1
|
Shen Z, Li T, Yang B. Identification of Key Biomarkers Associated with Glioma Hemorrhage: Evidence from Bioinformatic Analysis and Clinical Validation. J Mol Neurosci 2025; 75:6. [PMID: 39808230 DOI: 10.1007/s12031-024-02294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs). We conducted enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) databases through the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A STRING-based protein-protein interaction (PPI) network was developed to identify hub genes, which were subsequently analyzed for their functions in the GeneCards database. To identify angiogenesis-associated genes, we utilized the Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. A clinical pathological study was conducted using immunohistochemistry (IHC) staining to confirm the findings. In the GEO database, the GEO Series Experiments GSE26576 and GSE184941 included 4523 and 1471 differentially expressed genes (DEGs), respectively. We identified 2715 DEGs using the cBioPortal within the TCGA database. A Venn diagram identified 39 common DEGs. The KEGG pathways and Gene Ontology (GO) analysis highlighted functions related to angiogenesis. PPI network analyses pinpointed 13 hub genes. Through cross-referencing a gene set related to tumor angiogenesis in the GeneCards database, we identified MMP-2 and EGFR as key genes. In the HPA database, we observed EGFR and MMP-2 expression in the normal cerebral cortex, confirmed by IHC. In GEPIA database, high MMP-2 levels were associated with decreased survival time, while EGFR expression showed no significant differences in survival. A clinical study of 21 patients, 11 in the control group and 10 in the stroke group with glioma hemorrhage, revealed no significant differences in their characteristics or comorbidities. IDH1 positivity was higher in the control group (4/11) vs the stroke group (0/10). Tumor cells exhibited increased MMP-2 and EGFR expression, with stronger staining in the stroke group. Our study concluded that IDH1, MMP-2, and EGFR are implicated in the molecular mechanism of glioma hemorrhage as key biomarkers. MMP-2 and IDH1 are potential targets for molecular therapy.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Tao Li
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024; 40:2122-2134. [PMID: 39424526 PMCID: PMC11637916 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
3
|
Deng T, Chen D, Chen F, Xu C, Zhang Q, Li M, Wang Y, He Z, Li M, He Q. Synergizing autophagic cell death and oxaliplatin-induced immunogenic death by a self-delivery micelle for enhanced tumor immunotherapy. Acta Biomater 2024:S1742-7061(24)00616-0. [PMID: 39426655 DOI: 10.1016/j.actbio.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Chemotherapy has become an emerging strategy to activate cytotoxic T cell responses by inducing immunogenic cell death (ICD), but the level of antitumor immunity induced by chemotherapeutic agents, such as oxaliplatin (OXA), is limited due to inadequate tumor antigen presentation and T cell activation. Inducing autophagic cell death (ACD) promotes the release of tumor antigen and the recruitment of dendritic cells, therefore strengthening antitumor immune responses. Here we simultaneously activate ICD and ACD with tumor targeting micelle to achieve enhanced antitumor chemo-immunotherapy. A self-delivery micelle is formulated by conjugating OXA prodrug with tocopherol succinate (TOS) as a hydrophobic segment and further encapsulates autophagy activator SMER28 to afford TOPR/SMER28, which specifically targets αvβ3 on tumor cells with c(RGDfK). Upon cellular internalization, OXA is released from the prodrug in response to the high concentration of reduced glutathione (GSH) in tumor cells, triggering ICD and releasing associated molecular patterns (DAMPs) signaling molecules to stimulate immunity. Meanwhile, SMER28 over-activates autophagy to induce autophagic cell death, which further leads to the maturation of dendritic cells and ultimately activates anti-tumor immune response. In the 4T1 tumor-bearing mice, the combination of OXA and SMER28 effectively inhibits tumor growth and activates antitumor immune responses. The tumor targeted micelle releases OXA and SMER28 in an on-demand profile and strengthens tumor chemo-immunotherapy by synergizing ICD and ACD, providing an alternative for antitumor immunotherapy. STATEMENT OF SIGNIFICANCE: Chemotherapy induces immunogenic cell death (ICD) to activate anti-tumor immunity. However, the efficacy is limited by low levels of antigen presentation and T cell activation. To strengthen the antitumor immune responses induced by ICD, we first combine autophagic cell death (ACD) with ICD by formulating a glutathione-responsive oxaliplatin prodrug micelle co-encapsulating the autophagy activator SMER28. The activated autophagic level by SMER28 enhances the release of antigen and the recruitment of APCs, and ultimately bolsters T cell-mediated antitumor immune responses. We provide a potential strategy to amplify antitumor immune effects by combining autophagy activation with chemotherapy.
Collapse
Affiliation(s)
- Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Fang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Xie X, Sun Y, Peng J, Zhang Z, Wang M, Wang Z, Lei C, Huang Y, Nie Z. Collagen Anchoring Protein-Nucleic Acid Chimeric Probe for In Situ In Vivo Mapping of a Tumor-Specific Protease. Anal Chem 2023; 95:18487-18496. [PMID: 38057291 DOI: 10.1021/acs.analchem.3c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In situ analysis of biomarkers in the tumor microenvironment (TME) is important to reveal their potential roles in tumor progression and early diagnosis of tumors but remains a challenge. In this work, a bottom-up modular assembly strategy was proposed for a multifunctional protein-nucleic chimeric probe (PNCP) for in situ mapping of cancer-specific proteases. PNCP, containing a collagen anchoring module and a target proteolysis-responsive isothermal amplification sensor module, can be anchored in the collagen-rich TME and respond to the target protease in situ and generate amplified signals through rolling cycle amplification of tandem fluorescent RNAs. Taking matrix metalloproteinase 2 (MMP-2), a tumor-associated protease, as the model, the feasibility of PNCP was demonstrated for the in situ detection of MMP-2 activity in 3D tumor spheroids. Moreover, in situ in vivo mapping of MMP-2 activity was also achieved in a metastatic solid tumor model with high sensitivity, providing a useful tool for evaluating tumor metastasis and distinguishing highly aggressive forms of tumors.
Collapse
Affiliation(s)
- Xuan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Jialong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Meixia Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Zeyuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Balakina A, Gadomsky S, Kokovina T, Sashenkova T, Mishchenko D, Terentiev A. New Derivatives of N-Hydroxybutanamide: Preparation, MMP Inhibition, Cytotoxicity, and Antitumor Activity. Int J Mol Sci 2023; 24:16360. [PMID: 38003553 PMCID: PMC10671431 DOI: 10.3390/ijms242216360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Using a novel method of N-substituted succinimide ring opening, new N-hydroxybutanamide derivatives were synthesized. These compounds were evaluated for their ability to inhibit matrix metalloproteinases (MMPs) and their cytotoxicity. The iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide showed the inhibition of MMP-2, MMP-9, and MMP-14 with an IC50 of 1-1.5 μM. All the compounds exhibited low toxicity towards carcinoma cell lines HeLa and HepG2. The iodoaniline derivative was also slightly toxic to glioma cell lines A-172 and U-251 MG. Non-cancerous FetMSC and Vero cells were found to be the least sensitive to all the compounds. In vivo studies demonstrated that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide had low acute toxicity. In a mouse model of B16 melanoma, this compound showed both antitumor and antimetastatic effects, with a 61.5% inhibition of tumor growth and an 88.6% inhibition of metastasis. Our findings suggest that the iodoaniline derivative of N1-hydroxy-N4-phenylbutanediamide has potential as a lead structure for the development of new MMP inhibitors. Our new synthetic approach can be a cost-effective method for the synthesis of inhibitors of metalloenzymes with promising antitumor potential.
Collapse
Affiliation(s)
- Anastasia Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Svyatoslav Gadomsky
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Tatyana Kokovina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
| | - Tatyana Sashenkova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
| | - Denis Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, State University of Education, 141014 Mytishchi, Russia
| | - Alexei Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia; (A.B.); (S.G.); (T.K.); (T.S.); (D.M.)
- Faculty of Fundamental Physical-Chemical Engineering of M.V. Lomonosov MSU, Leninskie Gory, 119991 Moscow, Russia
- Scientific and Educational Center in Chernogolovka, State University of Education, 141014 Mytishchi, Russia
| |
Collapse
|
7
|
Xu D, Wan Y, Xie Z, Du C, Wang Y. Hierarchically Structured Hydroxyapatite Particles Facilitate the Enhanced Integration and Selective Anti-Tumor Effects of Amphiphilic Prodrug for Osteosarcoma Therapy. Adv Healthc Mater 2023; 12:e2202668. [PMID: 36857811 DOI: 10.1002/adhm.202202668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Efficient delivery of cargo into target cells is a formidable challenge in modern medicine. Despite the great promise of biomimetic hydroxyapatite (HA) particles in tissue engineering, their potential applications in bone tumor therapy, particularly their structure-function relationships in cargo delivery to target cells, have not yet been well explored. In this study, biomimetic multifunctional composite microparticles (Bm-cMPs) are developed by integrating an amphiphilic prodrug of curcumin with hierarchically structured HA microspheres (Hs-hMPs). Then, the effects of the hierarchical structure of vehicles on the integration and delivery of cargo as well as the anti-osteosarcoma (OS) effect of the composite are determined. Different hierarchical structures of the vehicles strongly influence the self-assembly behavior of the prodrug. The flake-like crystals of Hs-hMPs enable the highest loading capacity and enhance the stability of the cargo. Compared to the normal cells, OS cells exhibit 3.56-times better uptake of flake-like Hs-hMPs, facilitating the selective anti-tumor effect of the prodrug. Moreover, Bm-cMPs suppress tumor growth and metastasis by promoting apoptosis and inhibiting cell proliferation and tumor vascularization. The findings shed light on the potential application of Bm-cMPs and suggest a feasible strategy for developing an effective targeted therapy platform using hierarchically structured minerals for OS treatment.
Collapse
Affiliation(s)
- Dong Xu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yuxin Wan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhenze Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Lahooti B, Akwii RG, Patel D, ShahbaziNia S, Lamprou M, Madadi M, Abbruscato TJ, Astrinidis A, Bickel U, Al-Ahmad A, German NA, Mattheolabakis G, Mikelis CM. Endothelial-Specific Targeting of RhoA Signaling via CD31 Antibody-Conjugated Nanoparticles. J Pharmacol Exp Ther 2023; 385:35-49. [PMID: 36746610 PMCID: PMC10029826 DOI: 10.1124/jpet.122.001384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Siavash ShahbaziNia
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Margarita Lamprou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Mahboubeh Madadi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Aristotelis Astrinidis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas (B.L., R.G.A., D.P., S.S., T.J.A., U.B., A.A.-A., N.A.G., C.M.M.); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece(M.L., C.M.M.); Department of Marketing and Business Analytics, Lucas College and Graduate School of Business, San Jose State University, San Jose, California (M.M.); Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital, Memphis, Tennessee (A.A.); and School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (G.M.)
| |
Collapse
|
9
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
10
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture. Int J Mol Sci 2023; 24:ijms24021293. [PMID: 36674806 PMCID: PMC9861345 DOI: 10.3390/ijms24021293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.
Collapse
|
12
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
13
|
Zhang F, Xia B, Sun J, Wang Y, Wang J, Xu F, Chen J, Lu M, Yao X, Timashev P, Zhang Y, Chen M, Che J, Li F, Liang XJ. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9808429. [PMID: 36452433 PMCID: PMC9680525 DOI: 10.34133/2022/9808429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/20/2024]
Abstract
Intelligent drug delivery system based on "stimulus-response" mode emerging a promising perspective in next generation lipid-based nanoparticle. Here, we classify signal sources into physical and physiological stimulation according to their origin. The physical signals include temperature, ultrasound, and electromagnetic wave, while physiological signals involve pH, redox condition, and associated proteins. We first summarize external physical response from three main points about efficiency, particle state, and on-demand release. Afterwards, we describe how to design drug delivery using the physiological environment in vivo and present different current application methods. Lastly, we draw a vision of possible future development.
Collapse
Affiliation(s)
- Fuxue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabei Sun
- China National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junge Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Mei Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jing Che
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Lv D, Lai Q, Zhang Q, Wang JH, Li YC, Zeng GZ, Yin JL. 3-Deoxysappanchalcone isolated from Caesalpinia sinensis shows anticancer effects on HeLa and PC3 cell lines: invasion, migration, cell cycle arrest, and signaling pathway. Heliyon 2022; 8:e11013. [PMID: 36276736 PMCID: PMC9582709 DOI: 10.1016/j.heliyon.2022.e11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
To study the antitumor activity of compound 3-desoxysulforaphane (3-DSC) isolated from Caesalpinia sinensis, SRB assay, clone formation assay, flow cytometric cell cycle assay, scratch assay, transwell assay, and molecular docking were used to investigate the inhibitory effect of 3-DSC on HeLa and PC3 cells. The results showed that 3-DSC inhibited the cell migration and invasion by down-regulating expression of N-cadherin, Vimentin, MMP-2, and MMP-9 in HeLa and PC3 cells; It also inhibits cell proliferation by promoting the expression of CDK1 (cyclin-dependent kinases 1) and CDK2 (cyclin-dependent kinases 2), which arrests the tumor cell cycle at G2 phase. 3-DSC inhibits phosphorylation of AKT and ERK and upregulates the expression of the tumor suppressor gene p53. Molecular docking results confirmed that 3-DSC could bind firmly to AKT. In conclusion, 3-DSC inhibited the proliferation, migration and invasion of HeLa and PC3 cells.
Collapse
|
15
|
Mustafa S, Koran S, AlOmair L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front Mol Biosci 2022; 9:896099. [PMID: 36250005 PMCID: PMC9557123 DOI: 10.3389/fmolb.2022.896099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate the turnover of extracellular matrix (ECM) components. Gross and La Piere discovered MMPs in 1962 during an experiment on tissue samples from a tadpole’s tail. Several subtypes of MMPs have been identified, depending on their substrate specificity and localization. MMPs are involved as essential molecules in multiple and diverse physiological processes, such as reproduction, embryonic development, bone remodeling, tissue repair, and regulation of inflammatory processes. Its activity is controlled at various levels such as at transcription level, pro-peptide activation level and by the activity of a family of tissue inhibitors of metalloproteinase, endogenous inhibitors of MMPs. Cancer metastasis, which is the spread of a tumor to a distant site, is a complex process that is responsible for the majority of cancer-related death It is considered to be an indicator of cancer metastasis. During metastasis, the tumor cells have to invade the blood vessel and degrade the ECM to make a path to new loci in distant places. The degradation of blood vessels and ECM is mediated through the activity of MMPs. Hence, the MMP activity is critical to determining the metastatic potential of a cancer cell. Evasion of apoptosis is one of the hallmarks of cancer that are found to be correlated with the expression of MMPs. As a result, given the importance of MMPs in cancer, we describe the role of these multifunctional enzymes MMPs in various aspects of cancer formation and their rising possibilities as a novel therapeutic target in this review. There is also a brief discussion of various types of therapeutic components and drugs that function against MMPs.
Collapse
Affiliation(s)
- Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Sabeena Mustafa,
| | - Sheeja Koran
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College, Thiruvanananthapuram, India
| | - Lamya AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022; 13:951561. [PMID: 36238299 PMCID: PMC9550895 DOI: 10.3389/fimmu.2022.951561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhi Guo, ; Yuting He,
| |
Collapse
|
17
|
Wu B, Zhong Y, Chen J, Pan X, Fan X, Chen P, Fu C, Ou C, Chen M. A dual-targeting peptide facilitates targeting anti-inflammation to attenuate atherosclerosis in ApoE -/- mice. Chem Commun (Camb) 2022; 58:8690-8693. [PMID: 35833251 DOI: 10.1039/d2cc01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Yuanzhi Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Jinmin Chen
- Cardiovascular Department of The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xianmei Pan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Xianglin Fan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Peier Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Chenxing Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523059, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| |
Collapse
|
18
|
Chaudhry M, Lyon P, Coussios C, Carlisle R. Thermosensitive liposomes: A promising step towards locsalised chemotherapy. Expert Opin Drug Deliv 2022; 19:899-912. [PMID: 35830722 DOI: 10.1080/17425247.2022.2099834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Many small molecules and biologic therapeutics have been developed for solid tumor therapy. However, the unique physiology of tumors makes the actual delivery of these drugs into the tumor mass inefficient. Such delivery requires transport from blood vessels, across the vasculature and into and through interstitial space within a tumor. This transportation is dependent on the physiochemical properties of the therapeutic agent and the biological properties of the tumour. It was hoped the application of nanoscale drug carrier systems would solve this problem. However, issues with poor tumor accumulation and limited drug release have impeded clinical impact. In response, these carrier systems have been redesigned to be paired with targetable external mechanical stimuli which can trigger much enhanced drug release and deposition. AREAS COVERED The pre-clinical and clinical progress of thermolabile drug carrier systems and the modalities used to trigger the release of their cargo, is assessed. EXPERT OPINION Combined application of mild hyperthermia and heat-responsive liposomal drug carriers has great potential utility. Clinical trials continue to progress this approach and serve to refine the technologies, dosing regimens and exposure parameters that will provide optimal patient benefit.
Collapse
Affiliation(s)
| | - Paul Lyon
- Nuffield Dept of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, Engineering Science, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
The Suppressive Activity of Water Mimosa Extract on Human Gastric Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiological studies have evidenced that natural dietary products can prevent or manage gastric cancer. Neptunia oleracea, an aquatic vegetable and edible plant, has been reported to have anti-cancer properties. In this study, N. oleracea extract’s suppression of gastric cancer cells was investigated on an in vitro experimental model. We found that ethyl acetate (EtOAc) extract inhibited cell proliferation at IC50 value of 172 µg/mL. Moreover, the treatment of EtOAc extract at a concentration of 50 µg/mL for 24 h caused suppression of cancer cell migration. Notably, a real-time PCR assay revealed that EtOAc extract induced the process of apoptosis via upregulating the mRNA expression level of caspase-8, Bax, caspase-9, and caspase-3 in cancer cells. In conclusion, N. oleracea had potential anti-cancer activity against gastric cancer cells, suggesting its role in the prevention and management of gastric cancer.
Collapse
|
20
|
Frankowski KJ, Patnaik S, Wang C, Southall N, Dutta D, De S, Li D, Dextras C, Lin YH, Bryant-Connah M, Davis D, Wang F, Wachsmuth LM, Shah P, Williams J, Kabir M, Zhu E, Baljinnyam B, Wang A, Xu X, Norton J, Ferrer M, Titus S, Simeonov A, Zheng W, Mathews Griner LA, Jadhav A, Aubé J, Henderson MJ, Rudloff U, Schoenen FJ, Huang S, Marugan JJ. Discovery and Optimization of Pyrrolopyrimidine Derivatives as Selective Disruptors of the Perinucleolar Compartment, a Marker of Tumor Progression toward Metastasis. J Med Chem 2022; 65:8303-8331. [PMID: 35696646 PMCID: PMC10024865 DOI: 10.1021/acs.jmedchem.2c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The perinucleolar compartment (PNC) is a dynamic subnuclear body found at the periphery of the nucleolus. The PNC is enriched with RNA transcripts and RNA-binding proteins, reflecting different states of genome organization. PNC prevalence positively correlates with cancer progression and metastatic capacity, making it a useful marker for metastatic cancer progression. A high-throughput, high-content assay was developed to identify novel small molecules that selectively reduce PNC prevalence in cancer cells. We identified and further optimized a pyrrolopyrimidine series able to reduce PNC prevalence in PC3M cancer cells at submicromolar concentrations without affecting cell viability. Structure-activity relationship exploration of the structural elements necessary for activity resulted in the discovery of several potent compounds. Analysis of in vitro drug-like properties led to the discovery of the bioavailable analogue, metarrestin, which has shown potent antimetastatic activity with improved survival in rodent models and is currently being evaluated in a first-in-human phase 1 clinical trial.
Collapse
Affiliation(s)
- Kevin J Frankowski
- KU Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States.,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Chen Wang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611, United States
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Dipannita Dutta
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Soumitta De
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Christopher Dextras
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Marthe Bryant-Connah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Danielle Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Feijun Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leah M Wachsmuth
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jordan Williams
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Edward Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Amy Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - John Norton
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611, United States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Steve Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lesley A Mathews Griner
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jeffrey Aubé
- KU Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States.,Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Frank J Schoenen
- KU Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois 60611, United States
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
21
|
Haiba N, Khalil HH, Bergas A, Abu-Serie MM, Khattab SN, Teleb M. First-in-Class Star-Shaped Triazine Dendrimers Endowed with MMP-9 Inhibition and VEGF Suppression Capacity: Design, Synthesis, and Anticancer Evaluation. ACS OMEGA 2022; 7:21131-21144. [PMID: 35755386 PMCID: PMC9219090 DOI: 10.1021/acsomega.2c01949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 06/12/2023]
Abstract
Off-target side effects are major challenges hindering the clinical success of matrix metalloproteinase (MMP) inhibitors. Various targeting strategies revitalized MMP research to eliminate this drawback. Herein, we developed s-triazine-based dendrimeric architecture not only amenable to tumor targeting but also decorated with pharmacophoric entities to endow MMP-9 inhibition for halting cancer progression. The design rationale utilized hydrazide branching chains as well as carboxylic and hydroxamic acid termini as Zn-binding groups to confer substantial MMP inhibitory potential. The carboxylic acids are tetherable to tumor targeting ligands and other cargo payloads as synergistic drugs via biodegradable linkages. The synthesized series were screened for cytotoxicity against normal fibroblasts (Wi-38) and two selected cancers (MDA-MB 231 and Caco-2) via MTT assay. The most active hexacarboxylic acid dendrimer 8a was more potent and safer than Dox against MDA-MB 231 and Caco-2 cells. It intrinsically inhibited MMP-9 with selectivity over MMP-2. Docking simulations demonstrated that the extended carboxylic acid termini of 8a could possibly chelate the active site Zn of MMP-9 and form hydrogen-bonding interactions with the ligand essential backbone Tyr423. In addition, it suppressed the correlated oncogenic mediators VEGF and cyclin D, upregulated p21 expression, induced apoptosis (>75%), and inhibited the tumor cell migration (∼84%) in the treated cancer cells. Thus, up to our knowledge, it is the first triazine-based MMP-9 inhibitor dendrimer endowed with VEGF suppression potential that can be employed as a bioactive carrier.
Collapse
Affiliation(s)
- Nesreen
S. Haiba
- Department
of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria 21321, Egypt
| | - Hosam H. Khalil
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed Bergas
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Sherine N. Khattab
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
22
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
23
|
Dravid AA, M. Dhanabalan K, Agarwal S, Agarwal R. Resolvin D1-loaded nanoliposomes promote M2 macrophage polarization and are effective in the treatment of osteoarthritis. Bioeng Transl Med 2022; 7:e10281. [PMID: 35600665 PMCID: PMC9115708 DOI: 10.1002/btm2.10281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Current treatments for osteoarthritis (OA) offer symptomatic relief but do not prevent or halt the disease progression. Chronic low-grade inflammation is considered a significant driver of OA. Specialized proresolution mediators are powerful agents of resolution but have a short in vivo half-life. In this study, we have engineered a Resolvin D1 (RvD1)-loaded nanoliposomal formulation (Lipo-RvD1) that targets and resolves the OA-associated inflammation. This formulation creates a depot of the RvD1 molecules that allows the controlled release of the molecule for up to 11 days in vitro. In surgically induced mice model of OA, only controlled-release formulation of Lipo-RvD1 was able to treat the progressing cartilage damage when administered a month after the surgery, while the free drug was unable to prevent cartilage damage. We found that Lipo-RvD1 functions by damping the proinflammatory activity of synovial macrophages and recruiting a higher number of M2 macrophages at the site of inflammation. Our Lipo-RvD1 formulation was able to target and suppress the formation of the osteophytes and showed analgesic effect, thus emphasizing its ability to treat clinical symptoms of OA. Such controlled-release formulation of RvD1 could represent a patient-compliant treatment for OA.
Collapse
Affiliation(s)
- Ameya A. Dravid
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Kaamini M. Dhanabalan
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Smriti Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Rachit Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| |
Collapse
|
24
|
Khalil HH, Osman HA, Teleb M, Darwish AI, Abu-Serie MM, Khattab SN, Haiba NS. Engineered s-Triazine-Based Dendrimer-Honokiol Conjugates as Targeted MMP-2/9 Inhibitors for Halting Hepatocellular Carcinoma. ChemMedChem 2021; 16:3701-3719. [PMID: 34547831 DOI: 10.1002/cmdc.202100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Despite the advances in developing MMP-2/9 inhibitors, off-target side effects and pharmacokinetics problems remain major challenges hindering their clinical success in cancer therapy. However, recent targeting strategies have clearly revitalized MMP research. Herein, we introduce new s-triazine-based dendrimers endowed with intrinsic MMP-2/9 inhibitory potential and tetherable to hepatocellular carcinoma-specific targeting ligands and anticancer agents via biodegradable linkages for targeted therapy. The designed dendrimeric platform was built with potential zinc-binding branching linkers (hydrazides) and termini (carboxylic acids and hydrazides) to confer potency against MMP-2/9. Preliminary cytotoxicity screening and MMP-2/9 inhibition assay of the free dendrimers revealed promising potency (MMP-9; IC50 =0.35-0.57 μM, MMP-2; IC50 =0.39-0.77 μM) within their safe doses (EC100 =94.15-42.75 μM). The hydrazide dendrimer was comparable to NNGH and superior to the carboxylic acid analogue. MTT assay showed that the free dendrimers were superior to the reference anticancer agent honokiol. Their anticancer potency was enhanced by HK conjugation, targeting ligands installation and PEGylation as exemplified by the hydrazide dendrimer conjugate (TPG3 -NH2 )-SuHK-FA-SuPEG (Huh-7; IC50 =5.54 μM, HepG-2; IC50 =10.07 μM) being 4 folds more active than HK, followed by the carboxylic acid conjugate (TPG3 -OH)-HK-LA-PEG (Huh-7; IC50 =14.97, HepG-2; IC50 =21.29 μM). This was consistent with apoptosis studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Heba A Osman
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - A I Darwish
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
25
|
Xia P, Liang J, Jin D, Jin Z. Reversine inhibits proliferation, invasion and migration and induces cell apoptosis in gastric cancer cells by downregulating TTK. Exp Ther Med 2021; 22:929. [PMID: 34306198 PMCID: PMC8281506 DOI: 10.3892/etm.2021.10361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/02/2021] [Indexed: 12/29/2022] Open
Abstract
Reversine (Rev) has been used for the treatment of a number of cancers. However, there have been no previous reports for the use of Rev for gastric cancer (GC). The aim of the present study was to investigate the effect of Rev on cell proliferation, migration, invasion and cell apoptosis in human GC cells and TTK expression. Cell Counting Kit-8 and colony formation were used to assess cell proliferation. Wound healing and Transwell assays were performed to examine cell migration and invasion, respectively. Cell apoptosis was measured using TUNEL staining and western blotting. Reverse transcription-quantitative PCR and western blotting were performed to determine TTK expression in AGS and NCI-N87 GC cells. Rev treatment inhibited the viability of the two GC cells lines in a dose-dependent manner and suppressed their capacities of clone formation, migration and invasion. Rev-treated cells exhibited reduced matrix metalloproteinase (MMP)2/9 expression and increased apoptosis compared with those in control cells. In addition, expression of the anti-apoptotic protein Bcl-2 was significantly decreased, whilst the expression levels of the pro-apoptotic factors Bax and cleaved-caspase-3/9 were increased by Rev treatment compared with that in the control group that were not treated with Rev. In addition, TTK protein expression was decreased in cells treated with Rev compared with that in untreated cells. However, overexpression of TTK significantly reversed the aforementioned effects of Rev in GC cells. These results suggest that Rev may inhibit the proliferation, invasion and migration of GC cells whilst inducing cell apoptosis by suppressing TTK expression. Therefore, Rev may confer potential properties as a therapeutic anti-cancer agent. Additionally, TTK may serve as a molecular target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Pengfei Xia
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Jin Liang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Di Jin
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Zhanyong Jin
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
26
|
Koh M, Takahashi T, Kurokawa Y, Kobayashi T, Saito T, Ishida T, Serada S, Fujimoto M, Naka T, Wada N, Yamashita K, Tanaka K, Miyazaki Y, Makino T, Nakajima K, Yamasaki M, Eguchi H, Doki Y. Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis. Gastric Cancer 2021; 24:1037-1049. [PMID: 33782804 DOI: 10.1007/s10120-021-01184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite improvements in gastric cancer treatment, the mortality associated with advanced gastric cancer is still high. The activation of β-adrenergic receptors by stress has been shown to accelerate the progression of several cancers. Accordingly, increasing evidence suggests that the blockade of β-adrenergic signaling can inhibit tumor growth. However, the effect of β-blockers, which target several signaling pathways, on gastric cancer remains to be elucidated. This study aimed to investigate the anti-tumor effects of propranolol, a non-selective β-blocker, on gastric cancer. METHODS We explored the effect of propranolol on the MKN45 and NUGC3 gastric cancer cell lines. Its efficacy and the mechanism by which it exerts anti-tumor effects were examined using several assays (e.g., cell proliferation, cell cycle, apoptosis, and wound healing) and a xenograft mouse model. RESULTS We found that propranolol inhibited tumor growth and induced G1-phase cell cycle arrest and apoptosis in both cell lines. Propranolol also decreased the expression of phosphorylated CREB-ATF and MEK-ERK pathways; suppressed the expression of matrix metalloproteinase-2, 9 and vascular endothelial growth factor; and inhibited gastric cancer cell migration. In the xenograft mouse model, propranolol treatment significantly inhibited tumor growth, and immunohistochemistry revealed that propranolol led to the suppression of proliferation and induction of apoptosis. CONCLUSIONS Propranolol inhibits the proliferation of gastric cancer cells by inducing G1-phase cell cycle arrest and apoptosis. These findings indicate that propranolol might have an opportunity as a new drug for gastric cancer.
Collapse
Affiliation(s)
- Masahiro Koh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Teruyuki Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomo Ishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Serada
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Minoru Fujimoto
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Tetsuji Naka
- Center for Intractable Disease, Kochi University, Nankoku, Japan
| | - Noriko Wada
- Department of Surgery, Ikeda City Hospital, Ikeda, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
28
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27:1000-1013. [PMID: 34389240 DOI: 10.1016/j.molmed.2021.07.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, Lyon, France
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
29
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
30
|
AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021; 4:1028-1049. [PMID: 34151199 PMCID: PMC8205246 DOI: 10.1021/acsptsci.1c00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/31/2022]
Abstract
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects. Liposomes are the most promising of such SDDSs and have been well investigated for cancer therapy. To improve the specificity, bioavailability, and anticancer efficacy of liposomes at the diseased sites, other strategies such as targeting ligands and stimulus-sensitive liposomes have been developed. This review highlights relevant surface functionalization techniques and stimuli-mediated drug release for enhanced delivery of anticancer agents at tumor sites, with a special focus on dual functionalization and design of multistimuli responsive liposomes.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical
Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| |
Collapse
|
31
|
Chuang YC, Hsieh MC, Lin CC, Lo YS, Ho HY, Hsieh MJ, Lin JT. Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial‑mesenchymal transition and inhibition of MMP‑2. Oncol Rep 2021; 46:143. [PMID: 34080661 PMCID: PMC8165580 DOI: 10.3892/or.2021.8094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor located in the nasopharynx with highly invasive and metastatic properties. Metastasis is a primary cause of mortality in patients with NPC. The terpenoid polyphenol pinosylvin is a known functional compound of the Pinus species that exhibits anti‑inflammatory effects; however, the effect of pinosylvin on human NPC cell migration and invasion is unclear. The present study aimed to investigate the functional role of pinosylvin in NPC cells (NPC‑039, NPC‑BM and RPMI 2650). Gap closure and Transwell assay indicated that pinosylvin at increasing concentrations inhibited migration and invasion of NPC‑039 and NPC‑BM cells. In addition to inhibiting the enzyme activity of MMP‑2, pinosylvin also decreased the protein expression levels of MMP‑2 and MMP‑9. Pinosylvin decreased the expression of vimentin and N‑cadherin and significantly increased the expression of zonula occludens‑1 and E‑cadherin in NPC cells. Additionally, pinosylvin suppressed the invasion and migration ability of NPC‑039 and NPC‑BM cells by mediating the p38, ERK1/2 and JNK1/2 pathways. The present results revealed that pinosylvin inhibited migration and invasion in NPC cells.
Collapse
Affiliation(s)
- Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jen-Tsun Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
32
|
Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021; 10:e2002163. [PMID: 33763992 PMCID: PMC7610913 DOI: 10.1002/adhm.202002163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| | - Melis Emanet
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
- Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityUniversite Caddesi 27‐1TuzlaIstanbul34956Turkey
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| |
Collapse
|
33
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
34
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
35
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
36
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Front Oncol 2021; 11:623760. [PMID: 33796461 PMCID: PMC8008067 DOI: 10.3389/fonc.2021.623760] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Since more than 40 years liposomes have being extensively studied for their potential as carriers of anticancer drugs. The basic principle behind their use for cancer treatment consists on the idea that they can take advantage of the leaky vasculature and poor lymphatic drainage present at the tumor tissue, passively accumulating in this region. Aiming to further improve their efficacy, different strategies have been employed such as PEGlation, which enables longer circulation times, or the attachment of ligands to liposomal surface for active targeting of cancer cells. A great challenge for drug delivery to cancer treatment now, is the possibility to trigger release from nanosystems at the tumor site, providing efficacious levels of drug in the tumor. Different strategies have been proposed to exploit the outer and inner tumor environment for triggering drug release from liposomes and are the focus of this review.
Collapse
Affiliation(s)
- Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
39
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
40
|
Zhao B, Wu M, Hu Z, Wang T, Yu J, Ma Y, Wang Q, Zhang Y, Chen D, Li T, Li Y, Yu M, Wang H, Mo W. A novel oncotherapy strategy: Direct thrombin inhibitors suppress progression, dissemination and spontaneous metastasis in non-small cell lung cancer. Br J Pharmacol 2021; 179:5056-5073. [PMID: 33481255 DOI: 10.1111/bph.15384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer. Nevertheless, thrombin expression in non-small cell lung cancer (NSCLC) primary tumour tissues and the association between prognosis of NSCLC patients remain largely unknown. EXPERIMENTAL APPROACH Clinical pathological analysis was performed to determine the relationship between thrombin and tumour progression. Effects of r-hirudin and direct thrombin inhibitor peptide (DTIP) on cancer progression were evaluated. Western blotting, immunohistochemistry, and immunofluorescence were used to explore the inhibition mechanism of r-hirudin and DTIP. The therapeutic effect of the combination of DTIP and chemotherapy was determined. KEY RESULTS Thrombin expression in NSCLC tissues was closely related to clinicopathological features and the prognosis of patients. Thrombin deficiency inhibited tumour progression. The novel thrombin inhibitors, r-hirudin and DTIP, inhibited cell invasion and metastasis in vitro. They inhibited tumour growth and metastasis in orthotopic lung cancer model, inhibited cell invasion, and prolonged survival after injection of tumour cells via the tail vein. They also inhibited angiogenesis and spontaneous metastases from subcutaneously inoculated tumours. The promotion by thrombin of invasion and metastasis was abolished in PAR-1-deficient NSCLC cells. r-hirudin and DTIP inhibited tumour progression through the thrombin-PAR-1-mediated RhoA and NF-κB signalling cascades via inhibiting MMP9 and IL6 expression. DTIP potentiated chemotherapy-induced growth and metastatic inhibition and inhibited chemotherapy-induced resistance in mice. CONCLUSIONS AND IMPLICATIONS Thrombin makes a substantial contribution, together with PAR-1, to NSCLC malignancy. The anti-coagulants, r-hirudin and DTIP, could be used in anti-tumour therapy and a combination of DTIP and chemotherapy might improve therapeutic effects.
Collapse
Affiliation(s)
- Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengfang Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihuang Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tianfa Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinchao Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Yixin Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Di Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianyu Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yaran Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
42
|
Ma YS, Yang XL, Xin R, Liu JB, Fu D. Power and promise of exosomes as clinical biomarkers and therapeutic vectors for liquid biopsy and cancer control. Biochim Biophys Acta Rev Cancer 2020; 1875:188497. [PMID: 33370570 DOI: 10.1016/j.bbcan.2020.188497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Exosomes, microvesicles derived from the nuclear endosome and plasma membrane, can be released into the extracellular environment to act as mediators between the cell membrane and cytoplasmic proteins, lipids, or RNA. Exosomes are considered effective carriers of intercellular signals in prokaryotes and eukaryotes, because of their ability to efficiently transfer proteins, lipids, and nucleic acids between cellular compartments. Since the 2007 discovery that exosomes carry bioactive substances, exosomes have been intensively researched. In various physiological and pathological processes, exosomes play important biological roles by specifically combining with receptor cells and transmitting information. Their stable biological characteristics, diversity of contents, non-invasiveness path for introducing signaling molecules, and ability for rapid detection make exosomes a promising clinical diagnostic marker for potentially many pathological conditions, including cancers. Exosomes are not only considered biomarkers and prognostic disease factors, but also have potential as gene carriers and drug delivery vectors, and have important clinical significance and application potential in the fields of cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
43
|
Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic Acid-Modified Erythrocyte Membrane Loading Dual Drug for Targeted and Chemo-Photothermal Synergistic Cancer Therapy. Mol Pharm 2020; 18:386-402. [PMID: 33296217 DOI: 10.1021/acs.molpharmaceut.0c01008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To overcome the challenges of systemic toxicity and weak tumor selectivity caused by traditional antitumor drugs, numerous nanocarrier systems have been developed in recent decades, and their therapeutic effect has been improved to varying degrees. However, because of the drug resistance effect and metastasis involved in tumor recurrence, a single chemotherapy can no longer satisfy the diversified treatment needs. Recently, the application of chemotherapy in combination with thermotherapy as a synergistic approach has been proven to be more effective, and it provides a new strategy for cancer therapy. In this work, by utilizing the unique properties of erythrocytes, a surface-modified erythrocyte membrane was constructed as a novel nanocarrier system (DOX and ICG-PLGA@RBC nanoparticles, DIRNPs for short) for the simultaneous transportation of chemotherapeutic drugs (doxorubicin, DOX) and photothermal agents (indocyanine green, ICG) to achieve the effects of long-term circulation, active tumor targeting, and triggered drug release. The results indicated that DIRNPs have a nanoscale particle size of 158.4 nm with a narrow size distribution and a negative surface charge of -5.79 mV. No particle aggregation or remarkable drug leakage was observed during the 30 day storage test, and because of the excellent photothermal conversion ability of ICG, the local temperature of DIRNPs could dramatically increase from 33.7 to 49.8 °C in 10 min under near-infrared (NIR) laser irradiation. The in vitro drug dissolution data demonstrated that the DOX release from the DIRNPs was pH-dependent and NIR-triggered. Folic acid modifications of the erythrocyte membrane effectively facilitated the intracellular uptake of DIRNPs by HepG2 cells and, as a result, it significantly inhibited tumor cell growth, promoted reactive oxygen species levels, induced cell apoptosis, and restricted cell recovery and migration. In vivo pharmacokinetics and biodistribution studies indicated that the DIRNPs prolonged the half-life of DOX from 6.03 to 17.6 h and remarkably reduced the DOX level in the heart to avoid drug-related cardiotoxicity. More importantly, the DIRNPs exerted excellent in vivo antitumor efficacy against H22 tumors with superior safety. In conclusion, utilizing the advantageous properties of erythrocytes to construct a tumor-targeted biomimetic nanocarrier for codelivery of chemotherapeutics and photothermal agents to produce synergistic effects is considered an effective method for cancer therapy.
Collapse
Affiliation(s)
- Zhihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yusheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cui Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dahua He
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Huan Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengfei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenpeng Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanye Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Zhou
- School of Pharmacy, Guangzhou Medical University, Guangzhou 510436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
44
|
Aversano A, Rossi FW, Cammarota F, De Paulis A, Izzo P, De Rosa M. Nitrodi thermal water downregulates protein S‑nitrosylation in RKO cells. Int J Mol Med 2020; 46:1359-1366. [PMID: 32945437 PMCID: PMC7447308 DOI: 10.3892/ijmm.2020.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022] Open
Abstract
Balneotherapy and spa therapy have been used in the treatment of ailments since time immemorial. Moreover, there is evidence to suggest that the beneficial effects of thermal water continue for months following the completion of treatment. The mechanisms through which thermal water exerts its healing effects remain unknown. Both balneological and hydroponic therapy at 'the oldest spa in the world', namely, the Nitrodi spring on the Island of Ischia (Southern Italy) are effective in a number of diseases and conditions. The aim of the present study was to investigate the molecular basis underlying the therapeutic effects of Nitrodi spring water in low-grade inflammation and stress-related conditions. For this purpose, an in vitro model was devised in which RKO colorectal adenocarcinoma cells were treated with phosphate-buffered saline or phosphate-buffered saline prepared with Nitrodi water for 4 h daily, 5 days a week for 6 weeks. The RKO cells were then subjected to the following assays: 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, Transwell migration assay, western blot analysis, the fluorimetric detection of protein S-nitrosothiols and S-nitrosylation western blot analysis. The results revealed that Nitrodi spring water promoted cell migration and cell viability, and downregulated protein S-nitrosylation, probably also the nitrosylated active form of the cyclooxygenase (COX)-2 protein. These results concur with all the previously reported therapeutic properties of Nitrodi spring water, and thus rein-force the concept that this natural resource is an important complementary therapy to traditional medicine.
Collapse
Affiliation(s)
- Antonietta Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| |
Collapse
|
45
|
Quesnel A, Karagiannis GS, Filippou PS. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188428. [PMID: 32956761 DOI: 10.1016/j.bbcan.2020.188428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Gliomas encompass highly invasive primary central nervous system (CNS) tumours of glial cell origin with an often-poor clinical prognosis. Of all gliomas, glioblastoma is the most aggressive form of primary brain cancer. Current treatments in glioblastoma are insufficient due to the invasive nature of brain tumour cells, which typically results in local tumour recurrence following treatment. The latter represents the most important cause of mortality in glioblastoma and underscores the necessity for an in-depth understanding of the underlying mechanisms. Interestingly, increased synthesis and secretion of several proteolytic enzymes within the tumour microenvironment, such as matrix metalloproteinases, lysosomal proteases, cathepsins and kallikreins for extracellular-matrix component degradation may play a major role in the aforementioned glioblastoma invasion mechanisms. These proteolytic networks are key players in establishing and maintaining a tumour microenvironment that promotes tumour cell survival, proliferation, and migration. Indeed, the targeted inhibition of these proteolytic enzymes has been a promisingly useful therapeutic strategy for glioblastoma management in both preclinical and clinical development. We hereby summarize current advances on the biology of the glioblastoma tumour microenvironment, with a particular emphasis on the role of proteolytic enzyme families in glioblastoma invasion and progression, as well as on their subsequent prognostic value as biomarkers and their therapeutic targeting in the era of precision medicine.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom.
| |
Collapse
|
46
|
Li J, Guo Q, Lei X, Zhang L, Su C, Liu Y, Zhou W, Chen H, Wang H, Wang F, Yan Y, Zhang J. Pristimerin induces apoptosis and inhibits proliferation, migration in H1299 Lung Cancer Cells. J Cancer 2020; 11:6348-6355. [PMID: 33033518 PMCID: PMC7532514 DOI: 10.7150/jca.44431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The natural occurring pristimerin, a quinonemethide triterpenoid, is extracted from a variety of species of the Celastraceae and Hippocrateaceae family. This research investigated the in vitro anti-cancer potential of pristimerin on NSCLC cells NCI-H1299 and elucidated the molecular mechanism. Methods: Cell growth inhibition by pristimerin was assessed using the MTT assay. Apoptosis was detected using the Annexin V/propidium iodide (PI) test. The colony forming assay was used to investigate the anti-proliferative effects of pristimerin. Wound healing assay and the transwell cell migration assay were utilized to determine the inhibitory effects of migration and invasion, respectively. Western blot was used to detect the protein expression, and real-time-quantitative (RT-q) PCR was used to analyze the mRNA expression. Results: The results showed that pristimerin inhibited the proliferation of H1299 cells with an IC50 value of 2.2 ± 0.34 µM and induced apoptosis in a dose-dependent manner. The colony formation ability was reduced in a dose-dependent manner. A marked inhibition of migration and invasion against H1299 cells was observed in a dose- or time-dependent manner. Moreover, the decreased protein levels of vimentin, F-actin, integrin β1, matrix metalloproteinase (MMP2) and Snail revealed the potential inhibition of epithelial-to-mesenchymal transition (EMT). The regulated mRNA levels of integrin β1, MMP2 and Snail indicated the great potential in the treatment of NSCLC. Conclusion: In conclusion, our study demonstrated that pristimerin suppressed NSCLC cells NCI-H1299 in vitro, exhibited potent activities of proliferation inhibition and apoptosis induction. Furthermore, the treatment of pristimerin decreased migration and invasion of H1299, which was correlated with EMT-related proteins and mRNA.
Collapse
Affiliation(s)
- Jiajun Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xueping Lei
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Lingling Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Chaoyue Su
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wenmin Zhou
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Fenghua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, P. R. China
| | - Yanyan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong 037009, P. R. China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
47
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY, Ding Q, Chen XL, Tang JY, Zhou ZY. Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated From Anemarrhena asphodeloides Bunge: A Review. Front Pharmacol 2020; 11:764. [PMID: 32581782 PMCID: PMC7283383 DOI: 10.3389/fphar.2020.00764] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin-Lin Chen
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| |
Collapse
|
48
|
Wei M, Li J, Qiu J, Yan Y, Wang H, Wu Z, Liu Y, Shen X, Su C, Guo Q, Pan Y, Zhang P, Zhang J. Costunolide induces apoptosis and inhibits migration and invasion in H1299 lung cancer cells. Oncol Rep 2020; 43:1986-1994. [PMID: 32236584 PMCID: PMC7160540 DOI: 10.3892/or.2020.7566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
Costunolide being a sesquiterpene lactone, is known to have anticancer properties. The present study investigated the anticancer effects of costunolide against the H1299 human non‑small‑cell lung cancer (NSCLC) cell line. Inhibition of cell viability by costunolide was assessed via a MTT assay. Furthermore, the apoptotic rate was detected using Annexin V/propidium iodide labeling. A colony forming cell assay was performed to investigate the antiproliferative effects of costunolide. Wound healing and Transwell assays were performed to determine the inhibitory effects of costunolide on migration and invasion, respectively. Western blot analysis was undertaken to determine protein expression, and reverse transcription‑quantitative PCR was performed to assess mRNA expression levels. The results demonstrated that costunolide inhibited the viability of H1299 cells, with a half maximal inhibitory concentration value of 23.93±1.67 µM and induced cellular apoptosis in a dose‑dependent manner. Furthermore, the colony formation, migrative and invasive abilities of the H1299 cells were inhibited in a dose‑ or time‑dependent manner. The protein expression levels of E‑cadherin increased and those of N‑cadherin decreased following treatment with costunolide, which suggested that costunolide inhibited epithelial‑to‑mesenchymal transition. The mRNA levels of B‑Raf, E‑cadherin, N‑cadherin, integrins α2 and β1, as well as matrix metalloproteinases 2 were also found to be regulated costunolide. These findings indicate the potential of costunolide in the treatment of NSCLC.
Collapse
Affiliation(s)
- Minyan Wei
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiajun Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Qiu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanyan Yan
- Department of Pharmacology, Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hui Wang
- Department of Thoracic Surgery, Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Zengbao Wu
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoyun Shen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Chaoyue Su
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yanrui Pan
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Peiquan Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|