1
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Roflumilast attenuates doxorubicin and cyclophosphamide combination-induced chemobrain in rats through modulation of NLRP3/ASC/caspase-1/GSDMD axis. Life Sci 2025; 362:123378. [PMID: 39788415 DOI: 10.1016/j.lfs.2025.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
AIM The aim of this study is to investigate the neuroprotective effect of roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor on cognitive impairment induced by doxorubicin (DOX)/cyclophosphamide (CP) combination therapy and to elucidate its modulatory effect on the pyroptosis pathway. MATERIALS AND METHODS Rats were allocated into five groups: a control group, a DOX/CP-intoxicated group, two groups receiving DOX/CP plus low-dose (0.5 mg/kg/day) or high-dose (1 mg/kg/day) roflumilast, and a roflumilast-only group. Behavioral assessments and brain tissue analyses were conducted, including histopathological staining and the measurement of inflammatory and oxidative stress markers. FINDINGS DOX/CP treatment resulted in cognitive impairment, abnormal brain histology. It significantly elevated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and malondialdehyde (MDA). Concurrently, superoxide dismutase (SOD) activity was reduced. Pyroptosis-associated markers, including nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, gasdermin-D (GSDMD), and interleukin-18 (IL-18) were upregulated. Apoptotic marker caspase-3 also exhibited increased expression. Conversely, administration of roflumilast (1 mg/kg/day) for four weeks ameliorated these pathological changes. Roflumilast improved cognitive function, reduced oxidative stress, and modulated inflammatory signaling. Additionally, it suppressed pyroptotic and apoptotic pathways within hippocampal tissue. SIGNIFICANCE These results suggest that roflumilast exerts neuroprotective effects against chemotherapy-induced cognitive dysfunction and neurodegeneration through inhibition of the NLRP3/ASC/caspase-1/GSDMD pyroptosis pathway.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherihan G Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Han D, Sun H, Zhang R, Ge H, Guo P, Chu R, Fang R, Han Y, He S, Li R, Tu J, Wei W, Ma Y, Wang Q. Inhibition of GRK2-PDE4D Axis Suppresses Fibroblast-Like Synoviocytes Hyperplasia and Alleviates Experimental Arthritis. Int J Biol Sci 2025; 21:1513-1529. [PMID: 39990667 PMCID: PMC11844291 DOI: 10.7150/ijbs.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025] Open
Abstract
PDE4D has been reported to exhibit significantly elevated levels in the synovium of RA patients compared with OA, yet its role in RA remains underexplored. This study aimed to elucidate the role of the GRK2-PDE4D axis in FLSs and explore its potential as a therapeutic target for RA. Abundant expression of both PDE4D and GRK2 was observed in synovial tissues from both experimental arthritis animals and RA patients, with synchronized expression noted in RA patients. Global deletion of Pde4d reduced disease incidence and alleviated arthritis in CIA mice. TNF-α upregulated PDE4D expression, causing abnormal FLSs activation and hyperproliferation. Inhibiting PDE4D restored cAMP levels, thereby reducing FLSs hyperproliferation, migration, and anti-apoptosis. Mechanistically, TNF-α-induced PDE4D upregulation was dependent on GRK2. Inhibition of GRK2 with CP-25, an esterification modification of paeoniflorin, reduced PDE4D expression and FLSs proliferation, while restoring cAMP levels. Both genetic deficiency and pharmacological inhibition of GRK2 decreased PDE4D expression, ameliorating arthritis severity in animal models. This is the first study to investigate the role of PDE4D in RA and to clarify that it can be regulated by GRK2. These findings suggest that targeting the GRK2-PDE4D axis represents a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hui Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
- The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei 230061, China
| |
Collapse
|
3
|
Shi L, Wang X, Si H, Song W. PDE4D inhibitors: Opening a new era of PET diagnostics for Alzheimer's disease. Neurochem Int 2025; 182:105903. [PMID: 39647702 DOI: 10.1016/j.neuint.2024.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
As the incidence of Alzheimer's disease (AD) continues to rise, the need for an effective PET radiotracer to facilitate early diagnosis has become more pressing than ever before in modern medicine. Phosphodiesterase (PDE) is closely related to cognitive impairment and neuroinflammatory processes in AD. Current research progress shows that specific PDE4D inhibitors radioligands can bind specifically to the PDE4D enzyme in the brain, thereby showing pathology-related signal enhancement in AD animal models, indicating the potential of these ligands as effective radiotracers. At the same time, we need to pay attention to the important role computer aided drug design (CADD) plays in advancing AD drug design and PET imaging. Future research will verify the potential of these ligands in clinical applications through computer simulation techniques, providing patients with timely intervention and treatment, which is of great significance.
Collapse
Affiliation(s)
- Luyang Shi
- College of Life Science, Qingdao University, Qingdao, China
| | - Xue Wang
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongzong Si
- Laboratory of New Fibrous Materials and Modern Textile, The State Key Laboratory, Qingdao University, Qingdao, China.
| | - Wangdi Song
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Norris JE, Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Outterson AH, Michalak C, Furman J, Gurney ME, Ethridge LE. Auditory N1 event-related potential amplitude is predictive of serum concentration of BPN14770 in fragile X syndrome. Mol Autism 2024; 15:47. [PMID: 39488698 PMCID: PMC11531107 DOI: 10.1186/s13229-024-00626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Fragile X syndrome (FXS) is a rare neurodevelopmental disorder caused by a CGG repeat expansion ≥ 200 repeats in 5' untranslated region of the FMR1 gene, leading to intellectual disability and cognitive difficulties, including in the domain of communication. A recent phase 2a clinical trial testing BPN14770, a phosphodiesterase 4D inhibitor, showed improved cognition in 30 adult males with FXS on drug relative to placebo. The initial study found significant improvements in clinical measures assessing cognition, language, and daily functioning in addition to marginal improvements in electroencephalography (EEG) results for the amplitude of the N1 event-related potential (ERP) component. These EEG results suggest BPN14770 improved neural hyperexcitability in FXS. The current study investigated the relationship between BPN14770 pharmacokinetics and the amplitude of the N1 ERP component from the initial data. Consistent with the original group-level finding post-period 1 of the study, participants who received BPN14770 in period 1 showed a significant correlation between N1 amplitude and serum concentration of BPN14770 measured at the end of period 1. These findings strengthen the validity of the original result, indicating that BPN14770 improves cognitive performance by modulating neural hyperexcitability. This study represents the first report of a significant correlation between a reliably abnormal EEG marker and serum concentration of a novel pharmaceutical in FXS.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | | | - Melody A Reese
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Abigail H Outterson
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Claire Michalak
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jeremiah Furman
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
5
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
6
|
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. Int J Mol Sci 2024; 25:8052. [PMID: 39125619 PMCID: PMC11311937 DOI: 10.3390/ijms25158052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Phosphodiesterase 4 (PDE4) enzymes catalyze cyclic adenosine monophosphate (cAMP) hydrolysis and are involved in a variety of physiological processes, including brain function, monocyte and macrophage activation, and neutrophil infiltration. Among different PDE4 isoforms, Phosphodiesterases 4D (PDE4Ds) play a fundamental role in cognitive, learning and memory consolidation processes and cancer development. Selective PDE4D inhibitors (PDE4Dis) could represent an innovative and valid therapeutic strategy for the treatment of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and Lou Gehrig's diseases, but also for stroke, traumatic brain and spinal cord injury, mild cognitive impairment, and all demyelinating diseases such as multiple sclerosis. In addition, small molecules able to block PDE4D isoforms have been recently studied for the treatment of specific cancer types, particularly hepatocellular carcinoma and breast cancer. This review overviews the PDE4DIsso far identified and provides useful information, from a medicinal chemistry point of view, for the development of a novel series of compounds with improved pharmacological properties.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| | | | | | - Chiara Brullo
- Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy; (F.R.); (A.S.)
| |
Collapse
|
7
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
8
|
Jiang M, Tang S, Jenkins MD, Lee AC, Kenou B, Knoer C, Montero Santamaria J, Wu S, Liow JS, Zoghbi SS, Zanotti-Fregonara P, Innis RB, Telu S, Pike VW. Robust Quantification of Phosphodiesterase-4D in Monkey Brain with PET and 11C-Labeled Radioligands That Avoid Radiometabolite Contamination. J Nucl Med 2024; 65:788-793. [PMID: 38423785 PMCID: PMC11064827 DOI: 10.2967/jnumed.123.266750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Shiyu Tang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Madeline D Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Adrian C Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Bruny Kenou
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carson Knoer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jose Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Shawn Wu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Jino K, Miyamoto K, Kanbara T, Unemura C, Horiguchi N, Ago Y. Allosteric inhibition of phosphodiesterase 4D induces biphasic memory-enhancing effects associated with learning-activated signaling pathways. Psychopharmacology (Berl) 2024; 241:805-816. [PMID: 38114603 DOI: 10.1007/s00213-023-06510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
RATIONALE Phosphodiesterase 4D negative allosteric modulators (PDE4D NAMs) enhance memory and cognitive function in animal models without emetic-like side effects. However, the relationship between increased cyclic adenosine monophosphate (cAMP) signaling and the effects of PDE4D NAM remains elusive. OBJECTIVE To investigate the roles of hippocampal cAMP metabolism and synaptic activation in the effects of D159687, a PDE4D NAM, under baseline and learning-stimulated conditions. RESULTS At 3 mg/kg, D159687 enhanced memory formation and consolidation in contextual fear conditioning; however, neither lower (0.3 mg/kg) nor higher (30 mg/kg) doses induced memory-enhancing effects. A biphasic (bell-shaped) dose-response effect was also observed in a scopolamine-induced model of amnesia in the Y-maze, whereas D159687 dose-dependently caused an emetic-like effect in the xylazine/ketamine anesthesia test. At 3 mg/kg, D159687 increased cAMP levels in the hippocampal CA1 region after conditioning in the fear conditioning test, but not in the home-cage or conditioning cage (i.e., context only). By contrast, 30 mg/kg of D159687 increased hippocampal cAMP levels under all conditions. Although both 3 and 30 mg/kg of D159687 upregulated learning-induced Fos expression in the hippocampal CA1 30 min after conditioning, 3 mg/kg, but not 30 mg/kg, of D159687 induced phosphorylation of synaptic plasticity-related proteins such as cAMP-responsive element-binding protein, synaptosomal-associated protein 25 kDa, and the N-methyl-D-aspartate receptor subunit NR2A. CONCLUSIONS Our findings suggest that learning-stimulated conditions can alter the effects of a PDE4D NAM on hippocampal cAMP levels and imply that a PDE4D NAM exerts biphasic memory-enhancing effects associated with synaptic plasticity-related signaling activation.
Collapse
Affiliation(s)
- Kohei Jino
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Keisuke Miyamoto
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Tomoe Kanbara
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Chie Unemura
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Naotaka Horiguchi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka, 561-0825, Japan.
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| |
Collapse
|
10
|
Zhao H, Blokland A, Prickaerts J, Havekes R, Heckman PRA. Treatment with the selective PDE4B inhibitor A-33 or PDE4D inhibitor zatolmilast prevents sleep deprivation-induced deficits in spatial pattern separation. Behav Brain Res 2024; 459:114798. [PMID: 38056709 DOI: 10.1016/j.bbr.2023.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Sleep deprivation (SD) disrupts hippocampus-dependent memory, particularly in the dentate gyrus (DG) region, an area crucial for pattern separation. Previous research showed that non-selective phosphodiesterase type 4 (PDE4) inhibitors like roflumilast can alleviate these deficits. However, it remains unclear whether these outcomes are specific to a particular subfamily of PDE4. Hence, this study examined the specific impact of PDE4B inhibitor (A-33) and PDE4D inhibitor (zatolmilast) on spatial pattern separation in sleep deprived mice. Results demonstrated that SD impairs pattern separation, but both zatolmilast and A-33 alleviate these effects. However, A-33 impaired pattern separation in non-sleep deprived animals. The cognitive benefits of these inhibitors after SD may arise from alterations in relevant signaling pathways in the DG. This study provides initial evidence that inhibiting PDE4B or PDE4D holds promise for mitigating memory deficits due to SD.
Collapse
Affiliation(s)
- Hongyu Zhao
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arjan Blokland
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jos Prickaerts
- Dept. Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Robbert Havekes
- Neurobiology Expert Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Pim R A Heckman
- Dept. Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Liu J, Zhang X, Chen G, Shao Q, Zou Y, Li Z, Su H, Li M, Xu Y. Drug repurposing and structure-based discovery of new PDE4 and PDE5 inhibitors. Eur J Med Chem 2023; 262:115893. [PMID: 37918035 DOI: 10.1016/j.ejmech.2023.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Phosphodiesterase-4 (PDE4) and PDE5 responsible for the hydrolysis of intracellular cAMP and cGMP, respectively, are promising targets for therapeutic intervention in a wide variety of diseases. Here, we report the discovery of novel, drug-like PDE4 inhibitors by performing a high-throughput drug repurposing screening of 2560 approved drugs and drug candidates in clinical trial studies. It allowed us to identify eight potent PDE4 inhibitors with IC50 values ranging from 0.41 to 2.46 μM. Crystal structures of PDE4 in complex with four compounds, namely ethaverine hydrochloride (EH), benzbromarone (BBR), CX-4945, and CVT-313, were further solved to elucidate molecular mechanisms of action of these new inhibitors, providing a solid foundation for optimizing the inhibitors to improve their potency as well as selectivity. Unexpectedly, selectivity profiling of other PDE subfamilies followed by crystal structure determination revealed that CVT-313 was also a potent PDE5 inhibitor with a binding mode similar to that of tadalafil, a marketed PDE5 inhibitor, but distinctively different from the binding mode of CVT-313 with PDE4. Structure-guided modification of CVT-313 led to the discovery of a new inhibitor, compound 2, with significantly improved inhibitory activity as well as selectivity towards PDE5 over PDE4. Together, these results highlight the utility of the drug repurposing in combination with structure-based drug design in identifying novel inhibitors of PDE4 and PDE5, which provides a prime example for efficient discovery of drug-like hits towards a given target protein.
Collapse
Affiliation(s)
- Jiayuan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xianglei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guofeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
13
|
Saatci O, Cetin M, Uner M, Tokat UM, Chatzistamou I, Ersan PG, Montaudon E, Akyol A, Aksoy S, Uner A, Marangoni E, Sajish M, Sahin O. Toxic PARP trapping upon cAMP-induced DNA damage reinstates the efficacy of endocrine therapy and CDK4/6 inhibitors in treatment-refractory ER+ breast cancer. Nat Commun 2023; 14:6997. [PMID: 37914699 PMCID: PMC10620179 DOI: 10.1038/s41467-023-42736-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Resistance to endocrine therapy and CDK4/6 inhibitors, the standard of care (SOC) in estrogen receptor-positive (ER+) breast cancer, greatly reduces patient survival. Therefore, elucidating the mechanisms of sensitivity and resistance to SOC therapy and identifying actionable targets are urgently needed. Here, we show that SOC therapy causes DNA damage and toxic PARP1 trapping upon generation of a functional BRCAness (i.e., BRCA1/2 deficiency) phenotype, leading to increased histone parylation and reduced H3K9 acetylation, resulting in transcriptional blockage and cell death. Mechanistically, SOC therapy downregulates phosphodiesterase 4D (PDE4D), a novel ER target gene in a feedforward loop with ER, resulting in increased cAMP, PKA-dependent phosphorylation of mitochondrial COXIV-I, ROS generation and DNA damage. However, during SOC resistance, an ER-to-EGFR switch induces PDE4D overexpression via c-Jun. Notably, combining SOC with inhibitors of PDE4D, EGFR or PARP1 overcomes SOC resistance irrespective of the BRCA1/2 status, providing actionable targets for restoring SOC efficacy.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, University of South Carolina, Columbia, SC, 29208, USA
| | - Pelin Gulizar Ersan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Elodie Montaudon
- Translational Research Department, Institut Curie, PSL Research University, Paris, 75005, France
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, 75005, France
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
14
|
Zhao W, Hou Y, Zhang Q, Yu H, Meng M, Zhang H, Zhou Y. Estrogen receptor β exerts neuroprotective effects by fine-tuning mitochondrial homeostasis through NRF1/PGC-1α. Neurochem Int 2023; 171:105636. [PMID: 39491237 DOI: 10.1016/j.neuint.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Estrogen deficiency causes mitochondrial defects that precede pathological changes related to Alzheimer's disease (AD) in the mouse model of postmenopause. The aim of this study was to investigate in such a mouse model whether and how estrogen receptor β (ERβ) was involved in prevention of mitochondrial damage and protection of neurons in the hippocampus. METHODS A mouse model of postmenopausal AD was created by ovariectomizing female 3xTg-AD mice, some of which were subcutaneously injected for six weeks with the non-steroidal ERβ agonist diarylpropionitrile. ERβ expression in female C57BL/6J mice was knocked down using shRNA interference. The different groups of animals were compared in terms of cognitive function using the Y-maze test, new object recognition test, and Morris water maze test, expression of numerous proteins related to mitochondrial biogenesis, mitophagy, apoptosis, and mitochondrial membrane potential, as well as deposition of amyloid β and neurofibrillary tangles. To complement these in vivo studies, we probed the effects of diarylpropionitrile on ERβ expression, apoptosis, and mitochondrial homeostasis in primary rat hippocampal neurons treated with amyloid β. RESULTS ERβ knockdown in C57BL/6J mice produced cognitive impairment, reduced mitochondrial biogenesis by downregulating PGC-1α, NRF1, mtTFA, and TOM20, and decreased mitophagy by downregulating Pink1, Parkin, and LC3B while upregulating PARIS and p62. ERβ knockdown promoted neuronal apoptosis by upregulating Cleaved-Caspase 9, Cleaved-Caspase 3, and Bax, while downregulating Bcl2 in hippocampus. Diarylpropionitrile mitigated cognitive decline in ovariectomized 3xTg-AD mice, which was associated with downregulation of BACE1, reduction of Aβ deposition, neurofibrillary tangles, and tau hyperphosphorylation, and upregulation of ERβ, increases in mitochondrial biogenesis and mitophagy, and decreases in apoptosis. The effects of diarylpropionitrile in mice were recapitulated in Aβ-injured primary rat hippocampal neurons. CONCLUSIONS ERβ activation can support learning and memory and alleviate AD symptoms in the postmenopausal AD model, which may involve regulation of neuronal mitochondrial biogenesis and mitophagy via NRF1/PGC-1α. This study supports further research on ERβ as a therapeutic target for postmenopausal women with AD.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, 271018, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Meichen Meng
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Hanting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China.
| |
Collapse
|
15
|
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211:115522. [PMID: 36996971 DOI: 10.1016/j.bcp.2023.115522] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases that affect millions of people worldwide, with both prevalence and incidence increasing with age. It is characterized by cognitive decline associated, specifically, with degeneration of cholinergic neurons. The problem of this disease is even more fundamental as the available therapies remain fairly limited and mainly focused on symptoms' relief. Although the aetiology of the disease remains elusive, two main pathological hallmarks are described: i) presence of neurofibrillary tangles formed by unfolded protein aggregates (hyperphosphorylated Tau protein) and ii) presence of extracellular aggregates of amyloid-beta peptide. Given the complexity surrounding the pathogenesis of the disease, several potential targets have been highlighted and interrelated upon its progression, such as oxidative stress and the accumulation of metal ions. Thus, advances have been made on the development of innovative multitarget therapeutical compounds to delay the disease progression and restore cell function. This review focuses the ongoing research on new insights and emerging disease-modifying drugs for AD treatment. Furthermore, classical and novel potential biomarkers for early diagnosis of the disease, and their role in assisting on the improvement of targeted therapies will also be approached.
Collapse
Affiliation(s)
- Ana R Monteiro
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel J Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Schepers M, Paes D, Tiane A, Rombaut B, Piccart E, van Veggel L, Gervois P, Wolfs E, Lambrichts I, Brullo C, Bruno O, Fedele E, Ricciarelli R, Ffrench-Constant C, Bechler ME, van Schaik P, Baron W, Lefevere E, Wasner K, Grünewald A, Verfaillie C, Baeten P, Broux B, Wieringa P, Hellings N, Prickaerts J, Vanmierlo T. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis. Brain Behav Immun 2023; 109:1-22. [PMID: 36584795 DOI: 10.1016/j.bbi.2022.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Dean Paes
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elisabeth Piccart
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lieve van Veggel
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium
| | - Pascal Gervois
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Department of Cardio and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Genova, Italy
| | - Ernesto Fedele
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Experimental Medicine, Section of General Pathology, University of Genova, Genova, Italy
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society Edinburgh Centre, Edinburgh bioQuarter, University of Edinburgh, Edinburgh, UK
| | - Marie E Bechler
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline van Schaik
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Evy Lefevere
- Rewind Therapeutics NV, Gaston Geenslaan 2, B-3001, Leuven, Belgium
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Belgium
| | - Paulien Baeten
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Paul Wieringa
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration department, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; University MS Center (UMSC) Hasselt-Pelt, Hasselt, Belgium.
| |
Collapse
|
17
|
Gomaa AA, Farghaly HSM, Ahmed AM, Hemida FK. Intermittent treatment with Apremilast, a phosphodiesterase-4 inhibitor, ameliorates Alzheimer's-like pathology and symptoms through multiple targeting actions in aged T2D rats. Int Immunopharmacol 2023; 117:109927. [PMID: 36848793 DOI: 10.1016/j.intimp.2023.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Apremilast (Apre), a novel phosphodiesterase-4 (PDE4) inhibitor, has been shown to have anti-inflammatory, immunomodulator, neuroprotective and senolytic properties, therefore, Apre like other PDE4 inhibitors may be a promising candidate for treatment of Alzheimer's disease (AD). OBJECTIVE To evaluate the effectiveness of Apre on Alzheimer's like pathology and symptoms in an animal model. METHODS The effects of Apre and cilostazol, a reference drug, on the behavioral, biochemical, and pathological features of Alzheimer's disease induced by a high-fat/high-fructose diet combined with low-dose streptozotocin (HF/HFr/l-STZ) were investigated. RESULT Apre 5 mg/kg IP/day for 3 consecutive days per week for 8 weeks attenuated memory and learning deficits tested by novel object recognition, Morris water maze and passive avoidance tests. Apre treatment significantly decreased the number of degenerating cells, and abnormal suppression of gene expression of AMPA and NMDA receptor subunits in the cortex and hippocampus of the AD rat model compared to rats that received vehicle. A significant decrease in elevated levels of hippocampal amyloid beta, tau-positive cell count, cholinesterase activity, and hippocampal caspase-3, a biomarker of neurodegeneration, was also observed after treatment with Apre in AD rats compared to rats that received placebo. Furthermore, a significant decrease in pro-inflammatory cytokines, oxidative stress, insulin resistance and GSK-3 was demonstrated in AD aged rats treated by Apre. CONCLUSION Our findings demonstrate that intermittent treatment with Apre can enhance cognitive function in HF/HFr/l-STZ rats which may be related to decreased pro-inflammatory cytokines, oxidative stress, insulin resistance and GSK-3β.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hanan S M Farghaly
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fahmy K Hemida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Jiang M, Lu S, Telu S, Pike VW. An Empirical Quantitative Structure-Activity Relationship Equation Assists the Discovery of High-Affinity Phosphodiesterase 4D Inhibitors as Leads to PET Radioligands. J Med Chem 2023; 66:1543-1561. [PMID: 36608175 PMCID: PMC10433104 DOI: 10.1021/acs.jmedchem.2c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET radioligands.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
19
|
Targeting phosphodiesterase 4 as a therapeutic strategy for cognitive improvement. Bioorg Chem 2022; 130:106278. [DOI: 10.1016/j.bioorg.2022.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
20
|
Lugnier C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int J Mol Sci 2022; 23:10616. [PMID: 36142518 PMCID: PMC9502408 DOI: 10.3390/ijms231810616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.
Collapse
Affiliation(s)
- Claire Lugnier
- Section de Structures Biologiques, Pharmacologie et Enzymologie, CNRS/Unistra, CRBS, UR 3072, CEDEX, 67084 Strasbourg, France
| |
Collapse
|
21
|
Baicalin attenuates amyloid β oligomers induced memory deficits and mitochondria fragmentation through regulation of PDE-PKA-Drp1 signalling. Psychopharmacology (Berl) 2022; 239:851-865. [PMID: 35103832 DOI: 10.1007/s00213-022-06076-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
RATIONALE Mitochondrial fragmentation contributes to the initiation of Alzheimer's disease (AD) pathology. Baicalin plays a significant role in rescuing mitochondrial dysfunction. However, the effect of baicalin treatment on the modulation of mitochondrial fragmentation has not yet been assessed. OBJECTIVES The present study was designed to evaluate the effect of baicalin on memory and understand its mechanism of action. RESULTS Baicalin treatment significantly reversed the altered learning and memory behaviours in AD mouse model. We found that baicalin treatment significantly improved the levels of microtubule association protein-2 and enhanced the expression of synaptophysin and postsynaptic density protein 95 (PSD95). Moreover, treatment with baicalin reversed amyloid-β oligomer (AβO)-induced abnormalities in the succinate dehydrogenase complex iron sulphur subunit B (SDHB) and cytochrome c oxidase components I (COXI) and mitochondrial fragmentation in the hippocampus. Further, we found that baicalin decreased the PDE4 levels and upregulated the levels of phosphorylated Ser157 site of vasodilator-stimulated phosphoprotein (pVASPs157) and phosphorylated Ser637 site of mitochondrial dynamin-related protein 1 (pDrp1S637). Moreover, in AβO-treated HT-22 cells, H89 inhibited the effect of baicalin on PSD95, mitochondrial fragmentation, SDHB and COXI, PDE4, pVASPs157, and pDrp1S637. CONCLUSION The effect of baicalin on memory improvement may be due to improved synaptic plasticity, mitochondrial fragmentation, and rescue of dysfunction via the inhibition of PDE4, which leads to activation of pDrp1S637 in the AβO-induced model.
Collapse
|
22
|
Xi M, Sun T, Chai S, Xie M, Chen S, Deng L, Du K, Shen R, Sun H. Therapeutic potential of phosphodiesterase inhibitors for cognitive amelioration in Alzheimer's disease. Eur J Med Chem 2022; 232:114170. [DOI: 10.1016/j.ejmech.2022.114170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023]
|
23
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Shi J, Li Y, Zhang Y, Chen J, Gao J, Zhang T, Shang X, Zhang X. Baicalein Ameliorates Aβ-Induced Memory Deficits and Neuronal Atrophy via Inhibition of PDE2 and PDE4. Front Pharmacol 2021; 12:794458. [PMID: 34966284 PMCID: PMC8711762 DOI: 10.3389/fphar.2021.794458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inhibition of phosphodiesterase 2 and 4 (PDE2A and PDE4) increases the intracellular cAMP and/or cGMP levels, which may prevent Amyloid β 42 oligomers (Aβ) related cognitive impairment and dementias. Baicalein, one of natural flavones found in the root of Scutellaria baicalensis Georgi, has a wide range of pharmacological activities including antioxidant and anti-inflammatory effects. However, no studies suggest whether baicalein mediated anti-Alzheimer’s disease (AD) events involve PDEs subtypes-mediated neuroprotective pathways. The present study examined whether memory enhancing effects of baicalein on Aβ- induced cognitive impairment are related to regulating neuroplasticity via PDE2 and PDE4 subtypes dependent cAMP/cGMP neuroprotective pathway. The results suggested that microinjected of Aβ into CA1 of hippocampus induced cognitive and memory impairment in mice, as evidenced by decreased recognition index in the novel object recognition (NOR) task, impaired memory acquisition, retention and retrieval in the Morris water maze (MWM) and shuttle box tests. These effects were reversed by treatment with baicalein for 14 days. Moreover, Aβ-induced neuronal atrophy and decreased expression of two synaptic proteins, synaptophysin and PSD 95, were prevented by baicalein. The increased expression of PDE2A and PDE4 subtypes (PDE4A, PDE4B and PDE4D), and decreased levels of cAMP/cGMP, pCREB/CREB and BDNF induced by Aβ were also blocked by chronic treatment of baicalein for 14 days. These findings suggest that baicalein’s reversal of Aβ-induced memory and cognitive disorder may involve the regulation of neuronal remodeling via regulation of PDE2/PDE4 subtypes related cAMP/cGMP -pCREB-BDNF pathway.
Collapse
Affiliation(s)
- Jing Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoguang Shang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice. BIOLOGY 2021; 10:biology10121355. [PMID: 34943270 PMCID: PMC8698290 DOI: 10.3390/biology10121355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Type 4 cAMP-phosphodiesterases (PDE4s) comprise a family of four isoenzymes, PDE4A to D, that hydrolyze and inactivate the second messenger cAMP. Non/PAN-selective PDE4 inhibitors, which inhibit all four PDE4 subtypes simultaneously, produce many promising therapeutic benefits, such as anti-inflammatory or cognition- and memory-enhancing effects. However, unwanted side effects, principally, nausea, diarrhea, and emesis, have long hampered their clinical and commercial success. Targeting individual PDE4 subtypes has been proposed for developing drugs with an improved safety profile, but which PDE4 subtype(s) is/are actually responsible for nausea and emesis remains ill-defined. Based on the observation that nausea is often accompanied by hypothermia in humans and other mammals, we used the measurement of core body temperatures of mice as a potential correlate of nausea induced by PDE4 inhibitors in humans. We find that selective inactivation of any of the four PDE4 subtypes did not change the body temperature of mice, suggesting that PAN-PDE4 inhibitor-induced hypothermia (and hence nausea in humans) requires the simultaneous inhibition of multiple PDE4 subtypes. This finding contrasts with prior reports that proposed PDE4D as the subtype mediating these side effects of PDE4 inhibitors and suggests that subtype-selective inhibitors that target any individual PDE4 subtype, including PDE4D, may not cause nausea. Abstract Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.
Collapse
|
26
|
Shi Y, Lv J, Chen L, Luo G, Tao M, Pan J, Hu X, Sheng J, Zhang S, Zhou M, Fan H. Phosphodiesterase-4D Knockdown in the Prefrontal Cortex Alleviates Memory Deficits and Synaptic Failure in Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2021; 13:722580. [PMID: 34539384 PMCID: PMC8446525 DOI: 10.3389/fnagi.2021.722580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
Phosphodiesterase 4 (PDE4)-dependent cAMP signaling plays a crucial role in cognitive impairment associated with Alzheimer’s disease (AD). However, whether inhibition of PDE4 subtypes or their splice variants in the prefrontal cortex positively regulates synaptic plasticity and antioxidative stress, and reverses β-amyloid 1–42 (Aβ1–42, Aβ42)-induced cognitive impairment still need to be clarified. The present study determined whether and how PDE4D knockdown by microinjection of lenti-PDE4D-miRNA into the prefrontal cortex reversed Aβ1–42-induced cognitive impairment in behavioral, neurochemical, and molecular biology assays. The results suggested that PDE4D knockdown increased time to explore the novel object and decreased latency to leave the platform in novel object recognition and step-down passive avoidance tests. Further study suggested that PDE4D knockdown decreased the number of working memory errors in the eight-arm maze test. These effects were prevented by PKA inhibitor H89. The subsequent experiment suggested that inhibition of PDE4D in the prefrontal cortex rescued the long-term potentiation (LTP) and synaptic proteins’ expression; it also increased antioxidant response by increasing superoxide dismutase (SOD) and decreasing malondialdehyde (MDA) levels. PDE4D knockdown also increased phosphorylated cAMP response element-binding protein (pCREB), brain-derived neurotrophic factor (BNDF), and anti-apoptotic proteins’ expression, i.e., the ratio of Bcl-2/Bax, and decreased caspase-3 level in the prefrontal cortex. These findings extend the previous findings and support the hypothesis that RNA interference-mediated PDE4D knockdown in the prefrontal cortex ameliorated memory loss associated with synaptic failure in an AD mouse model by its antioxidant, anti-apoptotic, and neuroprotective properties.
Collapse
Affiliation(s)
- Yongchuan Shi
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Jinpeng Lv
- School of Pharmaceutical Engineering, Changzhou University, Changzhou, China
| | - Ling Chen
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guojun Luo
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjia Tao
- School of Pharmacy, Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Jianchun Pan
- School of Pharmacy, Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiong Hu
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Jianwen Sheng
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| | - Min Zhou
- Department of Medicine, Jinshan Branch of the Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huizhen Fan
- Department of Gastroenterology, The People's Hospital of Yichun City, Yi Chun University, Yichun, China
| |
Collapse
|
27
|
Jankowska A, Satała G, Świerczek A, Pociecha K, Partyka A, Jastrzębska-Więsek M, Głuch-Lutwin M, Bojarski AJ, Wyska E, Chłoń-Rzepa G. A new class of 5-HT 1A receptor antagonists with procognitive and antidepressant properties. Future Med Chem 2021; 13:1497-1514. [PMID: 34253032 DOI: 10.4155/fmc-2020-0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grzegorz Satała
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Artur Świerczek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Krzysztof Pociecha
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Clinical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Andrzej J Bojarski
- Polish Academy of Sciences, Maj Institute of Pharmacology, Department of Medicinal Chemistry, 12 Smętna Street, 31-343, Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics & Physical Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688, Kraków, Poland
| |
Collapse
|
28
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
30
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
31
|
Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, Outterson AH, Michalak C, Furman J, Gurney ME. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat Med 2021; 27:862-870. [PMID: 33927413 DOI: 10.1038/s41591-021-01321-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
The goal of this study was to determine whether a phosphodiesterase-4D (PDE4D) allosteric inhibitor (BPN14770) would improve cognitive function and behavioral outcomes in patients with fragile X syndrome (FXS). This phase 2 trial was a 24-week randomized, placebo-controlled, two-way crossover study in 30 adult male patients (age 18-41 years) with FXS. Participants received oral doses of BPN14770 25 mg twice daily or placebo. Primary outcomes were prespecified as safety and tolerability with secondary efficacy outcomes of cognitive performance, caregiver rating scales and physician rating scales (ClinicalTrials.gov identifier: NCT03569631 ). The study met the primary outcome measure since BPN14770 was well tolerated with no meaningful differences between the active and placebo treatment arms. The study also met key secondary efficacy measures of cognition and daily function. Cognitive benefit was demonstrated using the National Institutes of Health Toolbox Cognition Battery assessments of Oral Reading Recognition (least squares mean difference +2.81, P = 0.0157), Picture Vocabulary (+5.81, P = 0.0342) and Cognition Crystallized Composite score (+5.31, P = 0.0018). Benefit as assessed by visual analog caregiver rating scales was judged to be clinically meaningful for language (+14.04, P = 0.0051) and daily functioning (+14.53, P = 0.0017). Results from this study using direct, computer-based assessment of cognitive performance by adult males with FXS indicate significant cognitive improvement in domains related to language with corresponding improvement in caregiver scales rating language and daily functioning.
Collapse
Affiliation(s)
- Elizabeth M Berry-Kravis
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | | | | | - Melody A Reese
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, USA.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Abigail H Outterson
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Claire Michalak
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Jeremiah Furman
- Department of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
32
|
Furlan V, Bren U. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Biomolecules 2021; 11:479. [PMID: 33806914 PMCID: PMC8004924 DOI: 10.3390/biom11030479] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer's disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer's disease with a potentially wider therapeutic window and fewer adverse side effects.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
33
|
Paes D, Xie K, Wheeler DG, Zook D, Prickaerts J, Peters M. Inhibition of PDE2 and PDE4 synergistically improves memory consolidation processes. Neuropharmacology 2021; 184:108414. [PMID: 33249120 DOI: 10.1016/j.neuropharm.2020.108414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.
Collapse
Affiliation(s)
- Dean Paes
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Keqiang Xie
- In Vitro Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Damian G Wheeler
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Douglas Zook
- DMPK, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Jos Prickaerts
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6229, ER Maastricht, the Netherlands
| | - Marco Peters
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA; Neurobiology and Behavior & Center for the Neurobiology of Learning and Memory, University of California Irvine, 213 Qureshey Research Lab, Irvine, CA, 92697, USA.
| |
Collapse
|
34
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
35
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
36
|
Wang Y, Gao S, Zheng V, Chen L, Ma M, Shen S, Qu J, Zhang H, Gurney ME, O'Donnell JM, Xu Y. A Novel PDE4D Inhibitor BPN14770 Reverses Scopolamine-Induced Cognitive Deficits via cAMP/SIRT1/Akt/Bcl-2 Pathway. Front Cell Dev Biol 2020; 8:599389. [PMID: 33363155 PMCID: PMC7758534 DOI: 10.3389/fcell.2020.599389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively). Therefore to study selective inhibition of PDE4D by BPN14770, a subtype selective allosteric inhibitor of PDE4D, we utilized a line of mice in which the PDE4D gene had been humanized by mutating the critical tyrosine to phenylalanine. Relatively low doses of BPN14770 were effective at reversing scopolamine-induced memory and cognitive deficits in humanized PDE4D mice. Inhibition of PDE4D alters the expression of protein kinase A (PKA), Sirt1, Akt, and Bcl-2/Bax which are components of signaling pathways for regulating endocrine response, stress resistance, neuronal autophagy, and apoptosis. Treatment with a series of antagonists, such as H89, sirtinol, and MK-2206, reversed the effect of BPN14770 as shown by behavioral tests and immunoblot analysis. These findings suggest that inhibition of PDE4D enhances signaling through the cAMP-PKA-SIRT1-Akt -Bcl-2/Bax pathway and thereby may provide therapeutic benefit in neurocognitive disorders.
Collapse
Affiliation(s)
- Yulu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Victor Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ling Chen
- Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Min Ma
- Department of Cell Stress and Biophysical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Hanting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | | | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
37
|
Pharmacological inhibition of phosphodiesterase 7 enhances consolidation processes of spatial memory. Neurobiol Learn Mem 2020; 177:107357. [PMID: 33278592 DOI: 10.1016/j.nlm.2020.107357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Augmentation of cAMP signaling through inhibition of phosphodiesterases (PDE) is known to enhance plasticity and memory. Inhibition of PDE4 enhances consolidation into memory, but less is known about the role of other cAMP specific PDEs. Here, we tested the effects of oral treatment with a selective inhibitor of PDE7 of nanomolar potency on spatial and contextual memory. In an object location task, doses of 0.3-3 mg/kg administered 3 h after training dose-dependently attenuated time-dependent forgetting in rats. Significant enhancement of memory occurred at a dose of 3 mg/kg with corresponding brain levels consistent with PDE7 inhibition. The same dose given prior to training augmented contextual fear conditioning. In mice, daily dosing before training enhanced spatial memory in two different incremental learning paradigms in the Barnes Maze. Drug treated mice made significantly less errors locating the escape in a probe-test 24 h after the end of training, and they exhibited hippocampal-dependent spatial search strategies more frequently than controls, which tended to show serial sampling of escape locations. Acquisition and short-term memory, in contrast, were unaffected. Our data provide evidence for a role of PDE7 in the consolidation of hippocampal-dependent memory. We suggest that targeting PDE7 for memory enhancement may provide an alternative to PDE4 inhibitors, which tend to have undesirable gastrointestinal side-effects.
Collapse
|
38
|
Wang S, Xie Y, Huo YW, Li Y, Abel PW, Jiang H, Zou X, Jiao HZ, Kuang X, Wolff DW, Huang YG, Casale TB, Panettieri RA, Wei T, Cao Z, Tu Y. Airway relaxation mechanisms and structural basis of osthole for improving lung function in asthma. Sci Signal 2020; 13:eaax0273. [PMID: 33234690 PMCID: PMC8720283 DOI: 10.1126/scisignal.aax0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Overuse of β2-adrenoceptor agonist bronchodilators evokes receptor desensitization, decreased efficacy, and an increased risk of death in asthma patients. Bronchodilators that do not target β2-adrenoceptors represent a critical unmet need for asthma management. Here, we characterize the utility of osthole, a coumarin derived from a traditional Chinese medicine, in preclinical models of asthma. In mouse precision-cut lung slices, osthole relaxed preconstricted airways, irrespective of β2-adrenoceptor desensitization. Osthole administered in murine asthma models attenuated airway hyperresponsiveness, a hallmark of asthma. Osthole inhibited phosphodiesterase 4D (PDE4D) activity to amplify autocrine prostaglandin E2 signaling in airway smooth muscle cells that eventually triggered cAMP/PKA-dependent relaxation of airways. The crystal structure of the PDE4D complexed with osthole revealed that osthole bound to the catalytic site to prevent cAMP binding and hydrolysis. Together, our studies elucidate a specific molecular target and mechanism by which osthole induces airway relaxation. Identification of osthole binding sites on PDE4D will guide further development of bronchodilators that are not subject to tachyphylaxis and would thus avoid β2-adrenoceptor agonist resistance.
Collapse
Affiliation(s)
- Sheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan-Wu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Haihong Jiang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Zhan Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Kuang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO 64804, USA
| | - You-Guo Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas B Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL 33612, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
39
|
Sharma VK, Singh TG, Singh S. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease. Curr Drug Targets 2020; 21:1371-1384. [PMID: 32718286 DOI: 10.2174/1389450121666200727104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Defects in brain functions associated with aging and neurodegenerative diseases benefit insignificantly from existing options, suggesting that there is a lack of understanding of pathological mechanisms. Alzheimer's disease (AD) is such a nearly untreatable, allied to age neurological deterioration for which only the symptomatic cure is available and the agents able to mould progression of the disease, is still far away. The altered expression of phosphodiesterases (PDE) and deregulated cyclic nucleotide signaling in AD has provoked a new thought of targeting cyclic nucleotide signaling in AD. Targeting cyclic nucleotides as an intracellular messenger seems to be a viable approach for certain biological processes in the brain and controlling substantial. Whereas, the synthesis, execution, and/or degradation of cyclic nucleotides has been closely linked to cognitive deficits. In relation to cognition, the cyclic nucleotides (cAMP and cGMP) have an imperative execution in different phases of memory, including gene transcription, neurogenesis, neuronal circuitry, synaptic plasticity and neuronal survival, etc. AD is witnessed by impairments of these basic processes underlying cognition, suggesting a crucial role of cAMP/cGMP signaling in AD populations. Phosphodiesterase inhibitors are the exclusive set of enzymes to facilitate hydrolysis and degradation of cAMP and cGMP thereby, maintains their optimum levels initiating it as an interesting target to explore. The present work reviews a neuroprotective and substantial influence of PDE inhibition on physiological status, pathological progression and neurobiological markers of AD in consonance with the intensities of cAMP and cGMP.
Collapse
Affiliation(s)
- Vivek K Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | - Thakur G Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
40
|
Increased isoform-specific phosphodiesterase 4D expression is associated with pathology and cognitive impairment in Alzheimer's disease. Neurobiol Aging 2020; 97:56-64. [PMID: 33157432 DOI: 10.1016/j.neurobiolaging.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Pharmacological phosphodiesterase 4D (PDE4D) inhibition shows therapeutic potential to restore memory function in Alzheimer's disease (AD), but will likely evoke adverse side effects. As PDE4D encodes multiple isoforms, targeting specific isoforms may improve treatment efficacy and safety. Here, we investigated whether PDE4D isoform expression and PDE4D DNA methylation is affected in AD and whether expression changes are associated with severity of pathology and cognitive impairment. In post-mortem temporal lobe brain material from AD patients (n = 42) and age-matched controls (n = 40), we measured PDE4D isoform expression and PDE4D DNA (hydroxy)methylation using quantitative polymerase chain reaction and Illumina 450k Beadarrays, respectively. Linear regression revealed increased PDE4D1, -D3, -D5, and -D8 expression in AD with concurrent (hydroxy)methylation changes in associated promoter regions. Moreover, increased PDE4D1 and -D3 expression was associated with higherplaque and tau pathology levels, higher Braak stages, and progressed cognitive impairment. Future studies should indicate functional roles of specific PDE4D isoforms and the efficacy and safety of their selective inhibition to restore memory function in AD.
Collapse
|
41
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
42
|
Wang H, Zhang FF, Xu Y, Fu HR, Wang XD, Wang L, Chen W, Xu XY, Gao YF, Zhang JG, Zhang HT. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer's Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int J Neuropsychopharmacol 2020; 23:700-711. [PMID: 32645141 PMCID: PMC7727475 DOI: 10.1093/ijnp/pyaa048] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is highly related to Alzheimer's disease (AD), yet no effective treatment is available. Phosphodiesterase-4 (PDE4) has been considered a promising target for treatment of AD and depression. Roflumilast, the first PDE4 inhibitor approved for clinical use, improves cognition at doses that do not cause side effects such as emesis. METHODS Here we examined the effects of roflumilast on behavioral dysfunction and the related mechanisms in APPswe/PS1dE9 transgenic mice, a widely used model of AD. Mice at 10 months of age were examined for memory in the novel object recognition and Morris water-maze tests and depression-like behavior in the tail-suspension test and forced swimming test before killing for neurochemical assays. RESULTS In the novel object recognition and Morris water-maze, APPswe/PS1dE9 mice showed significant cognitive declines, which were reversed by roflumilast at 5 and 10 mg/kg orally once per day. In the tail-suspension test and forced swimming test, the AD mice showed prolonged immobility time, which was also reversed by roflumilast. In addition, the staining of hematoxylin-eosin and Nissl showed that roflumilast relieved the neuronal cell injuries, while terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling analysis indicated that roflumilast ameliorated cell apoptosis in AD mice. Further, roflumilast reversed the decreased ratio of B-cell lymphoma-2/Bcl-2-associated X protein and the increased expression of PDE4B and PDE4D in the cerebral cortex and hippocampus of AD mice. Finally, roflumilast reversed the decreased levels of cyclic AMP (cAMP) and expression of phosphorylated cAMP response element-binding protein and brain derived neurotrophic factor in AD mice. CONCLUSIONS Together, these results suggest that roflumilast not only improves learning and memory but also attenuates depression-like behavior in AD mice, likely via PDE4B/PDE4D-mediated cAMP/cAMP response element-binding protein/brain derived neurotrophic factor signaling. Roflumilast can be a therapeutic agent for AD, in particular the comorbidity of memory loss and depression.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Fang-fang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yong Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Hua-rong Fu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiao-dan Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Lei Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiao-yan Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yong-feng Gao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Ji-guo Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia,Correspondence: Han-Ting Zhang, MD, PhD, Department of Neuroscience, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506 ()
| |
Collapse
|
43
|
Peng T, Qi B, He J, Ke H, Shi J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J Med Chem 2020; 63:10594-10617. [PMID: 32255344 DOI: 10.1021/acs.jmedchem.9b02170] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.
Collapse
Affiliation(s)
- Ting Peng
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Baowen Qi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
44
|
Understanding PDE4's function in Alzheimer's disease; a target for novel therapeutic approaches. Biochem Soc Trans 2020; 47:1557-1565. [PMID: 31642904 PMCID: PMC6824677 DOI: 10.1042/bst20190763] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Phosphodiesterases (PDEs) have long been considered as targets for the treatment of Alzheimer's disease (AD) and a substantial body of evidence suggests that one sub-family from the super-family of PDEs, namely PDE4D, has particular significance in this context. This review discusses the role of PDE4 in the orchestration of cAMP response element binding signaling in AD and outlines the benefits of targeting PDE4D specifically. We examine the limited available literature that suggests PDE4 expression does not change in AD brains together with reports that show PDE4 inhibition as an effective treatment in this age-related neurodegenerative disease. Actually, aging induces changes in PDE4 expression/activity in an isoform and brain-region specific manner that proposes a similar complexity in AD brains. Therefore, a more detailed account of AD-related alterations in cellular/tissue location and the activation status of PDE4 is required before novel therapies can be developed to target cAMP signaling in this disease.
Collapse
|
45
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
46
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
47
|
Liu N, Wang Y, An AY, Banker C, Qian YH, O'Donnell JM. Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur J Neurosci 2019; 52:2694-2704. [PMID: 31471985 DOI: 10.1111/ejn.14565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Single-housed stress elicits a range of social isolation-related behavioral and neurobiological abnormalities. To investigate single housing-induced behavioral changes and sex differences on stress outcomes, we examined single-housed stress-induced learning and memory impairment, depression-like behaviors, neuroplasticity abnormalities and underlying mechanism. The results showed that male and female mice socially isolated for 8 weeks had significantly decreased memory acquisition, as demonstrated in the learning curve of the Morris water maze task. Memory consolidation and retrieval were also decreased in both the single-housed male and female mice. These findings were corroborated further by the two classical animal models, Y-maze and novel object recognition tests, as demonstrated by reduced spontaneous alternation and recognition index in both sexes of single-housed mice. Subsequent studies suggested that single-housed male mice exhibited increased immobility time in both the forced swim and tail suspension tests, while the female mice only exhibited increased immobility time in the tail suspension test. Moreover, single-housed stress significantly decreased the apical and basal branch points, dendritic length, and spine density in the CA1 of hippocampal neurons in both male and female mice. These effects were consistent with decreased neuroplasticity and neuroprotective-related molecules such as synaptophysin, PSD95, PKA, pCREB and BDNF expression. These findings suggest that loss of neuronal remodeling and neuroprotective mechanisms due to single housing are involved in behavioral changes in both male and female mice. The results provide further evidence that neuroplasticity-related signaling plays a crucial role in isolation-induced effects on neuropsychiatric behavioral deficits in both sexes.
Collapse
Affiliation(s)
- Na Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China.,Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Yulu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aerin Y An
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Christopher Banker
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| |
Collapse
|
48
|
Ye F, Huang J, Wang H, Luo C, Zhao K. Targeting epigenetic machinery: Emerging novel allosteric inhibitors. Pharmacol Ther 2019; 204:107406. [PMID: 31521697 DOI: 10.1016/j.pharmthera.2019.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Epigenetics has emerged as an extremely exciting fast-growing area of biomedical research in post genome era. Epigenetic dysfunction is tightly related with various diseases such as cancer and aging related degeneration, potentiating epigenetics modulators as important therapeutics targets. Indeed, inhibitors of histone deacetylase and DNA methyltransferase have been approved for treating blood tumor malignancies, whereas inhibitors of histone methyltransferase and histone acetyl-lysine recognizer bromodomain are in clinical stage. However, it remains a great challenge to discover potent and selective inhibitors by targeting catalytic site, as the same subfamily of epigenetic enzymes often share high sequence identity and very conserved catalytic core pocket. It is well known that epigenetic modifications are usually carried out by multi-protein complexes, and activation of catalytic subunit is often tightly regulated by other interactive protein component, especially in disease conditions. Therefore, it is not unusual that epigenetic complex machinery may exhibit allosteric regulation site induced by protein-protein interactions. Targeting allosteric site emerges as a compelling alternative strategy to develop epigenetic drugs with enhanced druggability and pharmacological profiles. In this review, we highlight recent progress in the development of allosteric inhibitors for epigenetic complexes through targeting protein-protein interactions. We also summarized the status of clinical applications of those inhibitors. Finally, we provide perspectives of future novel allosteric epigenetic machinery modulators emerging from otherwise undruggable single protein target.
Collapse
Affiliation(s)
- Fei Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Huang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
49
|
Cui SY, Yang MX, Zhang YH, Zheng V, Zhang HT, Gurney ME, Xu Y, O'Donnell JM. Protection from Amyloid β Peptide-Induced Memory, Biochemical, and Morphological Deficits by a Phosphodiesterase-4D Allosteric Inhibitor. J Pharmacol Exp Ther 2019; 371:250-259. [PMID: 31488603 PMCID: PMC6815937 DOI: 10.1124/jpet.119.259986] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022] Open
Abstract
Recent imaging studies of amyloid and tau in cognitively normal elderly subjects imply that Alzheimer's pathology can be tolerated by the brain to some extent due to compensatory mechanisms operating at the cellular and synaptic levels. The present study investigated the effects of an allosteric inhibitor of phosphodiesterase-4D (PDE4D), known as BPN14770 (2-(4-((2-(3-Chlorophenyl)-6-(trifluoromethyl)pyridin-4-yl)methyl)phenyl)acetic Acid), on impairment of memory, dendritic structure, and synaptic proteins induced by bilateral microinjection of oligomeric amyloid beta (Aβ 1-42 into the hippocampus of humanized PDE4D (hPDE4D) mice. The hPDE4D mice provide a unique and powerful genetic tool for assessing PDE4D target engagement. Behavioral studies showed that treatment with BPN14770 significantly improved memory acquisition and retrieval in the Morris water maze test and the percentage of alternations in the Y-maze test in the model of Aβ impairment. Microinjection of oligomeric Aβ 1-42 caused decreases in the number of dendrites, dendritic length, and spine density of pyramid neurons in the hippocampus. These changes were prevented by BPN14770 in a dose-dependent manner. Furthermore, molecular studies showed that BPN14770 prevented Aβ-induced decreases in synaptophysin, postsynaptic density protein 95, phosphorylated cAMP-response element binding protein (CREB)/CREB, brain-derived neurotrophic factor, and nerve growth factor inducible protein levels in the hippocampus. The protective effects of BPN14770 against Aβ-induced memory deficits, synaptic damage, and the alteration in the cAMP-meditated cell signaling cascade were blocked by H-89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride), an inhibitor of protein kinase A. These results suggest that BPN14770 may activate compensatory mechanisms that support synaptic health even with the onset of amyloid pathology in Alzheimer's disease. SIGNIFICANCE STATEMENT: This study demonstrates that a phosphodiesterase-4D allosteric inhibitor, BPN14770, protects against memory loss and neuronal atrophy induced by oligomeric Aβ 1-42. The study provides useful insight into the potential role of compensatory mechanisms in Alzheimer's disease in a model of oligomeric Aβ 1-42 neurotoxicity.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Ming-Xin Yang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Victor Zheng
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Han-Ting Zhang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Mark E Gurney
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - Ying Xu
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| | - James M O'Donnell
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China (S.-Y.C., Y.-H.Z.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (S.-Y.C., M.-X.Y., V.Z., Y.X., J.M.O.); Departments of Behavioral Medicine and Psychiatry, Physiology and Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia (H.-T.Z.); and Tetra Discovery Partners Inc., Grand Rapids, Michigan (M.E.G.)
| |
Collapse
|
50
|
Silva GM, Barcelos MP, Poiani JGC, Hage-Melim LIDS, da Silva CHTDP. Allosteric Modulators of Potential Targets Related to Alzheimer's Disease: a Review. ChemMedChem 2019; 14:1467-1483. [PMID: 31310701 DOI: 10.1002/cmdc.201900299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common type of dementia, and there is an urgent need to discover new and efficacious forms of treatment for it. Pathological patterns of AD include cholinergic dysfunction, increased β-amyloid (Aβ) peptide concentration, the appearance of neurofibrillary tangles, among others, all of which are strongly associated with specific biological targets. Interactions observed between these targets and potential drug candidates in AD most often occur by competitive mechanisms driven by orthosteric ligands that sometimes result in the production of side effects. In this context, the allosteric mechanism represents a key strategy; this can be regarded as the selective modulation of such targets by allosteric modulators in an advantageous manner, as this may decrease the likelihood of side effects. The purpose of this review is to present an overview of compounds that act as allosteric modulators of the main biological targets related to AD.
Collapse
Affiliation(s)
- Guilherme Martins Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - João Gabriel Curtolo Poiani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil
| | - Lorane Izabel da Silva Hage-Melim
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, KM-02, 68903-419, Macapá, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| |
Collapse
|