1
|
Roidos C, Anastasiadis A, Tsiakaras S, Loutradis C, Baniotis P, Memmos D, Dimitriadis G, Papaioannou M. Integration of Genomic Tests in Prostate Cancer Care: Implications for Clinical Practice and Patient Outcomes. Curr Issues Mol Biol 2024; 46:14408-14421. [PMID: 39727992 DOI: 10.3390/cimb46120864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Prostate cancer (PCa) is a common malignancy in men and is among the leading causes of cancer-related death worldwide. Genomic tests assess disease aggressiveness and guide treatment, particularly in low- and intermediate-risk PCa. We reviewed the literature on the use of four genomic tests (Prolaris®, Promark®, Oncotype DX®, and Decipher®) in assessing the prognosis of PCa and their use in treatment decision-making. Most of the studies showed that Prolaris® has a strong correlation with biochemical recurrence, metastasis risk, PCa-specific mortality (PCSM), and pathological features. Similarly, three studies on Promark® indicated a connection between results and pathological features in the subsequent prostatectomy, time to metastasis, and biochemical recurrence. Fourteen studies on Oncotype DX® showed a clear correlation between high scores, death, and PCSM. One study found that routine biopsy pathology reports, combined with serum PSA levels, provide a risk assessment comparable to Oncotype DX® testing. Results from 22 studies on Decipher® were controversial. The test was associated with conservative management, suggesting that patients with a high GC score are more likely to need radiation after surgery. Comparative studies indicated that Oncotype DX® is preferable for assessing PCSM, Decipher® for predicting metastasis, and Prolaris® for predicting recurrence. With the incidence rate of PCa dramatically increasing, genomic tests appear to be useful adjunctive precision medicine tools with significant potential in improving prognostic discrimination, facilitating better risk stratification, and guiding personalized treatment, especially in the intermediate-risk patient group. Large-scale, prospective, multi-sectional studies are required to validate the utility of these tests prior to their integration into clinical practice.
Collapse
Affiliation(s)
- Christos Roidos
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Anastasios Anastasiadis
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Stavros Tsiakaras
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Charalampos Loutradis
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Baniotis
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Dimitrios Memmos
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Georgios Dimitriadis
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Maria Papaioannou
- First Department of Urology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
2
|
Sundaresan VM, Webb L, Rabil M, Golos A, Sutherland R, Bailey J, Rajwa P, Seibert TM, Loeb S, Cooperberg MR, Catalona WJ, Sprenkle PC, Kim IY, Leapman MS. Risks of grade reclassification among patients with Gleason grade group 1 prostate cancer and PI-RADS 5 findings on prostate MRI. Urol Oncol 2024:S1078-1439(24)00723-3. [PMID: 39706698 DOI: 10.1016/j.urolonc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 11/03/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND AND OBJECTIVE As most Prostate Imaging Reporting and Data System (PI-RADS) 5 lesions on MRI harbor Gleason grade (GG) group ≥2 disease on biopsy, optimal management of patients with imaging-biopsy discordance remains unclear. To estimate grade misclassification, we evaluated the incidence of Gleason upgrading among patients with GG1 disease in the setting of a PI-RADS 5 lesion. METHODS We conducted a single-institution retrospective analysis to identify patients with GG1 prostate cancer on fusion biopsy with MRI demonstrating ≥1 PI-RADS 5 lesion. Primary study outcome was identification of ≥GG2 disease on subsequent active surveillance (AS) biopsy or radical prostatectomy (RP). We used multivariable models to examine factors associated with reclassification. RESULTS We identified 110 patients with GG1 disease on initial biopsy and ≥1 PI-RADS 5 lesion. There were 104 patients (94.6%) initially managed with AS and 6 (5.5%) received treatment. Sixty-one patients (58.7%) on AS underwent additional biopsies. Of these, 43 (70.5%) patients had tumor upgrading, with 32 (74.4%) upgraded on first surveillance biopsy. Forty-four (40%) patients ultimately received treatment, including prostatectomy in 15 (13.6%) and radiation in 25 (22.7%). Two patients (1.8%) developed metastases. In multivariable models, genomic classifier score was associated with upgrading. Limitations include a lack of multi-institutional data and long-term outcomes data. CONCLUSIONS Most patients diagnosed with GG1 prostate cancer on MRI-Ultrasound fusion biopsy in the setting of a PI-RADS 5 lesion were found to have ≥GG2 disease on subsequent tissue sampling, suggesting substantial initial misclassification and reinforcing the need for confirmatory testing.
Collapse
Affiliation(s)
| | - Lindsey Webb
- Department of Urology, Yale School of Medicine, New Haven, CT
| | | | | | - Ryan Sutherland
- Department of Urology, Yale School of Medicine, New Haven, CT
| | - Jonell Bailey
- Department of Urology, Yale School of Medicine, New Haven, CT
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA; Department of Radiology, University of California San Diego, La Jolla, CA; Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Stacy Loeb
- Departments of Urology and Population Health, New York University Langone Health, New York, NY; Manhattan Veterans Affairs Medical Center, New York, NY
| | - Matthew R Cooperberg
- Department of Urology, University of California San Francisco, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - William J Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Isaac Y Kim
- Department of Urology, Yale School of Medicine, New Haven, CT
| | - Michael S Leapman
- Department of Urology, Yale School of Medicine, New Haven, CT; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT; Yale Cancer Outcomes, Public Policy and Effectiveness Research Center, New Haven, CT.
| |
Collapse
|
3
|
Zhu A, Proudfoot JA, Davicioni E, Ross AE, Petkov VI, Bonds S, Schussler N, Zaorsky NG, Jia AY, Spratt DE, Schaeffer EM, Liu Y, Strasser MO, Hu JC. Use of Decipher Prostate Biopsy Test in Patients with Favorable-risk Disease Undergoing Conservative Management or Radical Prostatectomy in the Surveillance, Epidemiology, and End Results Registry. Eur Urol Oncol 2024; 7:1504-1512. [PMID: 38972832 DOI: 10.1016/j.euo.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND OBJECTIVE The extent of prostate cancer found on biopsy, as well as prostate cancer grade and genomic tests, can affect clinical decision-making. The impact of these factors on the initial management approach and subsequent patient outcomes for men with favorable-grade prostate cancer has not yet been determined on a population level. Our objective was to explore the association of Decipher 22-gene genomic classifier (GC) biopsy testing on the initial use of conservative management versus radical prostatectomy (RP) and to determine the independent effect of GC scores on RP pathologic outcomes. METHODS A total of 87 140 patients diagnosed with grade group 1 and 2 prostate cancer between 2016 and 2018 from the Surveillance, Epidemiology, and End Results registry data were linked to GC testing results (2576 tested and 84 564 untested with a GC). The primary endpoints of interest were receipt of conservative management or RP, pathologic upgrading (pathologic grade group 3-5), upstaging (pathologic ≥T3b), and adverse pathologic features (pathologic upgrading, upstaging, or lymph node invasion). Multivariable logistic regressions quantified the association of variables with outcomes of interest. KEY FINDINGS AND LIMITATIONS GC tested patients were more likely to have grade group 2 on biopsy (51% vs 46%, p < 0.001) and lower prostate-specific antigen (6.1 vs 6.3, p = 0.016). Conservative management increased from 37% to 39% and from 22% to 24% during 2016-2018 for the GC tested and untested populations, respectively. GC testing was significantly associated with increased odds of conservative management (odds ratio [OR] 2.1, 95% confidence interval [CI] 1.9-2.4, p < 0.001). The distribution of biopsy GC risk was as follows: 45% low risk, 30% intermediate risk, and 25% high risk. In adjusted analyses, higher GC (per 0.1 increment) scores (OR 1.24, 95% CI 1.17-1.31, p < 0.001) and percent positive cores (1.07, 95% CI 1.02-1.12, p = 0.009) were significantly associated with the receipt of RP. A higher GC score was significantly associated with all adverse outcomes (pathologic upgrading [OR 1.29, 95% CI 1.12-1.49, p < 0.001], upstaging [OR 1.31, 95% CI 1.05-1.62, p = 0.020], and adverse pathology [OR 1.27, 95% CI 1.12-1.45, p < 0.001]). Limitations include observational biases associated with the retrospective study design. CONCLUSIONS AND CLINICAL IMPLICATIONS Men who underwent GC testing were more likely to undergo conservative management. GC testing at biopsy is prognostic of adverse pathologic outcomes in a large population-based registry. PATIENT SUMMARY In this population analysis of men with favorable-risk prostate cancer, those who underwent genomic testing at biopsy were more likely to undergo conservative management. Of men who initially underwent radical prostatectomy, higher genomic risk but not tumor volume was associated with adverse pathologic outcomes. The use of genomic testing at prostate biopsy improves risk stratification and may better inform treatment decisions than the use of tumor volume alone.
Collapse
Affiliation(s)
- Alec Zhu
- Department of Urology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Ashley E Ross
- Department of Urology, Northwestern Medicine, Chicago, IL, USA
| | - Valentina I Petkov
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Bonds
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Nicholas G Zaorsky
- Department of Radiation Oncology, UH Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, UH Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, UH Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Yang Liu
- Veracyte, South San Francisco, CA, USA
| | - Mary O Strasser
- Department of Urology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jim C Hu
- Department of Urology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Ghoreifi A, Gomella L, Hu JC, Konety B, Lunelli L, Rastinehad AR, Salomon G, Taneja S, Tourinho-Barbosa R, Lebastchi AH. Identifying the best candidate for focal therapy: a comprehensive review. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00907-y. [PMID: 39443815 DOI: 10.1038/s41391-024-00907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite the evidence supporting the use of focal therapy (FT) in patients with localized prostate cancer (PCa), considerable variability exists in the patient selection criteria across current studies. This study aims to review the most recent evidence concerning the optimal approach to patient selection for FT in PCa. METHODS PubMed database was systematically queried for studies reporting patient selection criteria in FT for PCa before December 31, 2023. After excluding non-relevant articles and a quality assessment, data were extracted, and results were described qualitatively. RESULTS There is no level I evidence regarding the best patient selection approach for FT in patients with PCa. Current international multidisciplinary consensus statements recommend multiparametric magnetic resonance imaging (mpMRI) followed by MRI-targeted and systematic biopsy for all candidates. FT may be considered in clinically localized, intermediate risk (Gleason 3 + 4 and 4 + 3), and preferably unifocal disease. Patients should have an acceptable life expectancy. Those with prostate volume >50 ml and erectile dysfunction should not be excluded from FT. Prostate-specific antigen (PSA) level of < 20 (ideally < 10) ng/mL is recommended. However, the utility of other molecular and genomic biomarkers in patient selection for FT remains unknown. CONCLUSIONS FT may be considered in well-selected patients with localized PCa. This review provides a comprehensive insight regarding the optimal approach for patient selection in FT.
Collapse
Affiliation(s)
- Alireza Ghoreifi
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Leonard Gomella
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jim C Hu
- Department of Urology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Badrinath Konety
- Allina Health Cancer Institute, Minneapolis, Minneapolis, MN, USA
| | - Luca Lunelli
- Department of Urology, Hospital Louis Pasteur, Chartres, France
| | | | - Georg Salomon
- Martini Clinic, Prostate Cancer Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samir Taneja
- Department of Urology, NYU Langone Health, New York, NY, USA
| | - Rafael Tourinho-Barbosa
- Department of Urology, Institut Mutualiste Montsouris, Université Paris-Descartes, Paris, France
| | - Amir H Lebastchi
- Department of Urology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Lenz L, Clegg W, Iliev D, Kasten CR, Korman H, Morgan TM, Hafron J, DeHaan A, Olsson C, Tutrone RF, Richardson T, Cline K, Yonover PM, Jasper J, Cohen T, Finch R, Slavin TP, Gutin A. Active surveillance selection and 3-year durability in intermediate-risk prostate cancer following genomic testing. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00888-y. [PMID: 39237680 DOI: 10.1038/s41391-024-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Genomic testing can add risk stratification information to clinicopathological features in prostate cancer, aiding in shared medical decision-making between the clinician and patient regarding whether active surveillance (AS) or definitive treatment (DT) is most appropriate. Here we examined initial AS selection and 3-year AS durability in patients diagnosed with localized intermediate-risk prostate cancer who underwent Prolaris testing before treatment decision-making. METHODS This retrospective observational cohort study included 3208 patients from 10 study sites who underwent Prolaris testing at diagnosis from September 2015 to December 2018. Prolaris utilizes a combined clinical cell cycle risk score calculated at diagnostic biopsy to stratify patients by the Prolaris AS threshold (below threshold, patient recommended to AS or above threshold, patient recommended to DT). AS selection rates and 3-year AS durability were compared in patients recommended to AS or DT by Prolaris testing. Univariable and multivariable logistic regression models and Cox proportional hazard models were used with molecular and clinical variables as predictors of initial treatment decision and AS durability, respectively. RESULTS AS selection was ~2 times higher in patients recommended to AS by Prolaris testing than in those recommended to DT (p < 0.0001). Three-year AS durability was ~1.5 times higher in patients recommended to AS by Prolaris testing than in those recommended to DT (p < 0.0001). Prolaris treatment recommendation remained a statistically significant predictor of initial AS selection and AS durability after accounting for CAPRA or Gleason scores. CONCLUSIONS Prolaris added significant information to clinical risk stratification to aid in treatment decision making. Intermediate-risk prostate cancer patients who were recommended to AS by Prolaris were more likely to initially pursue AS and were more likely to remain on AS at 3 years post-diagnosis than patients recommended to DT.
Collapse
Affiliation(s)
- Lauren Lenz
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | - Wyatt Clegg
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | - Diana Iliev
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | | | - Howard Korman
- Comprehensive Urology, Royal Oak, MI, USA
- Wayne State University, Detroit, MI, USA
| | | | | | | | - Carl Olsson
- Integrated Medical Professionals, Melville, NY, USA
| | | | | | | | | | - Jeff Jasper
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | - Todd Cohen
- Myriad Genetics, Inc., Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
6
|
Petkov VI, Byun JS, Ward KC, Schussler NC, Archer NP, Bentler S, Doherty JA, Durbin EB, Gershman ST, Cheng I, Insaf T, Gonsalves L, Hernandez BY, Koch L, Liu L, Monnereau A, Morawski BM, Schwartz SM, Stroup A, Wiggins C, Wu XC, Bonds S, Negoita S, Penberthy L. Reporting tumor genomic test results to SEER registries via linkages. J Natl Cancer Inst Monogr 2024; 2024:168-179. [PMID: 39102888 DOI: 10.1093/jncimonographs/lgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Precision medicine has become a mainstay of cancer care in recent years. The National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) Program has been an authoritative source of cancer statistics and data since 1973. However, tumor genomic information has not been adequately captured in the cancer surveillance data, which impedes population-based research on molecular subtypes. To address this, the SEER Program has developed and implemented a centralized process to link SEER registries' tumor cases with genomic test results that are provided by molecular laboratories to the registries. METHODS Data linkages were carried out following operating procedures for centralized linkages established by the SEER Program. The linkages used Match*Pro, a probabilistic linkage software, and were facilitated by the registries' trusted third party (an honest broker). The SEER registries provide to NCI limited datasets that undergo preliminary evaluation prior to their release to the research community. RESULTS Recently conducted genomic linkages included OncotypeDX Breast Recurrence Score, OncotypeDX Breast Ductal Carcinoma in Situ, OncotypeDX Genomic Prostate Score, Decipher Prostate Genomic Classifier, DecisionDX Uveal Melanoma, DecisionDX Preferentially Expressed Antigen in Melanoma, DecisionDX Melanoma, and germline tests results in Georgia and California SEER registries. CONCLUSIONS The linkages of cancer cases from SEER registries with genomic test results obtained from molecular laboratories offer an effective approach for data collection in cancer surveillance. By providing de-identified data to the research community, the NCI's SEER Program enables scientists to investigate numerous research inquiries.
Collapse
Affiliation(s)
- Valentina I Petkov
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Jung S Byun
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Natalie P Archer
- Cancer Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, TX, USA
| | - Suzanne Bentler
- Iowa Cancer Registry, The University of Iowa, Iowa City, IA, USA
| | - Jennifer A Doherty
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Eric B Durbin
- Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, Kentucky Cancer Registry, University of Kentucky, Lexington, KY, USA
| | | | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Tabassum Insaf
- New York State Department of Health, New York State Cancer Registry, Albany, NY, USA
| | - Lou Gonsalves
- Connecticut Department of Public Health, Connecticut Tumor Registry, Hartford, CT, USA
| | | | - Lori Koch
- Illinois State Cancer Registry, Springfield, IL, USA
| | - Lihua Liu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alain Monnereau
- Public Health Institute, Cancer Registry of Greater California, Sacramento, CA, USA
| | | | - Stephen M Schwartz
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Charles Wiggins
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Xiao-Cheng Wu
- School of Medicine, Louisiana State University, New Orleans, LA, USA
| | - Sarah Bonds
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Serban Negoita
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Lynne Penberthy
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Abstract
Since the widespread adoption of prostate-specific antigen-based screening for prostate cancer, the prevalence of Grade Group 1 (GG1) prostate cancer has risen. Historically, these patients were subjected to overtreatment of this otherwise indolent disease process, leading to significant quality-of-life detriments. Active surveillance as a primary management strategy has allowed for a focus on early detection while minimising morbidity from unnecessary intervention. Here we provide a comprehensive overview of the characteristics of GG1 prostatic adenocarcinoma, including its histological features, genomic differentiators, clinical progression, and implications for treatment guidelines, all supporting the movement to reclassify GG1 disease as a non-cancerous entity.
Collapse
Affiliation(s)
- Ruchika Talwar
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David F Penson
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Lorenzo G, Heiselman JS, Liss MA, Miga MI, Gomez H, Yankeelov TE, Reali A, Hughes TJ. A Pilot Study on Patient-specific Computational Forecasting of Prostate Cancer Growth during Active Surveillance Using an Imaging-informed Biomechanistic Model. CANCER RESEARCH COMMUNICATIONS 2024; 4:617-633. [PMID: 38426815 PMCID: PMC10906139 DOI: 10.1158/2767-9764.crc-23-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer. However, current AS protocols rely on detecting tumor progression through direct observation according to population-based monitoring strategies. This approach limits the design of patient-specific AS plans and may delay the detection of tumor progression. Here, we present a pilot study to address these issues by leveraging personalized computational predictions of prostate cancer growth. Our forecasts are obtained with a spatiotemporal biomechanistic model informed by patient-specific longitudinal mpMRI data (T2-weighted MRI and apparent diffusion coefficient maps from diffusion-weighted MRI). Our results show that our technology can represent and forecast the global tumor burden for individual patients, achieving concordance correlation coefficients from 0.93 to 0.99 across our cohort (n = 7). In addition, we identify a model-based biomarker of higher-risk prostate cancer: the mean proliferation activity of the tumor (P = 0.041). Using logistic regression, we construct a prostate cancer risk classifier based on this biomarker that achieves an area under the ROC curve of 0.83. We further show that coupling our tumor forecasts with this prostate cancer risk classifier enables the early identification of prostate cancer progression to higher-risk disease by more than 1 year. Thus, we posit that our predictive technology constitutes a promising clinical decision-making tool to design personalized AS plans for patients with prostate cancer. SIGNIFICANCE Personalization of a biomechanistic model of prostate cancer with mpMRI data enables the prediction of tumor progression, thereby showing promise to guide clinical decision-making during AS for each individual patient.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Jon S. Heiselman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael A. Liss
- Department of Urology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Michael I. Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery, Radiology, and Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Gomez
- School of Mechanical Engineering, Weldon School of Biomedical Engineering, and Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
- Livestrong Cancer Institutes and Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, The University of Texas at Austin, Austin, Texas
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandro Reali
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Thomas J.R. Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
9
|
Baydoun A, Jia AY, Zaorsky NG, Kashani R, Rao S, Shoag JE, Vince RA, Bittencourt LK, Zuhour R, Price AT, Arsenault TH, Spratt DE. Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis 2024; 27:37-45. [PMID: 37296271 DOI: 10.1038/s41391-023-00684-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Artificial intelligence (AI) applications have enabled remarkable advancements in healthcare delivery. These AI tools are often aimed to improve accuracy and efficiency of histopathology assessment and diagnostic imaging interpretation, risk stratification (i.e., prognostication), and prediction of therapeutic benefit for personalized treatment recommendations. To date, multiple AI algorithms have been explored for prostate cancer to address automation of clinical workflow, integration of data from multiple domains in the decision-making process, and the generation of diagnostic, prognostic, and predictive biomarkers. While many studies remain within the pre-clinical space or lack validation, the last few years have witnessed the emergence of robust AI-based biomarkers validated on thousands of patients, and the prospective deployment of clinically-integrated workflows for automated radiation therapy design. To advance the field forward, multi-institutional and multi-disciplinary collaborations are needed in order to prospectively implement interoperable and accountable AI technology routinely in clinic.
Collapse
Affiliation(s)
- Atallah Baydoun
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rojano Kashani
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Santosh Rao
- Department of Medicine, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Randy A Vince
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leonardo Kayat Bittencourt
- Department of Radiology, University Hospitals Cleveland Medical Center Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raed Zuhour
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alex T Price
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Theodore H Arsenault
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Sood A, Kishan AU, Evans CP, Feng FY, Morgan TM, Murphy DG, Padhani AR, Pinto P, Van der Poel HG, Tilki D, Briganti A, Abdollah F. The Impact of Positron Emission Tomography Imaging and Tumor Molecular Profiling on Risk Stratification, Treatment Choice, and Oncological Outcomes of Patients with Primary or Relapsed Prostate Cancer: An International Collaborative Review of the Existing Literature. Eur Urol Oncol 2024; 7:27-43. [PMID: 37423774 DOI: 10.1016/j.euo.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
CONTEXT The clinical introduction of next-generation imaging methods and molecular biomarkers ("radiogenomics") has revolutionized the field of prostate cancer (PCa). While the clinical validity of these tests has thoroughly been vetted, their clinical utility remains a matter of investigation. OBJECTIVE To systematically review the evidence to date on the impact of positron emission tomography (PET) imaging and tissue-based prognostic biomarkers, including Decipher, Prolaris, and Oncotype Dx, on the risk stratification, treatment choice, and oncological outcomes of men with newly diagnosed PCa or those with biochemical failure (BCF). EVIDENCE ACQUISITION We performed a quantitative systematic review of the literature using the MEDLINE, EMBASE, and Web of Science databases (2010-2022) following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement guidelines. The validated Quality Assessment of Diagnostic Accuracy Studies 2 scoring system was used to assess the risk of bias. EVIDENCE SYNTHESIS A total of 148 studies (130 on PET and 18 on biomarkers) were included. In the primary PCa setting, prostate-specific membrane antigen (PSMA) PET imaging was not useful in improving T staging, moderately useful in improving N staging, but consistently useful in improving M staging in patients with National Comprehensive Cancer Network (NCCN) unfavorable intermediate- to very-high-risk PCa. Its use led to a management change in 20-30% of patients. However, the effect of these treatment changes on survival outcomes was not clear. Similarly, biomarkers in the pretherapy primary PCa setting increased and decreased the risk, respectively, in 7-30% and 32-36% of NCCN low-risk and 31-65% and 4-15% of NCCN favorable intermediate-risk patients being considered for active surveillance. A change in management was noted in up to 65% of patients, with the change being in line with the molecular risk-based reclassification, but again, the impact of these changes on survival outcomes remained unclear. Notably, in the postsurgical primary PCa setting, biomarker-guided adjuvant radiation therapy (RT) was associated with improved oncological control: Δ↓ 2-yr BCF by 22% (level 2b). In the BCF setting, the data were more mature. PSMA PET was consistently useful in improving disease localization-Δ↑ detection for T, N, and M staging was 13-32%, 19-58%, and 9-29%, respectively. Between 29% and 73% of patients had a change in management. Most importantly, these management changes were associated with improved survival outcomes in three trials: Δ↑ 4-yr disease-free survival by 24.3%, Δ↑ 6-mo metastasis-free survival (MFS) by 46.7%, and Δ↑ androgen deprivation therapy-free survival by 8 mo in patients who received PET-concordant RT (level 1b-2b). Biomarker testing in these patients also appeared to be helpful in risk stratifying and guiding the use of early salvage RT (sRT) and concomitant hormonal therapy. Patients with high-genomic-risk scores benefitted from treatment intensification: Δ↑ 8-yr MFS by 20% with the use of early sRT and Δ↑ 12-yr MFS by 11.2% with the use of hormonal therapy alongside early sRT, while low-genomic-risk score patients did equally well with initial conservative management (level 3). CONCLUSIONS Both PSMA PET imaging and tumor molecular profiling provide actionable information in the management of men with primary PCa and those with BCF. Emerging data suggest that radiogenomics-guided treatments translate into direct survival benefits for patients, however, additional prospective data are awaited. PATIENT SUMMARY In this review, we evaluated the utility of prostate-specific membrane antigen positron emission tomography and tumor molecular profiling in guiding the care of men with prostate cancer (PCa). We found that these tests augmented risk stratification, altered management, and improved cancer control in men with a new diagnosis of PCa or for those experiencing a relapse.
Collapse
Affiliation(s)
- Akshay Sood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Urology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Amar U Kishan
- Department of Radiation Oncology and Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Sacramento, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Declan G Murphy
- Department of Genitourinary Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Victoria, Australia
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| | - Peter Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henk G Van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | - Alberto Briganti
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Firas Abdollah
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
11
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
12
|
Liosis KC, Marouf AA, Rokne JG, Ghosh S, Bismar TA, Alhajj R. Genomic Biomarker Discovery in Disease Progression and Therapy Response in Bladder Cancer Utilizing Machine Learning. Cancers (Basel) 2023; 15:4801. [PMID: 37835496 PMCID: PMC10571566 DOI: 10.3390/cancers15194801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer in all its forms of expression is a major cause of death. To identify the genomic reason behind cancer, discovery of biomarkers is needed. In this paper, genomic data of bladder cancer are examined for the purpose of biomarker discovery. Genomic biomarkers are indicators stemming from the study of the genome, either at a very low level based on the genome sequence itself, or more abstractly such as measuring the level of gene expression for different disease groups. The latter method is pivotal for this work, since the available datasets consist of RNA sequencing data, transformed to gene expression levels, as well as data on a multitude of clinical indicators. Based on this, various methods are utilized such as statistical modeling via logistic regression and regularization techniques (elastic-net), clustering, survival analysis through Kaplan-Meier curves, and heatmaps for the experiments leading to biomarker discovery. The experiments have led to the discovery of two gene signatures capable of predicting therapy response and disease progression with considerable accuracy for bladder cancer patients which correlates well with clinical indicators such as Therapy Response and T-Stage at surgery with Disease Progression in a time-to-event manner.
Collapse
Affiliation(s)
- Konstantinos Christos Liosis
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmed Al Marouf
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jon G Rokne
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Departments of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2J5, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Center, Calgary, AB T2V 1P9, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Computer Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
- Department of Heath Informatics, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
13
|
San Francisco IF, Rojas PA, Bravo JC, Díaz J, Ebel L, Urrutia S, Prieto B, Cerda-Infante J. Can We Predict Prostate Cancer Metastasis Based on Biomarkers? Where Are We Now? Int J Mol Sci 2023; 24:12508. [PMID: 37569883 PMCID: PMC10420177 DOI: 10.3390/ijms241512508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The incidence of prostate cancer (PC) has risen annually. PC mortality is explained by the metastatic disease (mPC). There is an intermediate scenario in which patients have non-mPC but have initiated a metastatic cascade through epithelial-mesenchymal transition. There is indeed a need for more and better tools to predict which patients will progress in the future to non-localized clinical disease or already have micrometastatic disease and, therefore, will clinically progress after primary treatment. Biomarkers for the prediction of mPC are still under development; there are few studies and not much evidence of their usefulness. This review is focused on tissue-based genomic biomarkers (TBGB) for the prediction of metastatic disease. We develop four main research questions that we attempt to answer according to the current evidence. Why is it important to predict metastatic disease? Which tests are available to predict metastatic disease? What impact should there be on clinical guidelines and clinical practice in predicting metastatic disease? What are the current prostate cancer treatments? The importance of predicting metastasis is fundamental given that, once metastasis is diagnosed, quality of life (QoL) and survival drop dramatically. There is still a need and space for more cost-effective TBGB tests that predict mPC disease.
Collapse
Affiliation(s)
- Ignacio F. San Francisco
- Environ Innovation Laboratory, Avenida Providencia 1208 Oficina 207, Providencia, Santiago 7500000, Chile;
| | - Pablo A. Rojas
- Servicio de Urología, Complejo Asistencial Dr. Sotero del Río, Santiago 8150215, Chile;
| | - Juan C. Bravo
- Servicio de Urología, Hospital Regional Libertador Bernardo O’Higgins, Rancagua 2820000, Chile;
| | - Jorge Díaz
- Servicio de Urología, Instituto Oncológico Fundación Arturo López Pérez, Santiago 7500921, Chile;
| | - Luis Ebel
- Servicio de Urología, Hospital Base de Valdivia, Universidad Austral, Valdivia 5090000, Chile;
| | - Sebastián Urrutia
- Servicio de Urología, Hospital Dr. Hernán Henríquez Aravena, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Benjamín Prieto
- Environ Innovation Laboratory, Avenida Providencia 1208 Oficina 207, Providencia, Santiago 7500000, Chile;
| | - Javier Cerda-Infante
- Environ Innovation Laboratory, Avenida Providencia 1208 Oficina 207, Providencia, Santiago 7500000, Chile;
| |
Collapse
|
14
|
Laajala TD, Sreekanth V, Soupir AC, Creed JH, Halkola AS, Calboli FCF, Singaravelu K, Orman MV, Colin-Leitzinger C, Gerke T, Fridley BL, Tyekucheva S, Costello JC. A harmonized resource of integrated prostate cancer clinical, -omic, and signature features. Sci Data 2023; 10:430. [PMID: 37407670 PMCID: PMC10322899 DOI: 10.1038/s41597-023-02335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or not standardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan H Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Federico C F Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael V Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
15
|
Sutera P, Skinner H, Witek M, Mishra M, Kwok Y, Davicioni E, Feng F, Song D, Nichols E, Tran PT, Bergom C. Histology Specific Molecular Biomarkers: Ushering in a New Era of Precision Radiation Oncology. Semin Radiat Oncol 2023; 33:232-242. [PMID: 37331778 PMCID: PMC10446901 DOI: 10.1016/j.semradonc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Histopathology and clinical staging have historically formed the backbone for allocation of treatment decisions in oncology. Although this has provided an extremely practical and fruitful approach for decades, it has long been evident that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. As efficient and affordable DNA and RNA sequencing have become available, the ability to provide precision therapy has become within grasp. This has been realized with systemic oncologic therapy, as targeted therapies have demonstrated immense promise for subsets of patients with oncogene-driver mutations. Further, several studies have evaluated predictive biomarkers for response to systemic therapy within a variety of malignancies. Within radiation oncology, the use of genomics/transcriptomics to guide the use, dose, and fractionation of radiation therapy is rapidly evolving but still in its infancy. The genomic adjusted radiation dose/radiation sensitivity index is one such early and exciting effort to provide genomically guided radiation dosing with a pan-cancer approach. In addition to this broad method, a histology specific approach to precision radiation therapy is also underway. Herein we review select literature surrounding the use of histology specific, molecular biomarkers to allow for precision radiotherapy with the greatest emphasis on commercially available and prospectively validated biomarkers.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heath Skinner
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Witek
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Felix Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Daniel Song
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Nichols
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Perera M, Jibara G, Tin AL, Haywood S, Sjoberg DD, Benfante NE, Carlsson SV, Eastham JA, Laudone V, Touijer KA, Fine S, Scardino PT, Vickers AJ, Ehdaie B. Outcomes of Grade Group 2 and 3 Prostate Cancer on Initial Versus Confirmatory Biopsy: Implications for Active Surveillance. Eur Urol Focus 2023; 9:662-668. [PMID: 36566100 PMCID: PMC10285029 DOI: 10.1016/j.euf.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Active surveillance (AS) is recommended as the preferred treatment for men with low-risk disease. In order to optimize risk stratification and exclude undiagnosed higher-grade disease, most AS protocols recommend a confirmatory biopsy. OBJECTIVE We aimed to compare outcomes among men with grade group (GG) 2/3 prostate cancer on initial biopsy with those among men whose disease was initially GG1 but was upgraded to GG2/3 on confirmatory biopsy. DESIGN, SETTING, AND PARTICIPANTS We reviewed patients undergoing radical prostatectomy (RP) in two cohorts: "immediate RP group," with GG2/3 cancer on diagnostic biopsy, and "AS group," with GG1 cancer on initial biopsy that was upgraded to GG2/3 on confirmatory biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Probabilities of biochemical recurrence (BCR) and salvage therapy were determined using multivariable Cox regression models with risk adjustment. Risks of adverse pathology at RP were also compared using logistic regression. RESULTS AND LIMITATIONS The immediate RP group comprised 4009 patients and the AS group comprised 321 patients. The AS group had lower adjusted rates of adverse pathology (27% vs 35%, p = 0.003). BCR rates were lower in the AS group, although this did not reach conventional significance (hazard ratio [HR] 0.73, 95% confidence interval [CI] 0.50-1.06, p = 0.10) compared with the immediate RP group. Risk-adjusted 1- and 5-yr BCR rates were 4.6% (95% CI 3.0-6.5%) and 10.4% (95% CI 6.9-14%), respectively, for the AS group compared with 6.3% (95% CI 5.6-7.0%) and 20% (95% CI 19-22%), respectively, in the immediate RP group. A nonsignificant association was observed for salvage treatment-free survival favoring the AS group (HR 0.67, 95% CI 0.42, 1.06, p = 0.087). CONCLUSIONS We found that men with GG1 cancer who were upgraded on confirmatory biopsy tend to have less aggressive disease than men with the same grade found at initial biopsy. These results must be confirmed in larger series before recommendations can be made regarding a more conservative approach in men with upgraded pathology on surveillance biopsy. PATIENT SUMMARY We studied men with low-risk prostate cancer who were initially eligible for active surveillance but presented with more aggressive cancer on confirmatory biopsy. We found that outcomes for these men were better than the outcomes for those diagnosed initially with more serious cancer.
Collapse
Affiliation(s)
- Marlon Perera
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ghalib Jibara
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amy L Tin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel Haywood
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole E Benfante
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sigrid V Carlsson
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - James A Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincent Laudone
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karim A Touijer
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter T Scardino
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behfar Ehdaie
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Ku AT, Shankavaram U, Trostel SY, Zhang H, Sater HA, Harmon SA, Carrabba NV, Liu Y, Wood BJ, Pinto PA, Choyke PL, Stoyanova R, Davicioni E, Pollack A, Turkbey B, Sowalsky AG, Citrin DE. Radiogenomic profiling of prostate tumors prior to external beam radiotherapy converges on a transcriptomic signature of TGF-β activity driving tumor recurrence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.01.23288883. [PMID: 37205576 PMCID: PMC10187349 DOI: 10.1101/2023.05.01.23288883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies. Methods Twenty-nine individuals with intermediate or high risk prostate cancer were prospectively recruited to a clinical trial designed to profile the molecular and imaging features of prostate cancer in patients undergoing EBRT and ADT. Whole transcriptome cDNA microarray and whole exome sequencing were performed on pretreatment targeted biopsy of prostate tumors (n=60). All patients underwent pretreatment and 6-month post EBRT multiparametric MRI (mpMRI), and were followed with serial PSA to assess presence or absence of BCR. Genes differentially expressed in the tumor of patients with and without BCR were investigated using pathways analysis tools and were similarly explored in alternative datasets. Differential gene expression and predicted pathway activation were evaluated in relation to tumor response on mpMRI and tumor genomic profile. A novel TGF-β gene signature was developed in the discovery dataset and applied to a validation dataset. Findings Baseline MRI lesion volume and PTEN/TP53 status in prostate tumor biopsies correlated with the activation state of TGF-β signaling measured using pathway analysis. All three measures correlated with the risk of BCR after definitive RT. A prostate cancer-specific TGF-β signature discriminated between patients that experienced BCR vs. those that did not. The signature retained prognostic utility in an independent cohort. Interpretation TGF-β activity is a dominant feature of intermediate-to-unfavorable risk prostate tumors prone to biochemical failure after EBRT with ADT. TGF-β activity may serve as a prognostic biomarker independent of existing risk factors and clinical decision-making criteria. Funding This research was supported by the Prostate Cancer Foundation, the Department of Defense Congressionally Directed Medical Research Program, National Cancer Institute, and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.
Collapse
Affiliation(s)
- Anson T. Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Shana Y. Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Hong Zhang
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Houssein A. Sater
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | | | - Nicole V. Carrabba
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Yang Liu
- Veracyte, Inc., South San Francisco, CA, USA
| | - Bradford J. Wood
- Center for Interventional Oncology, NIH Clinical Center, Bethesda, MD, USA
| | - Peter A. Pinto
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | | | - Alan Pollack
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
18
|
Laajala TD, Sreekanth V, Soupir A, Creed J, Calboli FCF, Singaravelu K, Orman M, Colin-Leitzinger C, Gerke T, Fidley BL, Tyekucheva S, Costello JC. curatedPCaData: Integration of clinical, genomic, and signature features in a curated and harmonized prostate cancer data resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524403. [PMID: 36711769 PMCID: PMC9882125 DOI: 10.1101/2023.01.17.524403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genomic and transcriptomic data have been generated across a wide range of prostate cancer (PCa) study cohorts. These data can be used to better characterize the molecular features associated with clinical outcomes and to test hypotheses across multiple, independent patient cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing multi-omic datasets. The full potential of such data is yet to be realized as independent datasets exist in different repositories, have been processed using different pipelines, and derived and clinical features are often not provided or unstandardized. Here, we present the curatedPCaData R package, a harmonized data resource representing >2900 primary tumor, >200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using standardized pipelines with updated gene annotations. We show that meta-analysis across harmonized studies has great potential for robust and clinically meaningful insights. curatedPCaData is an open and accessible community resource with code made available for reproducibility.
Collapse
Affiliation(s)
- Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Varsha Sreekanth
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jordan Creed
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Federico CF Calboli
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Natural Resources Institute Finland (Luke), F-31600, Jokioinen, Finland
| | | | - Michael Orman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Brooke L. Fidley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Data Science, Dana-Farber Cancer Institute; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
19
|
Ramaswamy A, Proudfoot JA, Ross AE, Davicioni E, Schaeffer EM, Hu JC. Prostate Cancer Tumor Volume and Genomic Risk. EUR UROL SUPPL 2023; 48:90-97. [PMID: 36743402 PMCID: PMC9895765 DOI: 10.1016/j.euros.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Background Despite the historic association of higher prostate cancer volume with worse oncologic outcomes, little is known about the impact of tumor volume on cancer biology. Objective To characterize the relationship between tumor volume (measured by percent positive cores [PPC]) and cancer biology (measured by Decipher genomic risk classifier [GC]) in men who underwent prostate biopsy. Design setting and participants Prostate biopsies from 52 272 men profiled with Decipher captured in a population-based prospective tumor registry were collected from 2016 to 2021. Outcome measurements and statistical analysis The degree of distribution and correlation of PPC with a GC score across grade group (GG) strata were examined using the Mann-Whitney U test, Pearson correlation coefficient, and multivariable linear regression controlled for clinicopathologic characteristics. Results and limitations A total of 38 921 (74%) biopsies passed quality control (14 331 GG1, 16 159 GG2, 5661 GG3, 1775 GG4, and 995 GG5). Median PPC and GC increased with sequentially higher GG. There was an increasingly positive correlation (r) between PPC and GC in GG2-5 prostate cancer (r [95% confidence interval {CI}]: 0.07 [0.5, 0.8] in GG2, 0.15 [0.12, 0.17] in GG3, 0.20 [0.15, 0.24] in GG4, and 0.25 [0.19, 0.31] in GG5), with no correlation in GG1 disease (r = 0.01, 95% CI [-0.001, 0.03]). In multivariable linear regression, GC was significantly associated with higher PPC for GG2-5 (all p < 0.05) but was not significantly associated with PPC for GG1. Limitations include retrospective design and a lack of final pathology from radical prostatectomy specimens. Conclusions Higher tumor volume was associated with worse GC for GG2-5 prostate cancer, whereas tumor volume was not associated with worse GC for GG1 disease. The finding that tumor volume is not associated with worse cancer biology in GG1 disease encourages active surveillance for most patients irrespective of tumor volume. Patient summary We studied the relationship between prostate cancer tumor volume and cancer biology, as measured by the Decipher genomic risk score, in men who underwent prostate biopsy. We found that tumor volume was not associated with worse cancer biology for low-grade prostate cancer. Our findings reassuringly support recent guidelines to recommend active surveillance for grade group 1 prostate cancer in most patients, irrespective of tumor volume.
Collapse
Affiliation(s)
- Ashwin Ramaswamy
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ashley E. Ross
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edward M. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jim C. Hu
- Department of Urology, Weill Cornell Medicine, New York, NY, USA,Corresponding author. 525 East 68th Street Starr 946, New York, NY 10065, USA. Tel. +1 (646) 962-9600; Fax: +1 (646) 962-0715.
| |
Collapse
|
20
|
Fallara G, Fankhauser CD, Martini A. Comment on: "Improving the stratification of intermediate risk prostate cancer". Minerva Urol Nephrol 2022; 74:819-821. [PMID: 36629816 DOI: 10.23736/s2724-6051.22.05209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Giuseppe Fallara
- Unit of Urology, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Department of Urology, University College London Hospital, London, UK
| | | | - Alberto Martini
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA -
| | | |
Collapse
|
21
|
Akhoundova D, Feng FY, Pritchard CC, Rubin MA. Molecular Genetics of Prostate Cancer and Role of Genomic Testing. Surg Pathol Clin 2022; 15:617-628. [PMID: 36344179 DOI: 10.1016/j.path.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prostate cancer (PCa) is characterized by profound genomic heterogeneity. Recent advances in personalized treatment entail an increasing need of genomic profiling. For localized PCa, gene expression assays can support clinical decisions regarding active surveillance and adjuvant treatment. In metastatic PCa, homologous recombination deficiency, microsatellite instability-high (MSI-H), and CDK12 deficiency constitute main actionable alterations. Alterations in DNA repair genes confer variable sensitivities to poly(ADP-ribose)polymerase inhibitors, and the use of genomic instability assays as predictive biomarker is still incipient. MSI can be assessed by immunohistochemistry To date there is a lack of consensus as to testing standards.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern 3010, Switzerland
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, 1600 Divisadero Street, Suite H-1031, San Francisco, CA 94115, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St Seattle, WA 98195-7110, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, Bern 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
22
|
Lone Z, Benidir T, Rainey M, Nair M, Davicioni E, Gibb EA, Williamson S, Gupta S, Chaim Ornstein M, Tendulkar R, Weight C, Nguyen JK, Klein EA, Mian OY. Transcriptomic Features of Cribriform and Intraductal Carcinoma of the Prostate. Eur Urol Focus 2022; 8:1575-1582. [PMID: 35662504 DOI: 10.1016/j.euf.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cribriform (CF) and/or intraductal carcinoma (IDC) are associated with more aggressive prostate cancer (CaP) and worse outcomes. OBJECTIVE The transcriptomic features that typify CF/IDC are not well described and the capacity for clinically utilized genomic classifiers to improve risk modeling for CF/IDC remains undefined. DESIGN, SETTING, AND PARTICIPANTS We performed a retrospective review of CaP patients who had Decipher testing at a single high-volume institution. Index lesions from radical prostatectomy specimens were identified by genitourinary pathologists who simultaneously reviewed prostatectomy specimens for the presence of CF and IDC features. Patients were grouped based on pathologic features, specifically the absence of CF/IDC (CF-/IDC-), CF positive only (CF+/IDC-), and CF/IDC positive (CF+/IDC+). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Clinical, pathologic, and genomic categorical variables were assessed using the Pearson chi-square test, while quantitative variables were assessed with the Kruskal-Wallis test. Multivariable logistic regression was used to identify the predictors of high-risk Decipher scores (>0.60). A gene set enrichment analysis was performed to identify genes and gene networks associated with CF/IDC status. RESULTS AND LIMITATIONS A total of 463 patients were included. Patients who were CF+/IDC+ had the highest Decipher risk scores (CF+/IDC+: 0.79 vs CF+/IDC-: 0.71 vs CF-/IDC-: 0.56, p < 0.001). On multivariate logistic regression, predictors of high-risk Decipher scores included the presence of CF, both alone (CF+/IDC-; odds ratio [OR]: 5.45, p < 0.001) or in combination with positive IDC status (CF+/IDC+; OR: 6.87, p < 0.001). On the gene set enrichment analysis, MYC pathway upregulation was significantly enriched in tumor samples from CF/IDC-positive patients (normalized enrichment score [NES]: 1.65, p = 0.046). Other enriched pathways included E2F targets (NES: 1.69, p = 0.031) and oxidative phosphorylation (NES: 1.68, =0 .033). CONCLUSIONS This is the largest series identifying an association between a clinically validated genomic classifier and the presence of CF and IDC at radical prostatectomy. Tumors with CF and intraductal features were associated with aggressive transcriptomic signatures. PATIENT SUMMARY Genomic-based tests are becoming readily available for the management of prostate cancer. We observed that Decipher, a commonly used genomic test in prostate cancer, correlates with unfavorable features in tissue specimens.
Collapse
Affiliation(s)
- Zaeem Lone
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Tarik Benidir
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Monica Nair
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | | | | | - Sean Williamson
- Cleveland Clinic Department of Pathology, Cleveland, OH, USA
| | - Shilpa Gupta
- Cleveland Clinic Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Rahul Tendulkar
- Cleveland Clinic Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jane K Nguyen
- Cleveland Clinic Department of Pathology, Cleveland, OH, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Omar Y Mian
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; Cleveland Clinic Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
23
|
Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data. Cancers (Basel) 2022; 14:cancers14174161. [PMID: 36077698 PMCID: PMC9454661 DOI: 10.3390/cancers14174161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary AS is an option for the initial management of selected patients with intermediate-risk PC. The proper way to predict which men will have an aggressive clinical course or indolent PC who would benefit from AS has not been unveiled. Genetics and MRI can help in the decision-making, but it remains unclear which men would benefit from which tests. In addition, there are several differences between AS protocols in inclusion criteria, monitoring follow-up, and triggers for active treatment. Large series and a few RCTs are under investigation, and more research is needed to establish an optimal therapeutic strategy for patients with intermediate-risk PC. This study summarizes the current data on patients with intermediate-risk PC under AS, recent findings, and discusses future directions. Abstract Active surveillance (AS) is a monitoring strategy to avoid or defer curative treatment, minimizing the side effects of radiotherapy and prostatectomy without compromising survival. AS in intermediate-risk prostate cancer (PC) has increasingly become used. There is heterogeneity in intermediate-risk PC patients. Some of them have an aggressive clinical course and require active treatment, while others have indolent disease and may benefit from AS. However, intermediate-risk patients have an increased risk of metastasis, and the proper way to select the best candidates for AS is unknown. In addition, there are several differences between AS protocols in inclusion criteria, monitoring follow-up, and triggers for active treatment. A few large series and randomized trials are under investigation. Therefore, more research is needed to establish an optimal therapeutic strategy for patients with intermediate-risk disease. This study summarizes the current data on patients with intermediate-risk PC under AS, recent findings, and discusses future directions.
Collapse
|
24
|
Sutera P, Deek MP, Van der Eecken K, Wyatt AW, Kishan AU, Molitoris JK, Ferris MJ, Minhaj Siddiqui M, Rana Z, Mishra MV, Kwok Y, Davicioni E, Spratt DE, Ost P, Feng FY, Tran PT. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate 2022; 82 Suppl 1:S73-S85. [PMID: 35657158 PMCID: PMC9202472 DOI: 10.1002/pros.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Kim Van der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amar U. Kishan
- Department of Radiation Oncology, UCLA, Los Angeles, CA, USA
| | - Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew J. Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Minhaj Siddiqui
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V. Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals, Cleveland, OH, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium and Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Felix Y. Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Shiradkar R, Ghose S, Mahran A, Li L, Hubbard I, Fu P, Tirumani SH, Ponsky L, Purysko A, Madabhushi A. Prostate Surface Distension and Tumor Texture Descriptors From Pre-Treatment MRI Are Associated With Biochemical Recurrence Following Radical Prostatectomy: Preliminary Findings. Front Oncol 2022; 12:841801. [PMID: 35669420 PMCID: PMC9163353 DOI: 10.3389/fonc.2022.841801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To derive and evaluate the association of prostate shape distension descriptors from T2-weighted MRI (T2WI) with prostate cancer (PCa) biochemical recurrence (BCR) post-radical prostatectomy (RP) independently and in conjunction with texture radiomics of PCa. Methods This retrospective study comprised 133 PCa patients from two institutions who underwent 3T-MRI prior to RP and were followed up with PSA measurements for ≥3 years. A 3D shape atlas-based approach was adopted to derive prostate shape distension descriptors from T2WI, and these descriptors were used to train a random forest classifier (CS) to predict BCR. Texture radiomics was derived within PCa regions of interest from T2WI and ADC maps, and another machine learning classifier (CR) was trained for BCR. An integrated classifier CS+R was then trained using predictions from CS and CR. These models were trained on D1 (N = 71, 27 BCR+) and evaluated on independent hold-out set D2 (N = 62, 12 BCR+). CS+R was compared against pre-RP, post-RP clinical variables, and extant nomograms for BCR-free survival (bFS) at 3 years. Results CS+R resulted in a higher AUC (0.75) compared to CR (0.70, p = 0.04) and CS (0.69, p = 0.01) on D2 in predicting BCR. On univariable analysis, CS+R achieved a higher hazard ratio (2.89, 95% CI 0.35–12.81, p < 0.01) compared to other pre-RP clinical variables for bFS. CS+R, pathologic Gleason grade, extraprostatic extension, and positive surgical margins were associated with bFS (p < 0.05). CS+R resulted in a higher C-index (0.76 ± 0.06) compared to CAPRA (0.69 ± 0.09, p < 0.01) and Decipher risk (0.59 ± 0.06, p < 0.01); however, it was comparable to post-RP CAPRA-S (0.75 ± 0.02, p = 0.07). Conclusions Radiomic shape descriptors quantifying prostate surface distension complement texture radiomics of prostate cancer on MRI and result in an improved association with biochemical recurrence post-radical prostatectomy.
Collapse
Affiliation(s)
- Rakesh Shiradkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Rakesh Shiradkar,
| | - Soumya Ghose
- GE Global Research, Niskayuna, NY, United States
| | - Amr Mahran
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lin Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Isaac Hubbard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Sree Harsha Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lee Ponsky
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Andrei Purysko
- Department of Abdominal Imaging and Nuclear Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
26
|
Vince RA, Jiang R, Qi J, Tosoian JJ, Takele R, Feng FY, Linsell S, Johnson A, Shetty S, Hurley P, Miller DC, George A, Ghani K, Sun F, Seymore M, Dess RT, Jackson WC, Schipper M, Spratt DE, Morgan TM. Impact of Decipher Biopsy testing on clinical outcomes in localized prostate cancer in a prospective statewide collaborative. Prostate Cancer Prostatic Dis 2022; 25:677-683. [PMID: 34285350 PMCID: PMC8770695 DOI: 10.1038/s41391-021-00428-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Decipher Biopsy is a commercially available gene expression classifier used in risk stratification of newly diagnosed prostate cancer (PCa). Currently, there are no prospective data evaluating its clinical utility. We seek to assess the clinical utility of Decipher Biopsy in localized PCa patients. METHODS A multi-institutional study of 855 men who underwent Decipher Biopsy testing between February 2015 and October 2019. All patients were tracked through the prospective Michigan Urological Surgery Improvement Collaborative and linked to the Decipher Genomics Resource Information Database (GRID®; NCT02609269). Patient matching was performed by an independent third-party (ArborMetrix Inc.) using two or more unique identifiers. Cumulative incidence curves for time to treatment (TTT) and time to failure (TTF) were constructed using Kaplan-Meier estimates. Multivariable Cox proportional hazard models were used to evaluate the independent association of high-risk Decipher scores with the conversion from AS to radical therapy and treatment failure (biochemical failure or receipt of salvage therapy). RESULTS AND LIMITATIONS Eight hundred fifty-five patients underwent Decipher Biopsy testing during the study period. Of the 855 men, 264 proceeded to AS (31%), and 454 (53%) received radical therapy. In men electing AS, after adjusting for NCCN risk group, age, PSA, prostate volume, body mass index, and percent positive cores, a high-risk Decipher score was independently associated with shorter TTT (HR 2.51, 95% CI 1.52-4.13 p < 0.001). Similarly, in patients that underwent radical therapy, a high-risk Decipher score was independently associated with TTF (HR 2.98, 95% CI 1.22-7.29, p = 0.01) on multivariable analysis. Follow-up time was a limitation. CONCLUSION In a prospective statewide registry, high-risk Decipher Biopsy score was strongly and independently associated with conversion from AS to definitive treatment and treatment failure. These real-world data support the clinical utility of Decipher Biopsy. An ongoing phase 3 randomized trial (NCT04396808) will provide level 1 evidence of the clinical impact of Decipher biopsy testing.
Collapse
Affiliation(s)
- Randy A. Vince
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ralph Jiang
- Department of Biostatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Ji Qi
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jeffrey J. Tosoian
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebecca Takele
- Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California 94158
| | - Susan Linsell
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anna Johnson
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sughand Shetty
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Patrick Hurley
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - David C. Miller
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Arvin George
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Khurshid Ghani
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fionna Sun
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan 48309
| | - Mariana Seymore
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - William C Jackson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Matthew Schipper
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109,Department of Biostatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel E. Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Todd M. Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
27
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
28
|
Press BH, Jones T, Olawoyin O, Lokeshwar SD, Rahman SN, Khajir G, Lin DW, Cooperberg MR, Loeb S, Darst BF, Zheng Y, Chen RC, Witte JS, Seibert TM, Catalona WJ, Leapman MS, Sprenkle PC. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. EUR UROL SUPPL 2022; 37:113-119. [PMID: 35243396 PMCID: PMC8883188 DOI: 10.1016/j.euros.2022.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
| | - Tashzna Jones
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Olamide Olawoyin
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | | | - Syed N. Rahman
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Ghazal Khajir
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel W. Lin
- Department of Urology, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA, USA
| | - Matthew R. Cooperberg
- Department of Urology, University of California-San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - Stacy Loeb
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Burcu F. Darst
- University of Southern California Center for Genetic Epidemiology, Keck School of Medicine, Los Angeles, CA, USA
| | - Yingye Zheng
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA, USA
| | - Ronald C. Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John S. Witte
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, La Jolla, CA, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Preston C. Sprenkle
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
- Corresponding author. Department of Urology, Yale School of Medicine, New Haven, CT, USA. Tel. +1 203 7852815; Fax: +1 203 7378035.
| |
Collapse
|
29
|
Optimal Use of Tumor-Based Molecular Assays for Localized Prostate Cancer. Curr Oncol Rep 2022; 24:249-256. [PMID: 35080739 DOI: 10.1007/s11912-021-01180-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
PURPOSEOF REVIEW The use of genomic testing for prostate cancer continues to grow; however, utilization remains institutionally dependent. Herein, we review current tissue-based markers and comment on current use with active surveillance and prostate MRI. RECENT FINDINGS While data continues to emerge, several studies have shown a role for genomic testing for treatment selection. Novel testing options include ConfirmMDx, ProMark, Prolaris, and Decipher, which have shown utility in select patients. The current body of literature on this specific topic remains very limited; prospective trials with long-term follow-up are needed to improve our understanding on how these genomic tests fit when combined with our current clinical tools. As the literature matures, it is likely that newer risk calculators that combine our classic clinical variables with genomic and imaging data will be developed to bring about standard protocols for prostate cancer decision-making.
Collapse
|
30
|
Active surveillance for intermediate-risk prostate cancer. World J Urol 2022; 40:79-86. [PMID: 35044491 DOI: 10.1007/s00345-021-03893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Active surveillance (AS) is an established approach in the management of low-risk, localized prostate cancer. While the use of AS to manage intermediate-risk (IR) disease has gradually increased over time, there remains uncertainty with regards to its safety, with only a minority of IR patients currently being managed with this approach. MATERIALS AND METHODS We conducted a narrative review based on an analysis of the literature focusing on articles describing AS for IR prostate cancer. We focus on the uncertainty surrounding AS in IR disease by discussing variations in the definitions and guideline recommendations associated with IR disease, and describing the limitations of the evidence from observational studies and randomized trials. CONCLUSION The safety of AS for IR disease remains unknown, given the lack of randomized trials and the limitations of the current observational studies. Further research is needed to identify select patients with IR prostate cancer that can be managed safely with AS.
Collapse
|
31
|
Farha MW, Salami SS. Biomarkers for prostate cancer detection and risk stratification. Ther Adv Urol 2022; 14:17562872221103988. [PMID: 35719272 PMCID: PMC9201356 DOI: 10.1177/17562872221103988] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Although prostate cancer (PCa) is the most commonly diagnosed cancer in men, most patients do not die from the disease. Prostate specific antigen (PSA), the most widely used oncologic biomarker, has revolutionized screening and early detection, resulting in reduced proportion of patients presenting with advanced disease. However, given the inherent limitations of PSA, additional diagnostic and prognostic tools are needed to facilitate early detection and accurate risk stratification of disease. Serum, urine, and tissue-based biomarkers are increasingly being incorporated into the clinical care paradigm, but there is still a limited understanding of how to use them most effectively. In the current article, we review test characteristics and clinical performance data for both serum [4 K score, prostate health index (phi)] and urine [SelectMDx, ExoDx Prostate Intelliscore, MyProstateScore (MPS), and PCa antigen 3 (PCA3)] biomarkers to aid decisions regarding initial or repeat biopsies as well as tissue-based biomarkers (Confirm MDx, Decipher, Oncotype Dx, and Polaris) aimed at risk stratifying patients and identifying those patients most likely to benefit from treatment versus surveillance or monotherapy versus multi-modal therapy.
Collapse
Affiliation(s)
- Mark W. Farha
- University of Michigan Medical School, Ann
Arbor, MI, USA
| | - Simpa S. Salami
- Department of Urology, Michigan Medicine, 1500
E. Medical Center Dr., 7306 Rogel Cancer Center, Ann Arbor, MI 48109-5948,
USA
- University of Michigan Medical School, Ann
Arbor, MI, USA
- Rogel Cancer Center, University of Michigan,
Ann Arbor, MI, USA
| |
Collapse
|
32
|
Brooks MA, Thomas L, Magi-Galluzzi C, Li J, Crager MR, Lu R, Baehner FL, Abran J, Aboushwareb T, Klein EA. Validating the Association of Adverse Pathology with Distant Metastasis and Prostate Cancer Mortality 20-Years After Radical Prostatectomy. Urol Oncol 2021; 40:104.e1-104.e7. [PMID: 34824014 DOI: 10.1016/j.urolonc.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess the association of adverse pathology (AP), defined as high-grade (≥ Gleason Grade Group 3) and/or non-organ confined disease, with long-term oncologic outcomes after radical prostatectomy (RP). MATERIALS AND METHODS Using a stratified cohort sampling design, we evaluated the association of AP with the risk of distant metastasis (DM) and prostate cancer-specific mortality (PCSM) up to 20 years after RP in 428 patients treated between 1987 to 2004. Cox regression of cause-specific hazards was used to estimate the absolute risk of both endpoints, with death from other causes treated as a competing risk. Additionally, subgroup analysis in patients with low and/or intermediate-risk disease, who are potentially eligible for active surveillance (AS), was performed. RESULTS Within the cohort sample, 53% of men exhibited AP at time of RP, with median follow up of 15.5 years (IQR 14.6-16.6 years) thereafter. Adverse pathology was highly associated with DM and PCSM in the overall cohort (HR 12.30, 95% confidence interval [CI] 5.30-28.55, and HR 10.03, 95% CI 3.42-29.47, respectively, both P < 0.001). Adverse pathology was also highly associated with DM and PCSM in the low/intermediate-risk subgroup (HR 10.48, 95% CI 4.18-26.28, and 8.60, 95% CI 2.40-30.48, respectively, both P < 0.001). CONCLUSIONS Adverse pathology at the time of RP is highly associated with future development of DM and PCSM. Accurate prediction of AP may thus be useful for individualizing risk-based surveillance and treatment strategies.
Collapse
Affiliation(s)
- Michael A Brooks
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Lewis Thomas
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO
| | | | - Jianbo Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | | | - Ruixiao Lu
- Exact Sciences Corporation, Redwood City, CA
| | | | - John Abran
- Exact Sciences Corporation, Redwood City, CA
| | | | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
33
|
Guo J, Zhang X, Xia T, Johnson H, Feng X, Simoulis A, Wu AHB, Li F, Tan W, Johnson A, Dizeyi N, Abrahamsson PA, Kenner L, Xiao K, Zhang H, Chen L, Zou C, Persson JL. Non-invasive Urine Test for Molecular Classification of Clinical Significance in Newly Diagnosed Prostate Cancer Patients. Front Med (Lausanne) 2021; 8:721554. [PMID: 34595190 PMCID: PMC8476767 DOI: 10.3389/fmed.2021.721554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: To avoid over-treatment of low-risk prostate cancer patients, it is important to identify clinically significant and insignificant cancer for treatment decision-making. However, no accurate test is currently available. Methods: To address this unmet medical need, we developed a novel gene classifier to distinguish clinically significant and insignificant cancer, which were classified based on the National Comprehensive Cancer Network risk stratification guidelines. A non-invasive urine test was developed using quantitative mRNA expression data of 24 genes in the classifier with an algorithm to stratify the clinical significance of the cancer. Two independent, multicenter, retrospective and prospective studies were conducted to assess the diagnostic performance of the 24-Gene Classifier and the current clinicopathological measures by univariate and multivariate logistic regression and discriminant analysis. In addition, assessments were performed in various Gleason grades/ISUP Grade Groups. Results: The results showed high diagnostic accuracy of the 24-Gene Classifier with an AUC of 0.917 (95% CI 0.892–0.942) in the retrospective cohort (n = 520), AUC of 0.959 (95% CI 0.935–0.983) in the prospective cohort (n = 207), and AUC of 0.930 (95% 0.912-CI 0.947) in the combination cohort (n = 727). Univariate and multivariate analysis showed that the 24-Gene Classifier was more accurate than cancer stage, Gleason score, and PSA, especially in the low/intermediate-grade/ISUP Grade Group 1–3 cancer subgroups. Conclusions: The 24-Gene Classifier urine test is an accurate and non-invasive liquid biopsy method for identifying clinically significant prostate cancer in newly diagnosed cancer patients. It has the potential to improve prostate cancer treatment decisions and active surveillance.
Collapse
Affiliation(s)
- Jinan Guo
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China
| | - Xuhui Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Taolin Xia
- Department of Urology, Foshan First People's Hospital, Foshan, China
| | | | - Xiaoyan Feng
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, Malmö, Sweden
| | - Alan H B Wu
- Clinical Laboratories, San Francisco General Hospital, San Francisco, CA, United States
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Nishtman Dizeyi
- Department of Translational Medicine, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Per-Anders Abrahamsson
- Department of Translational Medicine, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Lukas Kenner
- Department of Experimental Pathology, Medical University Vienna & Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Kefeng Xiao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China
| | - Heqiu Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China.,Key Laboratory of Medical Electrophysiology of Education Ministry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Biomedical Sciences, Malmö University, Malmö, Sweden.,Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Manceau C, Fromont G, Beauval JB, Barret E, Brureau L, Créhange G, Dariane C, Fiard G, Gauthé M, Mathieu R, Renard-Penna R, Roubaud G, Ruffion A, Sargos P, Rouprêt M, Ploussard G. Biomarker in Active Surveillance for Prostate Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4251. [PMID: 34503059 PMCID: PMC8428218 DOI: 10.3390/cancers13174251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Active surveillance (AS) in prostate cancer (PCa) represents a curative alternative for men with localised low-risk PCa. Continuous improvement of AS patient's selection and surveillance modalities aims at reducing misclassification, simplifying modalities of surveillance and decreasing need for invasive procedures such repeated biopsies. Biomarkers represent interesting tools to evaluate PCa diagnosis and prognosis, of which many are readily available or under evaluation. The aim of this review is to investigate the biomarker performance for AS selection and patient outcome prediction. Blood, urinary and tissue biomarkers were studied and a brief description of use was proposed along with a summary of major findings. Biomarkers represent promising tools which could be part of a more tailored risk AS strategy aiming to offer personalized medicine and to individualize the treatment and monitoring of each patient. The usefulness of biomarkers has mainly been suggested for AS selection, whereas few studies have investigated their role during the monitoring phase. Randomized prospective studies dealing with imaging are needed as well as larger prospective studies with long-term follow-up and strong oncologic endpoints.
Collapse
Affiliation(s)
- Cécile Manceau
- Department of Urology, CHU-IUC Toulouse, F-31000 Toulouse, France
| | - Gaëlle Fromont
- Department of Pathology, CHRU Tours, F-37000 Tours, France;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, F-75014 Paris, France;
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)–UMR_S 1085, F-97110 Pointe-à-Pitre, France;
| | - Gilles Créhange
- Department of Radiation Oncology, Curie Institute, F-75005 Paris, France;
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, APHP, Paris–Paris University–U1151 Inserm-INEM, Necker, F-75015 Paris, France;
| | - Gaëlle Fiard
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France;
| | - Mathieu Gauthé
- AP-HP Health Economics Research Unit, INSERM-UMR1153, F-75004 Paris, France;
| | - Romain Mathieu
- Department of Urology, CHU Rennes, F-35033 Rennes, France;
| | - Raphaële Renard-Penna
- Department of Radiology, Sorbonne University, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, F-33000 Bordeaux, France;
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69002 Lyon, France;
- Equipe 2–Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY)–Faculté de Médecine Lyon Sud–Université Lyon 1, F-69002 Lyon, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000 Bordeaux, France;
| | - Morgan Rouprêt
- Department of Urology, Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
- Institut Universitaire du Cancer Oncopole, F-31000 Toulouse, France
| | | |
Collapse
|
35
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, McLaren D, Turnbull AK. Tissue- and Liquid-Based Biomarkers in Prostate Cancer Precision Medicine. J Pers Med 2021; 11:jpm11070664. [PMID: 34357131 PMCID: PMC8306523 DOI: 10.3390/jpm11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Correspondence:
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Duncan McLaren
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh EH4 2XU, UK;
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
36
|
Pastor-Navarro B, Rubio-Briones J, Borque-Fernando Á, Esteban LM, Dominguez-Escrig JL, López-Guerrero JA. Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice. Int J Mol Sci 2021; 22:6266. [PMID: 34200878 PMCID: PMC8230496 DOI: 10.3390/ijms22126266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in men. The diagnosis is currently based on PSA levels, which are associated with overdiagnosis and overtreatment. Moreover, most PCas are localized tumours; hence, many patients with low-/very low-risk PCa could benefit from active surveillance (AS) programs instead of more aggressive, active treatments. Heterogeneity within inclusion criteria and follow-up strategies are the main controversial issues that AS presently faces. Many biomarkers are currently under investigation in this setting; however, none has yet demonstrated enough diagnostic ability as an independent predictor of pathological or clinical progression. This work aims to review the currently available literature on tissue, blood and urine biomarkers validated in clinical practice for the management of AS patients.
Collapse
Affiliation(s)
- Belén Pastor-Navarro
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología (IVO), 46009 Valencia, Spain;
- Príncipe Felipe Research Center (CIPF), IVO-CIPF Joint Research Unit of Cancer, 46012 Valencia, Spain
| | - José Rubio-Briones
- Department of Urology, Fundación Instituto Valenciano de Oncología (IVO), 46009 Valencia, Spain; (J.R.-B.); (J.L.D.-E.)
| | - Ángel Borque-Fernando
- Department of Urology, University Hospital Miguel Servet, IIS-Aragón, 50009 Zaragoza, Spain;
| | - Luis M. Esteban
- Department of Applied Mathematics, Engineering School of La Almunia, University of Zaragoza, 50100 Zaragoza, Spain;
| | - Jose Luis Dominguez-Escrig
- Department of Urology, Fundación Instituto Valenciano de Oncología (IVO), 46009 Valencia, Spain; (J.R.-B.); (J.L.D.-E.)
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología (IVO), 46009 Valencia, Spain;
- Príncipe Felipe Research Center (CIPF), IVO-CIPF Joint Research Unit of Cancer, 46012 Valencia, Spain
- Department of Pathology, School of Medicine, Catholic University of Valencia ‘San Vicente Martir’, 46001 Valencia, Spain
| |
Collapse
|
37
|
Epstein JI, Amin MB, Fine SW, Algaba F, Aron M, Baydar DE, Beltran AL, Brimo F, Cheville JC, Colecchia M, Comperat E, da Cunha IW, Delprado W, DeMarzo AM, Giannico GA, Gordetsky JB, Guo CC, Hansel DE, Hirsch MS, Huang J, Humphrey PA, Jimenez RE, Khani F, Kong Q, Kryvenko ON, Kunju LP, Lal P, Latour M, Lotan T, Maclean F, Magi-Galluzzi C, Mehra R, Menon S, Miyamoto H, Montironi R, Netto GJ, Nguyen JK, Osunkoya AO, Parwani A, Robinson BD, Rubin MA, Shah RB, So JS, Takahashi H, Tavora F, Tretiakova MS, True L, Wobker SE, Yang XJ, Zhou M, Zynger DL, Trpkov K. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med 2021; 145:461-493. [PMID: 32589068 DOI: 10.5858/arpa.2020-0015-ra] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.— To update grading recommendations. DATA SOURCES.— Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.— Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.
Collapse
Affiliation(s)
- Jonathan I Epstein
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada.,Urology (Epstein), David Geffen School of Medicine at UCLA, Los Angeles, California (Huang).,and Oncology (Epstein), The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis (Amin)
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Fine)
| | - Ferran Algaba
- Department of Pathology, Fundacio Puigvert, Barcelona, Spain (Algaba)
| | - Manju Aron
- Department of Pathology, University of Southern California, Los Angeles (Aron)
| | - Dilek E Baydar
- Department of Pathology, Faculty of Medicine, Koç University, İstanbul, Turkey (Baydar)
| | - Antonio Lopez Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal (Beltran)
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, Quebec, Canada (Brimo)
| | - John C Cheville
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (Colecchia)
| | - Eva Comperat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris, France (Comperat)
| | | | | | - Angelo M DeMarzo
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Donna E Hansel
- Department of Pathology, Oregon Health and Science University, Portland (Hansel)
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Hirsch)
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California (Huang)
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut (Humphrey)
| | - Rafael E Jimenez
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China (Kong).,Kong is currently located at Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (Kryvenko)
| | - L Priya Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Priti Lal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Lal)
| | - Mathieu Latour
- Department of Pathology, CHUM, Université de Montréal, Montréal, Quebec, Canada (Latour)
| | - Tamara Lotan
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Fiona Maclean
- Douglass Hanly Moir Pathology, Faculty of Medicine and Health Sciences Macquarie University, North Ryde, Australia (Maclean)
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Santosh Menon
- Department of Surgical Pathology, Tata Memorial Hospital, Parel, Mumbai, India (Menon)
| | - Hiroshi Miyamoto
- Departments of Pathology and Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York (Miyamoto)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy (Montironi)
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Nguyen)
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Osunkoya)
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland (Rubin)
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Shah)
| | - Jeffrey S So
- Institute of Pathology, St Luke's Medical Center, Quezon City and Global City, Philippines (So)
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan (Takahashi)
| | - Fabio Tavora
- Argos Laboratory, Federal University of Ceara, Fortaleza, Brazil (Tavora)
| | - Maria S Tretiakova
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Lawrence True
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Sara E Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill (Wobker)
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts (Zhou)
| | - Debra L Zynger
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Kiril Trpkov
- and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Trpkov)
| |
Collapse
|
38
|
Kamran SC, Efstathiou JA. Current State of Personalized Genitourinary Cancer Radiotherapy in the Era of Precision Medicine. Front Oncol 2021; 11:675311. [PMID: 34026653 PMCID: PMC8139515 DOI: 10.3389/fonc.2021.675311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy plays a crucial role for the management of genitourinary malignancies, with technological advancements that have led to improvements in outcomes and decrease in treatment toxicities. However, better risk-stratification and identification of patients for appropriate treatments is necessary. Recent advancements in imaging and novel genomic techniques can provide additional individualized tumor and patient information to further inform and guide treatment decisions for genitourinary cancer patients. In addition, the development and use of targeted molecular therapies based on tumor biology can result in individualized treatment recommendations. In this review, we discuss the advances in precision oncology techniques along with current applications for personalized genitourinary cancer management. We also highlight the opportunities and challenges when applying precision medicine principles to the field of radiation oncology. The identification, development and validation of biomarkers has the potential to personalize radiation therapy for genitourinary malignancies so that we may improve treatment outcomes, decrease radiation-specific toxicities, and lead to better long-term quality of life for GU cancer survivors.
Collapse
Affiliation(s)
- Sophia C. Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
39
|
Lehto TPK, Stürenberg C, Malén A, Erickson AM, Koistinen H, Mills IG, Rannikko A, Mirtti T. Transcript analysis of commercial prostate cancer risk stratification panels in hard-to-predict grade group 2-4 prostate cancers. Prostate 2021; 81:368-376. [PMID: 33734461 DOI: 10.1002/pros.24108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Improved prognostication is needed to minimize overtreatment in grade group (GG) 2-4 prostate cancer. Our aim was to determine, at messenger RNA (mRNA) level, the performance of the genes in the commercial panels Decipher, Oncotype DX, Prolaris, and mutational panel MSK-IMPACT to predict metastasis-free and prostate cancer-specific death (PCSD) in patients with GG 2-4 prostate cancer at radical prostatectomy. METHODS The retrospective cohort consisted of GG 2-4 patients treated with radical prostatectomy (median follow-up 10.4 years). Seventy-six cases with postoperative metastasis or PCSD and 84 controls with similar clinical baseline risk, but without progression, were analyzed. Index lesion mRNA transcripts were analyzed using NanoString technology. Random forest models were trained using panel gene sets to predict clinical endpoints and area under the curve (AUC), sensitivity, specificity, Youden index, and number needed to diagnose (NND) was measured. Survival probability was assessed with Kaplan-Meier estimator. RESULTS All gene sets outperformed clinical parameters and predicted metastasis-free and prostate cancer-specific survival. However, there were significant differences between the panels. In metastasis prediction, the genes in Oncotype DX had inferior performance (area under the curve [AUC] = 0.65) compared to other panels (AUC = 0.73-0.74). Decipher, MSK-IMPACT and Prolaris showed similar NND (2.83-3.12) with Oncotype DX having highest NND (4.79). In PCSD prediction, the Prolaris gene set performed worse (AUC = 0.66) than MSK-IMPACT or Decipher (AUC = 0.72). Oncotype DX performed similarly to other panels (AUC = 0.69, p > .05). Oncotype DX demonstrated lowest NND (2.79) compared to other panels (4.22-5.66). CONCLUSION Transcript analysis of genes included in commercial panels is feasible in survival prediction of GG 2-4 patients after radical prostatectomy and may aid in clinical decision making. There were significant differences between the panels, and overall stronger predictive gene sets are needed. Prospective investigation is warranted in biopsy materials.
Collapse
Affiliation(s)
- Timo-Pekka K Lehto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carolin Stürenberg
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Malén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andrew M Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxfordshire, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxfordshire, UK
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Center for Cancer Research, Queen's University of Belfast, UK
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
40
|
Brooks MA, Thomas L, Magi-Galluzzi C, Li J, Crager MR, Lu R, Abran J, Aboushwareb T, Klein EA. GPS Assay Association With Long-Term Cancer Outcomes: Twenty-Year Risk of Distant Metastasis and Prostate Cancer-Specific Mortality. JCO Precis Oncol 2021; 5:PO.20.00325. [PMID: 34036236 PMCID: PMC8140813 DOI: 10.1200/po.20.00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To assess the association between the Oncotype DX Genomic Prostate Score (GPS) result and long-term oncological outcomes following radical prostatectomy (RP). METHODS We evaluated the association of the GPS result assayed from the index lesion from RP tissue with the risk of distant metastases (DM) and prostate cancer–specific mortality (PCSM) over the 20 years following RP in a stratified cohort sample of 428 patients from 2,641 treated between 1987 and 2004. Cox regression of cause-specific hazards was used to estimate the absolute risk of both end points, with death from other causes treated as a competing risk. A correction for regression to the mean (RM) was applied since the GPS test was developed using this cohort. Exploratory analysis using presurgical parameters and the GPS test as prognostic variables was performed to assess the additional value of the GPS test on 20-year risk of DM and PCSM. Model discrimination was measured using the area under the receiver operating characteristic curve. RESULTS The GPS test appears to be independently associated with both 20-year risk of DM and PCSM with a low false discovery rate. Per 20-unit increase in GPS, multivariable analysis with RM correction estimated hazard ratios of 2.24 (95% CI, 1.49 to 3.53) and 2.30 (95% CI, 1.45 to 4.36) for DM and PCSM, respectively. Accuracy of models including clinical risk factors alone appeared to improve when including the GPS test in assessing risk of both end points. CONCLUSION The results suggest that the GPS test provides information on the risk for the meaningful long-term outcomes of DM and PCSM.
Collapse
Affiliation(s)
- Michael A Brooks
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Lewis Thomas
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | | | - Jianbo Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Michael R Crager
- Genomic Health Inc, an Exact Sciences Corporation, Redwood City, CA
| | - Ruixiao Lu
- Genomic Health Inc, an Exact Sciences Corporation, Redwood City, CA
| | - John Abran
- Genomic Health Inc, an Exact Sciences Corporation, Redwood City, CA
| | | | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
41
|
Sopyllo K, Erickson AM, Mirtti T. Grading Evolution and Contemporary Prognostic Biomarkers of Clinically Significant Prostate Cancer. Cancers (Basel) 2021; 13:cancers13040628. [PMID: 33562508 PMCID: PMC7914622 DOI: 10.3390/cancers13040628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Prostate cancer treatment decisions are based on clinical stage and histological diagnosis, including Gleason grading assessed by a pathologist, in biopsies. Prior to staging and grading, serum or blood prostate-specific antigen (PSA) levels are measured and often trigger diagnostic examinations. However, PSA is best suited as a marker of cancer relapse after initial treatment. In this review, we first narratively describe the evolution of histological grading, the current status of Gleason pattern-based diagnostics and glance into future methodology of risk assessment by histological examination. In the second part, we systematically review the biomarkers that have been shown, independent from clinical characteristics, to correlate with clinically relevant end-points, i.e., occurrence of metastases, disease-specific mortality and overall survival after initial treatment of localized prostate cancer. Abstract Gleason grading remains the strongest prognostic parameter in localized prostate adenocarcinoma. We have here outlined the evolution and contemporary practices in pathological evaluation of prostate tissue samples for Gleason score and Grade group. The state of more observer-independent grading methods with the aid of artificial intelligence is also reviewed. Additionally, we conducted a systematic review of biomarkers that hold promise in adding independent prognostic or predictive value on top of clinical parameters, Grade group and PSA. We especially focused on hard end points during the follow-up, i.e., occurrence of metastasis, disease-specific mortality and overall mortality. In peripheral blood, biopsy-detected prostate cancer or in surgical specimens, we can conclude that there are more than sixty biomarkers that have been shown to have independent prognostic significance when adjusted to conventional risk assessment or grouping. Our search brought up some known putative markers and panels, as expected. Also, the synthesis in the systematic review indicated markers that ought to be further studied as part of prospective trials and in well characterized patient cohorts in order to increase the resolution of the current clinico-pathological prognostic factors.
Collapse
Affiliation(s)
- Konrad Sopyllo
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Andrew M. Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence:
| |
Collapse
|
42
|
Li L, Shiradkar R, Leo P, Algohary A, Fu P, Tirumani SH, Mahran A, Buzzy C, Obmann VC, Mansoori B, El-Fahmawi A, Shahait M, Tewari A, Magi-Galluzzi C, Lee D, Lal P, Ponsky L, Klein E, Purysko AS, Madabhushi A. A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI. EBioMedicine 2020; 63:103163. [PMID: 33321450 PMCID: PMC7744939 DOI: 10.1016/j.ebiom.2020.103163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Background We developed and validated an integrated radiomic-clinicopathologic nomogram (RadClip) for post-surgical biochemical recurrence free survival (bRFS) and adverse pathology (AP) prediction in men with prostate cancer (PCa). RadClip was further compared against extant prognostics tools like CAPRA and Decipher. Methods A retrospective study of 198 patients with PCa from four institutions who underwent pre-operative 3 Tesla MRI followed by radical prostatectomy, between 2009 and 2017 with a median 35-month follow-up was performed. Radiomic features were extracted from prostate cancer regions on bi-parametric magnetic resonance imaging (bpMRI). Cox Proportional-Hazards (CPH) model warped with minimum redundancy maximum relevance (MRMR) feature selection was employed to select bpMRI radiomic features for bRFS prediction in the training set (D1, N = 71). In addition, a bpMRI radiomic risk score (RadS) and associated nomogram, RadClip, were constructed in D1 and then compared against the Decipher, pre-operative (CAPRA), and post-operative (CAPRA-S) nomograms for bRFS and AP prediction in the testing set (D2, N = 127). Findings “RadClip yielded a higher C-index (0.77, 95% CI 0.65-0.88) compared to CAPRA (0.68, 95% CI 0.57-0.8) and Decipher (0.51, 95% CI 0.33-0.69) and was found to be comparable to CAPRA-S (0.75, 95% CI 0.65-0.85). RadClip resulted in a higher AUC (0.71, 95% CI 0.62-0.81) for predicting AP compared to Decipher (0.66, 95% CI 0.56-0.77) and CAPRA (0.69, 95% CI 0.59-0.79).” Interpretation RadClip was more prognostic of bRFS and AP compared to Decipher and CAPRA. It could help pre-operatively identify PCa patients at low risk of biochemical recurrence and AP and who therefore might defer additional therapy. Funding The National Institutes of Health, the U.S. Department of Veterans Affairs, and the Department of Defense.
Collapse
Affiliation(s)
- Lin Li
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Rakesh Shiradkar
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Patrick Leo
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Ahmad Algohary
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Amr Mahran
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Christina Buzzy
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Verena C Obmann
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Centers, Cleveland, OH, USA; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Bahar Mansoori
- Department of Radiology, Abdominal Imaging Division, University of Washington, Seattle, WA, USA
| | - Ayah El-Fahmawi
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Mohammed Shahait
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Ashutosh Tewari
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - David Lee
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Priti Lal
- Penn Medicine, University of Pennsylvania Health System, PA, USA
| | - Lee Ponsky
- Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrei S Purysko
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anant Madabhushi
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Administration Medical Center, USA.
| |
Collapse
|
43
|
Rajwa P, Syed J, Leapman MS. How should radiologists incorporate non-imaging prostate cancer biomarkers into daily practice? Abdom Radiol (NY) 2020; 45:4031-4039. [PMID: 32232525 PMCID: PMC7529677 DOI: 10.1007/s00261-020-02496-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To review the current body of evidence surrounding non-imaging biomarkers in patients with known or suspected prostate cancer. RESULTS Several non-imaging biomarkers have been developed and are available that aim to improve risk estimates at several clinical junctures. For patients with suspicion of prostate cancer who are considering first-time or repeat biopsy, blood- and urine-based assays can improve the prediction of harboring clinically significant disease and may reduce unnecessary biopsy. Blood- and urine-based biomarkers have been evaluated in association with prostate MRI, offering insights that might augment decision-making in the pre and post-MRI setting. Tissue-based genomic and proteomic assays have also been developed that provide independent assessments of prostate cancer aggressiveness that can complement imaging. CONCLUSION A growing number of non-imaging biomarkers are available to assist in clinical decision-making for men with known or suspected prostate cancer. An appreciation for the intersection of imaging and biomarkers may improve clinical care and resource utilization for men with prostate cancer.
Collapse
Affiliation(s)
- Pawel Rajwa
- Department of Urology, Medical University of Silesia, 41-800, Zabrze, Poland
| | - Jamil Syed
- Department of Urology, Yale University School of Medicine, 310 Cedar Street BML 238c, PO Box 208058, New Haven, CT, 06520, USA
| | - Michael S Leapman
- Department of Urology, Yale University School of Medicine, 310 Cedar Street BML 238c, PO Box 208058, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol 2020; 44:e15-e29. [PMID: 32044806 DOI: 10.1097/pas.0000000000001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combined clinical and molecular heterogeneity of prostate cancer necessitates the use of prognostic, predictive, and diagnostic biomarkers to assist the clinician with treatment selection. The pathologist plays a critical role in guiding molecular biomarker testing in prostate cancer and requires a thorough knowledge of the current testing options. In the setting of clinically localized prostate cancer, prognostic biomarkers such as Ki-67 labeling, PTEN loss or mRNA-based genomic signatures can be useful to help determine whether definitive therapy is required. In the setting of advanced disease, predictive biomarkers, such as the presence of DNA repair deficiency mediated by BRCA2 loss or mismatch repair gene defects, may suggest the utility of poly-ADP ribosylase inhibition or immune checkpoint blockade. Finally, androgen receptor-related biomarkers or diagnostic biomarkers indicating the presence of small cell neuroendocrine prostate cancer may help guide the use of androgen receptor signaling inhibitors and chemotherapy. In this review, we examine the current evidence for several prognostic, predictive and diagnostic tissue-based molecular biomarkers in prostate cancer management. For each assay, we summarize a recent survey of the International Society of Urology Pathology (ISUP) members on current testing practices and include recommendations for testing that emerged from the ISUP Working Group on Molecular Pathology of Prostate Cancer and the 2019 Consultation Conference on Molecular Pathology of Urogenital Cancers.
Collapse
|
45
|
López-Campos F, Linares-Espinós E, Maldonado Pijoan X, Sancho Pardo G, Morgan TM, Martínez-Ballesteros C, Martínez-Salamanca J, Couñago F. Genetic testing for the clinician in prostate cancer. Expert Rev Mol Diagn 2020; 20:933-946. [PMID: 32885704 DOI: 10.1080/14737159.2020.1816170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most common cancers worldwide and a leading cause of cancer-related mortality. Although the diagnosis and treatment of prostate cancer has improved substantially in recent years, new molecular biomarkers are needed to further prolong survival and improve the quality of life in these patients. AREAS COVERED This review analyzes the current evidence for prognostic and predictive molecular biomarkers that can be applied across different clinical scenarios, ranging from localized disease to metastatic castration-resistant PCa, with a particular emphasis on the biomarkers likely to become available in routine clinical practice in the near future. EXPERT OPINION There is a growing need for molecular testing to identify the most indolent types of prostate cancer to help optimize treatment strategies and spare treatment in these patients when possible. Current trends in the treatment of prostate cancer underscore the unmet clinical need for biomarkers to improve decision-making in a challenging clinical setting.
Collapse
Affiliation(s)
| | - Estefanía Linares-Espinós
- Urology Department, Hospital Universitario La Paz , Madrid, Spain.,Urology Department, Lyx Institute of Urology , Madrid, Spain.,Urology Department, Francisco De Vitoria University , Madrid, Spain
| | | | - Gemma Sancho Pardo
- Radiation Oncology Department, Hospital De La Santa Creu I Sant Pau , Barcelona, Spain
| | - Todd Mathew Morgan
- Urology Department. Michigan Center for Translational Pathology. Comprehensive Cancer Center, Cancer Center Floor B1 Reception C , Ann Arbor, MI, USA
| | - Claudio Martínez-Ballesteros
- Urology Department, Lyx Institute of Urology , Madrid, Spain.,Urology Department, Hospital Universitario Puerta De Hierro Majadahonda , Majadahonda, Spain
| | - Juan Martínez-Salamanca
- Urology Department, Lyx Institute of Urology , Madrid, Spain.,Urology Department, Francisco De Vitoria University , Madrid, Spain.,Urology Department, Hospital Universitario Puerta De Hierro Majadahonda , Majadahonda, Spain
| | - Felipe Couñago
- Radiation Oncology Department, Hospital Universitario Quirón Salud Madrid , Madrid, Spain.,Hospital de La Luz. Madrid.,Universidad Europea de Madrid
| |
Collapse
|
46
|
Isaacsson Velho P, Tofani Sant' Anna P, Pereira da Silva RF, Dal Ponte Ferreira R, Venero FC. The development of apalutamide for the treatment of prostate cancer. Expert Opin Drug Discov 2020; 16:217-226. [PMID: 33003959 DOI: 10.1080/17460441.2021.1829588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Prostate cancer progresses, despite androgen-deprivation therapy, the backbone of its treatment. This progression is mainly related to the androgen receptor (AR)-related mechanisms of resistance, and, several AR-targeted therapies have demonstrated benefit in metastatic and nonmetastatic disease. Apalutamide is a third-generation AR-targeted therapy which competitively blocks the AR and prevents AR dimerization, nuclear internalization, thereby avoiding cancer progression. Early studies have demonstrated that apalutamide was safe and demonstrated clinical benefit. Phase II and phase III studies had confirmed preliminary results of clinical benefit with apalutamide in patients with nonmetastatic castration-resistant prostate cancer (nmCRPC) and in metastatic hormone-sensitive prostate cancer (mHSPC). AREAS COVERED Herein, the authors discuss the development of apalutamide, from its discovery and early studies to phase III trials. They also examine new perspectives and biomarkers that may help oncologists to make decisions in patients taking apalutamide. Studies evaluating apalutamide in other settings and in combination with other therapies are also debated. EXPERT OPINION Apalutamide has become a relevant therapy for patients with nmCRPC and mHSPC for its benefit in delaying metastasis in addition to its improvement of overall survival, without compromising the quality of life. Apalutamide should be considered as a standard-of-care for patients with nmCRPC and patients with mHSPC.
Collapse
Affiliation(s)
- Pedro Isaacsson Velho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Baltimore, USA.,Department of Oncology, Moinhos De Vento Hospital, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
47
|
Troyer D. High-risk Prostate Cancer Patients Are Not All Alike. Eur Urol 2020; 78:333-334. [PMID: 32605857 DOI: 10.1016/j.eururo.2020.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Dean Troyer
- Departments of Microbiology and Molecular Cell Biology and Pathology, Eastern Virginia Medical School, Norfolk, VA, USA; Department of Pathology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
48
|
Couñago F, López-Campos F, Díaz-Gavela AA, Almagro E, Fenández-Pascual E, Henríquez I, Lozano R, Linares Espinós E, Gómez-Iturriaga A, de Velasco G, Quintana Franco LM, Rodríguez-Melcón I, López-Torrecilla J, Spratt DE, Guerrero LL, Martínez-Salamanca JI, del Cerro E. Clinical Applications of Molecular Biomarkers in Prostate Cancer. Cancers (Basel) 2020; 12:E1550. [PMID: 32545454 PMCID: PMC7352850 DOI: 10.3390/cancers12061550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is clinically relevant molecular heterogeneity in prostate cancer (PCa), but this biological diversity has had only a minimal impact on clinical practice. Treatment outcomes in patients with localised PCa are often highly variable, even among patients stratified to the same risk group or disease state based on standard clinical and pathological parameters. In recent years, the development of gene panels has provided valuable data on the differential expression of genes in patients with PCa. Nevertheless, there is an urgent need to identify and validate prognostic and predictive biomarkers that can be applied across clinical scenarios, ranging from localised disease to metastatic castration-resistant PCa. The availability of such tools would allow for precision medicine to finally reach PCa patients. In this review, we evaluate current data on molecular biomarkers for PCa, with an emphasis on the biomarkers and gene panels with the most robust evidence to support their application in routine clinical practice.
Collapse
Affiliation(s)
- Felipe Couñago
- Radiation Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain; (A.A.D.-G.); (L.L.G.); (E.d.C.)
- Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine. Universidad Europea de Madrid, 28670 Madrid, Spain
| | | | - Ana Aurora Díaz-Gavela
- Radiation Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain; (A.A.D.-G.); (L.L.G.); (E.d.C.)
- Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine. Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Elena Almagro
- Medical Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain;
| | - Esaú Fenández-Pascual
- Lyx Institute of Urology, Universidad Francisco de Vitoria, 28006 Madrid, Spain; (E.F.-P.); (E.L.E.)
- Department of Urology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Iván Henríquez
- Radiation Oncology, Hospital Universitario Sant Joan, 43204 Reus, Spain;
| | - Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
- Genitourinary Cancer Traslational Research Group, Institute of Biomedical Research, 29010 Málaga, Spain
| | - Estefanía Linares Espinós
- Lyx Institute of Urology, Universidad Francisco de Vitoria, 28006 Madrid, Spain; (E.F.-P.); (E.L.E.)
- Department of Urology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | | | | | | | - Ignacio Rodríguez-Melcón
- Radiation Oncology, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain;
| | - José López-Torrecilla
- Radiation Oncology-ERESA, Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Daniel E. Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Luis Leonardo Guerrero
- Radiation Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain; (A.A.D.-G.); (L.L.G.); (E.d.C.)
- Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine. Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Juan Ignacio Martínez-Salamanca
- Lyx Institute of Urology, Universidad Francisco de Vitoria, 28006 Madrid, Spain; (E.F.-P.); (E.L.E.)
- Department of Urology, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Elia del Cerro
- Radiation Oncology, Hospital Universitario Quirónsalud Madrid, 28223 Madrid, Spain; (A.A.D.-G.); (L.L.G.); (E.d.C.)
- Radiation Oncology, Hospital La Luz, 28003 Madrid, Spain
- Clinical Department, Faculty of Biomedicine. Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
49
|
Herlemann A, Huang HC, Alam R, Tosoian JJ, Kim HL, Klein EA, Simko JP, Chan JM, Lane BR, Davis JW, Davicioni E, Feng FY, McCue P, Kim H, Den RB, Bismar TA, Carroll PR, Cooperberg MR. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis 2020; 23:136-143. [PMID: 31455846 PMCID: PMC8076042 DOI: 10.1038/s41391-019-0167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We aimed to validate Decipher to predict adverse pathology (AP) at radical prostatectomy (RP) in men with National Comprehensive Cancer Network (NCCN) favorable-intermediate risk (F-IR) prostate cancer (PCa), and to better select F-IR candidates for active surveillance (AS). METHODS In all, 647 patients diagnosed with NCCN very low/low risk (VL/LR) or F-IR prostate cancer were identified from a multi-institutional PCa biopsy database; all underwent RP with complete postoperative clinicopathological information and Decipher genomic risk scores. The performance of all risk assessment tools was evaluated using logistic regression model for the endpoint of AP, defined as grade group 3-5, pT3b or higher, or lymph node invasion. RESULTS The median age was 61 years (interquartile range 56-66) for 220 patients with NCCN F-IR disease, 53% classified as low-risk by Cancer of the Prostate Risk Assessment (CAPRA 0-2) and 47% as intermediate-risk (CAPRA 3-5). Decipher classified 79%, 13% and 8% of men as low-, intermediate- and high-risk with 13%, 10%, and 41% rate of AP, respectively. Decipher was an independent predictor of AP with an odds ratio of 1.34 per 0.1 unit increased (p value = 0.002) and remained significant when adjusting by CAPRA. Notably, F-IR with Decipher low or intermediate score did not associate with significantly higher odds of AP compared to VL/LR. CONCLUSIONS NCCN risk groups, including F-IR, are highly heterogeneous and should be replaced with multivariable risk-stratification. In particular, incorporating Decipher may be useful for safely expanding the use of AS in this patient population.
Collapse
Affiliation(s)
- Annika Herlemann
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Urology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Ridwan Alam
- Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffry P Simko
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - June M Chan
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Brian R Lane
- Urology, Spectrum Health Hospitals Prostate and Genitourinary Cancer Multispecialty Clinic, Grand Rapids, MI, USA
| | - John W Davis
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Felix Y Feng
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Peter McCue
- Department of Pathology, Anatomy and Cell, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hyun Kim
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
- Department of Radiation Oncology, Washington University School of Medicine St. Louis, St. Louis, MO, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Tarek A Bismar
- Departments of Pathology & Laboratory Medicine and Oncology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Matthew R Cooperberg
- Department of Urology, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
50
|
Pinskaya M, Saci Z, Gallopin M, Gabriel M, Nguyen HT, Firlej V, Descrimes M, Rapinat A, Gentien D, Taille ADL, Londoño-Vallejo A, Allory Y, Gautheret D, Morillon A. Reference-free transcriptome exploration reveals novel RNAs for prostate cancer diagnosis. Life Sci Alliance 2019; 2:2/6/e201900449. [PMID: 31732695 PMCID: PMC6858606 DOI: 10.26508/lsa.201900449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
The use of RNA-sequencing technologies held a promise of improved diagnostic tools based on comprehensive transcript sets. However, mining human transcriptome data for disease biomarkers in clinical specimens are restricted by the limited power of conventional reference-based protocols relying on unique and annotated transcripts. Here, we implemented a blind reference-free computational protocol, DE-kupl, to infer yet unreferenced RNA variations from total stranded RNA-sequencing datasets of tissue origin. As a bench test, this protocol was powered for detection of RNA subsequences embedded into putative long noncoding (lnc)RNAs expressed in prostate cancer. Through filtering of 1,179 candidates, we defined 21 lncRNAs that were further validated by NanoString for robust tumor-specific expression in 144 tissue specimens. Predictive modeling yielded a restricted probe panel enabling more than 90% of true-positive detections of cancer in an independent The Cancer Genome Atlas cohort. Remarkably, this clinical signature made of only nine unannotated lncRNAs largely outperformed PCA3, the only used prostate cancer lncRNA biomarker, in detection of high-risk tumors. This modular workflow is highly sensitive and can be applied to any pathology or clinical application.
Collapse
Affiliation(s)
- Marina Pinskaya
- ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France
| | - Zohra Saci
- ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France
| | - Mélina Gallopin
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Marc Gabriel
- ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France
| | - Ha Tn Nguyen
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France.,Thuyloi University, Hanoi, Vietnam
| | - Virginie Firlej
- Université Paris-Est Créteil, Créteil, France.,Institut National de la Santé et de la Recherche Médicale, U955, Equipe 7, Créteil, France
| | - Marc Descrimes
- ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France
| | - Audrey Rapinat
- Translational Research Department, Genomics Platform, Institut Curie, Université PSL, Paris, France
| | - David Gentien
- Translational Research Department, Genomics Platform, Institut Curie, Université PSL, Paris, France
| | - Alexandre de la Taille
- Université Paris-Est Créteil, Créteil, France.,Institut National de la Santé et de la Recherche Médicale, U955, Equipe 7, Créteil, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Département d'Urologie, Créteil, France
| | - Arturo Londoño-Vallejo
- Telomeres and Cancer, Université PSL, Sorbonne Université, CNRS, Institut Curie, Research Center, Paris, France
| | - Yves Allory
- Compartimentation et Dynamique Cellulaire, Université PSL, Sorbonne Université, CNRS, Institut Curie, Research Center, Paris, France
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Université Paris Sciences & Lettres (PSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut Curie, Research Center, Paris, France
| |
Collapse
|