1
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
2
|
Westacott LJ, Severance EG. The plasma proteome and prognosis for psychiatric symptoms in psychosis: A focus on function, not factors. Brain Behav Immun 2024; 121:26-27. [PMID: 39025415 DOI: 10.1016/j.bbi.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Laura J Westacott
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, United Kingdom.
| | - Emily G Severance
- Johns Hopkins University, School of Medicine, Department of Pediatrics, Stanley Division of Developmental Neurovirology, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD, USA.
| |
Collapse
|
3
|
Su X, Wang G, Liu S, Li J, Shao M, Yang Y, Song M, Han Y, Li W, Lv L. Autophagy defects at weaning impair complement-dependent synaptic pruning and induce behavior deficits. J Neuroinflammation 2024; 21:239. [PMID: 39334475 PMCID: PMC11438297 DOI: 10.1186/s12974-024-03235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy is crucial for synaptic plasticity and the architecture of dendritic spines. However, the role of autophagy in schizophrenia (SCZ) and the mechanisms through which it affects synaptic function remain unclear. In this study, we identified 995 single nucleotide polymorphisms (SNPs) across 19 autophagy-related genes that are associated with SCZ. Gene Set Enrichment Analysis (GSEA) of data from the Gene Expression Omnibus public database revealed defective autophagy in patients with SCZ. Using a maternal immune activation (MIA) rat model, we observed that autophagy was downregulated during the weaning period, and early-life activation of autophagy with rapamycin restored abnormal behaviors and electrophysiological deficits in adult rats. Additionally, inhibition of autophagy with 3-Methyladenine (3-MA) during the weaning period resulted in aberrant behaviors, abnormal electrophysiology, increased spine density, and reduced microglia-mediated synaptic pruning. Furthermore, 3-MA treatment significantly decreased the expression and synaptosomal content of complement, impaired the recognition of C3b and CR3, indicating that autophagy deficiency disrupts complement-mediated synaptic pruning. Our findings provide evidence for a significant association between SCZ and defective autophagy, highlighting a previously underappreciated role of autophagy in regulating the synaptic and behavioral deficits induced by MIA.
Collapse
Affiliation(s)
- Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China.
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China.
| | - Guanyu Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Senqi Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Jinming Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Yong Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
| |
Collapse
|
4
|
Teymouri K, Ebrahimi M, Chen CC, Sriretnakumar V, Mohiuddin AG, Tiwari AK, Pouget JG, Zai CC, Kennedy JL. Sex-dependent association study of complement C4 gene with treatment-resistant schizophrenia and hospitalization frequency. Psychiatry Res 2024; 342:116202. [PMID: 39342786 DOI: 10.1016/j.psychres.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
The complement component 4 (C4) gene, codes for two isotypes, C4A and C4B, and can exist in long or short forms (C4L and C4S). The C4AL variant has been associated with elevated schizophrenia (SCZ) risk. Here, we investigated the relationship between C4 variation and clinical outcomes in SCZ. N = 434 adults with SCZ or schizoaffective disorder were included in this retrospective study. A three-step genotyping workflow was performed to determine C4 copy number variants. These variants were tested for association with clinical outcome measures, including treatment-resistant SCZ (TRS), number of hospitalizations (NOH), and symptom severity (PANSS). Sex and ancestry stratified analyses were performed. We observed a marginally significant association between C4S and TRS in males only, and a negative association between C4S and NOH in the total sample. C4AS had negative association with NOH in males and non-Europeans. Lastly, C4A copy numbers and C4A predicted brain expression showed negative association with NOH in males only. Our study provides further support for sex-specific effect of C4 on SCZ clinical outcomes, and also suggests that C4S and C4AS might have a protective effect against increased severity. C4 could potentially serve as a genetic biomarker in the future, however, more research is required.
Collapse
Affiliation(s)
- Kowsar Teymouri
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Mahbod Ebrahimi
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Cheng C Chen
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Venuja Sriretnakumar
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ayeshah G Mohiuddin
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jennie G Pouget
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2024:10.1038/s41380-024-02743-x. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Chen CC, Howie J, Ebrahimi M, Teymouri K, Woo JJ, Tiwari AK, Zai CC, Kennedy JL. Analysis of the complement component C4 gene with schizophrenia subphenotypes. Schizophr Res 2024; 271:309-318. [PMID: 39084106 DOI: 10.1016/j.schres.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The complement component C4 gene has been identified as a strong marker for schizophrenia (SCZ) risk. The C4 gene has a complex genetic structure consisting of variable structural elements (C4A, C4B, C4L, and C4S) and compound structural forms (C4AL, C4BL, C4AS and C4BS). In addition, the variations in C4 structural forms may have a direct or indirect effect on the brain expression level of C4A and C4B proteins. Previous studies have associated C4AL with higher brain C4A expression and sex-dimorphism of C4 between males and females was observed. STUDY DESIGN A total of 613 patients with DSM-IV SCZ or schizoaffective disorder (SCZ-AFF) were recruited to investigate the relationship between C4 gene variants and clinical characteristics of SCZ (age of onset, symptom severity, and global assessment of functioning (GAF)). This study also explored the effect of sex on the association of C4 with SCZ. 434 patients were included in the final analyses after genetic quality control. RESULTS We observed associations between C4 and clinical characteristics of SCZ (age of onset, symptom severity, GAF) and found significant differences when males and females were examined separately. CONCLUSION Overall, our preliminary findings encourage future investigations of C4 in SCZ-related phenotypes, including antipsychotic response and side effects. The study sample was of moderate size; therefore, further studies in larger samples are needed to extend and validate these results.
Collapse
Affiliation(s)
- Cheng C Chen
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua Howie
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Mahbod Ebrahimi
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kowsar Teymouri
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Julia J Woo
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial responses and alters cellular signaling in an Alzheimer's disease mouse model. Nat Commun 2024; 15:7028. [PMID: 39147742 PMCID: PMC11327341 DOI: 10.1038/s41467-024-51163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heidi Y Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
8
|
Mihoub O, Ben Chaaben A, Boukouaci W, Lajnef M, Ayari F, El Kefi H, Ben Ammar H, Abazza H, El Hechmi Z, Guemira F, Leboyer M, Tamouza R, Kharrat M. CSMD1 rs10503253 increases schizophrenia risk in a Tunisian population-group. L'ENCEPHALE 2024; 50:380-385. [PMID: 37748985 DOI: 10.1016/j.encep.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVES Schizophrenia is a complex and chronic neuropsychiatric disorder. Recent genome-wide association studies have identified several at risk genetic variants, including two single nucleotide polymorphisms, namely the rs10503253 and the rs1270942 respectively located in the CSMD1 and the CFB loci. The present case-control study was designed to assess potential associations between the two variants and the risk of developing schizophrenia and disease severity. Further we demonstrate the relationship between these variants and clinical characteristics in a population-group from Tunisia. PATIENTS AND METHODS In total, 216 patients diagnosed with schizophrenia along with176 healthy controls were included in this case-control study. The molecular analysis of the two polymorphisms was performed using tetra the Primer Amplification Refractory Mutation System-Polymerase Chain method. The statistical analysis was done using Compare V2.1 software, and correlations between genetic results and clinical characteristics were examined by Kruskal-Wallis testing. RESULTS The frequency of the rs10503253A allele was found significantly higher among patients with schizophrenia as compared to healthy controls and associated with high negative PANSS scores. While no association was found concerning the implication of the rs1270942 variant in schizophrenia risk, a positive correlation with high positive PANSS scores was further observed. CONCLUSION The present finding confirms the previously reported association between the Cub and Sushi multiple Domain 1 rs10503253A allele and the risk to develop schizophrenia and identified the rs1270942 variant as a potential disease risk modifier. Such observations may be important for the definition of the susceptible immunogenetic background in North African individuals at risk to develop mental disorders.
Collapse
Affiliation(s)
- Ons Mihoub
- Laboratory of Human Genetics (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia; Inserm U955 IMRB, Translational Neuropsychiatry Laboratory and Paris-Est Créteil University, 94010 Créteil, France.
| | - Arij Ben Chaaben
- Laboratory of Human Genetics (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wahid Boukouaci
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory and Paris-Est Créteil University, 94010 Créteil, France
| | - Mohamed Lajnef
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory and Paris-Est Créteil University, 94010 Créteil, France
| | - Fayza Ayari
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - Hamdi El Kefi
- Department of Psychiatry, Military Hospital of Tunis, Tunis, Tunisia
| | - Hanen Ben Ammar
- Department of Psychiatry F, Razi Hospital, Mannouba, Tunisia
| | - Hajer Abazza
- Laboratory of Human Genetics (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Fathi Guemira
- Clinical Biology Department, Salah Azaiz Institute, Tunis, Tunisia
| | - Marion Leboyer
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory, AP-HP, DMU IMPACT, Fédération Hospitalo-Universitaire de médecine de précision en psychiatrie (FHU ADAPT), Paris Est Créteil University and Fondation Fondamental, 94010 Créteil, France
| | - Ryad Tamouza
- Inserm U955 IMRB, Translational Neuropsychiatry Laboratory, AP-HP, DMU IMPACT, Fédération Hospitalo-Universitaire de médecine de précision en psychiatrie (FHU ADAPT), Paris Est Créteil University and Fondation Fondamental, 94010 Créteil, France
| | - Maher Kharrat
- Laboratory of Human Genetics (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
10
|
Chen HJC, Spiers JG, Lerskiatiphanich T, Parker SE, Lavidis NA, Fung JN, Woodruff TM, Lee JD. Complement C5a Receptor Signaling Alters Stress Responsiveness and Modulates Microglia Following Chronic Stress Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100306. [PMID: 38628385 PMCID: PMC11019103 DOI: 10.1016/j.bpsgos.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Background Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, the Australian National University, Acton, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, the Australian National University, Australian Capital Territory, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sandra E. Parker
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Queensland Brain Institute, the University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - John D. Lee
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Caseras X, Simmonds E, Pardiñas AF, Anney R, Legge SE, Walters JTR, Harrison NA, O'Donovan MC, Escott-Price V. Common risk alleles for schizophrenia within the major histocompatibility complex predict white matter microstructure. Transl Psychiatry 2024; 14:194. [PMID: 38649377 PMCID: PMC11035599 DOI: 10.1038/s41398-024-02910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.
Collapse
Affiliation(s)
- Xavier Caseras
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Emily Simmonds
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Dementia Research Institute, London, UK
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Richard Anney
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Neil A Harrison
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Dementia Research Institute, London, UK
| |
Collapse
|
12
|
Martínez-Cao C, Sánchez-Lasheras F, García-Fernández A, González-Blanco L, Zurrón-Madera P, Sáiz PA, Bobes J, García-Portilla MP. PsiOvi Staging Model for Schizophrenia (PsiOvi SMS): A New Internet Tool for Staging Patients with Schizophrenia. Eur Psychiatry 2024; 67:e36. [PMID: 38599765 PMCID: PMC11059252 DOI: 10.1192/j.eurpsy.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND One of the challenges of psychiatry is the staging of patients, especially those with severe mental disorders. Therefore, we aim to develop an empirical staging model for schizophrenia. METHODS Data were obtained from 212 stable outpatients with schizophrenia: demographic, clinical, psychometric (PANSS, CAINS, CDSS, OSQ, CGI-S, PSP, MATRICS), inflammatory peripheral blood markers (C-reactive protein, interleukins-1RA and 6, and platelet/lymphocyte [PLR], neutrophil/lymphocyte [NLR], and monocyte/lymphocyte [MLR] ratios). We used machine learning techniques to develop the model (genetic algorithms, support vector machines) and applied a fitness function to measure the model's accuracy (% agreement between patient classification of our model and the CGI-S). RESULTS Our model includes 12 variables from 5 dimensions: 1) psychopathology: positive, negative, depressive, general psychopathology symptoms; 2) clinical features: number of hospitalizations; 3) cognition: processing speed, visual learning, social cognition; 4) biomarkers: PLR, NLR, MLR; and 5) functioning: PSP total score. Accuracy was 62% (SD = 5.3), and sensitivity values were appropriate for mild, moderate, and marked severity (from 0.62106 to 0.6728). DISCUSSION We present a multidimensional, accessible, and easy-to-apply model that goes beyond simply categorizing patients according to CGI-S score. It provides clinicians with a multifaceted patient profile that facilitates the design of personalized intervention plans.
Collapse
Affiliation(s)
- Clara Martínez-Cao
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Fernando Sánchez-Lasheras
- Department of Mathematics, University of Oviedo, Oviedo, Spain
- Institute of Space Sciences and Technologies of Asturias (ICTEA), University of Oviedo, Oviedo, Spain
| | - Ainoa García-Fernández
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Madrid, Spain
| | - Paula Zurrón-Madera
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
| | - Pilar A. Sáiz
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Madrid, Spain
| | - Julio Bobes
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Madrid, Spain
| | - María Paz García-Portilla
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
- Health Service of the Principality of Asturias (SESPA), Oviedo, Spain
- Centro de Investigación Biomédica en Red, Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
13
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
14
|
Xue T, Liu W, Wang L, Shi Y, Hu Y, Yang J, Li G, Huang H, Cui D. Extracellular vesicle biomarkers for complement dysfunction in schizophrenia. Brain 2024; 147:1075-1086. [PMID: 37816260 PMCID: PMC10907082 DOI: 10.1093/brain/awad341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Schizophrenia, a complex neuropsychiatric disorder, frequently experiences a high rate of misdiagnosis due to subjective symptom assessment. Consequently, there is an urgent need for innovative and objective diagnostic tools. In this study, we used cutting-edge extracellular vesicles' (EVs) proteome profiling and XGBoost-based machine learning to develop new markers and personalized discrimination scores for schizophrenia diagnosis and prediction of treatment response. We analysed plasma and plasma-derived EVs from 343 participants, including 100 individuals with chronic schizophrenia, 34 first-episode and drug-naïve patients, 35 individuals with bipolar disorder, 25 individuals with major depressive disorder and 149 age- and sex-matched healthy controls. Our innovative approach uncovered EVs-based complement changes in patients, specific to their disease-type and status. The EV-based biomarkers outperformed their plasma counterparts, accurately distinguishing schizophrenia individuals from healthy controls with an area under curve (AUC) of 0.895, 83.5% accuracy, 85.3% sensitivity and 82.0% specificity. Moreover, they effectively differentiated schizophrenia from bipolar disorder and major depressive disorder, with AUCs of 0.966 and 0.893, respectively. The personalized discrimination scores provided a personalized diagnostic index for schizophrenia and exhibited a significant association with patients' antipsychotic treatment response in the follow-up cohort. Overall, our study represents a significant advancement in the field of neuropsychiatric disorders, demonstrating the potential of EV-based biomarkers in guiding personalized diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China
| | - Wenxin Liu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China
| | - Yuan Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China
| | - Ying Hu
- Shenzhi Department, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guiming Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongna Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, Shanghai 201108, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Koskuvi M, Malwade S, Gracias Lekander J, Hörbeck E, Bruno S, Holmen Larsson J, Pelanis A, Isgren A, Goulding A, Fatouros-Bergman H, Samudyata, Schalling M, Piehl F, Erhardt S, Landen M, Cervenka S, Orhan F, Sellgren CM. Lower complement C1q levels in first-episode psychosis and in schizophrenia. Brain Behav Immun 2024; 117:313-319. [PMID: 38301948 DOI: 10.1016/j.bbi.2024.01.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Recent evidence has implicated complement component (C) 4A in excessive elimination of synapses in schizophrenia. C4A is believed to contribute to physiological synapse removal through signaling within the C1q initiated classical activation axis of the complement system. So far, a potential involvement of C1q in the pathophysiology of schizophrenia remains unclear. In this study, we first utilized large-scale gene expression datasets (n = 586 patients with schizophrenia and n = 986 controls) to observe lower C1QA mRNA expression in prefrontal cortex tissue of individuals with schizophrenia (P = 4.8x10-05), while C1QA seeded co-expression networks displayed no enrichment for schizophrenia risk variants beyond C4A. We then used targeted liquid chromatography-mass spectrometry (LS-MS) to measure cerebrospinal fluid (CSF) levels of C1qA in 113 individuals with first-episode psychosis (FEP), among which 66 individuals was later diagnosed with schizophrenia, and 87 healthy controls. CSF concentrations of C1qA were lower in individuals diagnosed with FEP (P = 0.0001), also after removing subjects with a short-term prescription of an antipsychotic agent (P = 0.0005). We conclude that C1q mRNA and protein levels are lower in schizophrenia and that further experimental studies are needed to understand the functional implications.
Collapse
Affiliation(s)
- Marja Koskuvi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Elin Hörbeck
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Department of Psychotic Disorders, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sanna Bruno
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Holmen Larsson
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Aurimantas Pelanis
- Department of Anesthesiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anniella Isgren
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Department of Psychotic Disorders, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anneli Goulding
- Department of Psychotic Disorders, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landen
- The Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
16
|
Ebrahimi M, Teymouri K, Chen CC, Mohiuddin AG, Pouget JG, Goncalves VF, Tiwari AK, Zai CC, Kennedy JL. Association study of the complement component C4 gene and suicide risk in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:14. [PMID: 38341430 DOI: 10.1038/s41537-024-00440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Schizophrenia is a severe mental illness and a major risk factor for suicide, with approximately 50% of schizophrenia patients attempting and 10% dying from suicide. Although genetic components play a significant role in schizophrenia risk, the underlying genetic risk factors for suicide are poorly understood. The complement component C4 gene, an immune gene involved in the innate immune system and located in the major histocompatibility complex (MHC) region, has been identified to be strongly associated with schizophrenia risk. In addition, recent findings have also suggested that the MHC region has been associated with suicide risk across disorders, making C4 a potential candidate of interest for studying suicidality in schizophrenia patients. Despite growing interest in investigating the association between the C4 gene and schizophrenia, to our knowledge, no work has been done to examine the potential of C4 variants as suicide risk factors in patients with schizophrenia. In this study, we investigated the association between different C4 copy number variants and predicted C4 brain expression with suicidal outcomes (suicide attempts/suicidal ideation). We directly genotyped 434 schizophrenia patients to determine their C4A and C4B copy number variants. We found the C4AS copy number to be marginally and negatively associated with suicide risk, potentially being protective against suicide attempts (OR = 0.49; p = 0.05) and suicidal ideation (OR = 0.65; p = 0.07). Furthermore, sex-stratified analyses revealed that there are no significant differences between males and females. Our preliminary findings encourage additional studies of C4 and potential immune dysregulation in suicide.
Collapse
Affiliation(s)
- Mahbod Ebrahimi
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kowsar Teymouri
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Cheng C Chen
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ayeshah G Mohiuddin
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jennie G Pouget
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Vanessa F Goncalves
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Koole L, Martinez-Martinez P, Amelsvoort TV, Evelo CT, Ehrhart F. Interactive neuroinflammation pathways and transcriptomics-based identification of drugs and chemical compounds for schizophrenia. World J Biol Psychiatry 2024; 25:116-129. [PMID: 37961844 DOI: 10.1080/15622975.2023.2281514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Schizophrenia is a psychiatric disorder affecting 1% of the population. Accumulating evidence indicates that neuroinflammation is involved in the pathology of these disorders by altering neurodevelopmental processes and specifically affecting glutamatergic signalling and astrocytic functioning. The aim of this study was to curate interactive biological pathways involved in schizophrenia for the identification of novel pharmacological targets implementing pathway, gene ontology, and network analysis. METHODS Neuroinflammatory pathways were created using PathVisio and published in WikiPathways. A transcriptomics dataset, originally created by Narla et al. was selected for data visualisation and analysis. Transcriptomics data was visualised within pathways and networks, extended with transcription factors, pathways, and drugs. Network hubs were determined based on degrees of connectivity. RESULTS Glutamatergic, immune, and astrocytic signalling as well as extracellular matrix reorganisation were altered in schizophrenia while we did not find an effect on the complement system. Pharmacological agents that target the glutamate receptor subunits, inflammatory mediators, and metabolic enzymes were identified. CONCLUSIONS New neuroinflammatory pathways incorporating the extracellular matrix, glutamatergic neurons, and astrocytes in the aetiology of schizophrenia were established. Transcriptomics based network analysis provided novel targets, including extra-synaptic glutamate receptors, glutamate transporters and extracellular matrix molecules that can be evaluated for therapeutic strategies.
Collapse
Affiliation(s)
- Lisa Koole
- Department of Bioinformatics - BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs, FHML, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, MHeNs, FHML, Maastricht University, Maastricht, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, MHeNs, FHML, Maastricht University, Maastricht, The Netherlands
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics - BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, MHeNs, FHML, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Marin WM, Augusto DG, Wade KJ, Hollenbach JA. High-throughput complement component 4 genomic sequence analysis with C4Investigator. HLA 2024; 103:e15273. [PMID: 37899688 PMCID: PMC11099535 DOI: 10.1111/tan.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The complement component 4 gene loci, composed of the C4A and C4B genes and located on chromosome 6, encodes for complement component 4 (C4) proteins, a key intermediate in the classical and lectin pathways of the complement system. The complement system is an important modulator of immune system activity and is also involved in the clearance of immune complexes and cellular debris. C4A and C4B gene loci exhibit copy number variation, with each composite gene varying between 0 and 5 copies per haplotype. C4A and C4B genes also vary in size depending on the presence of the human endogenous retrovirus (HERV) in intron 9, denoted by C4(L) for long-form and C4(S) for short-form, which affects expression and is found in both C4A and C4B. Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on C4B protein. C4A and C4B copy number variation has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4A and C4B variants has been impeded by the high degree of sequence similarity and complex genetic variation exhibited by these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic pipeline for comprehensive, high-throughput characterization of human C4A and C4B sequences from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome sequence data as input, C4Investigator determines the overall gene copy numbers, as well as C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S). Additionally, C4Ivestigator reports the full overall C4A and C4B aligned sequence, enabling nucleotide level analysis. To demonstrate the utility of this workflow we have analyzed C4A and C4B variation in the 1000 Genomes Project Data set, showing that these genes are highly poly-allelic with many variants that have the potential to impact C4 protein function.
Collapse
Affiliation(s)
- Wesley M. Marin
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, United States
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Kristen J. Wade
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
20
|
Borbye-Lorenzen N, Zhu Z, Agerbo E, Albiñana C, Benros ME, Bian B, Børglum AD, Bulik CM, Debost JCPG, Grove J, Hougaard DM, McRae AF, Mors O, Mortensen PB, Musliner KL, Nordentoft M, Petersen LV, Privé F, Sidorenko J, Skogstrand K, Werge T, Wray NR, Vilhjálmsson BJ, McGrath JJ. The correlates of neonatal complement component 3 and 4 protein concentrations with a focus on psychiatric and autoimmune disorders. CELL GENOMICS 2023; 3:100457. [PMID: 38116117 PMCID: PMC10726496 DOI: 10.1016/j.xgen.2023.100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Complement components have been linked to schizophrenia and autoimmune disorders. We examined the association between neonatal circulating C3 and C4 protein concentrations in 68,768 neonates and the risk of six mental disorders. We completed genome-wide association studies (GWASs) for C3 and C4 and applied the summary statistics in Mendelian randomization and phenome-wide association studies related to mental and autoimmune disorders. The GWASs for C3 and C4 protein concentrations identified 15 and 36 independent loci, respectively. We found no associations between neonatal C3 and C4 concentrations and mental disorders in the total sample (both sexes combined); however, post-hoc analyses found that a higher C3 concentration was associated with a reduced risk of schizophrenia in females. Mendelian randomization based on C4 summary statistics found an altered risk of five types of autoimmune disorders. Our study adds to our understanding of the associations between C3 and C4 concentrations and subsequent mental and autoimmune disorders.
Collapse
Affiliation(s)
- Nis Borbye-Lorenzen
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Zhihong Zhu
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark.
| | - Esben Agerbo
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Integrated Register-based Research, Aarhus University, CIRRAU, 8210 Aarhus V, Denmark
| | - Clara Albiñana
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark
| | - Michael E Benros
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Beilei Bian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jean-Christophe Philippe Goldtsche Debost
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; Department of Psychosis, Aarhus University Hospital Skejby, Aarhus Nord, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark; Department of Biomedicine (Human Genetics), Aarhus University, Aarhus, Denmark; Bioinformatics Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department for Congenital Disorders, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Preben Bo Mortensen
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Center for Integrated Register-based Research, Aarhus University, CIRRAU, 8210 Aarhus V, Denmark
| | - Katherine L Musliner
- Department of Affective Disorders, Aarhus University and Aarhus University Hospital -Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Liselotte V Petersen
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark
| | - Florian Privé
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kristin Skogstrand
- Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, University of Copenhagen, 2200 Copenhagen N, Denmark; Lundbeck Center for Geogenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; Big Data Institute, University of Oxford, Oxford OX3 7LF, UK
| | - Bjarni J Vilhjálmsson
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus V, Denmark; Bioinformatics Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - John J McGrath
- National Center for Register-Based Research, Aarhus University, 8210 Aarhus V, Denmark; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD 4076, Australia.
| |
Collapse
|
21
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of elevated levels of peripheral complement components with cortical thinning and impaired logical memory in drug-naïve patients with first-episode schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:79. [PMID: 37935744 PMCID: PMC10630449 DOI: 10.1038/s41537-023-00409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Schizophrenia has been linked to polymorphism in genes encoding components of the complement system, and hyperactive complement activity has been linked to immune dysfunction in schizophrenia patients. Whether and how specific complement components influence brain structure and cognition in the disease is unclear. Here we compared 52 drug-naïve patients with first-episode schizophrenia and 52 healthy controls in terms of levels of peripheral complement factors, cortical thickness (CT), logical memory and psychotic symptoms. We also explored the relationship between complement factors with CT, cognition and psychotic symptoms. Patients showed significantly higher levels of C1q, C4, factor B, factor H, and properdin in plasma. Among patients, higher levels of C3 in plasma were associated with worse memory recall, while higher levels of C4, factor B and factor H were associated with thinner sensory cortex. These findings link dysregulation of specific complement components to abnormal brain structure and cognition in schizophrenia.
Collapse
Affiliation(s)
- Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Peiyan Ni
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yang Tian
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Jinxue Wei
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jeremy Coid
- Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Gangadin SS, Germann M, de Witte LD, Gelderman KA, Mandl RCW, Sommer IEC. Complement component 4A protein levels are negatively related to frontal volumes in patients with schizophrenia spectrum disorders. Schizophr Res 2023; 261:6-14. [PMID: 37678145 DOI: 10.1016/j.schres.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive C4A-gene expression may result in increased microglia-mediated synaptic pruning. As C4A overexpression is observed in schizophrenia spectrum disorders (SSD), this mechanism may account for the altered brain morphology (i.e. reduced volume and cortical thickness) and cognitive symptoms that characterize SSD. Therefore, this study investigates the association of C4A serum protein levels with brain morphology and cognition, and in particular whether this association differs between recent-onset SSD (n = 69) and HC (n = 40). METHODS Serum C4A protein levels were compared between groups. Main outcomes included total gray matter volume, mean cortical thickness and cognitive performance. Regression analysis on these outcomes included C4A level, group (SSD vs. HC), and C4A*Group interactions. All statistical tests were corrected for age, sex, BMI, and antipsychotic medication dose. Follow-up analyses were performed on separate brain regions and scores on cognitive sub-tasks. RESULTS The group difference in C4A levels was not statistically significant (p = 0.86). The main outcomes did not show a significant interaction effect (p > 0.13) or a C4A main effect (p > 0.27). Follow-up analyses revealed significant interaction effects for the left medial orbitofrontal and left frontal pole volumes (p < 0.001): C4A was negatively related to these volumes in SSD, but positively in HC. CONCLUSION This study demonstrated that C4A was negatively related to - specifically - frontal brain volumes in SSD, but this relation was inverse for HC. The results support the hypothesis of complement-mediated brain volume reduction in SSD. The results also suggest that C4A has a differential association with brain morphology in SSD compared to HC.
Collapse
Affiliation(s)
- S S Gangadin
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| | - M Germann
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - L D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - K A Gelderman
- Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - R C W Mandl
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - I E C Sommer
- University of Groningen, Department of Psychiatry, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
23
|
Palumbo MC, Gautam M, Sonneborn A, Kim K, Wilmarth PA, Reddy AP, Shi X, Marks DL, Sahay G, Abbas AI, Janowsky A. MicroRNA137-loaded lipid nanoparticles regulate synaptic proteins in the prefrontal cortex. Mol Ther 2023; 31:2975-2990. [PMID: 37644723 PMCID: PMC10556225 DOI: 10.1016/j.ymthe.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Genome-wide association studies indicate that allele variants in MIR137, the host gene of microRNA137 (miR137), confer an increased risk of schizophrenia (SCZ). Aberrant expression of miR137 and its targets, many of which regulate synaptic functioning, are also associated with an increased risk of SCZ. Thus, miR137 represents an attractive target aimed at correcting the molecular basis for synaptic dysfunction in individuals with high genetic risk for SCZ. Advancements in nanotechnology utilize lipid nanoparticles (LNPs) to transport and deliver therapeutic RNA. However, there remains a gap in using LNPs to regulate gene and protein expression in the brain. To study the delivery of nucleic acids by LNPs to the brain, we found that LNPs released miR137 cargo and inhibited target transcripts of interest in neuroblastoma cells. Biodistribution of LNPs loaded with firefly luciferase mRNA remained localized to the mouse prefrontal cortex (PFC) injection site without circulating to off-target organs. LNPs encapsulating Cre mRNA preferentially co-expressed in neuronal over microglial or astrocytic cells. Using quantitative proteomics, we found miR137 modulated glutamatergic synaptic protein networks that are commonly dysregulated in SCZ. These studies support engineering the next generation of brain-specific LNPs to deliver RNA therapeutics and improve symptoms of central nervous system disorders.
Collapse
Affiliation(s)
- Michelle C Palumbo
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xiao Shi
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Portland, OR 97239, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Aaron Janowsky
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; Research Service, Veterans Affairs Portland Health Care System, Portland, OR 97239, USA.
| |
Collapse
|
24
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Du X, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of the plasma complement system with brain volume deficits in bipolar and major depressive disorders. Psychol Med 2023; 53:6102-6112. [PMID: 36285542 DOI: 10.1017/s0033291722003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders. METHODS A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components. RESULTS GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level. CONCLUSIONS BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Yang Tian
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Liansheng Zhao
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Mingli Li
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Qiang Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Jeremy Coid
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Severance EG, Prandovszky E, Yang S, Leister F, Lea A, Wu CL, Tamouza R, Leboyer M, Dickerson F, Yolken RH. Prospects and Pitfalls of Plasma Complement C4 in Schizophrenia: Building a Better Biomarker. Dev Neurosci 2023; 45:349-360. [PMID: 37734326 DOI: 10.1159/000534185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ching-Lien Wu
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Arihisa W, Kondo T, Yamaguchi K, Matsumoto J, Nakanishi H, Kunii Y, Akatsu H, Hino M, Hashizume Y, Sato S, Sato S, Niwa S, Yabe H, Sasaki T, Shigenobu S, Setou M. Lipid-correlated alterations in the transcriptome are enriched in several specific pathways in the postmortem prefrontal cortex of Japanese patients with schizophrenia. Neuropsychopharmacol Rep 2023; 43:403-413. [PMID: 37498306 PMCID: PMC10496066 DOI: 10.1002/npr2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
AIMS Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.
Collapse
Affiliation(s)
- Wataru Arihisa
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
| | - Takeshi Kondo
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Department of Biochemistry, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | | | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | | | - Yasuto Kunii
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura HospitalToyohashiJapan
- Department of Community‐based Medical Education/Department of Community‐based MedicineNagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | | | - Shumpei Sato
- RIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Shinji Sato
- Business Development, Otsuka Pharmaceutical Co., Ltd. Shinagawa Grand Central TowerTokyoJapan
| | - Shin‐Ichi Niwa
- Department of Psychiatry, Aizu Medical CenterFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Takehiko Sasaki
- Department of Biochemical PathophysiologyMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Preeminent Medical Photonics Education & Research CenterHamamatsu University School of MedicineShizuokaJapan
- Department of AnatomyThe University of Hong KongHong KongChina
| |
Collapse
|
27
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial gene expression and alters cellular signaling in an aggressive Alzheimer's model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554306. [PMID: 37662399 PMCID: PMC10473603 DOI: 10.1101/2023.08.22.554306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. Pharmacologic inhibition of C5aR1 reduces plaque load, gliosis and memory deficits in animal models. However, the cellular basis underlying this neuroprotection and which processes were the consequence of amyloid reduction vs alteration of the response to amyloid were unclear. In the Arctic model, the C5aR1 antagonist PMX205 did not reduce plaque load, but deficits in short-term memory in female mice were prevented. Hippocampal single cell and single nucleus RNA-seq clusters revealed C5aR1 dependent and independent gene expression and cell-cell communication. Microglial clusters containing neurotoxic disease-associated microglial genes were robustly upregulated in Arctic mice and drastically reduced with PMX205 treatment, while genes in microglia clusters that were overrepresented in the Arctic-PMX205 vs Arctic group were associated with synapse organization and transmission and learning. PMX205 treatment also reduced some A-1 astrocyte genes. In spite of changes in transcript levels, overall protein levels of some reactive glial markers were relatively unchanged by C5aR1 antagonism, as were clusters associated with protective responses to injury. C5aR1 inhibition promoted signaling pathways associated with cell growth and repair, such as TGFβ and FGF, in Arctic mice, while suppressing inflammatory pathways including PROS, Pecam1, and EPHA. In conclusion, pharmacologic C5aR1 inhibition prevents cognitive loss, limits microglial polarization to a detrimental inflammatory state and permits neuroprotective responses, as well as leaving protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for individuals with AD.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
28
|
Grotzinger AD, Singh K, Miller-Fleming TW, Lam M, Mallard TT, Chen Y, Liu Z, Ge T, Smoller JW. Transcriptome-Wide Structural Equation Modeling of 13 Major Psychiatric Disorders for Cross-Disorder Risk and Drug Repurposing. JAMA Psychiatry 2023; 80:811-821. [PMID: 37314780 PMCID: PMC10267850 DOI: 10.1001/jamapsychiatry.2023.1808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/05/2023] [Indexed: 06/15/2023]
Abstract
Importance Psychiatric disorders display high levels of comorbidity and genetic overlap, necessitating multivariate approaches for parsing convergent and divergent psychiatric risk pathways. Identifying gene expression patterns underlying cross-disorder risk also stands to propel drug discovery and repurposing in the face of rising levels of polypharmacy. Objective To identify gene expression patterns underlying genetic convergence and divergence across psychiatric disorders along with existing pharmacological interventions that target these genes. Design, Setting, and Participants This genomic study applied a multivariate transcriptomic method, transcriptome-wide structural equation modeling (T-SEM), to investigate gene expression patterns associated with 5 genomic factors indexing shared risk across 13 major psychiatric disorders. Follow-up tests, including overlap with gene sets for other outcomes and phenome-wide association studies, were conducted to better characterize T-SEM results. The Broad Institute Connectivity Map Drug Repurposing Database and Drug-Gene Interaction Database public databases of drug-gene pairs were used to identify drugs that could be repurposed to target genes found to be associated with cross-disorder risk. Data were collected from database inception up to February 20, 2023. Main Outcomes and Measures Gene expression patterns associated with genomic factors or disorder-specific risk and existing drugs that target these genes. Results In total, T-SEM identified 466 genes whose expression was significantly associated (z ≥ 5.02) with genomic factors and 36 genes with disorder-specific effects. Most associated genes were found for a thought disorders factor, defined by bipolar disorder and schizophrenia. Several existing pharmacological interventions were identified that could be repurposed to target genes whose expression was associated with the thought disorders factor or a transdiagnostic p factor defined by all 13 disorders. Conclusions and Relevance The findings from this study shed light on patterns of gene expression associated with genetic overlap and uniqueness across psychiatric disorders. Future versions of the multivariate drug repurposing framework outlined here have the potential to identify novel pharmacological interventions for increasingly common, comorbid psychiatric presentations.
Collapse
Affiliation(s)
- Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Max Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
- Research Division, Institute of Mental Health Singapore, Singapore
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Travis T. Mallard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Yu Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhaowen Liu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Tian Ge
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| | - Jordan W. Smoller
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston
| |
Collapse
|
29
|
Marin WM, Augusto DG, Wade KJ, Hollenbach JA. High-throughput complement component 4 genomic sequence analysis with C4Investigator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549551. [PMID: 37503256 PMCID: PMC10370142 DOI: 10.1101/2023.07.18.549551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The complement component 4 gene locus, composed of the C4A and C4B genes and located on chromosome 6, encodes for C4 protein, a key intermediate in the classical and lectin pathways of the complement system. The complement system is an important modulator of immune system activity and is also involved in the clearance of immune complexes and cellular debris. The C4 gene locus exhibits copy number variation, with each composite gene varying between 0-5 copies per haplotype, C4 genes also vary in size depending on the presence of the HERV retrovirus in intron 9, denoted by C4(L) for long-form and C4(S) for short-form, which modulates expression and is found in both C4A and C4B. Additionally, human blood group antigens Rodgers and Chido are located on the C4 protein, with the Rodger epitope generally found on C4A protein, and the Chido epitope generally found on C4B protein. C4 copy number variation has been implicated in numerous autoimmune and pathogenic diseases. Despite the central role of C4 in immune function and regulation, high-throughput genomic sequence analysis of C4 variants has been impeded by the high degree of sequence similarity and complex genetic variation exhibited by these genes. To investigate C4 variation using genomic sequencing data, we have developed a novel bioinformatic pipeline for comprehensive, high-throughput characterization of human C4 sequence from short-read sequencing data, named C4Investigator. Using paired-end targeted or whole genome sequence data as input, C4Investigator determines gene copy number for overall C4, C4A, C4B, C4(Rodger), C4(Ch), C4(L), and C4(S), additionally, C4Ivestigator reports the full overall C4 aligned sequence, enabling nucleotide level analysis of C4. To demonstrate the utility of this workflow we have analyzed C4 variation in the 1000 Genomes Project Dataset, showing that the C4 genes are highly poly-allelic with many variants that have the potential to impact C4 protein function.
Collapse
Affiliation(s)
- Wesley M. Marin
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, United States
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Kristen J. Wade
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Lennox B. Improving our Understanding of Early Psychosis: Learning from the Optimise Trial. Schizophr Bull 2023; 49:829-830. [PMID: 37159930 PMCID: PMC10318870 DOI: 10.1093/schbul/sbad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Belinda Lennox
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Alemany-Navarro M, Diz-de Almeida S, Cruz R, Riancho JA, Rojas-Martínez A, Lapunzina P, Flores C, Carracedo A. Psychiatric polygenic risk as a predictor of COVID-19 risk and severity: insight into the genetic overlap between schizophrenia and COVID-19. Transl Psychiatry 2023; 13:189. [PMID: 37280221 DOI: 10.1038/s41398-023-02482-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Despite the high contagion and mortality rates that have accompanied the coronavirus disease-19 (COVID-19) pandemic, the clinical presentation of the syndrome varies greatly from one individual to another. Potential host factors that accompany greater risk from COVID-19 have been sought and schizophrenia (SCZ) patients seem to present more severe COVID-19 than control counterparts, with certain gene expression similarities between psychiatric and COVID-19 patients reported. We used summary statistics from the last SCZ, bipolar disorder (BD), and depression (DEP) meta-analyses available on the Psychiatric Genomics Consortium webpage to calculate polygenic risk scores (PRSs) for a target sample of 11,977 COVID-19 cases and 5943 subjects with unknown COVID-19 status. Linkage disequilibrium score (LDSC) regression analysis was performed when positive associations were obtained from the PRS analysis. The SCZ PRS was a significant predictor in the case/control, symptomatic/asymptomatic, and hospitalization/no hospitalization analyses in the total and female samples; and of symptomatic/asymptomatic status in men. No significant associations were found for the BD or DEP PRS or in the LDSC regression analysis. SNP-based genetic risk for SCZ, but not for BD or DEP, may be associated with higher risk of SARS-CoV-2 infection and COVID-19 severity, especially among women; however, predictive accuracy barely exceeded chance level. We believe that the inclusion of sexual loci and rare variations in the analysis of genomic overlap between SCZ and COVID-19 will help to elucidate the genetic commonalities between these conditions.
Collapse
Affiliation(s)
- M Alemany-Navarro
- IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC), Sevilla, Spain.
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain.
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| | - S Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - R Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| | - J A Riancho
- IDIVAL, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
| | - A Rojas-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - P Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM) del Hospital Universitario La Paz, Madrid, Spain
- ERN-ITHACA-European Reference Network, Santa Cruz de Tenerife, Canarias, Spain
| | - C Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - A Carracedo
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS) Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética. Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
33
|
Yan Z, Shi Z, Wu Y, Lv J, Deng P, Liu G, An Z, Che Z, Lu Y, Shan J, Liu Q. Wireless, noninvasive therapeutic drug monitoring system for saliva measurement toward medication management of schizophrenia. Biosens Bioelectron 2023; 234:115363. [PMID: 37146537 DOI: 10.1016/j.bios.2023.115363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.
Collapse
Affiliation(s)
- Zupeng Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ziyuan Che
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, PR China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| | - Qingjun Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
34
|
Abdolmaleky HM, Martin M, Zhou JR, Thiagalingam S. Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes (Basel) 2023; 14:896. [PMID: 37107654 PMCID: PMC10137903 DOI: 10.3390/genes14040896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marian Martin
- Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
35
|
Mordelt A, de Witte LD. Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: Hype or hope? Curr Opin Neurobiol 2023; 79:102674. [PMID: 36657237 DOI: 10.1016/j.conb.2022.102674] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
There is a consensus in the field that microglia play a prominent role in neurodevelopmental processes like synaptic pruning and neuronal network maturation. Thus, a current momentum of associating microglia deficits with neurodevelopmental disorders (NDDs) emerged. This concept is challenged by rodent studies and clinical data. Intriguingly, reduced numbers of microglia or altered microglial functions do not necessarily lead to overt NDD phenotypes, and neuropsychiatric symptoms seem to develop primarily in adulthood. Hence, it remains open for discussion whether microglia are truly indispensable for healthy neurodevelopment. Here, we critically discuss the role of microglia in synaptic pruning and highlight area- and age dependency. We propose an updated model of microglia-mediated synaptic pruning in the context of NDDs and discuss the potential of targeting microglia for treatment of these disorders.
Collapse
Affiliation(s)
- Annika Mordelt
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands.
| | - Lot D de Witte
- Department of Human Genetics and Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Nijmegen, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
37
|
Rudkowski K, Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Podwalski P, Bielecki M, Mak M, Michalczyk A, Tarnowski M, Sielatycka K, Budkowska M, Łuczkowska K, Dołęgowska B, Ratajczak MZ, Samochowiec J, Kucharska-Mazur J, Sagan L. Complement Activation Products in Patients with Chronic Schizophrenia. J Clin Med 2023; 12:jcm12041577. [PMID: 36836111 PMCID: PMC9967657 DOI: 10.3390/jcm12041577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Evidence suggests a role of the immune system in the pathogenesis of a number of mental conditions, including schizophrenia (SCH). In terms of physiology, aside from its crucial protective function, the complement cascade (CC) is a critical element of the regeneration processes, including neurogenesis. Few studies have attempted to define the function of the CC components in SCH. To shed more light on this topic, we compared the levels of complement activation products (CAP) (C3a, C5a and C5b-9) in the peripheral blood of 62 patients with chronic SCH and disease duration of ≥ 10 years with 25 healthy controls matched for age, sex, BMI and smoking status. Concentrations of all the investigated CAP were elevated in SCH patients. However, after controlling for potential confounding factors, significant correlations were observed between SCH and C3a (M = 724.98 ng/mL) and C5a (M = 6.06 ng/mL) levels. In addition, multivariate logistic regression showed that C3a and C5b-9 were significant predictors of SCH. There were no significant correlations between any CAP and SCH symptom severity or general psychopathology in SCH patients. However, two significant links emerged between C3a and C5b-9 and global functioning. Increased levels of both complement activation products in the patient group as compared to healthy controls raise questions concerning the role of the CC in the etiology of SCH and further demonstrate dysregulation of the immune system in SCH patients.
Collapse
Affiliation(s)
- Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
- Correspondence: ; Tel./Fax: +48-(91)-3511306
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Felczaka 3c, 71-415 Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkoposlkich 72, 70-110 Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, 71-460 Szczecin, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
38
|
Orsolini L, Pompili S, Volpe U. C-Reactive Protein (CRP): A Potent Inflammation Biomarker in Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:135-160. [PMID: 36949309 DOI: 10.1007/978-981-19-7376-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
An increasing number of studies have investigated the role of inflammation in psychiatric disorders, by demonstrating how an altered/dysfunctional immunological and inflammatory system may underpin a psychiatric condition. Particularly, several studies specifically investigated the role of a neuroinflammatory biomarker, named C-reactive protein (CRP), in psychiatric disorders. Overall, even though scientific literature so far published still does not appear definitive, CRP is more likely reported to be elevated in several psychiatric disorders, including schizophrenia, mood disorders, anxiety disorders and post-traumatic stress disorder. Moreover, a low-grade inflammation (CRP >3 mg/L) has been more likely observed in a subgroup of patients affected with a more severe psychopathological symptomatology, more treatment resistance and worst clinical mental illness course, strengthening the hypothesis of the need for a different clinical and prognostic characterization based on this concomitant neuroinflammatory predisposition. However, even though further research studies are needed to confirm this preliminary evidence, CRP may represent a potential clinical routine biomarker which could be integrated in the clinical routine practice to better characterize clinical picture and course as well as address clinicians towards a personalized treatment.
Collapse
Affiliation(s)
- Laura Orsolini
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Pompili
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| | - Umberto Volpe
- Unit of Clinical Psychiatry, Department of Clinical Neurosciences/DIMSC, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
39
|
Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry 2023; 28:59-67. [PMID: 35931756 DOI: 10.1038/s41380-022-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
Psychotic symptoms are a cross-sectional dimension affecting multiple diagnostic categories, despite schizophrenia represents the prototype of psychoses. Initially, dopamine was considered the most involved molecule in the neurobiology of schizophrenia. Over the next years, several biological factors were added to the discussion helping to constitute the concept of schizophrenia as a disease marked by a deficit of functional integration, contributing to the formulation of the Dysconnection Hypothesis in 1995. Nowadays the notion of dysconnection persists in the conceptualization of schizophrenia enriched by neuroimaging findings which corroborate the hypothesis. At the same time, in recent years, psychedelics received a lot of attention by the scientific community and astonishing findings emerged about the rearrangement of brain networks under the effect of these compounds. Specifically, a global decrease in functional connectivity was found, highlighting the disintegration of preserved and functional circuits and an increase of overall connectivity in the brain. The aim of this paper is to compare the biological bases of dysconnection in schizophrenia with the alterations of neuronal cyto-architecture induced by psychedelics and the consequent state of cerebral hyper-connection. These two models of psychosis, despite diametrically opposed, imply a substantial deficit of integration of neural signaling reached through two opposite paths.
Collapse
|
40
|
Yu X, Qi X, Wei L, Zhao L, Deng W, Guo W, Wang Q, Ma X, Hu X, Ni P, Li T. Fingolimod ameliorates schizophrenia-like cognitive impairments induced by phencyclidine in male rats. Br J Pharmacol 2023; 180:161-173. [PMID: 36106568 DOI: 10.1111/bph.15954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Improvement of cognitive deficits in schizophrenia remains an unmet need owing to the lack of new therapies and drugs. Recent studies have reported that fingolimod, an immunomodulatory drug for treating multiple sclerosis, demonstrates anti-inflammatory and neuroprotective effects in several neurological disease models. This suggests its usefulness for ameliorating cognitive dysfunction in schizophrenia. Herein, we assessed the efficacy profile and mechanism of fingolimod in a rat model of phencyclidine (PCP)-induced schizophrenia. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with PCP for 14 days. The therapeutic effect of fingolimod on cognitive function was assessed using the Morris water maze and fear conditioning tests. Hippocampal neurogenesis and the expression of astrocytes and microglia were evaluated using immunostaining. Cytokine expression was quantified using multiplexed flow cytometry. Brain-derived neurotrophic factor expression and phosphorylation of extracellular signal-regulated kinase were determined using western blot analysis. KEY RESULTS Fingolimod attenuated cognitive deficits and restored hippocampal neurogenesis in a dose-dependent manner in PCP-treated rats. Fingolimod treatment exerted anti-inflammatory effects by inhibiting microglial activation and IL-6 and IL-1β pro-inflammatory cytokine expression. The underlying mechanism involves the upregulation of brain-derived neurotrophic factor protein expression and activation of the ERK signalling pathway. CONCLUSION AND IMPLICATIONS This is the first preclinical assessment of the effects of fingolimod on cognitive function in a model for schizophrenia. Our results suggest the immune system plays an crucial role in cognitive alterations in schizophrenia and highlight the potential of immunomodulatory strategies to improve cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Xueli Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xueyu Qi
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Long Wei
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaohong Ma
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Hu
- The Clinical Research Center and Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyan Ni
- The Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Evidence of Chronic Complement Activation in Asymptomatic Pediatric Brain Injury Patients: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010045. [PMID: 36670596 PMCID: PMC9856304 DOI: 10.3390/children10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Physical insult from a mild Traumatic Brain Injury (mTBI) leads to changes in blood flow in the brain and measurable changes in white matter, suggesting a physiological basis for chronic symptom presentation. Post-traumatic headache (PTH) is frequently reported by persons after an mTBI that may persist beyond the acute period (>3 months). It remains unclear whether ongoing inflammation may contribute to the clinical trajectory of PTH. We recruited a cohort of pediatric subjects with PTH who had an acute or a persistent clinical trajectory, each around the 3-month post-injury time point, as well as a group of age and sex-matched healthy controls. We collected salivary markers of mRNA expression as well as brain imaging and psychological testing. The persistent PTH group showed the highest levels of psychological burden and pain symptom reporting. Our data suggest that the acute and persistent PTH cohort had elevated levels of complement factors relative to healthy controls. The greatest change in mRNA expression was found in the acute-PTH cohort wherein the complement cascade and markers of vascular health showed a prominent role for C1Q in PTH pathophysiology. These findings (1) underscore a prolonged engagement of what is normally a healthy response and (2) show that a persistent PTH symptom trajectory may parallel a poorly regulated inflammatory response.
Collapse
|
42
|
Günther A, Hanganu-Opatz IL. Neuronal oscillations: early biomarkers of psychiatric disease? Front Behav Neurosci 2022; 16:1038981. [PMID: 36600993 PMCID: PMC9806131 DOI: 10.3389/fnbeh.2022.1038981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of the environmental and genetic factors contributing to the wide spectrum of neuropsychiatric disorders has significantly increased in recent years. Impairment of neuronal network activity during early development has been suggested as a contributor to the emergence of neuropsychiatric pathologies later in life. Still, the neurobiological substrates underlying these disorders remain yet to be fully understood and the lack of biomarkers for early diagnosis has impeded research into curative treatment options. Here, we briefly review current knowledge on potential biomarkers for emerging neuropsychiatric disease. Moreover, we summarize recent findings on aberrant activity patterns in the context of psychiatric disease, with a particular focus on their potential as early biomarkers of neuropathologies, an essential step towards pre-symptomatic diagnosis and, thus, early intervention.
Collapse
|
43
|
Mohd Asyraf AJ, Nour El Huda AR, Hanisah MN, Noorul Amilin H, Norlelawati AT. DNA methylation and copy number variation of the complement C4A gene in schizophrenia. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Abstract
The mammalian gut contains a large, complex community of microorganisms collectively termed the microbiota. It is increasingly appreciated that gut microbes are closely integrated into mammalian physiology, participating in metabolic symbiosis, promoting immune function and signaling to a wide variety of distant cells, including the brain, via circulating metabolites. Recent advances indicate that microglia, the brain's resident immune cells, are influenced by microbial metabolites at all stages of life, under both physiological and pathological conditions. The pathways by which microbiota regulate microglial function are therefore of interest for investigating links between neurological disorders and gut microbiome changes. In this review, we discuss the effects and mechanisms of microbiota-microglia signaling in steady state, as well as evidence for the involvement of this signaling axis in CNS pathologies.
Collapse
Affiliation(s)
- James Cook
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany,CONTACT James Cook
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany,Centre for NeuroModulation (Neuromodbasics), University of Freiburg, Freiburg, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,Marco Prinz Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Childers E, Bowen EFW, Rhodes CH, Granger R. Immune-Related Genomic Schizophrenic Subtyping Identified in DLPFC Transcriptome. Genes (Basel) 2022; 13:1200. [PMID: 35885983 PMCID: PMC9319783 DOI: 10.3390/genes13071200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Well-documented evidence of the physiologic, genetic, and behavioral heterogeneity of schizophrenia suggests that diagnostic subtyping may clarify the underlying pathobiology of the disorder. Recent studies have demonstrated that increased inflammation may be a prominent feature of a subset of schizophrenics. However, these findings are inconsistent, possibly due to evaluating schizophrenics as a single group. In this study, we segregated schizophrenic patients into two groups ("Type 1", "Type 2") by their gene expression in the dorsolateral prefrontal cortex and explored biological differences between the subgroups. The study included post-mortem tissue samples that were sequenced in multiple, publicly available gene datasets using different sequencing methods. To evaluate the role of inflammation, the expression of genes in multiple components of neuroinflammation were examined: complement cascade activation, glial cell activation, pro-inflammatory mediator secretion, blood-brain barrier (BBB) breakdown, chemokine production and peripheral immune cell infiltration. The Type 2 schizophrenics showed widespread abnormal gene expression across all the neuroinflammation components that was not observed in Type 1 schizophrenics. Our results demonstrate the importance of separating schizophrenic patients into their molecularly defined subgroups and provide supporting evidence for the involvement of the immune-related pathways in a schizophrenic subset.
Collapse
Affiliation(s)
- Eva Childers
- Dartmouth College, Hanover, NH 03755, USA; (E.C.); (E.F.W.B.)
| | | | | | - Richard Granger
- Dartmouth College, Hanover, NH 03755, USA; (E.C.); (E.F.W.B.)
| |
Collapse
|
46
|
Wang S, Yang W, Shi W, Chen F, Shen F, Zhang M, Su Q, Shi C, Yu Q, Chen T. Investigations on the Changes of Serum Proteins in Rabbits after Trimeresurus stejnegeri Venom Injection via Mass Spectrometry-Based Proteomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9239662. [PMID: 35783526 PMCID: PMC9249469 DOI: 10.1155/2022/9239662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Purpose There are few studies on protein phosphorylation in the process of snake poisoning. The purpose of this study was to investigate the toxic mechanism of Trimeresurus stejnegeri at the protein level by determining the differential expression of phosphorylated proteins in rabbits after poisoning using proteomics. Methods The Trimeresurus stejnegeri venom model in rabbits was established by intramuscular injection of 20 mg/kg venom. The serum was collected and the differential expression of phosphorylated proteins in the serum was determined by the iTRAQ technology, TiO2 enriched phosphorylated peptides, and the mass spectrometry analysis. The functional analysis was conducted using ClueGO software and the related mechanism was evaluated by the network analysis of biological interaction. The expression level of related proteins was determined by the Western blotting assay. Results Compared to the control group, 77 differentially expressed proteins were observed in the model group. These proteins were closely associated with the complement and agglomerate cascade signaling pathways, the HIF signaling pathway, the pentose phosphate pathway, and the cholesterol metabolism signaling pathway. According to the results of network analysis, TF and SCL16A1 were determined as the core proteins, which were identified by the Western blotting assay. Conclusion The present study provided valuable phosphorylation signal transduction resources for investigating the toxic mechanism and the therapies for Trimeresurus stejnegeri poisoning.
Collapse
Affiliation(s)
- Shijun Wang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Weilian Yang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Wanling Shi
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Fuwei Chen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Fanghua Shen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Meiji Zhang
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Qiuxiang Su
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Chao Shi
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Qinyao Yu
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| | - Tao Chen
- Surgery of Traditional Chinese Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, Fujian, China
| |
Collapse
|
47
|
Protasova MS, Gusev FE, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia. Eur J Hum Genet 2022; 30:703-711. [PMID: 35351988 DOI: 10.1038/s41431-022-01088-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
We propose an approach for the identification of mutant genes for rare diseases in single cases of unknown etiology. All genes with rare biologically significant variants sorted from individual exome data are tested further for profiling of their spatial-temporal and cell/tissue specific expression compared to that of their paralogs. We developed a simple bioinformatics tool ("Essential Paralogue by Expression" (EPbE)) for such analysis. Here, we present rare clinical forms of early ataxia with cerebellar hypoplasia. Using whole-exome sequencing and the EPbE tool, we identified two novel mutant genes previously not associated with congenital human diseases. In Family I, the unique missense mutation (p.Lys258Glu) was found in the LRCH2 gene inherited in an X-linked manner. p.Lys258Glu occurs in the evolutionarily invariant site of the leucine-rich repeat domain of LRCH2. In Family II and Family III, the identical genetic variant was found in the CSMD1 gene inherited as an autosomal-recessive trait. The variant leads to amino acid substitution p.Gly2979Ser in a highly conserved region of the complement-interacting domain of CSMD1. The LRCH2 gene for Family I patients (in which congenital cerebellar hypoplasia was associated with demyelinating polyneuropathy) is expressed in Schwann and precursor Schwann cells and predominantly over its paralogous genes in the developing cerebellar cortex. The CSMD1 gene is predominantly expressed over its paralogous genes in the cerebellum, specifically in the period of late childhood. Thus, the comparative spatial-temporal expression of the selected genes corresponds to the neurological manifestations of the disease.
Collapse
Affiliation(s)
- Maria S Protasova
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Fedor E Gusev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia
| | - Tatiana V Andreeva
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey A Klyushnikov
- Department of Neurogenetics, Research Center of Neurology, 123367, Moscow, Russia
| | | | - Evgeny I Rogaev
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics Russian Academy of Sciences, 119333, Moscow, Russia. .,Center for Genetics and Life Science, Sirius University of Science and Technology, 354340, Sochi, Russia. .,Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA, 01545, USA.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The vascular hypothesis of schizophrenia (SZ) postulates that brain endothelial dysfunction contributes to brain pathophysiology. This review discusses recent evidence for and against this hypothesis, including data related to blood-brain barrier (BBB), brain endothelium, and brain blood supply, to provide a critical weighed update. RECENT FINDINGS Different studies report a consistent proportion of SZ patients showing increased BBB permeability, reflected by higher levels of albumin in the cerebral spinal fluid. Of note, this was not a result of antipsychotic medication. The high inflammatory profile observed in some SZ patients is strongly associated with increased BBB permeability to circulating immune cells, and with more severe cognitive deficiencies. Also, sex was found to interact with BBB integrity and permeability in SZ. The strongest independent genetic association with SZ has been identified in FZD1, a hypoxia-response gene that is 600-fold higher expressed in early development endothelium as compared to adult brain endothelium. Regarding brain blood supply, there is evidence to suggest alterations in proper brain perfusion in SZ. Nonetheless, ex-vivo experiments suggested that widely used antipsychotics favor vasoconstriction; thus, alterations in cerebral perfusion might be related to the patients' medication. SUMMARY In some patients with SZ, a vulnerable brain endothelium may be interacting with environmental stressors, such as inflammation or hypoxia, converging into a more severe SZ symptomatology. Gene expression and performance of human brain endothelium could vary along with development and the establishment of the BBB; therefore, we encourage to investigate its possible contribution to SZ considering this dynamic context.
Collapse
|
49
|
Li J, Yoshikawa A, Alliey-Rodriguez N, Meltzer HY. Schizophrenia risk loci from xMHC region were associated with antipsychotic response in chronic schizophrenic patients with persistent positive symptom. Transl Psychiatry 2022; 12:92. [PMID: 35250027 PMCID: PMC8898944 DOI: 10.1038/s41398-022-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
We examined whether common variants from the extended major histocompatibility complex (xMHC) region contribute to the response to antipsychotic drugs (APDs) in patients with schizophrenia with persistent psychosis. Subjects participated in a prospective longitudinal study of the effect of APDs on psychopathology were temporally split into discovery (n = 88) and replication (n = 42) cohorts. The primary endpoint was a change in Brief Psychiatric Rating Scale at 6-week or 6-month after treatment. rs204991 (β = 3.917, p = 3.72 × 10-6), the strongest signal associated with response at 6-week was located near C4A/C4B after a linear regression adjusted for covariates. xMHC SNP imputation disclosed much stronger signals (rs9268469, β = 5.140, p = 1.57 × 10-7) and other weaker signals (p < 1 × 10-5) spanning the entire xMHC region. All the variants were previously identified schizophrenia risk loci. Conditional fine-mapping revealed three subgroups of SNPs which were the eQTLs (p < 1 × 10-7) for C4A, HLA-C, and BTN3A2 in disease-relevant tissue. Epistasis between HLA-C and C4A was observed (p = 0.019). Minor allele (G) carriers of rs204991, eQTL for C4A, having decreased risk for schizophrenia and lower imputed expression of C4A, had a better response to APDs. Some imputed HLA alleles associated with a decreased risk for schizophrenia had a positive association with improvement in psychotic symptoms. An independent cohort validated the association of change in psychosis with C4A. We provide evidence that genetic risk factors for schizophrenia from the xMHC region are associated with response to APDs and those variants significantly alter the imputed expression of C4A, HLA-C, and BTN3A2. The minor alleles predicting higher C4A level are associated with diminished improvement in psychotic symptoms after APD treatment.
Collapse
Affiliation(s)
- Jiang Li
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.415341.60000 0004 0433 4040Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA USA
| | - Akane Yoshikawa
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.258269.20000 0004 1762 2738Department of Psychiatry and Behavioral Sciences, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ney Alliey-Rodriguez
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Herbert Y. Meltzer
- grid.16753.360000 0001 2299 3507Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
50
|
Ji E, Boerrigter D, Cai HQ, Lloyd D, Bruggemann J, O'Donnell M, Galletly C, Lloyd A, Liu D, Lenroot R, Weickert TW, Shannon Weickert C. Peripheral complement is increased in schizophrenia and inversely related to cortical thickness. Brain Behav Immun 2022; 101:423-434. [PMID: 34808287 DOI: 10.1016/j.bbi.2021.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is growing evidence for complement system involvement in the pathophysiology of schizophrenia, although the extent and magnitude of complement factor disturbances has not been fully reported. It also remains unclear whether complement abnormalities are characteristic of all patients with schizophrenia or whether they are representative of a subgroup of patients who show signs of heightened inflammation. The aim of the present study was to quantify and compare the levels of a range of complement factors, receptors and regulators in healthy controls and people with schizophrenia and to determine the extent to which the levels of these peripheral molecules relate to measures of brain structure, particularly cortical thickness. METHOD Seventy-five healthy controls and 90 patients with schizophrenia or schizoaffective disorder were included in the study. Peripheral blood samples were collected from all participants and mRNA expression was quantified in 20 complement related genes, four complement proteins, as well as for four cytokines. T1-weighted structural MRI scans were acquired and analysed to determine cortical thickness measures. RESULTS There were significant increases in peripheral mRNA encoding receptors (C5ar1, CR1, CR3a), regulators (CD55, C59) and protein concentrations (C3, C3b, C4) in people with schizophrenia relative to healthy controls. C4a expression was significantly increased in a subgroup of patients displaying elevated peripheral cytokine levels. A higher inflammation index score derived from mRNA expression patterns predicted reductions in cortical thickness in the temporal lobe (superior temporal gyrus, transverse temporal gyrus, fusiform gyrus, insula) in patients with schizophrenia and healthy controls. CONCLUSIONS Analysis of all three major complement pathways supports increased complement activity in schizophrenia and also shows that peripheral C4a up-regulation is related to increased peripheral pro-inflammatory cytokines in healthy controls. Our region-specific, neuroimaging findings linked to an increased peripheral complement mRNA expression pattern suggests a role for complement in cortical thinning. Further studies are required to further clarify clinical and neurobiological consequences of aberrant complement levels in schizophrenia and related psychoses.
Collapse
Affiliation(s)
- Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland; Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Helen Q Cai
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Lloyd
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jason Bruggemann
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Edith Collins Centre (Translational Research in Alcohol Drugs & Toxicology), Sydney Local Health District, Australia; Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Maryanne O'Donnell
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia; Ramsay Health Care (SA) Mental Health Services, Adelaide, South Australia, Australia
| | - Andrew Lloyd
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|