1
|
Li Y, Nie Z, Du Y, Chen L, Liu Q, Wu X, Cheng Y. "RNSP (Rannasangpei)" Rescued MK-801-induced Schizophrenia-like Behaviors in Mice via Oxidative Stress and BDNF-TrkB/Akt Pathway. Mol Neurobiol 2024; 61:10538-10550. [PMID: 38753130 DOI: 10.1007/s12035-024-04213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 11/24/2024]
Abstract
Schizophrenia (SCZ) is a complex, severe psychotic disorder that is highly persistent. Patients often cannot control their emotions and have delusions of victimization, world-weariness, and even suicide. Therefore, safer and more effective drugs are urgently needed. Rannasangpei (RNSP) from "the four medicine tantras" was used as a neuroprotective agent. The objective of this study was to investigate the effect and mechanism of RNSP on MK-801-induced SCZ in mice. Fifty C57BL/6J mice were randomly divided into a normal group, a model group, an RNSP group, a crocin (CRO) group, and an olanzapine (OLA) group, except for the normal group. The remaining mice were used to establish the MK-801-induced SCZ model. Changes in positive symptoms and cognitive impairment in mice before and after drug intervention were assessed by using the prepulse inhibition (PPI) test, Y-maze test (YMT), and open-field test (OFT). Intragastric administration of RNSP alleviated the symptoms of SCZ in SCZ mice, as demonstrated by the PPI, YMT, and OFT results. Compared with the model group, the first-line antipsychotic olanzapine reversed the anxiety-like phenotypes, hypermotility, and PPI deficits in the SCZ model mice. Further analysis revealed that RNSP reduced oxidative stress in SCZ model mice, as evidenced by increased superoxide dismutase (SOD) levels and decreased malondialdehyde (MDA) levels in the hippocampus, cortex, and blood of SCZ model mice. In our study, RNSP treatment restored the expression of brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, p-Trkb, Akt/p-Akt, and doublecortin and inhibited the expression of IBA1 and Bax in the hippocampus of SCZ model mice. The polymerase chain reaction data indicated that RNSP treatment increased the expression of Bcl-2 and TGF-β and decreased the expression of Bax, IL-1β, and TNF-α in the brains of the model mice. Our results are the first to show that RNSP reverses SCZ-like behaviors in rodents (both positive symptoms and cognitive deficits) by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway, suggesting that RNSP is a novel approach for treating SCZ.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhen Nie
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| | - Xiaoling Wu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, 610031, Sichuan, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China.
| |
Collapse
|
2
|
Onisiforou A, Zanos P. One path, two solutions: Network-based analysis identifies targetable pathways for the treatment of comorbid type II diabetes and neuropsychiatric disorders. Comput Struct Biotechnol J 2024; 23:3610-3624. [PMID: 39493502 PMCID: PMC11530817 DOI: 10.1016/j.csbj.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Comorbid diseases complicate patient outcomes and escalate healthcare costs, necessitating the need for a deeper mechanistic understanding. Neuropsychiatric disorders (NPDs) such as Neurotic Disorder, Major Depression, Bipolar Disorder, Anxiety Disorder, and Schizophrenia significantly exacerbate Type 2 Diabetes Mellitus (DM2), often leading to suboptimal treatment outcomes. The neurobiological mechanisms underlying this comorbidity remain poorly understood. To address this gap, we developed a novel pathway-based network computational framework to identify critical shared disease mechanisms between DM2 and these five prevalent comorbid NPDs. Our approach involves reconstructing an integrated DM2 ∩ NPDs KEGG pathway-pathway network and employs two complementary analytical methods, including the "minimum path to comorbidity" method to identify the shortest path fostering comorbid development. This analysis uncovered shared pathways like the PI3K-Akt signaling pathway and highlighted key nodes such as calcium signaling, MAPK, estrogen signaling, and apoptosis pathways. Dysregulation of these pathways likely contributes to the development of DM2-NPDs comorbidity. These findings have significant clinical implications, as they identify promising therapeutic targets that could lead to more effective treatments addressing both DM2 and NPDs simultaneously. Our model not only elucidates the intricate molecular interactions driving this comorbidity but also identifies promising therapeutic targets, paving the way for innovative treatment strategies. Additionally, the framework developed in this study can be adapted to study other complex comorbid conditions, advancing personalized medicine for comorbidities and improving patient care.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
3
|
Lappas AS, Ioannou M, Christodoulou NG. Histopathological evidence of cellular alterations in the dentate gyrus is associated with aberrant RB1CC1-ATG16L1 expression in the hippocampus among older adults with chronic schizophrenia: A pilot post-mortem study. Schizophr Res 2024; 275:14-24. [PMID: 39612766 DOI: 10.1016/j.schres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Recent evidence brings autophagy, and specifically the RB1CC1 gene into sharp focus as aetiologically relevant to Schizophrenia. Our understanding of whether and how these genetic signatures translate to cellular functions remains limited. MATERIAL AND METHODS Post-mortem study of 10 individuals with Schizophrenia and 18 individuals without any neurological/psychiatric disorder, matched for age, sex, post-mortem-interval, pH and BRAAK score. Formalin-fixed, paraffin-embedded, 6 μm sections cut through segments of the anterior, middle and posterior left or right hippocampus were examined for histopathological differences and immunohistochemical expression of RB1CC1 and ATG16L1 proteins. RESULTS Dentate gyrus (DG) granule cells area (p = 0.005) and circularity (p = 0.012) were significantly lower among Schizophrenia vs. controls. Antipsychotics were associated with lower circularity (p = 0.007). RB1CC1 and ATG16L1 immunoexpression were positively correlated (p < 0.001) and significantly lower in the CA1 (p = 0.047, p = 0.005, respectively). RB1CC1 immunoexpression was significantly higher in the DG among Schizophrenia vs. controls (p = 0.047,). The latter was more pronounced among donors treated with antipsychotics. Lower ATG16L1 CA1 immunoreactivity was correlated with lower granule cell area (p < 0.001). CONCLUSIONS For the first time, we present histopathological evidence of morphological alterations in the DG of the human brain in Schizophrenia. We propose that these changes indicate DG developmental arrest, which is associated with diminished RB1CC1-ATG16L1-mediated autophagy initiation in the CA1. We suggest that this is a pathological process, whereas RB1CC1-ATG16L1 upregulation in the DG, and possibly in the CA4, may represent a compensatory/restorative mechanism. Antipsychotics may upregulate RB1CC1-ATG16L1 autophagy initiation. Larger studies are required to validate these findings and explore clinical correlations.
Collapse
Affiliation(s)
- Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece; Aneurin Bevan University Health Board, United Kingdom.
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
4
|
Snelleksz M, Dean B. Higher levels of AKT-interacting protein in the frontal pole from people with schizophrenia are limited to a sub-group who have a marked deficit in cortical muscarinic M1 receptors. Psychiatry Res 2024; 341:116156. [PMID: 39236366 DOI: 10.1016/j.psychres.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 09/07/2024]
Abstract
We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1-/- mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.
Collapse
Affiliation(s)
- Megan Snelleksz
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Devine EA, Imami AS, Eby H, Sahay S, Hamoud AR, Golchin H, Ryan W, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. Mol Psychiatry 2024:10.1038/s41380-024-02770-8. [PMID: 39424930 DOI: 10.1038/s41380-024-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
6
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2024:10.1038/s41380-024-02743-x. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Hodgson NW, Hensch TK, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. An increased copy number of glycine decarboxylase (GLDC) associated with psychosis reduces extracellular glycine and impairs NMDA receptor function. Mol Psychiatry 2024:10.1038/s41380-024-02711-5. [PMID: 39210012 DOI: 10.1038/s41380-024-02711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Glycine is an obligatory co-agonist at excitatory NMDA receptors in the brain, especially in the dentate gyrus, which has been postulated to be crucial for the development of psychotic associations and memories with psychotic content. Drugs modulating glycine levels are in clinical development for improving cognition in schizophrenia. However, the functional relevance of the regulation of glycine metabolism by endogenous enzymes is unclear. Using a chromosome-engineered allelic series in mice, we report that a triplication of the gene encoding the glycine-catabolizing enzyme glycine decarboxylase (GLDC) - as found on a small supernumerary marker chromosome in patients with psychosis - reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) and suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in schizophrenia-like behaviors which are in part known to be dependent on the activity of the dentate gyrus, e.g., prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results demonstrate that Gldc negatively regulates long-term synaptic plasticity in the dentate gyrus in mice, suggesting that an increase in GLDC copy number possibly contributes to the development of psychosis in humans.
Collapse
Affiliation(s)
- Maltesh Kambali
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Li
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Patrick McGuinness
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Johanna G Cobb
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Muxiao Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajasekar Nagarajan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jinrui Lyu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Elif Engin
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
| | - Joseph T Coyle
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregg E Homanics
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vadim Y Bolshakov
- Cellular Neurobiology Laboratory, McLean Hospital Belmont, Belmont, MA, USA
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
8
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
9
|
Wang Z, Ma J, Sun Y, Jin Z, Zheng R, Li Y, Yu H, Ye H, Wu Y, Ge X, Chen Z. Isorhapontigenin delays senescence and matrix degradation of nucleus pulposus cells via PI3K/AKT/mTOR-mediated autophagy pathway in vitro and alleviates intervertebral disc degeneration in vivo. Int Immunopharmacol 2024; 139:112717. [PMID: 39067404 DOI: 10.1016/j.intimp.2024.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Intervertebral disc degeneration (IVDD), a common degenerative disc disease, is a major etiological factor for back pain, affecting a significant number of middle-aged and elderly individuals worldwide. Thus, IVDD is a major socio-economic burden. The factors contributing to the complex IVDD etiology, which has not been elucidated, include inflammation, oxidative stress, and natural aging. In particular, inflammation and aging of nucleus pulposus cells are considered primary pathogenic factors. Isorhapontigenin (ISO) is a polyphenolic compound commonly found in traditional Chinese herbs and grapes. We have demonstrated that ISO exerts anti-inflammatory and anti-aging effects and mitigates extracellular matrix (ECM) degradation. In this study, in vitro experiments revealed that, ISO delays aging and ECM degradation by promoting PI3K/AKT/mTOR-mediated autophagy. Meanwhile, in vivo experiments affirmed that ISO delays the progression of IVDD.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanyuan Li
- Aksu District People's Hospital, Aksu, Xinjiang, China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haobo Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinjiang Ge
- Aksu District People's Hospital, Aksu, Xinjiang, China.
| | - Zexin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Bugga P, Manning JR, Mushala BAS, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. Cell Signal 2024; 116:111065. [PMID: 38281616 PMCID: PMC10922666 DOI: 10.1016/j.cellsig.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
11
|
Devine EA, Imami AS, Eby H, Hamoud AR, Golchin H, Ryan W, Sahay S, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. RESEARCH SQUARE 2024:rs.3.rs-3940448. [PMID: 38559131 PMCID: PMC10980160 DOI: 10.21203/rs.3.rs-3940448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
12
|
Lashgari NA, Roudsari NM, Shamsnia HS, Shayan M, Momtaz S, Abdolghaffari AH. TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of schizophrenia. Can J Physiol Pharmacol 2024; 102:150-160. [PMID: 37955633 DOI: 10.1139/cjpp-2023-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, The Academic Center for Education, Culture and Research (ACECR), Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Han S, Li Y, Gao J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: expectations from a meta-analysis that combines deep learning methods. World J Biol Psychiatry 2024; 25:65-81. [PMID: 37703215 DOI: 10.1080/15622975.2023.2258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES This study aimed at identifying reliable differentially expressed miRNAs (DEMs) for schizophrenia in blood via meta-analyses combined with deep learning methods. METHODS First, we meta-analysed published DEMs. Then, we enriched the pool of schizophrenia-associated miRNAs by applying two computational learning methods to identify candidate biomarkers and verified the results in external datasets. RESULTS In total, 27 DEMs were found to be statistically significant (p < .05). Ten candidate schizophrenia-associated miRNAs were identified through computational learning methods. The diagnostic efficiency was verified on a blood-miRNA dataset (GSE54578) with a random forest (RF) model and achieved an area under the curve (AUC) of 0.83 ± 0.14. Moreover, 855 experimentally validated target genes for these candidate miRNAs were retrieved, and 11 hub genes were identified. Enrichment analysis revealed that the main functions in which the target genes were enriched were those related to cell signalling, prenatal infections, cancers, cell deaths, oxidative stress, endocrine disorders, transcription regulation, and kinase activities. The diagnostic ability of the hub genes was reflected in a comparably good average AUC of 0.77 ± 0.09 for an external dataset (GSE38484). CONCLUSIONS A meta-analysis that combines computational and mathematical methods provides a reliable tool for identifying candidate biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Lee MG, Hong HJ, Nam KS. Anthocyanin Oligomers Induce Apoptosis and Autophagy by Inhibiting the mTOR Signaling Pathway in Human Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 17:24. [PMID: 38256858 PMCID: PMC10820553 DOI: 10.3390/ph17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Anthocyanin oligomers (AOs) are phytochemicals synthesized by fermenting anthocyanins extracted from grape skins and are more biologically active than monomeric anthocyanins. In this study, we evaluate the effects of an AO on triple-negative MDA-MB-231 and HER2-overexpressing SK-BR-3 breast cancer cells. The cell viability of MDA-MB-231 and SK-BR-3 cells was significantly inhibited in a concentration-dependent manner by AO treatment for 24 h, while delphinidin (a monomeric anthocyanin) had no effect on cell viability. In addition, the AO increased H2A.X phosphorylation (a marker of DNA damage), reduced RAD51 (a DNA repair protein) and survivin (a cell survival factor) protein levels, and induced apoptosis by caspase-3-dependent PARP1 cleavage in both cell lines. Surprisingly, the AO induced autophagy by increasing intracellular LC3-II puncta and LC3-II and p62 protein levels. In addition, the AO inhibited the mTOR pathway in MDA-MB-231 and SK-BR-3 cells by suppressing the HER2, EGFR1, and AKT pathways. These results demonstrate that the anti-cancer effect of the AO was due to the induction of apoptosis and autophagy via cleaved caspase-3-mediated PARP1 cleavage and mTOR pathway inhibition, respectively. Furthermore, our results suggest that anthocyanin oligomers could be considered potential candidates for breast cancer treatment.
Collapse
Affiliation(s)
| | | | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (M.-G.L.); (H.-J.H.)
| |
Collapse
|
16
|
Bugga P, Manning JR, Mushala BA, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564170. [PMID: 37961692 PMCID: PMC10634848 DOI: 10.1101/2023.10.26.564170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
17
|
Radulescu E, Chen Q, Pergola G, Di Carlo P, Han S, Shin JH, Hyde TM, Kleinman JE, Weinberger DR. Investigating trait variability of gene co-expression network architecture in brain by controlling for genomic risk of schizophrenia. PLoS Genet 2023; 19:e1010989. [PMID: 37831723 PMCID: PMC10599557 DOI: 10.1371/journal.pgen.1010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/25/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The effect of schizophrenia (SCZ) genetic risk on gene expression in brain remains elusive. A popular approach to this problem has been the application of gene co-expression network algorithms (e.g., WGCNA). To improve reliability with this method it is critical to remove unwanted sources of variance while also preserving biological signals of interest. In this WCGNA study of RNA-Seq data from postmortem prefrontal cortex (78 neurotypical donors, EUR ancestry), we tested the effects of SCZ genetic risk on co-expression networks. Specifically, we implemented a novel design in which gene expression was adjusted by linear regression models to preserve or remove variance explained by biological signal of interest (GWAS genomic scores for SCZ risk-(GS-SCZ), and genomic scores- GS of height (GS-Ht) as a negative control), while removing variance explained by covariates of non-interest. We calculated co-expression networks from adjusted expression (GS-SCZ and GS-Ht preserved or removed), and consensus between them (representative of a "background" network free of genomic scores effects). We then tested the overlap between GS-SCZ preserved modules and background networks reasoning that modules with reduced overlap would be most affected by GS-SCZ biology. Additionally, we tested these modules for convergence of SCZ risk (i.e., enrichment in PGC3 SCZ GWAS priority genes, enrichment in SCZ risk heritability and relevant biological ontologies. Our results highlight key aspects of GS-SCZ effects on brain co-expression networks, specifically: 1) preserving/removing SCZ genetic risk alters the co-expression modules; 2) biological pathways enriched in modules affected by GS-SCZ implicate processes of transcription, translation and metabolism that converge to influence synaptic transmission; 3) priority PGC3 SCZ GWAS genes and SCZ risk heritability are enriched in modules associated with GS-SCZ effects. Overall, our results indicate that gene co-expression networks that selectively integrate information about genetic risk can reveal novel combinations of biological pathways involved in schizophrenia.
Collapse
Affiliation(s)
- Eugenia Radulescu
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
| | - Shizhong Han
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland United States of America
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Feuer KL, Peng X, Yovo CK, Avramopoulos D. DPYSL2/CRMP2 isoform B knockout in human iPSC-derived glutamatergic neurons confirms its role in mTOR signaling and neurodevelopmental disorders. Mol Psychiatry 2023; 28:4353-4362. [PMID: 37479784 PMCID: PMC11138811 DOI: 10.1038/s41380-023-02186-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer's disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.
Collapse
Affiliation(s)
- Kyra L Feuer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xi Peng
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christian K Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Zhang T, Fang Y, Wang L, Gu L, Tang J. Exosome and exosomal contents in schizophrenia. J Psychiatr Res 2023; 163:365-371. [PMID: 37267733 DOI: 10.1016/j.jpsychires.2023.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Schizophrenia (SCZ) is a severe mental disorder that affects approximately 1% general population worldwide and poses a considerable burden to society. Despite decades of research, its etiology remains unclear, and diagnosis remains challenging due to its heterogeneous symptoms. Exosomes play a crucial role in intercellular communication, and their contents, including nucleotides, proteins and metabolites, have been linked to various diseases. Recent studies have implicated exosome abnormalities in the pathogenesis of schizophrenia. In this review, we discuss the current understanding of the relationship between exosomes and schizophrenia, focusing on the role of exosomal contents in this disease. We summarize recent findings and provide insights into the potential use of exosomes as biomarkers for the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Tingkai Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan; Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Kambali M, Li Y, Unichenko P, Pliego JF, Yadav R, Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R, Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin J, Talkowski ME, Homanics GE, Bolshakov VY, Henneberger C, Rudolph U. A marker chromosome in psychosis identifies glycine decarboxylase (GLDC) as a novel regulator of neuronal and synaptic function in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542745. [PMID: 37398055 PMCID: PMC10312439 DOI: 10.1101/2023.05.29.542745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.
Collapse
|
21
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
22
|
Li S, Lu C, Kang L, Li Q, Chen H, Zhang H, Tang Z, Lin Y, Bai M, Xiong P. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry 2023; 23:225. [PMID: 37013544 PMCID: PMC10071748 DOI: 10.1186/s12888-023-04718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The pathogenesis of schizophrenia is still unknown. Nearly a half of schizophrenic patients have depressive symptoms and even some impulsive behaviors. The definite diagnosis of schizophrenia is an immense challenge. Molecular biology plays an essential role in the research on the pathogenesis of schizophrenia. OBJECTIVE This study aims to analyze the correlations of serum protein factor levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. METHODS Seventy drug-naïve patients with first-episode schizophrenia and sixty-nine healthy volunteers from the health check center in the same period participated in this study. In both the patient group and control group, brain-derived neurotrophic factor (BDNF), phosphatidylin-ositol-3-kinase (PI3K), protein kinase B (AKT), and cAMP-response element binding protein (CREB) levels in the peripheral blood were tested by enzyme-linked immunosorbent assay (ELISA). The depressive emotion and impulsive behaviors were evaluated with Chinese versions of the Calgary Depression Scale for Schizophrenia (CDSS) and Short UPPS-P Impulsive Behavior Scale (S-UPPS-P), respectively. RESULTS The serum levels of BDNF, PI3K, and CREB in the patient group were lower than those in the control group, while AKT level, total CDSS score and total S-UPPS-P score were all higher. In the patient group, total CDSS score, and total S-UPPS-P score were both correlated negatively with BDNF, PI3K, and CREB levels but positively with AKT level, and the lack-of-premeditation (PR) sub-scale score was not significantly correlated with BDNF, PI3K, AKT, and CREB levels. CONCLUSION Our study results showed that the peripheral blood levels of BDNF, PI3K, AKT, and CREB in drug-naïve patients with first-episode schizophrenia were significantly different from those in the control group. The levels of these serum protein factors are promising biomarkers to predict schizophrenic depression and impulsive behaviors.
Collapse
Affiliation(s)
- Shan Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cailian Lu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Kang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qianqian Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongxu Chen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Han Zhang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ziling Tang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanwen Lin
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiyan Bai
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Xiong
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.
- Yunnan Clinical Research Center for Mental Disorders, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
23
|
Li R, Zhang X, Gu L, Yuan Y, Luo X, Shen W, Xie Z. CDGSH iron sulfur domain 2 over-expression alleviates neuronal ferroptosis and brain injury by inhibiting lipid peroxidation via AKT/mTOR pathway following intracerebral hemorrhage in mice. J Neurochem 2023; 165:426-444. [PMID: 36802066 DOI: 10.1111/jnc.15785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/20/2023]
Abstract
Ferroptosis has been implicated in the pathogenesis of secondary brain injury following intracerebral hemorrhage (ICH), and regulating this process is considered a potential therapy for alleviating further brain injury. A previous study showed that CDGSH iron sulfur domain 2 (CISD2) can inhibit ferroptosis in cancer. Thus, we investigated the effects of CISD2 on ferroptosis and the mechanisms underlying its neuroprotective role in mice after ICH. CISD2 expression markedly increased after ICH. CISD2 over-expression significantly decreased the number of Fluoro-Jade C-positive neurons and alleviated brain edema and neurobehavioral deficits at 24 h after ICH. In addition, CISD2 over-expression up-regulated the expression of p-AKT, p-mTOR, ferritin heavy chain 1, glutathione peroxidase 4, ferroportin, glutathione, and glutathione peroxidase activity, which are markers of ferroptosis. Additionally, CISD2 over-expression down-regulated the levels of malonaldehyde, iron content, acyl-CoA synthetase long-chain family member 4, transferrin receptor 1, and cyclooxygenase-2 at 24 h after ICH. It also alleviated mitochondrial shrinkage and decreased the density of the mitochondrial membrane. Furthermore, CISD2 over-expression increased the number of GPX4-positive neurons following ICH induction. Conversely, knockdown of CISD2 aggravated neurobehavioral deficits, brain edema, and neuronal ferroptosis. Mechanistically, MK2206, an AKT inhibitor, suppressed p-AKT and p-mTOR and reversed the effects of CISD2 over-expression on markers of neuronal ferroptosis and acute neurological outcome. Taken together, CISD2 over-expression alleviated neuronal ferroptosis and improved neurological performance, which may be mediated through the AKT/mTOR pathway after ICH. Thus, CISD2 may be a potential target to mitigate brain injury via the anti-ferroptosis effect after ICH.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiwei Shen
- Department of Endocrinology, The First Affiliated Hospital, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry 2023; 28:59-67. [PMID: 35931756 DOI: 10.1038/s41380-022-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
Psychotic symptoms are a cross-sectional dimension affecting multiple diagnostic categories, despite schizophrenia represents the prototype of psychoses. Initially, dopamine was considered the most involved molecule in the neurobiology of schizophrenia. Over the next years, several biological factors were added to the discussion helping to constitute the concept of schizophrenia as a disease marked by a deficit of functional integration, contributing to the formulation of the Dysconnection Hypothesis in 1995. Nowadays the notion of dysconnection persists in the conceptualization of schizophrenia enriched by neuroimaging findings which corroborate the hypothesis. At the same time, in recent years, psychedelics received a lot of attention by the scientific community and astonishing findings emerged about the rearrangement of brain networks under the effect of these compounds. Specifically, a global decrease in functional connectivity was found, highlighting the disintegration of preserved and functional circuits and an increase of overall connectivity in the brain. The aim of this paper is to compare the biological bases of dysconnection in schizophrenia with the alterations of neuronal cyto-architecture induced by psychedelics and the consequent state of cerebral hyper-connection. These two models of psychosis, despite diametrically opposed, imply a substantial deficit of integration of neural signaling reached through two opposite paths.
Collapse
|
25
|
Zanfardino P, Amati A, Petracca EA, Santorelli FM, Petruzzella V. Torin1 restores proliferation rate in Charcot-Marie-Tooth disease type 2A cells harbouring MFN2 (mitofusin 2) mutation. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2022; 41:201-206. [PMID: 36793649 PMCID: PMC9896598 DOI: 10.36185/2532-1900-085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023]
Abstract
Objective Mitofusin 2 (MFN2) is a mitochondrial outer membrane protein that serves primarily as a mitochondrial fusion protein but has additional functions including the tethering of mitochondrial-endoplasmic reticulum membranes, movement of mitochondria along axons, and control of the quality of mitochondria. Intriguingly, MFN2 has been referred to play a role in regulating cell proliferation in several cell types such that it acts as a tumour suppressor role in some forms of cancer. Previously, we found that fibroblasts derived from a Charcot-Marie-Tooth disease type 2A (CMT2A) patient with a mutation in the GTPase domain of MFN2 exhibit increased proliferation and decreased autophagy. Methods Primary fibroblasts from a young patient affected by CMT2A harbouring c.650G > T/p.Cys217Phe mutation in the MFN2 gene were evaluated versus a healthy control to measure the proliferation rate by growth curves analysis and to assess the phosphorylation of protein kinase B (AKT) at Ser473 in response to different doses of torin1, a selective catalytic ATP-competitive mammalian target of rapamycin complex (mTOR) inhibitor, by immunoblot analysis. Results Herein, we demonstrated that the mammalian target of rapamycin complex 2 (mTORC2) is highly activated in the CMT2AMFN2 fibroblasts to promote cell growth via the AKT(Ser473) phosphorylation-mediated signalling. We report that torin1 restores CMT2AMFN2 fibroblasts' growth rate in a dose-dependent manner by decreasing AKT(Ser473) phosphorylation. Conclusions Overall, our study provides evidence for mTORC2, as a novel molecular target that lies upstream of AKT to restore the cell proliferation rate in CMT2A fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Amati
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Easter Anna Petracca
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
26
|
Tsimberidou AM, Skliris A, Valentine A, Shaw J, Hering U, Vo HH, Chan TO, Armen RS, Cottrell JR, Pan JQ, Tsichlis PN. AKT inhibition in the central nervous system induces signaling defects resulting in psychiatric symptomatology. Cell Biosci 2022; 12:56. [PMID: 35525984 PMCID: PMC9080159 DOI: 10.1186/s13578-022-00793-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Changes in the expression and activity of the AKT oncogene play an important role in psychiatric disease. We present translational data assessing the role of AKT in psychiatric symptoms.
Methods
(1) We assessed the protein activity of an AKT3 mutant harboring a PH domain mutation (Q60H) detected in a patient with schizophrenia, the corresponding AKT1 mutant (Q61H), and wild-type AKT1 and AKT3 transduced in AKT-null mouse fibroblasts and modeled the Q61H mutation onto the crystal structure of the Akt1 PH domain. (2) We analyzed the results of earlier genome-wide association studies to determine the distribution of schizophrenia-associated single-nucleotide polymorphisms (SNPs) in the AKT3 gene. (3) We analyzed the psychiatric adverse events (AEs) of patients treated with M2698 (p70S6K/AKT1/AKT3 inhibitor) and with other PI3K/AKT/mTOR pathway inhibitors.
Results
(1) Proteins encoded by AKT3 (AKT3Q60H) and AKT1 (AKT1Q61H) mutants had lower kinase activity than those encoded by wild-type AKT3 and AKT1, respectively. Molecular modeling of the AKT1-Q61H mutant suggested conformational changes that may reduce the binding of D3-phosphorylated phosphoinositides to the PH domain. (2) We identified multiple SNPs in the AKT3 gene that were strongly associated with schizophrenia (p < 0.5 × 10–8). (3) Psychiatric AEs, mostly insomnia, anxiety, and depression, were noted in 29% of patients treated with M2698. In randomized studies, their incidence was higher in PI3K/AKT/mTOR inhibitor arms compared with placebo arms. All psychiatric AEs were reversible.
Conclusions
Our data elucidate the incidence and mechanisms of psychiatric AEs in patients treated with PI3K/AKT/mTOR inhibitors and emphasize the need for careful monitoring.
Collapse
|
27
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022; 19:1235-1250. [PMID: 36071219 PMCID: PMC9622814 DOI: 10.1038/s41423-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
28
|
Pan B, Wang Y, Shi Y, Yang Q, Han B, Zhu X, Liu Y. Altered expression levels of miR-144-3p and ATP1B2 are associated with schizophrenia. World J Biol Psychiatry 2022; 23:666-676. [PMID: 34989308 DOI: 10.1080/15622975.2021.2022757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objectives: Schizophrenia is a devastating mental disease. Various microRNAs were proven to be associated with schizophrenia. Altered microRNA-144-3p (miR-144-3p) levels were found in various neurological and psychotic disorders. Beta2-subunit of Na(+)/K(+)-ATPase (ATP1B2) regulates neuronal migration and cell growth during brain development through the PI3K/Akt/mTOR pathway. The present study explored the associations of miR-144-3p and ATP1B2 with schizophrenia and their mutual interaction.Methods: A schizophrenic animal model employing repeated MK-801 administration was established and 293 T cells over-expressing miR-144-3p were constructed by lentivirus. The in vitro and in vivo levels of miR-144-3p, ATP1B2, and the PI3K/Akt/mTOR pathway were examined by qRT-PCR and Western Blots. The interaction between miR-144-3p and ATP1B2 was predicted and assessed by using bioinformatic methods and a luciferase reporter gene assay, respectively.Results: MiR-144-3p expression was elevated in the schizophrenic rat hippocampus. ATP1B2 was down-regulated in schizophrenic patients by analysing GEO datasets. Additionally, miR-144-3p can directly bind with ATP1B2. Furthermore, the ATP1B2 expression and PI3K/Akt/mTOR phosphorylation levels were down-regulated in the 293 T cells over-expressing miR-144-3p and schizophrenic rat hippocampus, which could be reversed by risperidone.Conclusions: This study revealed that up-regulated miR-144-3p might be associated with schizophrenia through down-regulating ATP1B2, implicating new targets of schizophrenia treatment.
Collapse
Affiliation(s)
- Bo Pan
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yuting Wang
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yiwen Shi
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Qianzhan Yang
- Shimadzu (China) Co., LTD. Chongqing Branch, Chongqing, PR China
| | - Bing Han
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Xiaoli Zhu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| | - Yanqing Liu
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, PR China.,Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, PR China
| |
Collapse
|
29
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022. [PMID: 36071219 DOI: 10.1038/s41423-022-00921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
30
|
Pan B, Xu L, Weng J, Wang Y, Ji H, Han B, Zhu X, Liu Y. Effects of icariin on alleviating schizophrenia-like symptoms by regulating the miR-144-3p/ATP1B2/mTOR signalling pathway. Neurosci Lett 2022; 791:136918. [DOI: 10.1016/j.neulet.2022.136918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
|
31
|
Nawwar DA, Zaki HF, Sayed RH. Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 2022; 30:1891-1907. [PMID: 35876932 PMCID: PMC9499910 DOI: 10.1007/s10787-022-01031-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a common mental disorder affecting patients' thoughts, behavior, and cognition. Recently, the NRG1/ErbB4 signaling pathway emerged as a candidate therapeutic target for schizophrenia. This study investigates the effects of aripiprazole and sertindole on the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in ketamine-induced schizophrenia in rats. Young male Wistar rats received ketamine (30 mg/kg, intraperitoneally) for 5 consecutive days and aripiprazole (3 mg/kg, orally) or sertindole (2.5 mg/kg, orally) for 14 days. The proposed pathway was investigated by injecting LY294002 (a selective PI3K inhibitor) (25 μg/kg, intrahippocampal injection) 30 min before the drugs. Twenty-four hours after the last injection, animals were subjected to behavioral tests: the open field test, sucrose preference test, novel object recognition task, and social interaction test. Both aripiprazole and sertindole significantly ameliorated ketamine-induced schizophrenic-like behavior, as expected, because of their previously demonstrated antipsychotic activity. Besides, both drugs alleviated ketamine-induced oxidative stress and neurotransmitter level changes in the hippocampus. They also increased the gamma-aminobutyric acid and glutamate levels and glutamate decarboxylase 67 and parvalbumin mRNA expression in the hippocampus. Moreover, aripiprazole and sertindole increased the NRG1 and ErbB4 mRNA expression levels and PI3K, p-Akt, and mTOR protein expression levels. Interestingly, pre-injecting LY294002 abolished all the effects of the drugs. This study reveals that the antipsychotic effects of aripiprazole and sertindole are partly due to oxidative stress reduction as well as NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways activation. The NRG1/ErbB4 and PI3K signaling pathways may offer a new therapeutic approach for treating schizophrenia in humans.
Collapse
Affiliation(s)
- Dalia A Nawwar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
32
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
33
|
Petrikis P, Polyzou A, Premeti K, Roumelioti A, Karampas A, Georgiou G, Grigoriadis D, Leondaritis G. GSK3β and mTORC1 Represent 2 Distinct Signaling Markers in Peripheral Blood Mononuclear Cells of Drug-Naive, First Episode of Psychosis Patients. Schizophr Bull 2022; 48:1136-1144. [PMID: 35757972 PMCID: PMC9434466 DOI: 10.1093/schbul/sbac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is characterized by a complex interplay between genetic and environmental risk factors converging on prominent signaling pathways that orchestrate brain development. The Akt/GSK3β/mTORC1 pathway has long been recognized as a point of convergence and etiological mechanism, but despite evidence suggesting its hypofunction, it is still not clear if this is already established during the first episode of psychosis (FEP). STUDY DESIGN Here, we performed a systematic phosphorylation analysis of Akt, GSK3β, and S6, a mTORC1 downstream target, in fresh peripheral blood mononuclear cells from drug-naive FEP patients and control subjects. STUDY RESULTS Our results suggest 2 distinct signaling endophenotypes in FEP patients. GSK3β hypofunction exhibits a promiscuous association with psychopathology, and it is normalized after treatment, whereas mTORC1 hypofunction represents a stable state. CONCLUSIONS Our study provides novel insight on the peripheral hypofunction of the Akt/GSK3β/mTORC1 pathway and highlights mTORC1 activity as a prominent integrator of altered peripheral immune and metabolic states in FEP patients.
Collapse
Affiliation(s)
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Argyro Roumelioti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Andreas Karampas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Georgiou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dionysios Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - George Leondaritis
- To whom correspondence should be addressed; Department of Pharmacology, Faculty of Medicine, School of Health Sciences and Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece; tel: +302651007555, fax: +302651007859, e-mail:
| |
Collapse
|
34
|
Effects of Risperidone and Prenatal Poly I:C Exposure on GABA A Receptors and AKT-GSK3β Pathway in the Ventral Tegmental Area of Female Juvenile Rats. Biomolecules 2022; 12:biom12050732. [PMID: 35625659 PMCID: PMC9139019 DOI: 10.3390/biom12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA. Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3β in the VTA. Pregnant female Sprague-Dawley rats were administered Poly I:C (5mg/kg; i.p) or saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased mRNA expression of GABAA receptor β3 subunits and glutamic acid decarboxylase (GAD2) in the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C exposure led to increased expression of AKT2 and GSK3β. Risperidone decreased GABAA receptor β2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic neurotransmission and AKT-GSK3β signaling in the VTA of adolescent rats.
Collapse
|
35
|
Anxiety and cognitive-related effects of Δ 9-tetrahydrocannabinol (THC) are differentially mediated through distinct GSK-3 vs. Akt-mTOR pathways in the nucleus accumbens of male rats. Psychopharmacology (Berl) 2022; 239:509-524. [PMID: 34860284 DOI: 10.1007/s00213-021-06029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Δ9-tetrahydrocannabinol (THC) is the primary psychoactive compound in cannabis and is responsible for cannabis-related neuropsychiatric side effects, including abnormal affective processing, cognitive and sensory filtering deficits and memory impairments. A critical neural region linked to the psychotropic effects of THC is the nucleus accumbens shell (NASh), an integrative mesocorticolimbic structure that sends and receives inputs from multiple brain areas known to be dysregulated in various disorders, including schizophrenia and anxiety-related disorders. Considerable evidence demonstrates functional differences between posterior vs. anterior NASh sub-regions in the processing of affective and cognitive behaviours influenced by THC. Nevertheless, the neuroanatomical regions and local molecular pathways responsible for these psychotropic effects are not currently understood. OBJECTIVES The objectives of this study were to characterize the effects of intra-accumbens THC in the anterior vs. posterior regions of the NASh during emotional memory formation, sensorimotor gating and anxiety-related behaviours. METHODS We performed an integrative series of translational behavioural pharmacological studies examining anxiety, sensorimotor gating and fear-related associative memory formation combined with regionally specific molecular signalling analyses in male Sprague Dawley rats. RESULTS We report that THC in the posterior NASh causes distortions in emotional salience attribution, impaired sensory filtering and memory retention and heightened anxiety, through a glycogen-synthase-kinase-3 (GSK-3)-β-catenin dependent signalling pathway. In contrast, THC in the anterior NASh produces anxiolytic effects via modulation of protein kinase B (Akt) phosphorylation states. CONCLUSIONS These findings reveal critical new insights into the neuroanatomical and molecular mechanisms associated with the differential neuropsychiatric side effects of THC in dissociable nucleus accumbens sub-regions.
Collapse
|
36
|
Brandão-Teles C, Smith BJ, Carregari VC. PTMs: A Missing Piece for Schizophrenia Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:119-127. [DOI: 10.1007/978-3-031-05460-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Wang Y, Amdanee N, Zhang X. Exosomes in schizophrenia: Pathophysiological mechanisms, biomarkers, and therapeutic targets. Eur Psychiatry 2022; 65:e61. [PMID: 36082534 PMCID: PMC9532215 DOI: 10.1192/j.eurpsy.2022.2319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While schizophrenia (SCZ) is a devastating psychiatric disorder that detrimentally affects a significant portion of the worldwide population, its diagnosis is traditionally based on a relatively subjective assessment of current symptoms and medical history, devoid of an objective diagnostic modality. Antipsychotic medications are commonly used in the treatment of SCZ; however, some patients have low remission rates or forsake treatment due to the associated multiple side effects, resulting in recurrent episodes of the disease and poor prognosis. These situations imply that the diagnosis, treatment, and prognosis of SCZ need to be improved to increase the odds of a better outcome. Mounting studies have found that extracellular vesicles (EVs) play essential roles in the central nervous system. They are implicated in several mechanisms closely associated with SCZ such as cellular communication and synaptic plasticity. They can additionally exhibit neuroprotective and therapeutic effects. Since they possess distinct constituents, are readily available, easily detectable, and dependent on the internal environment, they can potentially serve as reliable biomarkers for disease diagnosis. Moreover, their biological configuration along with their ability to increase the bioavailability of their constituents and modulate intricate intracellular reactions in target cells, propel EVs as new targets for treatment. This review paper summarizes relevant research pertaining to the roles of EVs in SCZ, with the aim of improving insights into SCZ pathogenesis and evaluating EVs as potential biomarkers in the diagnosis and treatment of SCZ.
Collapse
|
38
|
Chadha R, Alganem K, Mccullumsmith RE, Meador-Woodruff JH. mTOR kinase activity disrupts a phosphorylation signaling network in schizophrenia brain. Mol Psychiatry 2021; 26:6868-6879. [PMID: 33990769 DOI: 10.1038/s41380-021-01135-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Robert E Mccullumsmith
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
EWAS of Monozygotic Twins Implicate a Role of mTOR Pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel) 2021; 12:genes12101510. [PMID: 34680906 PMCID: PMC8535383 DOI: 10.3390/genes12101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.
Collapse
|
40
|
Izumi R, Hino M, Nagaoka A, Shishido R, Kakita A, Hoshino M, Kunii Y, Yabe H. Dysregulation of DPYSL2 expression by mTOR signaling in schizophrenia: Multi-level study of postmortem brain. Neurosci Res 2021; 175:73-81. [PMID: 34543692 DOI: 10.1016/j.neures.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/26/2023]
Abstract
The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.
Collapse
Affiliation(s)
- Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Psychology, Takeda General Hospital, Aizuwakamatu, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan; Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
41
|
Kunii Y, Matsumoto J, Izumi R, Nagaoka A, Hino M, Shishido R, Sainouchi M, Akatsu H, Hashizume Y, Kakita A, Yabe H. Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia. Int J Mol Sci 2021; 22:8280. [PMID: 34361045 PMCID: PMC8348881 DOI: 10.3390/ijms22158280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK3β) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3β expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.
Collapse
Affiliation(s)
- Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hiroyasu Akatsu
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan;
- Department of Community-Based Medicine, Nagoya City University Graduate School of Medical Science, Aichi 467-8601, Japan
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, Aichi 441-8124, Japan;
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.S.); (A.K.)
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (J.M.); (R.I.); (A.N.); (M.H.); (R.S.); (H.Y.)
| |
Collapse
|
42
|
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147:105067. [PMID: 33992742 DOI: 10.1016/j.neuint.2021.105067] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
PI3K-AKT/mTOR signaling pathway represents an essential signaling mechanism for mammalian enzyme-related receptors in transducing signals or biological processes such as cell development, differentiation, cell survival, protein synthesis, and metabolism. Upregulation of the PI3K-AKT/mTOR signaling pathway involves many human brain abnormalities, including autism and other neurological dysfunctions. Autism is a neurodevelopmental disorder associated with behavior and psychiatric illness. This research-based review discusses the functional relationship between the neuropathogenic factors associated with PI3K-AKT/mTOR signaling pathway. Ultimately causes autism-like conditions associated with genetic alterations, neuronal apoptosis, mitochondrial dysfunction, and neuroinflammation. Therefore, inhibition of the PI3K-AKT/mTOR signaling pathway may have an effective therapeutic value for autism treatment. The current review also summarizes the involvement of PI3K-AKT/mTOR signaling pathway inhibitors in the treatment of autism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
43
|
Tioconazole and Chloroquine Act Synergistically to Combat Doxorubicin-Induced Toxicity via Inactivation of PI3K/AKT/mTOR Signaling Mediated ROS-Dependent Apoptosis and Autophagic Flux Inhibition in MCF-7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14030254. [PMID: 33799790 PMCID: PMC7998405 DOI: 10.3390/ph14030254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex devastating disease with enormous treatment challenges, including chemo- and radiotherapeutic resistance. Combination therapy demonstrated a promising strategy to target hard-to-treat cancers and sensitize cancer cells to conventional anti-cancer drugs such as doxorubicin. This study aimed to establish molecular profiling and therapeutic efficacy assessment of chloroquine and/or tioconazole (TIC) combination with doxorubicin (DOX) as anew combination model in MCF-7 breast cancer. The drugs are tested against apoptotic/autophagic pathways and related redox status. Molecular docking revealed that chloroquine (CQ) and TIC could be potential PI3K and ATG4B pathway inhibitors. Combination therapy significantly inhibited cancer cell viability, PI3K/AkT/mTOR pathway, and tumor-supporting autophagic flux, however, induced apoptotic pathways and altered nuclear genotoxic feature. Our data revealed that the combination cocktail therapy markedly inhibited tumor proliferation marker (KI-67) and cell growth, along with the accumulation of autophagosomes and elevation of LC3-II and p62 levels indicated autophagic flux blockage and increased apoptosis. Additionally, CQ and/or TIC combination therapy with DOX exerts its activity on the redox balance of cancer cells mediated ROS-dependent apoptosis induction achieved by GPX3 suppression. Besides, Autophagy inhibition causes moderately upregulation in ATGs 5,7 redundant proteins strengthened combinations induced apoptosis, whereas inhibition of PI3K/AKT/mTOR pathway with Beclin-1 upregulation leading to cytodestructive autophagy with overcome drug resistance effectively in curing cancer. Notably, the tumor growth inhibition and various antioxidant effects were observed in vivo. These results suggest CQ and/or TIC combination with DOX could act as effective cocktail therapy targeting autophagy and PI3K/AKT/mTOR pathways in MCF-7 breast cancer cells and hence, sensitizes cancer cells to doxorubicin treatment and combat its toxicity.
Collapse
|
44
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
45
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
46
|
Yde Ohki CM, Grossmann L, Alber E, Dwivedi T, Berger G, Werling AM, Walitza S, Grünblatt E. The stress-Wnt-signaling axis: a hypothesis for attention-deficit hyperactivity disorder and therapy approaches. Transl Psychiatry 2020; 10:315. [PMID: 32948744 PMCID: PMC7501308 DOI: 10.1038/s41398-020-00999-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric neurodevelopmental disorders in children and adolescents. Although ADHD has been studied for nearly a century, the cause and pathophysiology of ADHD is yet largely unknown. However, findings from previous studies have resulted in the formation of a new hypothesis: Apart from the well-known multifactorial etiology of ADHD, recent evidence suggests that the interaction between genetic and environmental factors and especially Wnt- and mTOR-signaling pathways might have an important role in the pathophysiology of ADHD. The Wnt-signaling pathway is known to orchestrate cellular proliferation, polarity, and differentiation, and the mTOR pathway is involved in several significant processes of neurodevelopment and synaptic plasticity. As a result, dysregulations of these pathways in a time-dependent manner could lead to neurodevelopmental delays, resulting in ADHD phenotype. This review presents further evidence supporting our hypothesis by combining results from studies on ADHD and Wnt- or mTOR-signaling and the influence of genetics, methylphenidate treatment, Omega-3 supplementation, and stress.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Leoni Grossmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Emma Alber
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Tanushree Dwivedi
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
47
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 PMCID: PMC7105616 DOI: 10.3389/fphar.2020.00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
48
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 DOI: 10.3389/fphar.2020.00344/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/20/2023] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|