that are major drug targets considered for the prevention and treatment of Alzheimer's disease (AD). Secretases do not only process the AD-linked neuronal amyloid precursor protein (APP) but also the triggering receptor expressed on myeloid cells 2 (TREM2), thereby controlling microglial functions. This review highlights selected recent discoveries for the α-secretases a disintegrin and metalloprotease 10 (ADAM10) and a disintegrin and metalloprotease 17 (ADAM17), the β-secretase β-site APP cleaving enzyme 1 (BACE1) and γ-secretase and their link to AD. New genetic evidence strengthens the role of α-secretases in AD through cleavage of APP and TREM2. Novel proteins were linked to AD, which control α- and β-secretase activity through transcriptional and post-translational mechanisms. Finally, new opportunities but also challenges are discussed for pharmacologically targeting β- and γ-secretase cleavage of APP and α-secretase cleavage of TREM2 with the aim to prevent or treat AD.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Germany.
| |
Collapse
|
24
|
Idebenone Decreases Aβ Pathology by Modulating RAGE/Caspase-3 Signaling and the Aβ Degradation Enzyme NEP in a Mouse Model of AD. BIOLOGY 2021; 10:biology10090938. [PMID: 34571815 PMCID: PMC8471964 DOI: 10.3390/biology10090938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary The present study reveals that the FDA-approved drug idebenone has therapeutic effects on the pathology of Alzheimer’s disease (AD) in a mouse model. In particular, idebenone regulates pathological progression associated with Aβ by downregulating the non-amyloidogenic pathway, inhibiting RAGE/caspase-3 signaling, and enhancing Aβ catabolism. In addition, idebenone modulates tauopathy by reducing levels of the tau kinase p-GSK3β, thereby suppressing tau hyperphosphorylation at Thr231. These data suggest that idebenone modulates Aβ and tau pathology in a mouse model of AD. Abstract The coenzyme Q10 analogue idebenone is an FDA-approved antioxidant that can cross the blood–brain barrier (BBB). The effects of idebenone on the pathology of Alzheimer’s disease (AD) and the underlying molecular mechanisms have not been comprehensively investigated. Here, we examined the impact of idebenone treatment on AD pathology in 5xFAD mice, a model of AD. Idebenone significantly downregulated Aβ plaque number via multi-directional pathways in this model. Specifically, idebenone reduced the RAGE/caspase-3 signaling pathway and increased levels of the Aβ degradation enzyme NEP and α-secretase ADAM17 in 5xFAD mice. Importantly, idebenone significantly suppressed tau kinase p-GSK3βY216 levels, thereby inhibiting tau hyperphosphorylation at Thr231 and total tau levels in 5xFAD mice. Taken together, the present study indicates that idebenone modulates amyloidopathy and tauopathy in 5xFAD mice, suggesting therapeutic potential for AD.
Collapse
|
25
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
26
|
Hu WT, Ozturk T, Kollhoff A, Wharton W, Christina Howell J. Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer's disease. Nat Commun 2021; 12:4001. [PMID: 34183654 PMCID: PMC8238986 DOI: 10.1038/s41467-021-24220-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is associated with Alzheimer's disease, but the application of cerebrospinal fluid measures of inflammatory proteins may be limited by overlapping pathways and relationships between them. In this work, we measure 15 cerebrospinal proteins related to microglial and T-cell functions, and show them to reproducibly form functionally-related groups within and across diagnostic categories in 382 participants from the Alzheimer's Disease Neuro-imaging Initiative as well participants from two independent cohorts. We further show higher levels of proteins related to soluble tumor necrosis factor receptor 1 are associated with reduced risk of conversion to dementia in the multi-centered (p = 0.027) and independent (p = 0.038) cohorts of people with mild cognitive impairment due to predicted Alzheimer's disease, while higher soluble TREM2 levels associated with slower decline in the dementia stage of Alzheimer's disease. These inflammatory proteins thus provide prognostic information independent of established Alzheimer's markers.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology and Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA.
- Rutgers Robert Wood Johnson Medical School and Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA.
| | - Tugba Ozturk
- Department of Neurology and Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander Kollhoff
- Department of Neurology and Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Whitney Wharton
- Nell Hodgson School of Nursing, Emory University, Atlanta, GA, USA
| | - J Christina Howell
- Department of Neurology and Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Implications of ADAM17 activation for hyperglycaemia, obesity and type 2 diabetes. Biosci Rep 2021; 41:228464. [PMID: 33904577 PMCID: PMC8128101 DOI: 10.1042/bsr20210029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this review, we focus specifically on the role that the metalloproteinase, A Disintegrin and Metalloproteinase 17 [ADAM17] plays in the development and progression of the metabolic syndrome. There is a well-recognised link between the ADAM17 substrate tumour necrosis factor α (TNF-α) and obesity, inflammation and diabetes. In addition, knocking out ADAM17 in mice leads to an extremely lean phenotype. Importantly, ADAM17-deficient mice exhibit one of the most pronounced examples of hypermetabolism in rodents to date. It is vital to further understand the mechanistic role that ADAM17 plays in the metabolic syndrome. Such studies will demonstrate that ADAM17 is a valuable therapeutic target to treat obesity and diabetes.
Collapse
|
28
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
30
|
Strategies to Target ADAM17 in Disease: From its Discovery to the iRhom Revolution. Molecules 2021; 26:molecules26040944. [PMID: 33579029 PMCID: PMC7916773 DOI: 10.3390/molecules26040944] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, disintegrin and metalloproteinase 17 (ADAM17) has been the object of deep investigation. Since its discovery as the tumor necrosis factor convertase, it has been considered a major drug target, especially in the context of inflammatory diseases and cancer. Nevertheless, the development of drugs targeting ADAM17 has been harder than expected. This has generally been due to its multifunctionality, with over 80 different transmembrane proteins other than tumor necrosis factor α (TNF) being released by ADAM17, and its structural similarity to other metalloproteinases. This review provides an overview of the different roles of ADAM17 in disease and the effects of its ablation in a number of in vivo models of pathological conditions. Furthermore, here, we comprehensively encompass the approaches that have been developed to accomplish ADAM17 selective inhibition, from the newest non-zinc-binding ADAM17 synthetic inhibitors to the exploitation of iRhom2 to specifically target ADAM17 in immune cells.
Collapse
|
31
|
Ragia G, Manolopoulos VG. Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2-mediated SARS-CoV-2 entry. Pharmacogenomics 2020; 21:1311-1329. [PMID: 33243086 PMCID: PMC7694444 DOI: 10.2217/pgs-2020-0092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is considerable variation in disease course among individuals infected with SARS-CoV-2. Many of them do not exhibit any symptoms, while some others proceed to develop COVID-19; however, severity of COVID-19 symptoms greatly differs among individuals. Focusing on the early events related to SARS-CoV-2 entry to cells through the ACE2 pathway, we describe how variability in (epi)genetic factors can conceivably explain variability in disease course. We specifically focus on variations in ACE2, TMPRSS2 and FURIN genes, as central components for SARS-CoV-2 infection, and on other molecules that modulate their expression such as CALM, ADAM-17, AR and ESRs. We propose a genetic classifier for predicting SARS-CoV-2 infectivity potential as a preliminary tool for identifying the at-risk-population. This tool can serve as a dynamic scaffold being updated and adapted to validated (epi)genetic data. Overall, the proposed approach holds potential for better personalization of COVID-19 handling.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.,Clinical Pharmacology & Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, 68100, Greece
| |
Collapse
|
32
|
De Lillo A, Pathak GA, De Angelis F, Di Girolamo M, Luigetti M, Sabatelli M, Perfetto F, Frusconi S, Manfellotto D, Fuciarelli M, Polimanti R. Epigenetic profiling of Italian patients identified methylation sites associated with hereditary transthyretin amyloidosis. Clin Epigenetics 2020; 12:176. [PMID: 33203445 PMCID: PMC7672937 DOI: 10.1186/s13148-020-00967-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Hereditary transthyretin (TTR) amyloidosis (hATTR) is a rare life-threatening disorder caused by amyloidogenic coding mutations located in TTR gene. To understand the high phenotypic variability observed among carriers of TTR disease-causing mutations, we conducted an epigenome-wide association study (EWAS) assessing more than 700,000 methylation sites and testing epigenetic difference of TTR coding mutation carriers vs. non-carriers. We observed a significant methylation change at cg09097335 site located in Beta-secretase 2 (BACE2) gene (standardized regression coefficient = -0.60, p = 6.26 × 10-8). This gene is involved in a protein interaction network enriched for biological processes and molecular pathways related to amyloid-beta metabolism (Gene Ontology: 0050435, q = 0.007), amyloid fiber formation (Reactome HSA-977225, q = 0.008), and Alzheimer's disease (KEGG hsa05010, q = 2.2 × 10-4). Additionally, TTR and BACE2 share APP (amyloid-beta precursor protein) as a validated protein interactor. Within TTR gene region, we observed that Val30Met disrupts a methylation site, cg13139646, causing a drastic hypomethylation in carriers of this amyloidogenic mutation (standardized regression coefficient = -2.18, p = 3.34 × 10-11). Cg13139646 showed co-methylation with cg19203115 (Pearson's r2 = 0.32), which showed significant epigenetic differences between symptomatic and asymptomatic carriers of amyloidogenic mutations (standardized regression coefficient = -0.56, p = 8.6 × 10-4). In conclusion, we provide novel insights related to the molecular mechanisms involved in the complex heterogeneity of hATTR, highlighting the role of epigenetic regulation in this rare disorder.
Collapse
Affiliation(s)
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Flavio De Angelis
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Marco Di Girolamo
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico NEMO Adulti, Rome, Italy
| | - Federico Perfetto
- Regional Amyloid Centre, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, Fatebenefratelli Foundation -'San Giovanni Calibita' Fatebenefratelli Hospital, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, USA.
- VA CT Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
33
|
Gadhave K, Gehi BR, Kumar P, Xue B, Uversky VN, Giri R. The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell Mol Life Sci 2020; 77:4163-4208. [PMID: 31894361 PMCID: PMC11104979 DOI: 10.1007/s00018-019-03414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
34
|
Kosukcu C, Taskiran EZ, Batu ED, Sag E, Bilginer Y, Alikasifoglu M, Ozen S. Whole exome sequencing in unclassified autoinflammatory diseases: more monogenic diseases in the pipeline? Rheumatology (Oxford) 2020; 60:607-616. [DOI: 10.1093/rheumatology/keaa165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/10/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Objective
Autoinflammatory diseases (AIDs) are characterized by recurrent sterile systemic inflammation attacks. More than half of the patients remain genetically undiagnosed with next-generation sequencing panels for common AIDs. In this study, we aimed to define phenotype-genotype correlations in a cohort of unclassified AID patients via whole exome sequencing (WES).
Methods
Patients with features of AIDs were included in this study followed in the Department of Pediatric Rheumatology at Hacettepe University. They were first screened for MEFV with Sanger sequencing and then WES performed for the patients with clinically insignificant results. Pre-analysis of WES data was done by considering the 13 most common AID-related genes. Further bioinformatic analysis was performed if the patient remained genetically undiagnosed.
Results
The median age at disease onset was 1.2 years (range 0.2–16) and at the time of study recruitment was 14 years (range 3.5–17). In our cohort, WES provided a definite or probable disease-causing variant in 4 of 11 patients (36%). Heterozygous mutations for two of these genes were previously associated with neurological defects (ADAM17, TBK1), also homozygous ADAM17 mutations were observed in one family with neonatal inflammatory skin and bowel disease. Besides, two genes (LIG4, RAG1) were associated with immunodeficiency although the patients had presented with inflammatory features. Finally, for one patient, we associated a strong candidate gene (NLRC3) with autoinflammatory features.
Conclusion
WES strategy is cost-effective and provides substantial results for a selected group of undefined AID patients. Our results will contribute to the spectrum of unclassified AIDs.
Collapse
Affiliation(s)
- Can Kosukcu
- Department of Bioinformatics, Institute of Health Sciences, Ankara, Turkey
| | - Ekim Z Taskiran
- Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Erdal Sag
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | | | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
35
|
Tambini MD, Norris KA, D'Adamio L. Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation. eLife 2020; 9:52612. [PMID: 32022689 PMCID: PMC7018507 DOI: 10.7554/elife.52612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of APP by BACE1/β-secretase initiates the amyloidogenic cascade leading to Amyloid-β (Aβ) production. α-Secretase initiates the non-amyloidogenic pathway preventing Aβ production. Several APP mutations cause familial Alzheimer's disease (AD), while the Icelandic APP mutation near the BACE1-cleavage site protects from sporadic dementia, emphasizing APP's role in dementia pathogenesis. To study APP protective/pathogenic mechanisms, we generated knock-in rats carrying either the protective (Appp) or the pathogenic Swedish mutation (Apps), also located near the BACE1-cleavage site. α-Cleavage is favored over β-processing in Appp rats. Consequently, non-amyloidogenic and amyloidogenic APP metabolites are increased and decreased, respectively. The reverse APP processing shift occurs in Apps rats. These opposite effects on APP β/α-processing suggest that protection from and pathogenesis of dementia depend upon combinatorial and opposite alterations in APP metabolism rather than simply on Aβ levels. The Icelandic mutation also protects from aging-dependent cognitive decline, suggesting that similar mechanisms underlie physiological cognitive aging.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Kelly A Norris
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Luciano D'Adamio
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| |
Collapse
|
36
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
37
|
Guo W, Zhou M, Qiu J, Lin Y, Chen X, Huang S, Mo M, Liu H, Peng G, Zhu X, Xu P. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population. J Neuroinflammation 2019; 16:270. [PMID: 31847878 PMCID: PMC6918662 DOI: 10.1186/s12974-019-1654-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/20/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that α-synuclein (α-syn) aggregation and intercellular transmission contributes to pathogenesis of Parkinson's disease (PD) and the toxic fibrillary α-syn binds lymphocyte-activation gene 3 (LAG3) receptor that mediates α-syn transmission. The deletion of LAG3 in animal models was shown to limit α-syn spreading and alleviate the pathological changes of dopaminergic neurons and animal behavioral deficits induced by α-syn aggregation. However, little is known about the genetic association of LAG3 variation with human PD development. OBJECTIVE Here we investigated LAG3 single nucleotide polymorphisms (SNPs) and examined the levels of soluble LAG3 (sLAG3) of CSF and serum from Chinese PD patients. METHODS We enrolled 646 PD patients and 536 healthy controls to conduct a case-control study. All the participants were genotyped using Sequenom iPLEX Assay and the partial cerebrospinal fluid (CSF) and serum samples were assessed by Meso Scale Discovery electrochemiluminescence (MSD-ECL) immunoassay to measure sLAG3 concentration. RESULTS As a result, distributions of rs1922452-AA (1.975, 95% confidence interval (CI) 1.311-2.888, p = 0.001) and rs951818-CC (OR = 2.03, 95% CI 1.369-3.010, p = 0.001) genotype frequencies were found higher in the female PD patients than controls, respectively, and a strong linkage disequilibrium (LD) was calculated on the variants. The level of sLAG3 in CSF of PD patients was found to significantly differ from that of controls (51.56 ± 15.05 pg/ml vs 88.49 ± 62.96 pg/ml, p < 0.0001). Meanwhile, the concentration of α-synuclein in CSF of patients was significantly lower than that of controls (939.9 ± 2900 pg/ml vs 2476 ± 4403 pg/ml, p < 0.0001) and the level of sLAG3 was detected to be positive correlation with that of α-synuclein in the control group (r = 0.597, p = 0.0042), but not in PD group (r = 0.111, p = 0.408). CONCLUSION In summary, our data suggested that LAG3 SNPs increase the PD risk of Chinese female population and the sLAG3 may be a potential biomarker predicted for PD development.
Collapse
Affiliation(s)
- Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuxuan Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
38
|
Hardy J, Escott-Price V. Genes, pathways and risk prediction in Alzheimer's disease. Hum Mol Genet 2019; 28:R235-R240. [PMID: 31332445 DOI: 10.1093/hmg/ddz163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 11/12/2022] Open
Abstract
The failure of recent clinical trials in Alzheimer's disease has highlighted the need for the development of a more complete understanding of the pathogenesis of the disorder and also a belief that therapies may only work if given very early in the disease process before overt symptoms occur. The rare, early onset forms of the disease are all caused by mutations which make amyloid deposition a more likely event. Here we discuss the recent data showing that, in contrast, much of the risk of late onset disease is encoded by loci involved in lipid metabolism and/or encoded by microglia. We discuss these finding and suggest that amyloid induced membrane damage may be a key factor in disease and also review the evidence that genome wide genetic analysis can substantially help in the prediction of those individuals at high risk of disease in the general population.
Collapse
Affiliation(s)
- John Hardy
- Reta Lilla Research Laboratories, Department of Molecular Neuroscience, University College London Institute of Neurology and UK Dementia Research Institute, University College London, London, UK
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences and Dementia Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
39
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
40
|
Common BACE2 Polymorphisms are Associated with Altered Risk for Alzheimer's Disease and CSF Amyloid Biomarkers in APOE ε4 Non-Carriers. Sci Rep 2019; 9:9640. [PMID: 31270419 PMCID: PMC6610620 DOI: 10.1038/s41598-019-45896-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/10/2019] [Indexed: 11/12/2022] Open
Abstract
It was recently suggested that beta-site amyloid precursor protein (APP)-cleaving enzyme 2 (BACE2) functions as an amyloid beta (Aβ)-degrading enzyme; in addition to its better understood role as an APP secretase. Due to this finding we sought to understand the possible genetic risk contributed by the BACE2 locus to the development of late-onset Alzheimer’s disease (AD). In this study, we report that common single nucleotide polymorphism (SNP) variation in BACE2 is associated with altered AD risk in apolipoprotein E gene (APOE) epsilon 4 variant (ε4) non-carriers. In addition, in ε4 non-carriers diagnosed with AD or mild cognitive impairment (MCI), SNPs within the BACE2 locus are associated with cerebrospinal fluid (CSF) levels of Aβ1-42. Further, SNP variants in BACE2 are also associated with BACE2 RNA expression levels suggesting a potential mechanism for the CSF Aβ1-42 findings. Lastly, overexpression of BACE2 in vitro resulted in decreased Aβ1-40 and Aβ1-42 fragments in a cell line model of Aβ production. These findings suggest that genetic variation at the BACE2 locus modifies AD risk for those individuals who don’t carry the ε4 variant of APOE. Further, our data indicate that the biological mechanism associated with this altered risk is linked to amyloid generation or clearance possibly through BACE2 expression changes.
Collapse
|
41
|
Tuning of Glutamate, But Not GABA, Release by an Intrasynaptic Vesicle APP Domain Whose Function Can Be Modulated by β- or α-Secretase Cleavage. J Neurosci 2019; 39:6992-7005. [PMID: 31235642 DOI: 10.1523/jneurosci.0207-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
APP, whose mutations cause familial Alzheimer's disease (FAD), modulates neurotransmission via interaction of its cytoplasmic tail with the synaptic release machinery. Here we identified an intravesicular domain of APP, called intraluminal SV-APP interacting domain (ISVAID), which interacts with glutamatergic, but not GABAergic, synaptic vesicle proteins. ISVAID contains the β- and α-secretase cleavage sites of APP: proteomic analysis of the interactome of ISVAID suggests that β- and α-secretase cleavage of APP cuts inside the interaction domain of ISVAID and destabilizes protein-protein interactions. We have tested the functional significance of the ISVAID and of β-/α-secretase-processing of APP using various ISVAID-derived peptides in competition experiments on both female and male mouse and rats hippocampal slices. A peptide encompassing the entire ISVAID facilitated glutamate, but not GABA, release acting as dominant negative inhibitor of the functions of this APP domain in acute hippocampal slices. In contrast, peptides representing the product of β-/α-secretase-processing of ISVAID did not alter excitatory neurotransmitter release. These findings suggest that cleavage of APP by either β- or α-secretase may inactivate the ISVAID, thereby enhancing glutamate release. Our present data support the notion that APP tunes glutamate release, likely through intravesicular and extravesicular interactions with synaptic vesicle proteins and the neurotransmitter release machinery, and that β-/α cleavage of APP facilitates the release of excitatory neurotransmitter.SIGNIFICANCE STATEMENT Alzheimer's disease has been linked to mutations in APP. However, the biological function of APP is poorly understood. Here we show that an intravesicular APP domain interacts with the proteins that control the release of glutamate, but not GABA. Interfering with the function of this domain promotes glutamate release. This APP domain contains the sites cleaved by β- and α-secretases: our data suggest that β-/α cleavage of APP inactivates this functional APP domain promoting excitatory neurotransmitter release.
Collapse
|
42
|
Yuksel M, Tacal O. Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review. Eur J Pharmacol 2019; 856:172415. [PMID: 31132354 DOI: 10.1016/j.ejphar.2019.172415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), which is predicted to affect 1 in 85 persons worldwide by 2050, results in progressive loss of neuronal functions, leading to impairments in memory and cognitive abilities. As being one of the major neuropathological hallmarks of AD, senile plaques mainly consist of amyloid-β (Aβ) peptides, which are derived from amyloid precursor protein (APP) via the sequential cleavage by β- and γ-secretases. Although the overproduction and accumulation of Aβ peptides are at the center of AD research, the new discoveries point out to the complexity of the disease development. In this respect, it is crucial to understand the processing and the trafficking of APP, the enzymes involved in its processing, the cleavage products and their therapeutic potentials. This review summarizes the salient features of APP processing focusing on APP, the canonical secretases as well as the novel secretases and the cleavage products with an update of the recent developments. We also discussed the intracellular trafficking of APP and secretases in addition to their potential in AD therapy.
Collapse
Affiliation(s)
- Melike Yuksel
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
43
|
Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019; 50:955-974. [PMID: 30995509 PMCID: PMC6822103 DOI: 10.1016/j.immuni.2019.03.016] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-β, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.
Collapse
Affiliation(s)
- Timothy R Hammond
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
45
|
Patel D, Mez J, Vardarajan BN, Staley L, Chung J, Zhang X, Farrell JJ, Rynkiewicz MJ, Cannon-Albright LA, Teerlink CC, Stevens J, Corcoran C, Gonzalez Murcia JD, Lopez OL, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg G, Kauwe JSK, Lunetta KL, Farrer LA. Association of Rare Coding Mutations With Alzheimer Disease and Other Dementias Among Adults of European Ancestry. JAMA Netw Open 2019; 2:e191350. [PMID: 30924900 PMCID: PMC6450321 DOI: 10.1001/jamanetworkopen.2019.1350] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Importance Some of the unexplained heritability of Alzheimer disease (AD) may be due to rare variants whose effects are not captured in genome-wide association studies because very large samples are needed to observe statistically significant associations. Objective To identify genetic variants associated with AD risk using a nonstatistical approach. Design, Setting, and Participants Genetic association study in which rare variants were identified by whole-exome sequencing in unrelated individuals of European ancestry from the Alzheimer's Disease Sequencing Project (ADSP). Data were analyzed between March 2017 and September 2018. Main Outcomes and Measures Minor alleles genome-wide and in 95 genes previously associated with AD, AD-related traits, or other dementias were tabulated and filtered for predicted functional impact and occurrence in participants with AD but not controls. Support for several findings was sought in a whole-exome sequencing data set comprising 19 affected relative pairs from Utah high-risk pedigrees and whole-genome sequencing data sets from the ADSP and Alzheimer's Disease Neuroimaging Initiative. Results Among 5617 participants with AD (3202 [57.0%] women; mean [SD] age, 76.4 [9.3] years) and 4594 controls (2719 [59.0%] women; mean [SD] age, 86.5 [4.5] years), a total of 24 variants with moderate or high functional impact from 19 genes were observed in 10 or more participants with AD but not in controls. These variants included a missense mutation (rs149307620 [p.A284T], n = 10) in NOTCH3, a gene in which coding mutations are associated with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), that was also identified in 1 participant with AD and 1 participant with mild cognitive impairment in the whole genome sequencing data sets. Four participants with AD carried the TREM2 rs104894002 (p.Q33X) high-impact mutation that, in homozygous form, causes Nasu-Hakola disease, a rare disorder characterized by early-onset dementia and multifocal bone cysts, suggesting an intermediate inheritance model for the mutation. Compared with controls, participants with AD had a significantly higher burden of deleterious rare coding variants in dementia-associated genes (2314 vs 3354 cumulative variants, respectively; P = .006). Conclusions and Relevance Different mutations in the same gene or variable dose of a mutation may be associated with result in distinct dementias. These findings suggest that minor differences in the structure or amount of protein may be associated with in different clinical outcomes. Understanding these genotype-phenotype associations may provide further insight into the pathogenic nature of the mutations, as well as offer clues for developing new therapeutic targets.
Collapse
Affiliation(s)
- Devanshi Patel
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Lyndsay Staley
- Department of Biology, Brigham Young University, Provo, Utah
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Lisa A. Cannon-Albright
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Craig C. Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Jeffery Stevens
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | | | | | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, New York
| | - Jonathan L. Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | | | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|