1
|
Liu Y, Koo JS, Zhang H. Chronic intermittent ethanol exposure-induced m6A modifications around mRNA stop codons of opioid receptor genes. Epigenetics 2024; 19:2294515. [PMID: 38118075 PMCID: PMC10761033 DOI: 10.1080/15592294.2023.2294515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Chronic alcohol consumption may alter mRNA methylation and expression levels of genes related to addiction and reward in the brain, potentially contributing to alcohol tolerance and dependence. Neuron-like (SH-SY5Y) and non-neuronal (SW620) cells were utilized as models to examine chronic intermittent ethanol (CIE) exposure-induced global m6A RNA methylation changes, as well as m6A mRNA methylation changes around the stop codon of three opioid receptor genes (OPRM1, OPRD1, and OPRK1), which are known to regulate pain, reward, and addiction behaviours. CIE exposure for three weeks significantly increased global RNA methylation levels in both SH-SY5Y (t = 3.98, P = 0.007) and SW620 (t = 2.24, P = 0.067) cells. However, a 3-week CIE exposure resulted in hypomethylation around mRNA stop codon regions of OPRM1 and OPRD1 in both cell lines [OPRM1(SH-SY5Y): t = -5.05, P = 0.0005; OPRM1(SW620): t = -3.19, P = 0.013; OPRD1(SH-SY5Y): t = -13.43, P < 0.00001; OPRD1(SW620): t = -4.00, P = 0.003]. Additionally, mRNA expression levels of OPRM1, OPRD1, and OPRK1 were downregulated (corresponding to mRNA hypomethylation) in both SH-SY5Y and SW620 cells after a 3-week CIE exposure. The present study demonstrated that chronic ethanol exposure altered global RNA methylation levels, as well as mRNA methylation and expression levels of opioid receptor genes in both neuron-like and non-neuronal cells. Our findings suggest a potential epitranscriptomic mechanism by which chronic alcohol consumption remodels the expression of reward-related and alcohol responsive genes in the brain, thus increasing the risk of alcohol use disorder development.Abbreviations: OPRM1: the μ-opioid receptor; OPRD1: the δ-opioid receptor; OPRK1: the κ-opioid receptor; CIE: chronic intermittent ethanol exposure; CIE+WD: chronic intermittent ethanol exposure followed by a 24-hr withdrawal; SH-SY5Y: human neuroblastoma cell Line; SW620: human colon carcinoma cell line; RT-qPCR: reverse transcription followed by quantitative polymerase reaction; MazF-RT-qPCR: MazF digestion followed by RT-qPCR.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Ji Sun Koo
- Department of Biology, Boston University, Boston, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| |
Collapse
|
2
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Witt SH, Spanagel R, Hansson AC, Clark SL, van den Oord EJ, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100375. [PMID: 39399155 PMCID: PMC11470413 DOI: 10.1016/j.bpsgos.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms that underlie the development and progression of AUD remains limited. Here, we investigated AUD-associated DNA methylation changes within and across 2 addiction-relevant brain regions, the nucleus accumbens and dorsolateral prefrontal cortex. Methods Illumina HumanMethylation EPIC array data from 119 decedents (61 cases, 58 controls) were analyzed using robust linear regression with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public annotation data and published genetic and epigenetic studies. We also tested for brain region-shared and brain region-specific associations using mixed-effects modeling and assessed implications of these results using public gene expression data from human brain. Results At a false discovery rate of ≤.05, we identified 105 unique AUD-associated CpGs (annotated to 120 genes) within and across brain regions. AUD-associated CpGs were enriched in histone marks that tag active promoters, and our strongest signals were specific to a single brain region. Some concordance was found between our results and those of earlier published alcohol use or dependence methylation studies. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors, some of which also overlapped with previous addiction-related methylation studies. Conclusions Our findings identify AUD-associated methylation signals and provide evidence of overlap with previous genetic and methylation studies. These signals may constitute predisposing genetic differences or robust methylation changes associated with AUD, although more work is needed to further disentangle the mechanisms that underlie these associations and their implications for AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Melyssa S. Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virgina
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, the University of Texas at Austin, Austin, Texas
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
3
|
Zhou H, Gelernter J. Human genetics and epigenetics of alcohol use disorder. J Clin Invest 2024; 134:e172885. [PMID: 39145449 PMCID: PMC11324314 DOI: 10.1172/jci172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Alcohol use disorder (AUD) is a prominent contributor to global morbidity and mortality. Its complex etiology involves genetics, epigenetics, and environmental factors. We review progress in understanding the genetics and epigenetics of AUD, summarizing the key findings. Advancements in technology over the decades have elevated research from early candidate gene studies to present-day genome-wide scans, unveiling numerous genetic and epigenetic risk factors for AUD. The latest GWAS on more than one million participants identified more than 100 genetic variants, and the largest epigenome-wide association studies (EWAS) in blood and brain samples have revealed tissue-specific epigenetic changes. Downstream analyses revealed enriched pathways, genetic correlations with other traits, transcriptome-wide association in brain tissues, and drug-gene interactions for AUD. We also discuss limitations and future directions, including increasing the power of GWAS and EWAS studies as well as expanding the diversity of populations included in these analyses. Larger samples, novel technologies, and analytic approaches are essential; these include whole-genome sequencing, multiomics, single-cell sequencing, spatial transcriptomics, deep-learning prediction of variant function, and integrated methods for disease risk prediction.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Biomedical Informatics and Data Science
- Center for Brain and Mind Health
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- Department of Genetics, and
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Shi X, Li M, Yao J, Li MD, Yang Z. Alcohol drinking, DNA methylation and psychiatric disorders: A multi-omics Mendelian randomization study to investigate causal pathways. Addiction 2024; 119:1226-1237. [PMID: 38523595 DOI: 10.1111/add.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Whether alcohol-related DNA methylation has a causal effect on psychiatric disorders has not been investigated. Furthermore, a comprehensive investigation into the causal relationship and underlying mechanisms linking alcohol consumption and psychiatric disorders has been lacking. This study aimed to evaluate the causal effect of general alcohol intake and pathological drinking behaviors on psychiatric disorders, alcohol-associated DNA methylation on gene expression and psychiatric disorders, and gene expression on psychiatric disorders. DESIGN Two-sample design Mendelian randomization (MR) analysis. Various sensitivity and validation analyses, including colocalization analysis, were conducted to test the robustness of the results. SETTING Genome-wide association study (GWAS) data mainly from GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetics of DNA Methylation Consortium (GoDMC) and Psychiatric Genomics Consortium (PGC) with European ancestry. PARTICIPANTS The GWAS summary data on general alcohol intake (drinks per week, n = 941 280), pathological drinking behaviors (including alcohol use disorder [AUD, n = 313 959] and problematic alcohol use [PAU, n = 435 563]) and psychiatric disorders (including schizophrenia, major depressive disorder and bipolar disorder, n = 51 710-500 199) were included. Alcohol-related DNA methylation CpG sites (n = 9643) and mQTL data from blood (n = 27 750) and brain (n = 1160), BrainMeta v2 and GTEx V8 eQTL summary data (n = 73-2865) were also included. MEASUREMENTS Genetic variants were selected as instrumental variables for exposures, including drinks per week, AUD, PAU, alcohol-related DNA methylation CpG sites (mQTL) and genes selected (eQTL). FINDINGS Pathological drinking behaviors were associated with an increased risk of psychiatric disorders after removing outliers or controlling for alcohol consumption. MR analysis identified 10 alcohol-related CpG sites with colocalization evidence that were causally associated with psychiatric disorders (P = 1.65 × 10-4-7.52 × 10-22). Furthermore, the expression of genes (RERE, PTK6, GATAD2B, COG8, PDF and GAS5) mapped to these CpG sites in the brain, led by the cortex, were significantly associated with psychiatric disorders (P = 1.19 × 10-2-3.51 × 10-7). CONCLUSIONS Pathological drinking behavior and alcohol-related DNA methylation appear to have a causal effect on psychiatric disorders. The expression of genes regulated by the alcohol-related DNA methylation sites may underpin this association.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Meng Li
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
6
|
Zou Z, Huang Y, Maes M, Wang J, He Y, Min W, Zhou B. Effects of antidepressant on FKBP51 mRNA expression and neuroendocrine hormones in patients with panic disorder. BMC Psychiatry 2024; 24:269. [PMID: 38600448 PMCID: PMC11005249 DOI: 10.1186/s12888-024-05704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of escitalopram on the peripheral expression of hypothalamic-pituitary-adrenal (HPA) axis-related genes (FKBP51, HSP90, NR3C1 and POMC) and HPA-axis hormones in patients with panic disorder (PD). METHODS Seventy-seven patients with PD were treated with escitalopram for 12 weeks. All participants were assessed for the severity of panic symptoms using the Panic Disorder Severity Scale (PDSS). The expression of HPA-axis genes was measured using real-time quantitative fluorescent PCR, and ACTH and cortisol levels were measured using chemiluminescence at baseline and after 12 weeks of treatment. RESULTS At baseline, patients with PD had elevated levels of ACTH and cortisol, and FKBP51 expression in comparison to healthy controls (all p < 0.01). Correlation analysis revealed that FKBP51 expression levels were significantly positively related to cortisol levels and the severity of PD (all p < 0.01). Furthermore, baseline ACTH and cortisol levels, and FKBP51 expression levels were significantly reduced after 12 weeks of treatment, and the change in the PDSS score from baseline to post-treatment was significantly and positively related to the change in cortisol (p < 0.01). CONCLUSIONS The results suggest that PD may be associated with elevated levels of ACTH and cortisol, and FKBP51 expression, and that all three biomarkers are substantially decreased in patients who have received escitalopram treatment.
Collapse
Affiliation(s)
- Zhili Zou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China.
| | - Yulan Huang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Michael Maes
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jinyu Wang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Ying He
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Wenjiao Min
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Bo Zhou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| |
Collapse
|
7
|
De Clerck M, Manguin M, Henkous N, d’Almeida MN, Beracochea D, Mons N. Chronic alcohol-induced long-lasting working memory deficits are associated with altered histone H3K9 dimethylation in the prefrontal cortex. Front Behav Neurosci 2024; 18:1354390. [PMID: 38495426 PMCID: PMC10941761 DOI: 10.3389/fnbeh.2024.1354390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Epigenetic modifications have emerged as key contributors to the enduring behavioral, molecular and epigenetic neuroadaptations during withdrawal from chronic alcohol exposure. The present study investigated the long-term consequences of chronic alcohol exposure on spatial working memory (WM) and associated changes of transcriptionally repressive histone H3 lysine 9 dimethylation (H3K9me2) in the prefrontal cortex (PFC). Methods Male C57BL/6 mice were allowed free access to either 12% (v/v) ethanol for 5 months followed by a 3-week abstinence period or water. Spatial WM was assessed through the spontaneous alternation T-maze test. Alcoholic and water mice received daily injections of GABAB agonist baclofen or saline during alcohol fading and early withdrawal. Global levels of histone modifications were determined by immunohistochemistry. Results Withdrawal mice displayed WM impairments along with reduced prefrontal H3K9me2 levels, compared to water-drinking mice. The withdrawal-induced decrease of H3K9me2 occurred concomitantly with increased level of permissive H3K9 acetylation (H3K9ac) in the PFC. Baclofen treatment rescued withdrawal-related WM deficits and fully restored prefrontal H3K9me2 and H3K9ac. Alcohol withdrawal induced brain region-specific changes of H3K9me2 and H3K9ac after testing, with significant decreases of both histone marks in the dorsal hippocampus and no changes in the amygdala and dorsal striatum. Furthermore, the magnitude of H3K9me2 in the PFC, but not the hippocampus, significantly and positively correlated with individual WM performances. No correlation was observed between H3K9ac and behavioral performance. Results also indicate that pre-testing intraperitoneal injection of UNC0642, a selective inhibitor of histone methyltransferase G9a responsible for H3K9me2, led to WM impairments in water-drinking and withdrawal-baclofen mice. Collectively, our results demonstrate that alcohol withdrawal induced brain-region specific alterations of H3K9me2 and H3K9ac, an effect that persisted for at least three weeks after cessation of chronic alcohol intake. Conclusion The findings suggest a role for long-lasting decreased H3K9me2 specifically in the PFC in the persistent WM impairments related to alcohol withdrawal.
Collapse
|
8
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Clark SL, van den Oord EJCG, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23300238. [PMID: 38293028 PMCID: PMC10827272 DOI: 10.1101/2024.01.17.23300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International
| | | | - Caryn Willis
- GenOmics and Translational Research Center, RTI International
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International
| | | | - Ran Tao
- Lieber Institute for Brain Development (LIBD)
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University
| | | | | | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International
- Fellow Program, RTI International
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International
| |
Collapse
|
9
|
Koob GF, Vendruscolo L. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder. Curr Top Behav Neurosci 2023. [PMID: 37421551 DOI: 10.1007/7854_2023_424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.
Collapse
Affiliation(s)
- George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
10
|
Zheng Q, Wang H, Yan A, Yin F, Qiao X. DNA Methylation in Alcohol Use Disorder. Int J Mol Sci 2023; 24:10130. [PMID: 37373281 DOI: 10.3390/ijms241210130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive drinking damages the central nervous system of individuals and can even cause alcohol use disorder (AUD). AUD is regulated by both genetic and environmental factors. Genes determine susceptibility to alcohol, and the dysregulation of epigenome drives the abnormal transcription program and promotes the occurrence and development of AUD. DNA methylation is one of the earliest and most widely studied epigenetic mechanisms that can be inherited stably. In ontogeny, DNA methylation pattern is a dynamic process, showing differences and characteristics at different stages. DNA dysmethylation is prevalent in human cancer and alcohol-related psychiatric disorders, resulting in local hypermethylation and transcriptional silencing of related genes. Here, we summarize recent findings on the roles and regulatory mechanisms of DNA methylation, the development of methyltransferase inhibitors, methylation alteration during alcohol exposure at different stages of life, and possible therapeutic options for targeting methylation in human and animal studies.
Collapse
Affiliation(s)
- Qingmeng Zheng
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Heng Wang
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - An Yan
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Yin
- School of Medicine, College of Forensic Science, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Cruise TM, Kotlo K, Malovic E, Pandey SC. Advances in DNA, histone, and RNA methylation mechanisms in the pathophysiology of alcohol use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10871. [PMID: 38389820 PMCID: PMC10880780 DOI: 10.3389/adar.2023.10871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2024]
Abstract
Alcohol use disorder (AUD) has a complex, multifactorial etiology involving dysregulation across several brain regions and peripheral organs. Acute and chronic alcohol consumption cause epigenetic modifications in these systems, which underlie changes in gene expression and subsequently, the emergence of pathophysiological phenotypes associated with AUD. One such epigenetic mechanism is methylation, which can occur on DNA, histones, and RNA. Methylation relies on one carbon metabolism to generate methyl groups, which can then be transferred to acceptor substrates. While DNA methylation of particular genes generally represses transcription, methylation of histones and RNA can have bidirectional effects on gene expression. This review summarizes one carbon metabolism and the mechanisms behind methylation of DNA, histones, and RNA. We discuss the field's findings regarding alcohol's global and gene-specific effects on methylation in the brain and liver and the resulting phenotypes characteristic of AUD.
Collapse
Affiliation(s)
- Tara M. Cruise
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Kumar Kotlo
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Emir Malovic
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
12
|
Domi E, Barchiesi R, Barbier E. Epigenetic Dysregulation in Alcohol-Associated Behaviors: Preclinical and Clinical Evidence. Curr Top Behav Neurosci 2023. [PMID: 36717533 DOI: 10.1007/7854_2022_410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alcohol use disorder (AUD) is characterized by loss of control over intake and drinking despite harmful consequences. At a molecular level, AUD is associated with long-term neuroadaptations in key brain regions that are involved in reward processing and decision-making. Over the last decades, a great effort has been made to understand the neurobiological basis underlying AUD. Epigenetic mechanisms have emerged as an important mechanism in the regulation of long-term alcohol-induced gene expression changes. Here, we review the literature supporting a role for epigenetic processes in AUD. We particularly focused on the three most studied epigenetic mechanisms: DNA methylation, Histone modification and non-coding RNAs. Clinical studies indicate an association between AUD and DNA methylation both at the gene and global levels. Using behavioral paradigms that mimic some of the characteristics of AUD, preclinical studies demonstrate that changes in epigenetic mechanisms can functionally impact alcohol-associated behaviors. While many studies support a therapeutic potential for targeting epigenetic enzymes, more research is needed to fully understand their role in AUD. Identification of brain circuits underlying alcohol-associated behaviors has made major advances in recent years. However, there are very few studies that investigate how epigenetic mechanisms can affect these circuits or impact the neuronal ensembles that promote alcohol-associated behaviors. Studies that focus on the role of circuit-specific and cell-specific epigenetic changes for clinically relevant alcohol behaviors may provide new insights on the functional role of epigenetic processes in AUD.
Collapse
Affiliation(s)
- Esi Domi
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Riccardo Barchiesi
- Department of Neuroscience, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Estelle Barbier
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Jarczak J, Miszczak M, Radwanska K. Is DNA methylation in the brain a mechanism of alcohol use disorder? Front Behav Neurosci 2023; 17:957203. [PMID: 36778133 PMCID: PMC9908583 DOI: 10.3389/fnbeh.2023.957203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Alcohol use disorder (AUD) is a worldwide problem. Unfortunately, the molecular mechanisms of alcohol misuse are still poorly understood, therefore successful therapeutic approaches are limited. Accumulating data indicate that the tendency for compulsive alcohol use is inherited, suggesting a genetic background as an important factor. However, the probability to develop AUD is also affected by life experience and environmental factors. Therefore, the epigenetic modifications that are altered over lifetime likely contribute to increased risk of alcohol misuse. Here, we review the literature looking for the link between DNA methylation in the brain, a common epigenetic modification, and AUD-related behaviors in humans, mice and rats. We sum up the main findings, identify the existing gaps in our knowledge and indicate future directions of the research.
Collapse
|
14
|
Dong N, Zhu J, Wang R, Wang S, Chen Y, Wang C, Goh EL, Chen T. Maternal Methamphetamine Exposure Influences Behavioral Sensitization and Nucleus Accumbens DNA Methylation in Subsequent Generation. Front Pharmacol 2022; 13:940798. [PMID: 35928279 PMCID: PMC9343784 DOI: 10.3389/fphar.2022.940798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The deleterious effects of methamphetamine (METH) exposure extend beyond abusers, and may potentially impact the vulnerability of their offspring in developing addictive behaviors. Epigenetic signatures have been implicated in addiction, yet the characteristics to identify prenatal METH abuse to offspring addiction risk remains elusive. Here, we used escalating doses of METH-exposed mouse model in F0 female mice before and during pregnancy to simulate the human pattern of drug abuse and generated METH-induced behavioral sensitization to investigate the addictive behavior in offspring mice. We then utilized whole genome-bisulfite sequencing (WGBS) to investigate the methylation signature of nucleus accumbens (NAc) in male METH-sensitized mice. Interestingly, male but not female offspring exhibited an enhanced response to METH-induced behavioral sensitization. Additionally, the METH-exposed group of male mice underwent a more comprehensive wave of epigenome remodeling over all genomic elements compared with unexposed groups due to drug exposure history. 104,219 DMCs (METH-SAL vs. SAL-SAL) induced by prenatal METH-exposure were positively correlated with that of postnatal METH-exposure (38,570, SAL-METH vs. SAL-SAL). Moreover, 4,983 DMCs induced by pre- and postnatal METH exposure (METH-METH vs. SAL-METH) were negatively correlated with that of postnatal METH exposure, and 371 commonly changed DMCs between the two comparison groups also showed a significantly negative correlation and 86 annotated genes functionally enriched in the pathways of neurodevelopment and addiction. Key annotated genes included Kirrel3, Lrpprc, and Peg3, implicated in neurodevelopmental processes, were down-regulated in METH-METH group mice compared with the SAL-METH group. Taken together, we render novel insights into the epigenetic correlation of drug exposure and provide evidence for epigenetic characteristics that link maternal METH exposure to the intensity of the same drug-induced behavioral sensitization in adult offspring.
Collapse
Affiliation(s)
- Nan Dong
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Eyleen L.K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Singhealth Duke-NUS Neuroscience Academic Clinical Programme, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
15
|
Savarese AM, Grigsby KB, Jensen BE, Borrego MB, Finn DA, Crabbe JC, Ozburn AR. Corticosterone Levels and Glucocorticoid Receptor Gene Expression in High Drinking in the Dark Mice and Their Heterogeneous Stock (HS/NPT) Founder Line. Front Behav Neurosci 2022; 16:821859. [PMID: 35645743 PMCID: PMC9135139 DOI: 10.3389/fnbeh.2022.821859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
The High Drinking in the Dark (HDID-1) line of mice has been selectively bred for achieving high blood alcohol levels (BALs) in the Drinking in the Dark task, a model of binge-like drinking. Recently, we determined that glucocorticoid receptor (GR) antagonism with either mifepristone or CORT113176 (a selective GR antagonist) reduced binge-like ethanol intake in the HDID-1 mice, but not in their founder line, HS/NPT. Here, we examined whether the selection process may have altered glucocorticoid functioning by measuring (1) plasma corticosterone levels and (2) expression of the genes encoding GR (Nr3c1) and two of its chaperone proteins FKBP51 and FKBP52 (Fkbp5 and Fkbp4) in the brains (nucleus accumbens, NAc) of HDID-1 and HS/NPT mice. We observed no genotype differences in baseline circulating corticosterone levels. However, HDID-1 mice exhibited a greater stimulated peak corticosterone response to an IP injection (of either ethanol or saline) relative to their founder line. We further observed reduced basal expression of Fkbp4 and Nr3c1 in the NAc of HDID-1 mice relative to HS/NPT mice. Finally, HDID-1 mice exhibited reduced Fkbp5 expression in the NAc relative to HS/NPT mice following an injection of 2 g/kg ethanol. Together, these data suggest that selective breeding for high BALs may have altered stress signaling in the HDID-1 mice, which may contribute to the observed selective efficacy of GR antagonism in reducing binge-like ethanol intake in HDID-1, but not HS/NPT mice. These data have important implications for the role that stress signaling plays in the genetic risk for binge drinking.
Collapse
Affiliation(s)
- Antonia M. Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kolter B. Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bryan E. Jensen
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marissa B. Borrego
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Deborah A. Finn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
16
|
Carmack SA, Vendruscolo JCM, Adrienne McGinn M, Miranda-Barrientos J, Repunte-Canonigo V, Bosse GD, Mercatelli D, Giorgi FM, Fu Y, Hinrich AJ, Jodelka FM, Ling K, Messing RO, Peterson RT, Rigo F, Edwards S, Sanna PP, Morales M, Hastings ML, Koob GF, Vendruscolo LF. Corticosteroid sensitization drives opioid addiction. Mol Psychiatry 2022; 27:2492-2501. [PMID: 35296810 PMCID: PMC10406162 DOI: 10.1038/s41380-022-01501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - Janaina C M Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience and Neurology, University of Texas, Austin, TX, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry 2022; 12:109. [PMID: 35296634 PMCID: PMC8927334 DOI: 10.1038/s41398-022-01864-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Collapse
|
18
|
Lohoff FW, Clarke TK, Kaminsky ZA, Walker RM, Bermingham ML, Jung J, Morris SW, Rosoff D, Campbell A, Barbu M, Charlet K, Adams M, Lee J, Howard DM, O'Connell EM, Whalley H, Porteous DJ, McIntosh AM, Evans KL. Epigenome-wide association study of alcohol consumption in N = 8161 individuals and relevance to alcohol use disorder pathophysiology: identification of the cystine/glutamate transporter SLC7A11 as a top target. Mol Psychiatry 2022; 27:1754-1764. [PMID: 34857913 PMCID: PMC9095480 DOI: 10.1038/s41380-021-01378-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Alcohol misuse is common in many societies worldwide and is associated with extensive morbidity and mortality, often leading to alcohol use disorders (AUD) and alcohol-related end-organ damage. The underlying mechanisms contributing to the development of AUD are largely unknown; however, growing evidence suggests that alcohol consumption is strongly associated with alterations in DNA methylation. Identification of alcohol-associated methylomic variation might provide novel insights into pathophysiology and novel treatment targets for AUD. Here we performed the largest single-cohort epigenome-wide association study (EWAS) of alcohol consumption to date (N = 8161) and cross-validated findings in AUD populations with relevant endophenotypes, as well as alcohol-related animal models. Results showed 2504 CpGs significantly associated with alcohol consumption (Bonferroni p value < 6.8 × 10-8) with the five leading probes located in SLC7A11 (p = 7.75 × 10-108), JDP2 (p = 1.44 × 10-56), GAS5 (p = 2.71 × 10-47), TRA2B (p = 3.54 × 10-42), and SLC43A1 (p = 1.18 × 10-40). Genes annotated to associated CpG sites are implicated in liver and brain function, the cellular response to alcohol and alcohol-associated diseases, including hypertension and Alzheimer's disease. Two-sample Mendelian randomization confirmed the causal relationship of consumption on AUD risk (inverse variance weighted (IVW) p = 5.37 × 10-09). A methylation-based predictor of alcohol consumption was able to discriminate AUD cases in two independent cohorts (p = 6.32 × 10-38 and p = 5.41 × 10-14). The top EWAS probe cg06690548, located in the cystine/glutamate transporter SLC7A11, was replicated in an independent cohort of AUD and control participants (N = 615) and showed strong hypomethylation in AUD (p < 10-17). Decreased CpG methylation at this probe was consistently associated with clinical measures including increased heavy drinking days (p < 10-4), increased liver function enzymes (GGT (p = 1.03 × 10-21), ALT (p = 1.29 × 10-6), and AST (p = 1.97 × 10-8)) in individuals with AUD. Postmortem brain analyses documented increased SLC7A11 expression in the frontal cortex of individuals with AUD and animal models showed marked increased expression in liver, suggesting a mechanism by which alcohol leads to hypomethylation-induced overexpression of SLC7A11. Taken together, our EWAS discovery sample and subsequent validation of the top probe in AUD suggest a strong role of abnormal glutamate signaling mediated by methylomic variation in SLC7A11. Our data are intriguing given the prominent role of glutamate signaling in brain and liver and might provide an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Zachary A Kaminsky
- Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Miruna Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mark Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Emma M O'Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Heather Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Clark SL, Chan RF, Zhao M, Xie LY, Copeland WE, Penninx BW, Aberg KA, van den Oord EJ. Dual methylation and hydroxymethylation study of alcohol use disorder. Addict Biol 2022; 27:e13114. [PMID: 34791764 PMCID: PMC8891051 DOI: 10.1111/adb.13114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
Abstract
Using an integrative, multi-tissue design, we sought to characterize methylation and hydroxymethylation changes in blood and brain associated with alcohol use disorder (AUD). First, we used epigenomic deconvolution to perform cell-type-specific methylome-wide association studies within subpopulations of granulocytes/T-cells/B-cells/monocytes in 1132 blood samples. Blood findings were then examined for overlap with AUD-related associations with methylation and hydroxymethylation in 50 human post-mortem brain samples. Follow-up analyses investigated if overlapping findings mediated AUD-associated transcription changes in the same brain samples. Lastly, we replicated our blood findings in an independent sample of 412 individuals and aimed to replicate published alcohol methylation findings using our results. Cell-type-specific analyses in blood identified methylome-wide significant associations in monocytes and T-cells. The monocyte findings were significantly enriched for AUD-related methylation and hydroxymethylation in brain. Hydroxymethylation in specific sites mediated AUD-associated transcription in the same brain samples. As part of the most comprehensive methylation study of AUD to date, this work involved the first cell-type-specific methylation study of AUD conducted in blood, identifying and replicating a finding in DLGAP1 that may be a blood-based biomarker of AUD. In this first study to consider the role of hydroxymethylation in AUD, we found evidence for a novel mechanism for cognitive deficits associated with AUD. Our results suggest promising new avenues for AUD research.
Collapse
Affiliation(s)
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | | - Brenda W.J.H. Penninx
- Department of Psychiatry, University of Vermont,Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | |
Collapse
|
20
|
Zillich L, Frank J, Streit F, Friske MM, Foo JC, Sirignano L, Heilmann-Heimbach S, Dukal H, Degenhardt F, Hoffmann P, Hansson AC, Nöthen MM, Rietschel M, Spanagel R, Witt SH. Epigenome-wide association study of alcohol use disorder in five brain regions. Neuropsychopharmacology 2022; 47:832-839. [PMID: 34775485 PMCID: PMC8882178 DOI: 10.1038/s41386-021-01228-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022]
Abstract
Alcohol use disorder (AUD) is closely linked to the brain regions forming the neurocircuitry of addiction. Postmortem human brain tissue enables the direct study of the molecular pathomechanisms of AUD. This study aims to identify these mechanisms by examining differential DNA-methylation between cases with severe AUD (n = 53) and controls (n = 58) using a brain-region-specific approach, in which sample sizes ranged between 46 and 94. Samples of the anterior cingulate cortex (ACC), Brodmann Area 9 (BA9), caudate nucleus (CN), ventral striatum (VS), and putamen (PUT) were investigated. DNA-methylation levels were determined using the Illumina HumanMethylationEPIC Beadchip. Epigenome-wide association analyses were carried out to identify differentially methylated CpG-sites and regions between cases and controls in each brain region. Weighted correlation network analysis (WGCNA), gene-set, and GWAS-enrichment analyses were performed. Two differentially methylated CpG-sites were associated with AUD in the CN, and 18 in VS (q < 0.05). No epigenome-wide significant CpG-sites were found in BA9, ACC, or PUT. Differentially methylated regions associated with AUD case-/control status (q < 0.05) were found in the CN (n = 6), VS (n = 18), and ACC (n = 1). In the VS, the WGCNA-module showing the strongest association with AUD was enriched for immune-related pathways. This study is the first to analyze methylation differences between AUD cases and controls in multiple brain regions and consists of the largest sample to date. Several novel CpG-sites and regions implicated in AUD were identified, providing a first basis to explore epigenetic correlates of AUD.
Collapse
Affiliation(s)
- Lea Zillich
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marion M. Friske
- grid.413757.30000 0004 0477 2235Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C. Foo
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Heilmann-Heimbach
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Helene Dukal
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Franziska Degenhardt
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany ,grid.410718.b0000 0001 0262 7331Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Anita C. Hansson
- grid.413757.30000 0004 0477 2235Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M. Nöthen
- grid.10388.320000 0001 2240 3300Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Stephanie H. Witt
- grid.413757.30000 0004 0477 2235Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.413757.30000 0004 0477 2235Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Auta J, Locci A, Guidotti A, Davis JM, Dong H. Sex-dependent sensitivity to positive allosteric modulation of GABA action in an APP knock-in mouse model of Alzheimer's disease: Potential epigenetic regulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100025. [DOI: 10.1016/j.crneur.2021.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
|
22
|
Krishnan HR, Zhang H, Chen Y, Bohnsack JP, Shieh AW, Kusumo H, Drnevich J, Liu C, Grayson DR, Maienschein-Cline M, Pandey SC. Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis. Mol Psychiatry 2022; 27:4624-4632. [PMID: 36089615 PMCID: PMC9734037 DOI: 10.1038/s41380-022-01732-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.
Collapse
Affiliation(s)
- Harish R. Krishnan
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Huaibo Zhang
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Ying Chen
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - John Peyton Bohnsack
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Annie W. Shieh
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Handojo Kusumo
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Jenny Drnevich
- grid.35403.310000 0004 1936 9991High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801 USA
| | - Chunyu Liu
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Dennis R. Grayson
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mark Maienschein-Cline
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319Research Informatics Core, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhash C. Pandey
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
23
|
Zhang Y, Zhou T, Feng S, Liu X, Wang F, Sha Z, Yu X. A voxel-level brain-wide association study of cortisol at 8 a.m.: Evidence from Cushing's disease. Neurobiol Stress 2021; 15:100414. [PMID: 34786440 PMCID: PMC8578035 DOI: 10.1016/j.ynstr.2021.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Cortisol, the end product of the hypothalamic–pituitary–adrenal axis, regulates cognitive function and emotion processing. Cushing's disease, which is characterized by a unique excess of cortisol upon clinical diagnosis, serve as an excellent in vivo “hyperexpression” model to investigate the neurobiological mechanisms of cortisol in the human brain. Previous studies have shown the association between cortisol and functional connectivity within an a priori brain network. However, the whole-brain connectivity pattern that accompanies endogenous cortisol variation is still unclear, as are its associated genetic underpinnings. Here, using resting-state functional magnetic resonance imaging in 112 subjects (60 patients with Cushing's disease and 52 healthy subjects), we performed a voxel-level brain-wide association analysis to investigate the functional connectivity pattern associated with a wide variation in cortisol levels at 8 a.m. The results showed that the regions associated with cortisol as of 8 a.m. were primarily distributed in brain functional hubs involved in self-referential processing, such as the medial prefrontal cortex, anterior and posterior cingulate cortex, and caudate. We also found that regions in the middle temporal, inferior parietal and ventrolateral prefrontal cortex, which is important for social communication tasks, and in the visual and supplementary motor cortex, which is involved in primary sensorimotor perception, were adversely affected by excessive cortisol. The connectivity between these regions was also significantly correlated with neuropsychiatric profiles, such anxiety and depression. Finally, combined neuroimaging and transcriptome analysis showed that functional cortisol-sensitive brain variations were significantly coupled to regional expression of glucocorticoid and mineralocorticoid receptors. These findings reveal cortisol-biased functional signatures in the human brain and shed light on the transcriptional regulation constraints on the cortisol-related brain network.
Collapse
Affiliation(s)
- Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Shiyu Feng
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Xinyun Liu
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Fuyu Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
24
|
DNA methylation of the glucocorticoid receptor gene predicts substance use in adolescence: longitudinal data from over 1000 young individuals. Transl Psychiatry 2021; 11:477. [PMID: 34526487 PMCID: PMC8443651 DOI: 10.1038/s41398-021-01601-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Early life stress has been linked to increased methylation of the Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1) gene, which codes for the glucocorticoid receptor. Moreover, early life stress has been associated with substance use initiation at a younger age, a risk factor for developing substance use disorders. However, no studies to date have investigated whether NR3C1 methylation can predict substance use in young individuals. This study included adolescents 13-14 years of age that reported no history of substance use at baseline, (N = 1041; males = 46%). Participants contributed saliva DNA samples and were followed in middle adolescence as part of KUPOL, a prospective cohort study of 7th-grade students in Sweden. Outcome variables were self-reports of (i) recent use, (ii) lifetime use, and (iii) use duration of (a) alcohol, (b) tobacco products, (c) cannabis, or (d) any substance. Outcomes were measured annually for three consecutive years. The predictor variable was DNA methylation at the exon 1 F locus of NR3C1. Risk and rate ratios were calculated as measures of association, with or without adjustment for internalizing symptoms and parental psychiatric disorders. For a subset of individuals (N = 320), there were also morning and afternoon salivary cortisol measurements available that were analyzed in relation to NR3C1 methylation levels. Baseline NR3C1 hypermethylation associated with future self-reports of recent use and use duration of any substance, before and after adjustment for potential confounders. The overall estimates were attenuated when considering lifetime use. Sex-stratified analyses revealed the strongest association for cigarette use in males. Cortisol analyses revealed associations between NR3C1 methylation and morning cortisol levels. Findings from this study suggest that saliva NR3C1 hypermethylation can predict substance use in middle adolescence. Additional longitudinal studies are warranted to confirm these findings.
Collapse
|
25
|
Kusumanchi P, Liang T, Zhang T, Ross RA, Han S, Chandler K, Oshodi A, Jiang Y, Dent AL, Skill NJ, Huda N, Ma J, Yang Z, Liangpunsakul S. Stress-Responsive Gene FK506-Binding Protein 51 Mediates Alcohol-Induced Liver Injury Through the Hippo Pathway and Chemokine (C-X-C Motif) Ligand 1 Signaling. Hepatology 2021; 74:1234-1250. [PMID: 33710653 PMCID: PMC8435051 DOI: 10.1002/hep.31800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Chronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a cochaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders, but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. APPROACH AND RESULTS We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Transcriptional enhancer factor TEF-1 (TEA) domain transcription factor 1 (Tead1) and chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to down-regulation of methylation level at its 5' untranslated promoter region. The increase in Fkbp5 expression led to induction in transcription factor TEAD1 through Hippo signaling pathway. Fkbp5 can interact with yes-associated protein (YAP) upstream kinase, mammalian Ste20-like kinase 1 (MST1), affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. CONCLUSIONS We identified an FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.
Collapse
Affiliation(s)
- Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ruth Ann Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Adepeju Oshodi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
26
|
Sershen H, Guidotti A, Auta J, Drnevich J, Grayson DR, Veldic M, Meyers J, Youseff M, Zhubi A, Faurot K, Wu R, Zhao J, Jin H, Lajtha A, Davis JM, Smith RC. Gene Expression Of Methylation Cycle And Related Genes In Lymphocytes And Brain Of Patients With Schizophrenia And Non-Psychotic Controls. Biomark Neuropsychiatry 2021; 5. [PMID: 34368786 DOI: 10.1016/j.bionps.2021.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Some of the biochemical abnormalities underlying schizophrenia, involve differences in methylation and methylating enzymes, as well as other related target genes. We present results of a study of differences in mRNA expression in peripheral blood lymphocytes (PBLs) and post-mortem brains of chronic schizophrenics (CSZ) and non-psychotic controls (NPC), emphasizing the differential effects of sex and antipsychotic drug treatment on mRNA findings. We studied mRNA expression in lymphocytes of 61 CSZ and 49 NPC subjects using qPCR assays with TaqMan probes to assess levels of DNMT, TET, GABAergic, NR3C1, BDNF mRNAs, and several additional targets identified in a recent RNA sequence analysis. In parallel we studied DNMT1 and GAD67 in samples of brain tissues from 19 CSZ, 26 NPC. In PBLs DNMT1 and DNMT3A mRNA levels were significantly higher in male CSZ vs NPC. No significant differences were detected in females. The GAD1, NR3C1 and CNTNAP2 mRNA levels were significantly higher in CSZ than NPC. In CSZ patients treated with clozapine, GAD-1 related, CNTNAP2, and IMPA2 mRNAs were significantly higher than in CSZ subjects not treated with clozapine. Differences between CSZ vs NPC in these mRNAs was primarily attributable to the clozapine treatment. In the brain samples, DNMT1 was significantly higher and GAD67 was significantly lower in CSZ than in NPC, but there were no significant sex differences in diagnostic effects. These findings highlight the importance of considering sex and drug treatment effects in assessing the substantive significance of differences in mRNAs between CSZ and NPC.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - Alessandro Guidotti
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - James Auta
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Jenny Drnevich
- High Performance Biological Computing group and the Roy J. Carver Biotechnology Center University of Illinois, Urbana, USA
| | - Dennis R Grayson
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Jordan Meyers
- Oregon Health and Science University, Portland, Oregon, USA
| | - Mary Youseff
- Harlem Hospital, Department of Psychiatry, New York, NY, US
| | - Adrian Zhubi
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Keturah Faurot
- Department of Physical Medicine & Rehabilitation, University of North Carolina at Chapel Hill, North Carolina
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, and VA San Diego Healthcare System, San Diego, California, USA
| | - Abel Lajtha
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - John M Davis
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| |
Collapse
|
27
|
Lohoff FW, Roy A, Jung J, Longley M, Rosoff DB, Luo A, O'Connell E, Sorcher JL, Sun H, Schwandt M, Hodgkinson CA, Goldman D, Momenan R, McIntosh AM, Adams MJ, Walker RM, Evans KL, Porteous D, Smith AK, Lee J, Muench C, Charlet K, Clarke TK, Kaminsky ZA. Epigenome-wide association study and multi-tissue replication of individuals with alcohol use disorder: evidence for abnormal glucocorticoid signaling pathway gene regulation. Mol Psychiatry 2021; 26:2224-2237. [PMID: 32398718 PMCID: PMC7658001 DOI: 10.1038/s41380-020-0734-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder (AUD) is a chronic debilitating disorder with limited treatment options and poorly defined pathophysiology. There are substantial genetic and epigenetic components; however, the underlying mechanisms contributing to AUD remain largely unknown. We conducted the largest DNA methylation epigenome-wide association study (EWAS) analyses currently available for AUD (total N = 625) and employed a top hit replication (N = 4798) using a cross-tissue/cross-phenotypic approach with the goal of identifying novel epigenetic targets relevant to AUD. Results show that a network of differentially methylated regions in glucocorticoid signaling and inflammation-related genes were associated with alcohol use behaviors. A top probe consistently associated across all cohorts was located in the long non-coding RNA growth arrest specific five gene (GAS5) (p < 10-24). GAS5 has been implicated in regulating transcriptional activity of the glucocorticoid receptor and has multiple functions related to apoptosis, immune function and various cancers. Endophenotypic analyses using peripheral cortisol levels and neuroimaging paradigms showed that methylomic variation in GAS5 network-related probes were associated with stress phenotypes. Postmortem brain analyses documented increased GAS5 expression in the amygdala of individuals with AUD. Our data suggest that alcohol use is associated with differential methylation in the glucocorticoid system that might influence stress and inflammatory reactivity and subsequently risk for AUD.
Collapse
Affiliation(s)
- Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Arunima Roy
- Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Martha Longley
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Luo
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emma O'Connell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jill L Sorcher
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melanie Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Medical Genetic Section, Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Medical Genetic Section, Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - David Porteous
- Medical Genetic Section, Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Toni-Kim Clarke
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Zachary A Kaminsky
- Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
28
|
Liang X, Justice AC, So-Armah K, Krystal JH, Sinha R, Xu K. DNA methylation signature on phosphatidylethanol, not on self-reported alcohol consumption, predicts hazardous alcohol consumption in two distinct populations. Mol Psychiatry 2021; 26:2238-2253. [PMID: 32034291 PMCID: PMC8440221 DOI: 10.1038/s41380-020-0668-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
Abstract
The process of diagnosing hazardous alcohol drinking (HAD) is based on self-reported data and is thereby vulnerable to bias. There has been an interest in developing epigenetic biomarkers for HAD that might complement clinical assessment. Because alcohol consumption has been previously linked to DNA methylation (DNAm), we aimed to select DNAm signatures in blood to predict HAD from two demographically and clinically distinct populations (Ntotal = 1,549). We first separately conducted an epigenome-wide association study (EWAS) for phosphatidylethanol (PEth), an objective measure of alcohol consumption, and for self-reported alcohol consumption in Cohort 1. We identified 83 PEth-associated CpGs, including 23 CpGs previously associated with alcohol consumption or alcohol use disorder. In contrast, no CpG reached epigenome-wide significance on self-reported alcohol consumption. Using a machine learning approach, two CpG subsets from EWAS on PEth and on self-reported alcohol consumption from Cohort 1 were separately tested for the prediction of HAD in Cohort 2. We found that a subset of 143 CpGs selected from the EWAS on PEth showed an excellent prediction of HAD with the area under the receiver operating characteristic curve (AUC) of 89.4% in training set and 73.9% in validation set of Cohort 2. However, CpGs preselected from the EWAS on self-reported alcohol consumption showed a poor prediction of HAD with AUC 75.2% in training set and 57.6% in validation set. Our results demonstrate that an objective measure for alcohol consumption is a more informative phenotype than self-reported data for revealing epigenetic mechanisms. The PEth-associated DNAm signature in blood could serve as a robust biomarker for alcohol consumption.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Amy C Justice
- VA Connecticut Healthcare System, West Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Kaku So-Armah
- Boston University School of Medicine, Boston, MA, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Stress Center, Yale School of Medicine, New Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
29
|
McGinn MA, Tunstall BJ, Schlosburg JE, Gregory-Flores A, George O, de Guglielmo G, Mason BJ, Hunt HJ, Koob GF, Vendruscolo LF. Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology 2021; 188:108510. [PMID: 33647278 PMCID: PMC8099171 DOI: 10.1016/j.neuropharm.2021.108510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/09/2023]
Abstract
Alcohol use disorder (AUD) is associated with the dysregulation of brain stress and reward systems, including glucocorticoid receptors (GRs). The mixed glucocorticoid/progesterone receptor antagonist mifepristone and selective GR antagonist CORT113176 have been shown to selectively reduce alcohol consumption in alcohol-dependent rats. Mifepristone has also been shown to decrease alcohol consumption and craving for alcohol in humans with AUD. The present study tested the effects of the GR modulators CORT118335, CORT122928, CORT108297, and CORT125134 on alcohol self-administration in nondependent (air-exposed) and alcohol-dependent (alcohol vapor-exposed) adult male rats. Different GR modulators recruit different GR-associated transcriptional cofactors. Thus, we hypothesized that these GR modulators would vary in their effects on alcohol drinking. CORT118335, CORT122928, and CORT125134 significantly reduced alcohol self-administration in both alcohol-dependent and nondependent rats. CORT108297 had no effect on alcohol self-administration in either group. The present results support the potential of GR modulators for the development of treatments for AUD. Future studies that characterize genomic and nongenomic effects of these GR modulators will elucidate potential molecular mechanisms that underlie alcohol drinking in alcohol-dependent and nondependent states.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Brendan J Tunstall
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, USA
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Barbara J Mason
- Department of Molecular Medicine and Pearson Center for Alcoholism and Addiction Research, The Scripps Research Institute, La Jolla, CA, USA
| | | | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
30
|
Gadd DA, Stevenson AJ, Hillary RF, McCartney DL, Wrobel N, McCafferty S, Murphy L, Russ TC, Harris SE, Redmond P, Taylor AM, Smith C, Rose J, Millar T, Spires-Jones TL, Cox SR, Marioni RE. Epigenetic predictors of lifestyle traits applied to the blood and brain. Brain Commun 2021; 3:fcab082. [PMID: 34041477 PMCID: PMC8134833 DOI: 10.1093/braincomms/fcab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 11/14/2022] Open
Abstract
Modifiable lifestyle factors influence the risk of developing many neurological diseases. These factors have been extensively linked with blood-based genome-wide DNA methylation, but it is unclear if the signatures from blood translate to the target tissue of interest-the brain. To investigate this, we apply blood-derived epigenetic predictors of four lifestyle traits to genome-wide DNA methylation from five post-mortem brain regions and the last blood sample prior to death in 14 individuals in the Lothian Birth Cohort 1936. Using these matched samples, we found that correlations between blood and brain DNA methylation scores for smoking, high-density lipoprotein cholesterol, alcohol and body mass index were highly variable across brain regions. Smoking scores in the dorsolateral prefrontal cortex had the strongest correlations with smoking scores in blood (r = 0.5, n = 14, P = 0.07) and smoking behaviour (r = 0.56, n = 9, P = 0.12). This was also the brain region which exhibited the largest correlations for DNA methylation at site cg05575921 - the single strongest correlate of smoking in blood-in relation to blood (r = 0.61, n = 14, P = 0.02) and smoking behaviour (r = -0.65, n = 9, P = 0.06). This suggested a particular vulnerability to smoking-related differential methylation in this region. Our work contributes to understanding how lifestyle factors affect the brain and suggest that lifestyle-related DNA methylation is likely to be both brain region dependent and in many cases poorly proxied for by blood. Though these pilot data provide a rarely-available opportunity for the comparison of methylation patterns across multiple brain regions and the blood, due to the limited sample size available our results must be considered as preliminary and should therefore be used as a basis for further investigation.
Collapse
Affiliation(s)
- Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh 2XU, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh 2XU, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh 2XU, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sarah McCafferty
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tom C Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Redmond
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele M Taylor
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Tracey Millar
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh 2XU, UK
| |
Collapse
|
31
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Genomics and epigenomics of addiction. Am J Med Genet B Neuropsychiatr Genet 2021; 186:128-139. [PMID: 33819378 DOI: 10.1002/ajmg.b.32843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Recent progress in the genomics and epigenomics of addiction has contributed to improving our understanding of this complex mental disorder's etiology, filling the gap between genes, environment, and behavior. We review the behavioral genetic studies reporting gene and environment interactions that explain the polygenetic contribution to the resilience and vulnerability to develop addiction. We discuss the evidence of polymorphic candidate genes that confer susceptibility to develop addiction as well as the studies of specific epigenetic marks that contribute to vulnerability and resilience to addictive-like behavior. A particular emphasis has been devoted to the miRNA changes that are considered potential biomarkers. The increasing knowledge about the technology required to alter miRNA expression may provide promising novel therapeutic tools. Finally, we give future directions for the field's progress in disentangling the connection between genes, environment, and behavior.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pablo Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eric Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
32
|
de Assis Pinheiro J, Freitas FV, Borçoi AR, Mendes SO, Conti CL, Arpini JK, Dos Santos Vieira T, de Souza RA, Dos Santos DP, Barbosa WM, Archanjo AB, de Oliveira MM, Dos Santos JG, Sorroche BP, Casali-da-Rocha JC, Trivilin LO, Borloti EB, Louro ID, Arantes LMRB, Alvares-da-Silva AM. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation. Sci Rep 2021; 11:6768. [PMID: 33762648 PMCID: PMC7990967 DOI: 10.1038/s41598-021-86189-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
The NR3C1 glucocorticoid receptor (GR) gene is a component of the stress response system, which can be regulated by epigenetic mechanisms. NR3C1 methylation has been associated with trauma and mental issues, including depression, post-traumatic stress, anxiety, and personality disorders. Previous studies have reported that stressful events are involved in NR3C1 gene methylation, suggesting that its regulation under environmental effects is complex. The present study aimed to analyze associations involving stressors such as socioeconomic status, health conditions, and lifestyle in relation to NR3C1 methylation in adults. This study included 386 individual users of the Brazilian Public Unified Health System (SUS), and evaluated socioeconomic and health conditions, body mass index, cortisol levels, and lifestyle. Data were correlated with NR3C1 methylation, determined using DNA pyrosequencing. The results showed that alcohol consumption, overweight, and high cortisol levels were related to NR3C1 demethylation, while depression was related to its methylation. Habits, lifestyle, and health status may influence NR3C1 gene regulation via methylation, revealing the complexity of environmental impacts on NR3C1 methylation.
Collapse
Affiliation(s)
- Júlia de Assis Pinheiro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Flávia Vitorino Freitas
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil.,Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Suzanny Oliveira Mendes
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Catarine Lima Conti
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Juliana Krüger Arpini
- Graduate Program in Forest Sciences, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Tamires Dos Santos Vieira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Universidade Federal do Espirito Santo, Alegre, ES, Brazil
| | - Anderson Barros Archanjo
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | - Mayara Mota de Oliveira
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital do Câncer de Barretos, Barretos, SP, Brazil
| | | | | | - Elizeu Batista Borloti
- Department of Social and Developmental Psychology, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Iuri Drumond Louro
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil
| | | | - Adriana Madeira Alvares-da-Silva
- Biotechnology/Renorbio Graduate Program, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Department of Morphology, Health Science Center, Universidade Federal do Espirito Santo, Vitoria, ES, Brazil. .,Departamento de Biologia, Universidade Federal do Espirito Santo, Alto Universitário Sem Número, Alegre, ES, 29500000, Brazil.
| |
Collapse
|
33
|
Flasbeck V, Brüne M. Association between childhood maltreatment, psychopathology and DNA methylation of genes involved in stress regulation: Evidence from a study in Borderline Personality Disorder. PLoS One 2021; 16:e0248514. [PMID: 33705478 PMCID: PMC7951851 DOI: 10.1371/journal.pone.0248514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/28/2021] [Indexed: 12/21/2022] Open
Abstract
Previous research suggests that childhood maltreatment is associated with epigenetic modification of genes involved in hypothalamic-pituitary-adrenal (HPA) functioning, which could cause dysregulation of the stress response system. If pervasive, this may be associated with the development of stress-related disorder in adults, including affective disorders, anxiety disorders, post-traumatic stress disorder (PTSD) or borderline-personality disorder (BPD). The majority of studies have focused on DNA methylation of the glucocorticoid receptor gene (NR3C1) and the FKBP5 encoding gene, which regulates the sensitivity of the glucocorticoid receptor (GR). How methylation of NR3C1 and FKBP5 interferes with childhood adversity and psychopathology as well as empathy is an under-researched issue. Here, we sought to investigate the association of childhood maltreatment in a sample of 89 individuals (44 healthy participants and 45 patients diagnosed with BPD) with the methylation of the 1F promoter region of NR3C1 and the intron 7 of FKBP5 as well as with different measures of psychopathology and empathy. Methylation of FKBP5 (bin 2) correlated with anxiety (SCL-90-R) and the global psychopathological symptom load index (GSI), as well as with lower empathic perspective-taking abilities. Psychopathology and empathy impairments correlated with the level of childhood maltreatment. No difference in FKBP5 methylation was observed between the clinical and the non-clinical group. Methylation of NR3C1 was lower in BPD patients compared to controls, yet with small differences. The results are discussed regarding their biological relevance, including possible evolutionary explanations. In short, the regulation of the GR sensitivity by methylation of FKBP5 correlated with psychopathology and empathy scores, while no correlation emerged with the severity of childhood adversity.
Collapse
Affiliation(s)
- Vera Flasbeck
- Division of Social Neuropsychiatry and Evolutionary Medicine, LWL University Hospital Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Martin Brüne
- Division of Social Neuropsychiatry and Evolutionary Medicine, LWL University Hospital Department of Psychiatry, Psychotherapy and Preventive Medicine, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
34
|
Ma M, Zhang X, Zhang Y, Su Y, Yan H, Tan H, Zhang D, Yue W. Childhood Maltreatment Was Correlated With the Decreased Cortical Function in Depressed Patients Under Social Stress in a Working Memory Task: A Pilot Study. Front Psychiatry 2021; 12:671574. [PMID: 34305677 PMCID: PMC8295536 DOI: 10.3389/fpsyt.2021.671574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Major depressive disorder (MDD) is a common psychiatric disorder associated with working memory (WM) impairment. Neuroimaging studies showed divergent results of the WM process in MDD patients. Stress could affect the occurrence and development of depression, in which childhood maltreatment played an important role. Methods: Thirty-seven MDD patients and 54 healthy control subjects were enrolled and completed a WM functional magnetic resonance imaging task with maintenance and manipulation conditions under stress and non-stress settings. We collected demographical and clinical data, using 17-item Hamilton Depression Scale (HAMD-17) and Childhood Trauma Questionnaire (CTQ) in MDD patients. In the WM task, we analyzed the main diagnosis effect and explored the correlation of impaired brain regions in MDD patients with CTQ and HAMD-17. Results: No group differences were found in the accuracy rate and reaction time between the two groups. MDD patients had lower brain activation in following regions (P FWE < 0.05). The left fusiform gyrus showed less activation in all conditions. The right supplementary motor area (SMA) exhibited decreased activation under non-stress. The anterior prefrontal cortex showed reduced activation during manipulation under stress, with the β estimations of the peak voxel showing significant group difference negatively correlated with childhood sex abuse (P Bonferroni < 0.05). Conclusions: In our pilot study, MDD patients had reduced brain activation, affecting emotional stimuli processing function, executive function, and cognitive control function. Childhood maltreatment might affect brain function in MDD. This work might provide some information for future studies on MDD.
Collapse
Affiliation(s)
- Mengying Ma
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yuyanan Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yi Su
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,Lieber Institute for Brain Development, Baltimore, MD, United States
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
35
|
Gatta E, Saudagar V, Drnevich J, Forrest MP, Auta J, Clark LV, Sershen H, Smith RC, Grayson DR, Davis JM, Guidotti A. Concordance of Immune-Related Markers in Lymphocytes and Prefrontal Cortex in Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab002. [PMID: 33585819 PMCID: PMC7865130 DOI: 10.1093/schizbullopen/sgab002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder associated with a wide array of transcriptomic and neurobiochemical changes. Genome-wide transcriptomic profiling conducted in postmortem brain have provided novel insights into the pathophysiology of this disorder, and identified biological processes including immune/inflammatory-related responses, metabolic, endocrine, and synaptic function. However, few studies have investigated whether similar changes are present in peripheral tissue. Here, we used RNA-sequencing to characterize transcriptomic profiles of lymphocytes in 18 nonpsychotic controls and 19 individuals with schizophrenia. We identified 2819 differentially expressed transcripts (P nominal < .05) in the schizophrenia group when compared to controls. Bioinformatic analyses conducted on a subset of 293 genes (P nominal < .01 and |log2 FC| > 0.5) highlighted immune/inflammatory responses as key biological processes in our dataset. Differentially expressed genes in lymphocytes were highly enriched in gene expression profiles associated with cortex layer 5a and immune cells. Thus, we investigated whether the changes in transcripts levels observed in lymphocytes could also be detected in the prefrontal cortex (PFC, BA10) in a second replication cohort of schizophrenia subjects. Remarkably, mRNA levels detected in the PFC and lymphocytes were in strong agreement, and measurements obtained using RNA-sequencing positively correlated with data obtained by reverse transcriptase-quantitative polymerase chain reaction analysis. Collectively, our work supports a role for immune dysfunction in the pathogenesis of schizophrenia and suggests that peripheral markers can be used as accessible surrogates to investigate putative central nervous system disruptions.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James Auta
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Lindsay V Clark
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL
| | - Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, NYU Langone Medical Center, New York, NY
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - John M Davis
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
36
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
37
|
Møller Johansen L, Gerra MC, Arendt-Nielsen L. Time course of DNA methylation in pain conditions: From experimental models to humans. Eur J Pain 2020; 25:296-312. [PMID: 33063322 DOI: 10.1002/ejp.1674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Throughout the last decade, research has uncovered associations between pain and epigenetic alterations caused by environmental factors. Specifically, studies have demonstrated correlations between pain conditions and altered DNA methylation patterns. Thus, DNA methylation has been revealed as a possible modulator or contributor to pain conditions, providing a potential therapeutic target for treatment by DNA methylation modification. To develop such treatments, it is necessary to clarify a wide number of aspects on how DNA methylation affects pain perception; first and foremost, the temporal dynamics. The objective of the present review is to provide an overview of current knowledge on temporal dynamics of DNA methylation in response to pain, and to investigate if a timeframe can be established based on the data of currently published studies. DATABASES AND DATA TREATMENT PubMed, MEDLINE, Google Scholar and Embase were searched comprehensively for studies of DNA methylation in neuropathic, inflammatory and alternative animal pain models, and in chronic pain patients including Complex Regional Pain Syndrome, chronic postsurgical pain, chronic widespread pain, fibromyalgia and Crohn's disease. RESULTS We identified 34 articles highlighting variations in temporal dynamics of DNA methylation across species and between different types of pain. These studies represent a starting point to uncover new insights in the DNA methylation time course in pain. CONCLUSIONS No timeframe can currently be made for the DNA methylation response to pain in any of the reviewed conditions, highlighting an important focus area for future research.
Collapse
Affiliation(s)
- Lonnie Møller Johansen
- Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Maria Carla Gerra
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI®, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
38
|
Bohnsack JP, Pandey SC. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:1-62. [PMID: 33461661 DOI: 10.1016/bs.irn.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of morbidity and mortality. Despite AUD's substantial contributions to lost economic productivity and quality of life, there are only a limited number of approved drugs for treatment of AUD in the United States. This chapter will update progress made on the epigenetic basis of AUD, with particular focus on histone post-translational modifications and DNA methylation and how these two epigenetic mechanisms interact to contribute to neuroadaptive processes leading to initiation, maintenance and progression of AUD pathophysiology. We will also evaluate epigenetic therapeutic strategies that have arisen from preclinical models of AUD and epigenetic biomarkers that have been discovered in human populations with AUD.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
39
|
Epigenetic and non-coding regulation of alcohol abuse and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:63-86. [PMID: 33461665 DOI: 10.1016/bs.irn.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Collapse
|
40
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
41
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
42
|
Gatta E, Guidotti A, Saudagar V, Grayson DR, Aspesi D, Pandey SC, Pinna G. Epigenetic Regulation of GABAergic Neurotransmission and Neurosteroid Biosynthesis in Alcohol Use Disorder. Int J Neuropsychopharmacol 2020; 24:130-141. [PMID: 32968808 PMCID: PMC7883893 DOI: 10.1093/ijnp/pyaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is a chronic relapsing brain disorder. GABAA receptor (GABAAR) subunits are a target for the pharmacological effects of alcohol. Neurosteroids play an important role in the fine-tuning of GABAAR function in the brain. Recently, we have shown that AUD is associated with changes in DNA methylation mechanisms. However, the role of DNA methylation in the regulation of neurosteroid biosynthesis and GABAergic neurotransmission in AUD patients remains under-investigated. METHODS In a cohort of postmortem brains from 20 male controls and AUD patients, we investigated the expression of GABAAR subunits and neurosteroid biosynthetic enzymes and their regulation by DNA methylation mechanisms. Neurosteroid levels were quantified by gas chromatography-mass spectrometry. RESULTS The α 2 subunit expression was reduced due to increased DNA methylation at the gene promoter region in the cerebellum of AUD patients, a brain area particularly sensitive to the effects of alcohol. Alcohol-induced alteration in GABAAR subunits was also observed in the prefrontal cortex. Neurosteroid biosynthesis was also affected with reduced cerebellar expression of the 18kDa translocator protein and 3α-hydroxysteroid dehydrogenase mRNAs. Notably, increased DNA methylation levels were observed at the promoter region of 3α-hydroxysteroid dehydrogenase. These changes were associated with markedly reduced levels of allopregnanolone and pregnanolone in the cerebellum. CONCLUSION Given the key role of neurosteroids in modulating the strength of GABAAR-mediated inhibition, our data suggest that alcohol-induced impairments in GABAergic neurotransmission might be profoundly impacted by reduced neurosteroid biosynthesis most likely via DNA hypermethylation.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Correspondence: Dr Alessandro Guidotti, Center for Alcohol Research in Epigenetics, Psychiatric Institute - Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Dario Aspesi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Graziano Pinna
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
43
|
Prospects of Genetics and Epigenetics of Alcohol Use Disorder. CURRENT ADDICTION REPORTS 2020. [DOI: 10.1007/s40429-020-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Purpose of Review
In this study, we illustrate recent findings regarding the genetics and epigenetics of alcohol use disorder (AUD). We further outline the future direction of genetic and epigenetic research in AUD.
Recent Findings
Recent genome- and epigenome-wide studies allow new insight into genetic and epigenetic variation associated with AUD. The largest EWAS of AUD so far/to date found evidence for altered glucocorticoid receptor regulation. Longitudinal studies provide insight into the dynamics of the disease. Analyses of postmortem brain tissue reveal the impact of chronic alcohol consumption on DNA methylation in the brain.
Summary
Genetic and environmental factors—mediated via epigenetic mechanisms—play an important role in AUD. Although knowledge of the biological underpinnings of AUD is still limited, ongoing research will ultimately lead to the development of biomarkers for disease classification, course of disease, and treatment response to support personalized medicine in the future.
Collapse
|
44
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
45
|
Asaoka Y, Won M, Morita T, Ishikawa E, Lee YA, Goto Y. Monoamine and genome-wide DNA methylation investigation in behavioral addiction. Sci Rep 2020; 10:11760. [PMID: 32678220 PMCID: PMC7366626 DOI: 10.1038/s41598-020-68741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023] Open
Abstract
Behavioral addiction (BA) is characterized by repeated, impulsive and compulsive seeking of specific behaviors, even with consequent negative outcomes. In drug addiction, alterations in biological mechanisms, such as monoamines and epigenetic processes, have been suggested, whereas whether such mechanisms are also altered in BA remains unknown. In this preliminary study with a small sample size, we investigated monoamine concentrations and genome-wide DNA methylation in blood samples from BA patients and control (CT) subjects. Higher dopamine (DA) metabolites and the ratio between DA and its metabolites were observed in the BA group than in the CT group, suggesting increased DA turnover in BA. In the methylation assay, 186 hyper- or hypomethylated CpGs were identified in the BA group compared to the CT group, of which 64 CpGs were further identified to correlate with methylation status in brain tissues with database search. Genes identified with hyper- or hypomethylation were not directly associated with DA transmission, but with cell membrane trafficking and the immune system. Some of the genes were also associated with psychiatric disorders, such as drug addiction, schizophrenia, and autism spectrum disorder. These results suggest that BA may involve alterations in epigenetic regulation of the genes associated with synaptic transmission, including that of monoamines, and neurodevelopment.
Collapse
Affiliation(s)
- Yui Asaoka
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Moojun Won
- Kyowa Hospital, Obu, Aichi, 474-0071, Japan
| | | | | | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
46
|
Lin H, Wang F, Rosato AJ, Farrer LA, Henderson DC, Zhang H. Prefrontal cortex eQTLs/mQTLs enriched in genetic variants associated with alcohol use disorder and other diseases. Epigenomics 2020; 12:789-800. [PMID: 32496132 DOI: 10.2217/epi-2019-0270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: This study aimed to investigate the function of genome-wide association study (GWAS)-identified variants associated with alcohol use disorder (AUD)/comorbid psychiatric disorders. Materials & methods: Genome-wide genotype, transcriptome and DNA methylome data were obtained from postmortem prefrontal cortex (PFC) of 48 Caucasians (24 AUD cases/24 controls). Expression/methylation quantitative trait loci (eQTL/mQTL) were identified and their enrichment in GWAS signals for the above disorders were analyzed. Results: PFC cis-eQTLs (923 from cases+controls, 27 from cases and 98 from controls) and cis-mQTLs (9,932 from cases+controls, 264 from cases and 695 from controls) were enriched in GWAS-identified genetic variants for the above disorders. Cis-eQTLs from AUD cases were mapped to morphine addiction-related genes. Conclusion: PFC cis-eQTLs/cis-mQTLs influence gene expression/DNA methylation patterns, thus increasing the disease risk.
Collapse
Affiliation(s)
- Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA, USA.,Boston University's & National Heart, Lung & Blood Institute's Framingham Heart Study, MA, USA
| | - Fan Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, OH, USA
| | - Andrew J Rosato
- Department of Psychiatry, Boston University School of Medicine, MA, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, MA, USA
| | - David C Henderson
- Department of Psychiatry, Boston University School of Medicine, MA, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, MA, USA.,Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, MA, USA
| |
Collapse
|
47
|
Savarese AM, Ozburn AR, Metten P, Schlumbohm JP, Hack WR, LeMoine K, Hunt H, Hausch F, Bauder M, Crabbe JC. Targeting the Glucocorticoid Receptor Reduces Binge-Like Drinking in High Drinking in the Dark (HDID-1) Mice. Alcohol Clin Exp Res 2020; 44:1025-1036. [PMID: 32154593 PMCID: PMC7211124 DOI: 10.1111/acer.14318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive-like alcohol intake. GR antagonism can prevent dependence-induced escalation in drinking, but very little is known about the role of GR in regulating high-risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge-like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID-1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT. METHODS In separate experiments, male and female HDID-1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2-day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID-1 mice after mifepristone administration to assess GR's role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID-1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge-like drinking. RESULTS GR antagonism (with both mifepristone and CORT113176) selectively reduced binge-like EtOH intake and BECs in the HDID-1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID-1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task. CONCLUSION These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID-1 mice, and support a role for the GR as a genetic risk factor for high-risk alcohol intake.
Collapse
Affiliation(s)
- Antonia M Savarese
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Pamela Metten
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Jason P Schlumbohm
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Wyatt R Hack
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Kathryn LeMoine
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Bauder
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
48
|
Kluwe-Schiavon B, Schote AB, Vonmoos M, Hulka LM, Preller KH, Meyer J, Baumgartner MR, Grünblatt E, Quednow BB. Psychiatric symptoms and expression of glucocorticoid receptor gene in cocaine users: A longitudinal study. J Psychiatr Res 2020; 121:126-134. [PMID: 31812111 DOI: 10.1016/j.jpsychires.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic cocaine users (CU) display reduced peripheral expression of the glucocorticoid receptor gene (NR3C1), which is potentially involved in stress-related psychiatric symptoms frequently occurring in CU. However, it is unknown whether psychiatric symptoms and lower NR3C1 expression are related to each other and whether reduction of drug consumption reverse them. METHOD At baseline, NR3C1 mRNA expression was measured in 68 recreational CU, 30 dependent CU, and 68 stimulant-naïve controls. Additionally, the Revised Symptom Checklist (SCL-90R) and the Barratt Impulsiveness Scale (BIS) were assessed. At a one-year follow-up, the association between change in NR3C1 expression and psychiatric symptoms was examined in 48 stimulant-naïve controls, 19 CU who increased and 19 CU who decreased their consumption. At both test sessions, cocaine concentrations in hair samples were determined. Mixed-effects models were used to investigate how changes in drug use intensity affect severity of psychiatric symptoms and NR3C1 expression over time. RESULTS At baseline, recreational and dependent CU displayed elevated impulsivity and considerable symptom burden across most of the SCL-90R subscales. Time-group interaction effects were found for several impulsivity scores, SCL-90R Global Severity Index, Paranoid Thoughts, and Depression subscales as well as for NR3C1 expression. Pairwise comparisons showed that decreasing CU specifically improved in these SCL-90R subscales, while their NR3C1 expression was adapted. Finally, changes in NR3C1 expression were negatively correlated with changes in impulsivity but not SCL-90R scores. CONCLUSION Our findings suggest that NR3C1 expression changes and some psychiatric symptoms are reversible upon reduction of cocaine intake, thus favouring abstinence-oriented treatment approaches.
Collapse
Affiliation(s)
- B Kluwe-Schiavon
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - A B Schote
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - M Vonmoos
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - L M Hulka
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - K H Preller
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - J Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - M R Baumgartner
- Center of Forensic Hairanalytics, Institute of Forensic Medicine, University of Zurich, Switzerland
| | - E Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - B B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| |
Collapse
|