1
|
He C, Zeng Z, Yang Y, Ye S, Wu Q, Liu X, Liu C, Zeng W, Liu S. Silencing of CircTRIM25/miR-138-5p/CREB1 axis promotes chondrogenesis in osteoarthritis. Autoimmunity 2024; 57:2361749. [PMID: 39007896 DOI: 10.1080/08916934.2024.2361749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS Chondrocytes were treated with interleukin (IL)-1β to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS CircTRIM25 was upregulated in OA tissues and IL-1β-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1β-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wu
- Gannan Medical University, Ganzhou, China
| | - Xunzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chenghong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wanhui Zeng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Ye Y, Cao Z. Glucose Metabolism and Glucose Transporters in Head and Neck Squamous Cell Carcinoma. Cancer Invest 2024:1-18. [PMID: 39324504 DOI: 10.1080/07357907.2024.2407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Head and neck squamous cell carcinoma ranks seventh globally in malignancy prevalence, with persistent high mortality rates despite treatment advancements. Glucose, pivotal in cancer metabolism via the Warburg effect, enters cells via glucose transporters, notably GLUT proteins. Glycolysis, aerobic oxidation, and the pentose phosphate pathway in glucose metabolism significantly impact HNSCC progression. HNSCC exhibits elevated expression of glucose metabolism enzymes and GLUT proteins, correlating with prognosis. Heterogeneity in HNSCC yields varied metabolic profiles, influenced by factors like HPV status and disease stage. This review highlights glucose metabolism's role and potential as therapeutic targets and cancer imaging tracers in HNSCC.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Otolaryngology, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zaizai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
5
|
Chen K, Li T, Diao H, Wang Q, Zhou X, Huang Z, Wang M, Mao Z, Yang Y, Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett 2024; 598:217109. [PMID: 39002692 DOI: 10.1016/j.canlet.2024.217109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Tiane Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Honglin Diao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Qikai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojia Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zhihua Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Mingyue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Wenhua Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Komarova AD, Sinyushkina SD, Shchechkin ID, Druzhkova IN, Smirnova SA, Terekhov VM, Mozherov AM, Ignatova NI, Nikonova EE, Shirshin EA, Shimolina LE, Gamayunov SV, Shcheslavskiy VI, Shirmanova MV. Insights into metabolic heterogeneity of colorectal cancer gained from fluorescence lifetime imaging. eLife 2024; 13:RP94438. [PMID: 39197048 PMCID: PMC11357354 DOI: 10.7554/elife.94438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients' colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients' tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.
Collapse
Affiliation(s)
- Anastasia D Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
| | - Snezhana D Sinyushkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Ilia D Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussian Federation
| | - Irina N Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Sofia A Smirnova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Vitaliy M Terekhov
- Nizhny Novgorod Regional Oncologic HospitalNizhny NovgorodRussian Federation
| | - Artem M Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Nadezhda I Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Elena E Nikonova
- Laboratory of Clinical Biophotonics, Sechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Evgeny A Shirshin
- Laboratory of Clinical Biophotonics, Sechenov First Moscow State Medical UniversityMoscowRussian Federation
- Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Liubov E Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| | - Sergey V Gamayunov
- Nizhny Novgorod Regional Oncologic HospitalNizhny NovgorodRussian Federation
| | - Vladislav I Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
- Becker&Hickl GmbHBerlinGermany
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical UniversityNizhny NovgorodRussian Federation
| |
Collapse
|
7
|
Yang Y, Pu J, Yang Y. Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon 2024; 10:e35721. [PMID: 39170140 PMCID: PMC11336864 DOI: 10.1016/j.heliyon.2024.e35721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
While traditional high-dose chemotherapy can effectively prolong the overall survival of acute myeloid leukemia (AML) patients and contribute to better prognostic outcomes, the advent of chemoresistance is a persistent challenge to effective AML management in the clinic. The therapeutic resistance is thought to emerge owing to the heterogeneous and adaptable nature of tumor cells when exposed to exogenous stimuli. Recent studies have focused on exploring metabolic changes that may afford novel opportunities to treat AML, with a particular focus on glycolytic metabolism. The Warburg effect, a hallmark of cancer, refers to metabolism of glucose through glycolysis under normoxic conditions, which contributes to the development of chemoresistance. Despite the key significance of this metabolic process in the context of malignant transformation, the underlying molecular mechanisms linking glycolysis to chemoresistance in AML remain incompletely understood. This review offers an overview of the current status of research focused on the relationship between glycolytic metabolism and AML resistance to chemotherapy, with a particular focus on the contributions of glucose transporters, key glycolytic enzymes, signaling pathways, non-coding RNAs, and the tumor microenvironment to this relationship. Together, this article will provide a foundation for the selection of novel therapeutic targets and the formulation of new approaches to treating AML.
Collapse
Affiliation(s)
- Yan Yang
- Department of Neonatology, Zigong Maternity and Child Health Care Hospital, Zigong, Sichuan, 643000, China
| | - Jianlin Pu
- Department of Psychiatry, The Zigong Affiliated Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan, 643000, China
| | - You Yang
- Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
8
|
Yang Y, Qiu YT, Li WK, Cui ZL, Teng S, Wang YD, Wu J. Multi-Omics analysis elucidates tumor microenvironment and intratumor microbes of angiogenesis subtypes in colon cancer. World J Gastrointest Oncol 2024; 16:3169-3192. [PMID: 39072166 PMCID: PMC11271793 DOI: 10.4251/wjgo.v16.i7.3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Angiogenesis plays an important role in colon cancer (CC) progression. AIM To investigate the tumor microenvironment (TME) and intratumor microbes of angiogenesis subtypes (AGSs) and explore potential targets for antiangiogenic therapy in CC. METHODS The data were obtained from The Cancer Genome Atlas database and Gene Expression Omnibus database. K-means clustering was used to construct the AGSs. The prognostic model was constructed based on the differential genes between two subtypes. Single-cell analysis was used to analyze the expression level of SLC2A3 on different cells in CC, which was validated by immunofluorescence. Its biological functions were further explored in HUVECs. RESULTS CC samples were grouped into two AGSs (AGS-A and AGS-B) groups and patients in the AGS-B group had poor prognosis. Further analysis revealed that the AGS-B group had high infiltration of TME immune cells, but also exhibited high immune escape. The intratumor microbes were also different between the two subtypes. A convenient 6-gene angiogenesis-related signature (ARS), was established to identify AGSs and predict the prognosis in CC patients. SLC2A3 was selected as the representative gene of ARS, which was higher expressed in endothelial cells and promoted the migration of HUVECs. CONCLUSION Our study identified two AGSs with distinct prognoses, TME, and intratumor microbial compositions, which could provide potential explanations for the impact on the prognosis of CC. The reliable ARS model was further constructed, which could guide the personalized treatment. The SLC2A3 might be a potential target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Yu-Ting Qiu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Wen-Kun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Zi-Lu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shuo Teng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Ya-Dan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| |
Collapse
|
9
|
Zhao L, Yu N, Zhai Y, Yang Y, Wang Y, Yang Y, Gong Z, Zhang Y, Zhang X, Guo W. The ubiquitin-like protein UBTD1 promotes colorectal cancer progression by stabilizing c-Myc to upregulate glycolysis. Cell Death Dis 2024; 15:502. [PMID: 39003255 PMCID: PMC11246417 DOI: 10.1038/s41419-024-06890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Dysfunction of the ubiquitin-proteasome system (UPS) is involved in the pathogenesis of various malignancies including colorectal cancer (CRC). Ubiquitin domain containing 1 (UBTD1), a ubiquitin-like protein, regulates UPS-mediated protein degradation and tumor progression in some cancer types. However, the biological function and mechanism of UBTD1 are far from being well elucidated, and its role in CRC has not been explored yet. In our study, we analyzed CRC patients' clinical information and UBTD1 expression data, and found that the expression of UBTD1 in cancer tissue was significantly higher than that in adjacent normal tissue. Higher UBTD1 expression was significantly associated with poorer survival and more lymph node metastasis. Overexpression of UBTD1 could facilitate, while knockdown could inhibit CRC cell proliferation and migration, respectively. RNA-seq and proteomics indicated that c-Myc is an important downstream target of UBTD1. Metabolomics showed the products of the glycolysis pathway were significantly increased in UBTD1 overexpression cells. In vitro, we verified UBTD1 upregulating c-Myc protein and promoting CRC cell proliferation and migration via regulating c-Myc. UBTD1 promoted CRC cells' glycolysis, evidenced by the increased lactate production and glucose uptake following UBTD1 overexpression. Mechanistically, UBTD1 prolonged the half-life of the c-Myc protein by binding to E3 ligase β-transducin repeat-containing protein (β-TrCP), thereby upregulated the expression of glycolysis rate-limiting enzyme hexokinase II (HK2), and enhanced glycolysis and promoted CRC progression. In conclusion, our study revealed that UBTD1 promotes CRC progression by upregulating glycolysis via the β-TrCP/c-Myc/HK2 pathway, suggesting its potential as a prognostic biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuoya Yu
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujia Zhai
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanan Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixuan Wang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Yang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe Gong
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqiu Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaowei Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Weijian Guo
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Ribeiro KS, Karmakar E, Park C, Garg R, Kung GP, Kadakia I, Gopianand JS, Arun T, Kisselev O, Gnana-Prakasam JP. Iron Regulates Cellular Proliferation by Enhancing the Expression of Glucose Transporter GLUT3 in the Liver. Cells 2024; 13:1147. [PMID: 38994998 PMCID: PMC11240476 DOI: 10.3390/cells13131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.
Collapse
Affiliation(s)
- Kleber S Ribeiro
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Eshani Karmakar
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Christine Park
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Richa Garg
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - George P Kung
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Isha Kadakia
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | | - Tejas Arun
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Oleg Kisselev
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | |
Collapse
|
11
|
Gao Y, Gong Y, Lu J, Yang Y, Zhang Y, Xiong Y, Shi X. Dihydroartemisinin breaks the positive feedback loop of YAP1 and GLUT1-mediated aerobic glycolysis to boost the CD8 + effector T cells in hepatocellular carcinoma. Biochem Pharmacol 2024; 225:116294. [PMID: 38754557 DOI: 10.1016/j.bcp.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Aerobic glycolysis is a hallmark of hepatocellular carcinoma (HCC). Dihydroartemisinin (DHA) exhibits antitumor activity towards liver cancer. Our previous studies have shown that DHA inhibits the Warburg effect in HCC cells. However, the mechanism still needs to be clarified. Our study aimed to elucidate the interaction between YAP1 and GLUT1-mediated aerobic glycolysis in HCC cells and focused on the underlying mechanisms of DHA inhibiting aerobic glycolysis in HCC cells. In this study, we confirmed that inhibition of YAP1 expression lowers GLUT1-mediated aerobic glycolysis in HCC cells and enhances the activity of CD8+T cells in the tumor niche. Then, we found that DHA was bound to cellular YAP1 in HCC cells. YAP1 knockdown inhibited GLUT1-mediated aerobic glycolysis, whereas YAP1 overexpression promoted GLUT1-mediated aerobic glycolysis in HCC cells. Notably, liver-specific Yap1 knockout by AAV8-TBG-Cre suppressed HIF-1α and GLUT1 expression in tumors but not para-tumors in DEN/TCPOBOP-induced HCC mice. Even more crucial is that YAP1 forms a positive feedback loop with GLUT1-mediated aerobic glycolysis, which is associated with HIF-1α in HCC cells. Finally, DHA reduced GLUT1-aerobic glycolysis in HCC cells through YAP1 and prevented the binding of YAP1 and HIF-1α. Collectively, our study revealed the mechanism of DHA inhibiting glycolysis in HCC cells from a perspective of a positive feedback loop involving YAP1 and GLUT1 mediated-aerobic glycolysis and provided a feasible therapeutic strategy for targeting enhanced aerobic glycolysis in HCC.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuman Zhang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yajun Xiong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan 030000, China; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
12
|
Cheng A, Xu Q, Li B, Zhang L, Wang H, Liu C, Han Z, Feng Z. The enhanced energy metabolism in the tumor margin mediated by RRAD promotes the progression of oral squamous cell carcinoma. Cell Death Dis 2024; 15:376. [PMID: 38811531 PMCID: PMC11137138 DOI: 10.1038/s41419-024-06759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The tumor margin as the invasive front has been proven to be closely related to the progression and metastasis of oral squamous cell carcinoma (OSCC). However, how tumor cells in the marginal region obtain the extra energy needed for tumor progression is still unknown. Here, we used spatial metabolomics and the spatial transcriptome to identify enhanced energy metabolism in the tumor margin of OSCC and identified that the downregulation of Ras-related glycolysis inhibitor and calcium channel regulator (RRAD) in tumor cells mediated this process. The absence of RRAD enhanced the ingestion of glucose and malignant behaviors of tumor cells both in vivo and in vitro. Mechanically, the downregulation of RRAD promoted the internal flow of Ca2+ and elevated its concentration in the nucleus, which resulted in the activation of the CAMKIV-CREB1 axis to induce the transcription of the glucose transporter GLUT3. GLUT inhibitor-1, as an inhibitor of GLUT3, could suppress this vigorous energy metabolism and malignant behaviors caused by the downregulation of RRAD. Taken together, our study revealed that enhanced energy metabolism in the tumor margin mediated by RRAD promotes the progression of OSCC and proved that GLUT3 is a potential target for future treatment of OSCC.
Collapse
Affiliation(s)
- Aoming Cheng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qiaoshi Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Bo Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lirui Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Xiao Z, Liu X, Luan X, Duan R, Peng W, Tong C, Qiao J, Qi H. Glucose uptake in trophoblasts of GDM mice is regulated by the AMPK-CLUT3 signaling pathway. Sci Rep 2024; 14:12051. [PMID: 38802412 PMCID: PMC11130200 DOI: 10.1038/s41598-024-61719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
GDM, as a metabolic disease during pregnancy, regulates GLUT3 translocation by AMPK, thereby affecting glucose uptake in trophoblasts. It provides a new research idea and therapeutic target for alleviating intrauterine hyperglycemia in GDM. STZ was used to construct GDM mice, inject AICAR into pregnant mice, and observe fetal and placental weight; flow cytometry was employed for the detection of glucose uptake by primary trophoblast cells; immunofluorescence was applied to detect the localization of GLUT3 and AMPK in placental tissue; Cocofal microscope was used to detect the localization of GLUT3 in trophoblast cells;qRT-PCR and Western blot experiments were carried out to detect the expression levels of GLUT3 and AMPK in placental tissue; CO-IP was utilized to detect the interaction of GLUT3 and AMPK. Compared with the normal pregnancy group, the weight of the fetus and placenta of GDM mice increased (P < 0.001), and the ability of trophoblasts to take up glucose decreased (P < 0.001). In addition, AMPK activity in trophoblasts and membrane localization of GLUT3 in GDM mice were down-regulated compared with normal pregnant mice (P < 0.05). There is an interaction between GLUT3 and AMPK. Activating AMPK in trophoblasts can up-regulate the expression of GLUT3 membrane protein in trophoblasts of mice (P < 0.05) and increase the glucose uptake of trophoblasts (P < 0.05). We speculate that inhibition of AMPK activity in GDM mice results in aberrant localization of GLUT3, which in turn attenuates glucose uptake by placental trophoblast cells. AICAR activates AMPK to increase the membrane localization of GLUT3 and improve the glucose uptake capacity of trophoblasts.
Collapse
Affiliation(s)
- Zhenghua Xiao
- Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Liu
- Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ran Duan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
14
|
Wang L, Gong WH. Predictive model using four ferroptosis-related genes accurately predicts gastric cancer prognosis. World J Gastrointest Oncol 2024; 16:2018-2037. [PMID: 38764813 PMCID: PMC11099433 DOI: 10.4251/wjgo.v16.i5.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy of the digestive system. According to global 2018 cancer data, GC has the fifth-highest incidence and the third-highest fatality rate among malignant tumors. More than 60% of GC are linked to infection with Helicobacter pylori (H. pylori), a gram-negative, active, microaerophilic, and helical bacterium. This parasite induces GC by producing toxic factors, such as cytotoxin-related gene A, vacuolar cytotoxin A, and outer membrane proteins. Ferroptosis, or iron-dependent programmed cell death, has been linked to GC, although there has been little research on the link between H. pylori infection-related GC and ferroptosis. AIM To identify coregulated differentially expressed genes among ferroptosis-related genes (FRGs) in GC patients and develop a ferroptosis-related prognostic model with discrimination ability. METHODS Gene expression profiles of GC patients and those with H. pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. The FRGs were acquired from the FerrDb database. A ferroptosis-related gene prognostic index (FRGPI) was created using least absolute shrinkage and selection operator-Cox regression. The predictive ability of the FRGPI was validated in the GEO cohort. Finally, we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues. RESULTS Four hub genes were identified (NOX4, MTCH1, GABARAPL2, and SLC2A3) and shown to accurately predict GC and H. pylori-associated GC. The FRGPI based on the hub genes could independently predict GC patient survival; GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group. The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression. Moreover, the gene expression levels of common immune checkpoint proteins dramatically increased in the high-risk subgroup of the FRGPI cohort. The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane. The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner. CONCLUSION In this study, we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Hua Gong
- Department of Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
15
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
16
|
Zhong Z, Yang K, Li Y, Zhou S, Yao H, Zhao Y, Huang Y, Zou J, Li Y, Jiajia Li, Lian G, Huang K, Chen S. Tumor-associated macrophages drive glycolysis through the IL-8/STAT3/GLUT3 signaling pathway in pancreatic cancer progression. Cancer Lett 2024; 588:216784. [PMID: 38458594 DOI: 10.1016/j.canlet.2024.216784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Ziyi Zhong
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Kege Yang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yunlong Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, PR China
| | - Hanming Yao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yue Zhao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yuzhou Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| |
Collapse
|
17
|
Wu CY, Yu JY, Chen YS, Chang HP, Hsieh BY, Lin YH, Ma CY, Tsai SF, Hsieh M. Effects of down-regulated carbonic anhydrase 8 on cell survival and glucose metabolism in human colorectal cancer cell lines. Cell Biochem Funct 2024; 42:e4001. [PMID: 38571370 DOI: 10.1002/cbf.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Carbonic anhydrase 8 (CA8) is a member of the α-carbonic anhydrase family but does not catalyze the reversible hydration of carbon dioxide. In the present study, we examined the effects of CA8 on two human colon cancer cell lines, SW480 and SW620, by suppressing CA8 expression through shRNA knockdown. Our results showed that knockdown of CA8 decreased cell growth and cell mobility in SW620 cells, but not in SW480 cells. In addition, downregulated CA8 resulted in a significant decrease of glucose uptake in both SW480 and SW620 cells. Interestingly, stable downregulation of CA8 decreased phosphofructokinase-1 expression but increased glucose transporter 3 (GLUT3) levels in SW620 cells. However, transient downregulation of CA8 fails to up-regulate GLUT3 expression, indicating that the increased GLUT3 observed in SW620-shCA8 cells is a compensatory effect. In addition, the interaction between CA8 and GLUT3 was evidenced by pull-down and IP assays. On the other hand, we showed that metformin, a first-line drug for type II diabetes patients, significantly inhibited cell migration of SW620 cells, depending on the expressions of CA8 and focal adhesion kinase. Taken together, our data demonstrate that when compared to primary colon cancer SW480 cells, metastatic colon cancer SW620 cells respond differently to downregulated CA8, indicating that CA8 in more aggressive cancer cells may play a more important role in controlling cell survival and metformin response. CA8 may affect glucose metabolism- and cell invasion-related molecules in colon cancer, suggesting that CA8 may be a potential target in future cancer therapy.
Collapse
Affiliation(s)
- Cheng-Yen Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Jia-Yo Yu
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Yi-Shan Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Hui-Ping Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Yu-Hsin Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Shang-Feng Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
- Department of Internal Medicine, Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
- Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
18
|
Li S, Fang W, Zheng J, Peng Z, Yu B, Chen C, Zhang Y, Jiang W, Yuan S, Zhang L, Zhang X. Whole-transcriptome defines novel glucose metabolic subtypes in colorectal cancer. J Cell Mol Med 2024; 28:e18065. [PMID: 38116696 PMCID: PMC10902307 DOI: 10.1111/jcmm.18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.
Collapse
Affiliation(s)
- Shaohua Li
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Wei Fang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Jianfeng Zheng
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| | - Zhiqiang Peng
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Biyue Yu
- School of Life SciencesHebei UniversityBaodingChina
| | - Chunhui Chen
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Yuting Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Wenli Jiang
- School of Life SciencesHebei UniversityBaodingChina
| | - Shuhui Yuan
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsNational Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingChina
| | - Xueli Zhang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of General SurgerySouthern Medical University Affiliated Fengxian Central HospitalShanghaiChina
| |
Collapse
|
19
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H. Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications. J Biomed Sci 2024; 31:25. [PMID: 38408962 PMCID: PMC10895768 DOI: 10.1186/s12929-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Shiliang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Tong Mo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jun Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
20
|
Zhou R, Li L, Zhang Y, Liu Z, Wu J, Zeng D, Sun H, Liao W. Integrative analysis of co-expression pattern of solute carrier transporters reveals molecular subtypes associated with tumor microenvironment hallmarks and clinical outcomes in colon cancer. Heliyon 2024; 10:e22775. [PMID: 38163210 PMCID: PMC10754711 DOI: 10.1016/j.heliyon.2023.e22775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| |
Collapse
|
21
|
Braverman EL, McQuaid MA, Schuler H, Qin M, Hani S, Hippen K, Monlish DA, Dobbs AK, Ramsey MJ, Kemp F, Wittmann C, Ramgopal A, Brown H, Blazar B, Byersdorfer CA. Overexpression of AMPKγ2 increases AMPK signaling to augment human T cell metabolism and function. J Biol Chem 2024; 300:105488. [PMID: 38000657 PMCID: PMC10825059 DOI: 10.1016/j.jbc.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.
Collapse
Affiliation(s)
- Erica L Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Margaret A McQuaid
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Herbert Schuler
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Sophia Hani
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlene A Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manda J Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harrison Brown
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
22
|
Alshehri B. Prognostic significance and expression pattern of glucose related genes in breast cancer: A comprehensive computational biology approach. Saudi J Biol Sci 2024; 31:103896. [PMID: 38173442 PMCID: PMC10761912 DOI: 10.1016/j.sjbs.2023.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is the most common type of malignancy globally and the main reason why women die from tumours. The Warburg effect, a characteristic of tumor, describes how most solid tumour cells acclimatize to their diverse surroundings by relying heavily on aerobic glycolysis for production of energy. In addition to producing key metabolic intermediates that are crucial for the production of macromolecules, which enable cancer cell division, invasiveness, and drug resistance, the transformed energy metabolism also supplies tumor cells with ATP for cellular energy. Here, we evaluated the expression profile, prognostic significance, and clinical relevance of glucose-related genes in BC using a bioinformatic approach. To clarify the significance of glucose-related genes in the development of breast tumours, we also performed a functional enrichment investigation of deregulated genes using the STRING and KEGG portal. The study depicted that of the 61 genes examined, 8 genes had a fold change =± 1.5, that is, ADH1C, ADH4, ALDH1A3, ALDOC, FBP1, PCK1, PFKFB1, PFKFB3. Among the highly deregulated genes, ADH1C showed a fold change of -6.669. These deregulated genes were associated with poor prognosis. The study signifies that glucose related genes are highly dysregulated in breast cancer. Deregulation of glucose related genes is linked with a poor prognosis in BC individuals. Thus, targeting glucose related genes will provide an effective treatment approach for BC individuals.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah 11952, Saudi Arabia
| |
Collapse
|
23
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
24
|
Chai F, Zhang J, Fu T, Jiang P, Huang Y, Wang L, Yan S, Yan X, Yu L, Xu Z, Wang R, Xu B, Du X, Jiang Y, Zhang J. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels (Austin) 2023; 17:2208928. [PMID: 37134043 PMCID: PMC10158547 DOI: 10.1080/19336950.2023.2208928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
SLC2A3 is an important member of the glucose transporter superfamily. It has been recently suggested that upregulation of SLC2A3 is associated with poor survival and acts as a prognostic marker in a variety of tumors. Unfortunately, the prognostic role of SLC2A3 in head and neck squamous cell carcinoma (HNSC) is less known. In the present study, we analyzed SLC2A3 expression in HNSC and its correlation with prognosis using TCGA and GEO databases. The results showed that SLC2A3 mRNA expression was higher in HNSC compared with adjacent normal tissues, which was validated with our 9 pairs of HNSC specimens. Moreover, high SLC2A3 expression predicted poor prognosis in HNSC patients. Mechanistically, GSEA revealed that high expression of SLC2A3 was enriched in epithelial-mesenchymal transition (EMT) and NF-κB signaling. In HNSC cell lines, SLC2A3 knockdown inhibited cell proliferation and migration. In addition, NF-κB P65 and EMT-related gene expression was suppressed upon SLC2A3 knockdown, indicating that SLC2A3 may play a preeminent role in the progression of HNSC through the NF-κB/EMT axis. Meanwhile, the expression of SLC2A3 was negatively correlated with immune cells, suggesting that SLC2A3 may be involved in the immune response in HNSC. The correlation between SLC2A3 expression and drug sensitivity was further assessed. In conclusion, our study demonstrated that SLC2A3 could predict the prognosis of HNSC patients and mediate the progression of HNSC via the NF-κB/EMT axis and immune responses.
Collapse
Affiliation(s)
- Fangyu Chai
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingfang Zhang
- Department of Pathology, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peng Jiang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xudong Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Longgang Yu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ruohuang Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bingqing Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoyun Du
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Yang H, Yang S, He J, Li W, Zhang A, Li N, Zhou G, Sun B. Glucose transporter 3 (GLUT3) promotes lactylation modifications by regulating lactate dehydrogenase A (LDHA) in gastric cancer. Cancer Cell Int 2023; 23:303. [PMID: 38041125 PMCID: PMC10691006 DOI: 10.1186/s12935-023-03162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES Glucose transporter 3 (GLUT3) plays a major role in glycolysis and glucose metabolism in cancer cells. We aimed to investigate the correlation between GLUT3 and histone lactylation modification in the occurrence and progression of gastric cancer. MATERIALS AND METHODS We initially used single-cell sequencing data to determine the expression levels of GLUT3 and lactate dehydrogenase A (LDHA) in primary tumor, tumor-adjacent normal, and metastasis tumor tissues. Immunohistochemistry analysis was conducted to measure GLUT3, LDHA, and L-lactyl levels in gastric normal and cancer tissues. Transwell and scratch assays were performed to evaluate the metastatic and invasive capacity of gastric cancer cell lines. Western blotting was used to measure L-lactyl and histone lactylation levels in gastric cancer cell lines. RESULTS Single-cell sequencing data showed that GLUT3 expression was significantly increased in primary tumor and metastasis tumor tissues. In addition, GLUT3 expression was positively correlated with that of LDHA expression and lactylation-related pathways. Western blotting and immunohistochemistry analyses revealed that GLUT3 was highly expressed in gastric cancer tissues and cell lines. GLUT3 knockdown in gastric cancer cell lines inhibited their metastatic and invasive capacity to various degrees. Additionally, the levels of LDHA, L-lactyl, H3K9, H3K18, and H3K56 significantly decreased after GLUT3 knockdown, indicating that GLUT3 affects lactylation in gastric cancer cells. Moreover, LDHA overexpression in a GLUT3 knockdown cell line reversed the levels of lactylation and EMT-related markers, and the EMT functional phenotype induced by GLUT3 knockdown. The in vivo results were consistent with the in vitro results. CONCLUSIONS This study suggests the important role of histone lactylation in the occurrence and progression of gastric cancer, and GLUT3 may be a new diagnostic marker and therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Hao Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shifeng Yang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jixing He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ange Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Nana Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangkai Zhou
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
26
|
Khonthun C, Surangkul D. Butyrate-mediated Resistance to Trichostatin A Accompanied by Elevated Expression of Glucose Transporter 3 (GLUT3) in Human Colorectal Carcinoma HCT116 Cells. Asian Pac J Cancer Prev 2023; 24:4085-4092. [PMID: 38156841 PMCID: PMC10909100 DOI: 10.31557/apjcp.2023.24.12.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE The aim of study was to investigate the correlation of GLUT3 upregulation and butyrate-mediated acquired chemoresistance. METHOD A butyrate-resistant CRC cell model was established from parental (PT) HCT116 cells by gradually increasing the concentration of sodium butyrate (NaBu), followed by evaluation of resistance to butyrate and trichostatin A (TSA) by the MTT method. The expression of SLC2A3 gene and GLUT3 protein were assessed by semi-quantitative RT-PCR and western blotting, respectively. The correlation of GLUT3 and butyrate-induced acquired chemoresistance was investigated using SLC2A3 silencing. RESULTS Butyrate-resistant (BR) HCT116 cells were more tolerant to butyrate-induced cell death and also resist to 750 and 1000 nM TSA when compared with HCT116-PT cells (p <0.05). Long-term exposure to butyrate revealed that upregulation of the SLC2A3 gene was significantly increased by more than 20 fold (p < 0.01), and that of GLUT3 was elevated by approximately 2 fold (p < 0.05) in HCT116-BR cells. Silencing of the SLC2A3 gene increased the sensitivity of HCT116-BR cells to the effects of TSA. CONCLUSION Upregulation of GLUT3 is associated with resistance to butyrate and TSA. GLUT3 is a molecular target for the detection of chemoresistant CRC cells and thus a potential target for diagnostic strategies.
Collapse
Affiliation(s)
- Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
27
|
Li M, Song J, Wang L, Wang Q, Huang Q, Mo D. Natural killer cell-related prognosis signature predicts immune response in colon cancer patients. Front Pharmacol 2023; 14:1253169. [PMID: 38026928 PMCID: PMC10679416 DOI: 10.3389/fphar.2023.1253169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Natural killer (NK) cells are crucial components of the innate immune system that fight tumors and viral infections. Patients with colorectal cancer (CRC) have a poor prognosis, and immunotherapeutic tools play a key role in the treatment of CRC. Methods: Public data on CRC patients was collected from the TCGA and the GEO databases. Tissue data of CRC patients were collected from Guangxi Medical University Affiliated Cancer Hospital. An NK-related prognostic model was developed by the least absolute shrinkage and selection operator (LASSO) and Cox regression method. Validation data were collected from different clinical subgroups and an external independent validation cohort to verify the model's accuracy. In addition, multiple external independent immunotherapy datasets were collected to further examine the value of NK-related risk scores (NKRS) in the prediction of immunotherapy response. Potential biological functions of key genes were examined by methods of cell proliferation, apoptosis and Western blotting. Results: A novel prognostic model for CRC patients based on NK-related genes was developed and NKRS was generated. There was a significantly poorer prognosis among the high-NKRS group. Based on immune response prediction, patients with low NKRS may be more suitable for immunotherapy and they are more sensitive to immunotherapy. The proliferation rate of CRC cells was significantly reduced and apoptosis of CRC cells was increased after SLC2A3 was knocked down. SLC2A3 was also found to be associated with the TGF-β signaling pathway. Conclusion: NKRS has potential applications for predicting prognostic status and response to immunotherapy in CRC patients. SLC2A3 has potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Meiqin Li
- Department of Clinical Laboratory, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Jingqing Song
- Department of Gastrointestinal Surgery, Guang Xi Medical University Cancer Hospital, Nanning, China
| | - Lin Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qi Wang
- Department of Basic Medicine, Guangxi Health Science College, Nanning, China
| | - Qinghua Huang
- Department of Breast Surgery, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Dan Mo
- Department of Breast, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
28
|
Zhou S, Sun D, Mao W, Liu Y, Cen W, Ye L, Liang F, Xu J, Shi H, Ji Y, Wang L, Chang W. Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study. EClinicalMedicine 2023; 65:102271. [PMID: 37869523 PMCID: PMC10589780 DOI: 10.1016/j.eclinm.2023.102271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Accurate tumour response prediction to targeted therapy allows for personalised conversion therapy for patients with unresectable colorectal cancer liver metastases (CRLM). In this study, we aimed to develop and validate a multi-modal deep learning model to predict the efficacy of bevacizumab in patients with initially unresectable CRLM using baseline PET/CT, clinical data, and colonoscopy biopsy specimens. Methods In this multicentre cohort study, we retrospectively collected data of 307 patients with CRLM from the BECOME study (NCT01972490) (Zhongshan Hospital of Fudan University, Shanghai) and two independent Chinese cohorts (internal validation cohort from January 1, 2018 to December 31, 2018 at Zhongshan Hospital of Fudan University; external validation cohort from January 1, 2020 to December 31, 2020 at Zhongshan Hospital-Xiamen, Shanghai, and the First Hospital of Wenzhou Medical University, Wenzhou). The main inclusion criteria were that patients with CRLM had pre-treatment PET/CT images as well as colonoscopy specimens. After extracting PET/CT features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). Furthermore, by combining histopathological biomarkers into DERBY, we established DERBY+. The performance of model was evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value. Findings DERBY achieved promising performance in predicting bevacizumab sensitivity with an AUC of 0.77 and 95% confidence interval (CI) [0.67-0.87]. After combining histopathological features, we developed DERBY+, which had more robust accuracy for predicting tumour response in external validation cohort (AUC 0.83 and 95% CI [0.75-0.92], sensitivity 80.4%, specificity 76.8%). DERBY+ also had prognostic value: the responders had longer progression-free survival (median progression-free survival: 9.6 vs 6.3 months, p = 0.002) and overall survival (median overall survival: 27.6 vs 18.5 months, p = 0.010) than non-responders. Interpretation This multi-modal deep radiomics model, using PET/CT, clinical data and histopathological data, was able to identify patients with bevacizumab-sensitive CRLM, providing a favourable approach for precise patient treatment. To further validate and explore the clinical impact of this work, future prospective studies with larger patient cohorts are warranted. Funding The National Natural Science Foundation of China; Fujian Provincial Health Commission Project; Xiamen Science and Technology Agency Program; Clinical Research Plan of SHDC; Shanghai Science and Technology Committee Project; Clinical Research Plan of SHDC; Zhejiang Provincial Natural Science Foundation of China; and National Science Foundation of Xiamen.
Collapse
Affiliation(s)
- Shizhao Zhou
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dazhen Sun
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Cen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lechi Ye
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lisheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenju Chang
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, Fujian, 361015, China
| |
Collapse
|
29
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
30
|
Lu D, Li X, Yuan Y, Li Y, Wang J, Zhang Q, Yang Z, Gao S, Zhang X, Zhou B. Integrating TCGA and single-cell sequencing data for colorectal cancer: a 10-gene prognostic risk assessment model. Discov Oncol 2023; 14:168. [PMID: 37702857 PMCID: PMC10499771 DOI: 10.1007/s12672-023-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer represents a significant health threat, yet a standardized method for early clinical assessment and prognosis remains elusive. This study sought to address this gap by using the Seurat package to analyze a single-cell sequencing dataset (GSE178318) of colorectal cancer, thereby identifying distinctive marker genes characterizing various cell subpopulations. Through CIBERSORT analysis of colorectal cancer data within The Cancer Genome Atlas (TCGA) database, significant differences existed in both cell subpopulations and prognostic values. Employing WGCNA, we pinpointed modules exhibiting strong correlations with these subpopulations, subsequently utilizing the survival package coxph to isolate genes within these modules. Further stratification of TCGA dataset based on these selected genes brought to light notable variations between subtypes. The prognostic relevance of these differentially expressed genes was rigorously assessed through survival analysis, with LASSO regression employed for modeling prognostic factors. Our resulting model, anchored by a 10-gene signature originating from these differentially expressed genes and LASSO regression, proved adept at accurately predicting clinical prognoses, even when tested against external datasets. Specifically, natural killer cells from the C7 subpopulation were found to bear significant associations with colorectal cancer survival and prognosis, as observed within the TCGA database. These findings underscore the promise of an integrated 10-gene signature prognostic risk assessment model, harmonizing single-cell sequencing insights with TCGA data, for effectively estimating the risk associated with colorectal cancer.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Xiaofang Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Yuan Yuan
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Yaqi Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Jiannan Wang
- School of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Zhang
- Henan Provincial Key Medical Laboratory of Genetics, Institute of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhiyu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Bingxi Zhou
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China.
| |
Collapse
|
31
|
Liu J, Min S, Kim D, Park J, Park E, Pei S, Koh Y, Shin DY, Byun JM, Ko M, Yoon SS, Hong J. Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in acute myeloid leukemia. Leukemia 2023; 37:1638-1648. [PMID: 37393342 DOI: 10.1038/s41375-023-01954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML. In vitro GLUT3 restoration was conducted with the transduction of GLUT3-overexpressing lentivirus or the pharmacological salvage with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treatment to OCI-AML3, a naturally GLUT3-deficient AML cell line. The effects of GLUT3 salvage were further confirmed in patient-derived primary AML cells. Upregulation of GLUT3 expression made AML cells successfully augment TET2 activity and enhanced the vitamin C-induced anti-leukemic effect. Pharmacological GLUT3 salvage has the potential to overcome GLUT3 deficiency in AML and improves the antileukemic effect of vitamin C treatments.
Collapse
Affiliation(s)
- Jun Liu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Suji Min
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunchae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja Min Byun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Yan B, Li X, Peng M, Zuo Y, Wang Y, Liu P, Ren W, Jin X. The YTHDC1/GLUT3/RNF183 axis forms a positive feedback loop that modulates glucose metabolism and bladder cancer progression. Exp Mol Med 2023; 55:1145-1158. [PMID: 37258572 PMCID: PMC10318083 DOI: 10.1038/s12276-023-00997-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
Aberrant glucose metabolism is a characteristic of bladder cancer. Hyperglycemia contributes to the development and progression of bladder cancer. However, the underlying mechanism by which hyperglycemia promotes the aggressiveness of cancers, especially bladder cancer, is still incompletely understood. N6-methyladenosine (m6A) modification is a kind of methylation modification occurring at the N6 position of adenosine that is important for the pathogenesis of urological tumors. Recently, it was found that the m6A reader YTHDC1 is regulated by high-glucose conditions. In our study, we revealed that YTHDC1 is not only regulated by high-glucose conditions but is also downregulated in bladder cancer tissue and associated with the prognosis of cancer. We also showed that YTHDC1 suppresses the malignant progression of and the glycolytic process in bladder cancer cells in an m6A-dependent manner and determined that this effect is partially mediated by GLUT3. Moreover, GLUT3 was found to destabilize YTHDC1 by upregulating RNF183 expression. In summary, we identified a novel YTHDC1/GLUT3/RNF183 feedback loop that regulates disease progression and glucose metabolism in bladder cancer. Collectively, this study provides new insight regarding the pathogenesis of bladder cancer under hyperglycemic conditions and might reveal ideal candidates for the development of drugs for bladder cancer.
Collapse
Affiliation(s)
- Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Xurui Li
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China
| | - Yali Zuo
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Weigang Ren
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 410005, Changsha, Hunan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
34
|
Liu J, Min S, Kim D, Park J, Park E, Koh Y, Shin DY, Kim TK, Byun JM, Yoon SS, Hong J. Epigenetic priming improves salvage chemotherapy in diffuse large B-cell lymphoma via endogenous retrovirus-induced cGAS-STING activation. Clin Epigenetics 2023; 15:75. [PMID: 37138342 PMCID: PMC10155448 DOI: 10.1186/s13148-023-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Although most patients with diffuse large B-cell lymphoma (DLBCL) achieve complete remission after first-line rituximab-containing immunochemotherapy, up to 40% of patients relapse and require salvage therapy. Among those patients, a substantial proportion remain refractory to salvage therapy due to insufficient efficacy or intolerance of toxicities. A hypomethylating agent, 5-azacytidine, showed a chemosensitizing effect when primed before chemotherapy in lymphoma cell lines and newly diagnosed DLBCL patients. However, its potential to improve outcomes of salvage chemotherapy in DLBCL has not been investigated. RESULTS In this study, we demonstrated the mechanism of 5-azacytidine priming as a chemosensitizer in a platinum-based salvage regimen. This chemosensitizing effect was associated with endogenous retrovirus (ERV)-induced viral mimicry responses via the cGAS-STING axis. We found deficiency of cGAS impaired the chemosensitizing effect of 5-azacytidine. Furthermore, combining vitamin C and 5-azacytidine to synergistically activate STING could be a potential remedy for insufficient priming induced by 5-azacytidine alone. CONCLUSIONS Taken together, the chemosensitizing effect of 5-azacytidine could be exploited to overcome the limitations of the current platinum-containing salvage chemotherapy in DLBCL and the status of cGAS-STING has the potential to predict the efficacy of 5-azacytidine priming.
Collapse
Affiliation(s)
- Jun Liu
- College of Medicine, Zhejiang University, Hangzhou, China
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Suji Min
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongchan Kim
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Park
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunchae Park
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ja Min Byun
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Aragoneses-Cazorla G, Vallet-Regí M, Gómez-Gómez MM, González B, Luque-Garcia JL. Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochim Acta 2023; 190:132. [PMID: 36914921 PMCID: PMC10011303 DOI: 10.1007/s00604-023-05712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Ma Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
37
|
Wang JJ, Wang X, Li Q, Huang H, Zheng QL, Yao Q, Zhang J. Feto-placental endothelial dysfunction in Gestational Diabetes Mellitus under dietary or insulin therapy. BMC Endocr Disord 2023; 23:48. [PMID: 36814227 PMCID: PMC9948408 DOI: 10.1186/s12902-023-01305-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a serious complication in pregnancy. Despite controlling the plasma glucose levels with dietary intervention (GDM-D) or insulin therapy (GDM-I), children born of diabetic mothers suffer more long-term complications from childhood to early adulthood. Placental circulation and nutrient exchange play a vital role in fetal development. Additionally, placental endothelial function is an indicator of vascular health, and plays an important role in maintaining placental circulation for nutrient exchange. This study was conducted to assess changes in fetal endothelial dysfunction in GDM under different interventions during pregnancy. METHODS The primary human umbilical vein endothelial cells (HUVECs) were obtained from normal pregnant women (n = 11), GDM-D (n = 14), and GDM-I (n = 12) patients. LC-MS/MS was used to identify differentially expressed proteins in primary HUVECs among the three groups, after which Bioinformatics analysis was performed. Glucose uptake, ATP level, apoptosis, and differentially expressed proteins were assessed to investigate changes in energy metabolism. RESULTS A total of 8174 quantifiable proteins were detected, and 142 differentially expressed proteins were identified after comparing patients with GDM-D/GDM-I and healthy controls. Of the 142, 64 proteins were upregulated while 77 were downregulated. Bioinformatics analysis revealed that the differentially expressed proteins were involved in multiple biological processes and signaling pathways related to cellular processes, biological regulation, and metabolic processes. According to the results from KEGG analysis, there were changes in the PI3K/AKT signaling pathway after comparing the three groups. In addition, there was a decrease in glucose uptake in the GDM-I (P < 0.01) group. In GDM-I, there was a significant decrease in the levels of glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3). Moreover, glucose uptake was significantly decreased in GDM-I, although in GDM-D, there was only a decrease in the levels of GLUT1. ATP levels decreased in GDM-I (P < 0.05) and apoptosis occurred in both the GDM-D and GDM-I groups. Compared to the normal controls, the levels of phosphate AKT and phosphate AMPK over total AKT and AMPK were reduced in the GDM-I group. CONCLUSION In summary, endothelial dysfunction occurred in pregnancies with GDM even though the plasma glucose levels were controlled, and this dysfunction might be related to the degree of glucose tolerance. The energy dysfunction might be related to the regulation of the AKT/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Xi Wang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qian Li
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Hua Huang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qiao-Ling Zheng
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Qin Yao
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China
| | - Jun Zhang
- Department of Clinical pharmacy, First Affiliated hospital of Kunming Medical University, Yunnan, China.
| |
Collapse
|
38
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
39
|
Wu WZ, Bai YP. Endothelial GLUTs and vascular biology. Biomed Pharmacother 2023; 158:114151. [PMID: 36565587 DOI: 10.1016/j.biopha.2022.114151] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Endothelial metabolism is a promising target for vascular functional regulation and disease therapy. Glucose is the primary fuel for endothelial metabolism, supporting ATP generation and endothelial cell survival. Multiple studies have discussed the role of endothelial glucose catabolism, such as glycolysis and oxidative phosphorylation, in vascular functional remodeling. However, the role of the first gatekeepers of endothelial glucose utilization, glucose transporters, in the vasculature has long been neglected. Here, this review summarizes glucose transporter studies in vascular research. We mainly focus on GLUT1 and GLUT3 because they are the most critical glucose transporters responsible for most endothelial glucose uptake. Some interesting topics are also discussed, intending to provide directions for endothelial glucose transporter research in the future.
Collapse
Affiliation(s)
- Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Center for Vascular Disease and Translational Medicine, Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Du P, Wang H, Shi X, Zhang X, Zhu Y, Chen W, Zhang H, Huang Y. A comparative study to determine the effects of breed and feed restriction on glucose metabolism of chickens. ANIMAL NUTRITION 2023; 13:261-269. [PMID: 37168446 PMCID: PMC10164833 DOI: 10.1016/j.aninu.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The glucose metabolism of poultry draws wide attention as they have nearly twice the fasting blood glucose than that of mammals. To define the relationship between glucose metabolism and breed of chicken, the outcomes from different growth rate chickens showed that Arbor Acres (AA) broilers, a well-known fast-growing breed, had a lower fasting blood glucose concentration and glucose clearance rate when compared to Silky chickens, a Chinese traditional medicinal chicken with black skin and a slow growth rate. Moreover, AA broilers had a relatively slow rise in blood glucose in response to oral glucose solution than the Silky chickens on 21 and 42 d (P < 0.05), which is probably attributed to downregulated expression of pancreatic insulin (INS), and upregulated transcription of phosphoenolpyruvate carboxy kinase 1 (PCK1) and glucose transporter 2 (GLUT2) in the liver of AA broilers (P < 0.05). In response to feeding restriction from 7 to 21 d, both the fasting blood glucose and the response speed of AA broilers to oral glucose were increased on d 21 (P < 0.05), and the serum glucose concentrations after 3 weeks compensatory growth were improved by early feed restriction in AA broilers. Feed restriction could also upregulate the mRNA level of pancreatic INS on d 21 and 42, as well as decrease the expressions of PCK1, glucose-6-phosphatase catalytic (G6PC), and GLUT2 in the liver on d 21 (P < 0.05) when compared to the free feeding group. These results revealed that Silky chickens have a stronger capability to regulate glucose homeostasis than AA broilers, and feed restriction could improve the fasting blood glucose and the response to oral glucose of AA broilers.
Collapse
Affiliation(s)
- Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huanjie Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiuwen Shi
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Corresponding authors.
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Corresponding authors.
| |
Collapse
|
41
|
Cao B, Zhao R, Li H, Xu X, Gao J, Chen L, Wei B. Inhibition of androgen receptor enhanced the anticancer effects of everolimus through targeting glucose transporter 12. Int J Biol Sci 2023; 19:104-119. [PMID: 36594084 PMCID: PMC9760431 DOI: 10.7150/ijbs.75106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Everolimus was designed as a mammalian target of rapamycin (mTOR) inhibitor. It has been proven as a targeted drug for gastric cancer (GC) therapy. However, long-term treatment with everolimus may cause severe side effects for recipients. Decreasing the dosage and attenuating the associated risks are feasible to promote clinical translation of everolimus. This study aimed to identify the underlying mechanisms of responses to everolimus and develop novel regimens for GC treatment. Our findings proved that there was a significant dose-dependent relationship of everolimus-induced GC cell apoptosis and glycolysis inhibition. Then, we found that a member of glucose transporter (GLUT12) family, GLUT12, was actively upregulated to counteract the anticancer effects of everolimus. GLUT12 might be overexpressed in GC. High expression of GLUT12 might be correlated with tumor progression and short survival time of GC patients. Bioinformatic analysis suggested that GLUT12 might be involved in regulating cancer development and metabolism. The experiments proved that GLUT12 significantly promoted GC growth, glycolysis and impaired the anticancer effects of everolimus. Androgen receptor (AR) is a classical oncogenic factor in many types of cancer. Everolimus elevated GLUT12 expression in an AR-dependent manner. Inhibition of AR activity abrogated the promotive effects on GLUT12 expression. Both in-vitro and in-vivo experiments demonstrated that GLUT12 knockdown augmented anticancer effects of everolimus. Enzalutamide, an AR inhibitor, or AR knockdown was comparable to GLUT12 suppression. This study identified the role of the AR/GLUT12 pathway in the development of poor responses to everolimus. Interference with AR/GLUT12 pathway may serve as a promising approach to promoting the translational application of everolimus in GC therapy.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China
| | - Xingming Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China.,✉ Corresponding authors: Bo Wei, MD, PhD, Chief Doctor, Professor, Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Tel: +86-10-66938071; E-mail: ; Lin Chen, MD, PhD, Chief Doctor, Professor, Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Tel: +86-10-66938066; E-mail:
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Chinese PLA, Beijing 100853, China.,✉ Corresponding authors: Bo Wei, MD, PhD, Chief Doctor, Professor, Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Tel: +86-10-66938071; E-mail: ; Lin Chen, MD, PhD, Chief Doctor, Professor, Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; Tel: +86-10-66938066; E-mail:
| |
Collapse
|
42
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Zhang M, Lei Q, Huang X, Wang Y. Molecular mechanisms of ferroptosis and the potential therapeutic targets of ferroptosis signaling pathways for glioblastoma. Front Pharmacol 2022; 13:1071897. [PMID: 36506514 PMCID: PMC9729877 DOI: 10.3389/fphar.2022.1071897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Ferroptosis is a newly identified form of cell death that differs from autophagy, apoptosis and necrosis, and its molecular characteristics include iron-dependent lipid reactive oxygen species accumulation, mitochondrial morphology changes, and membrane permeability damage. These characteristics are closely related to various human diseases, especially tumors of the nervous system. Glioblastoma is the most common primary malignant tumor of the adult central nervous system, and the 5-year survival rate is only 4%-5%. This study reviewed the role and mechanism of ferroptosis in glioblastoma and the research status and progress on ferroptosis as a potential therapeutic target. The mechanism of ferroptosis is related to the intracellular iron metabolism level, lipid peroxide content and glutathione peroxidase 4 activity. It is worth exploring how ferroptosis can be applied in disease treatment; however, the relation between ferroptosis and other apoptosis methods is poorly understood and methods of applying ferroptosis to drug-resistant tumors are insufficient. Ferroptosis is a promising therapeutic target for glioblastoma. In-depth studies of its mechanism of action in glioblastoma and applications for clinical treatment are expected to provide insights for glioblastoma patients.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Niu R, Wang L, Yang W, Sun L, Tao J, Sun H, Mei S, Wang W, Feng K, Qian D, Bai X. MicroRNA-582-5p targeting Creb1 modulates apoptosis in cardiomyocytes hypoxia/reperfusion-induced injury. Immun Inflamm Dis 2022; 10:e708. [PMID: 36301033 PMCID: PMC9601879 DOI: 10.1002/iid3.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) caused by the reperfusion therapy of myocardial ischemic diseases is a kind of major disease that threatens human health and lives severely. There are lacking of effective therapeutic measures for MIRI. MicroRNAs (miRNAs) are abundant in mammalian species and play a critical role in the initiation, promotion, and progression of MIRI. However, the biological role and molecular mechanism of miRNAs in MIRI are not entirely clear. METHODS We used bioinformatics analysis to uncover the significantly different miRNA by analyzing transcriptome sequencing data from myocardial tissue in the mouse MIRI model. Multiple miRNA-related databases, including miRdb, PicTar, and TargetScan were used to forecast the downstream target genes of the differentially expressed miRNA. Then, the experimental models, including male C57BL/6J mice and HL-1 cell line, were used for subsequent experiments including quantitative real-time polymerase chain reaction analysis, western blot analysis, hematoxylin and eosin staining, flow cytometry, luciferase assay, gene interference, and overexpression. RESULTS MiR-582-5p was found to be differentially upregulated from the transcriptome sequencing data. The elevated levels of miR-582-5p were verified in MIRI mice and hypoxia/reperfusion (H/R)-induced HL-1 cells. Functional experiments revealed that miR-582-5p promoted apoptosis of H/R-induced HL-1 cells via downregulating cAMP-response element-binding protein 1 (Creb1). The inhibiting action of miR-582-5p inhibitor on H/R-induced apoptosis was partially reversed after Creb1 interference. CONCLUSIONS Collectively, the research findings reported that upregulation of miR-582-5p promoted H/R-induced cardiomyocyte apoptosis by inhibiting Creb1. The potential diagnostic and therapeutic strategies targeting miR-582-5p and Creb1 could be beneficial for the MIRI treatment.
Collapse
Affiliation(s)
- Rui‐Ze Niu
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
- Department of Animal ZoologyKunming Medical UniversityKunmingYunnanChina
| | - Lu‐Qiao Wang
- Department of CardiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Wei Yang
- Department of AnesthesiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Li‐Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel DiseasesCapital Medical UniversityBeijingChina
| | - Jie Tao
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Huang Sun
- Department of CardiologyKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Song Mei
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Wen‐Jie Wang
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Ke‐Xiang Feng
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Dian‐Lun Qian
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| | - Xiang‐Feng Bai
- Department of Cardiac SurgeryKunming Medical University First Affiliated HospitalKunmingYunnanChina
| |
Collapse
|
45
|
GLUT3 Promotes Epithelial–Mesenchymal Transition via TGF-β/JNK/ATF2 Signaling Pathway in Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10081837. [PMID: 36009381 PMCID: PMC9405349 DOI: 10.3390/biomedicines10081837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023] Open
Abstract
Glucose transporter (GLUT) 3, a member of the GLUTs family, is involved in cellular glucose utilization and the first step in glycolysis. GLUT3 is highly expressed in colorectal cancer (CRC) and it leads to poor prognosis to CRC patient outcome. However, the molecular mechanisms of GLUT3 on the epithelial–mesenchymal transition (EMT) process in metastatic CRC is not yet clear. Here, we identified that activation of the c-Jun N-terminal kinase (JNK)/activating transcription factor-2 (ATF2) signaling pathway by transforming growth factor-β (TGF-β) promotes GLUT3-induced EMT in CRC cells. The regulation of GLUT3 expression was significantly associated with EMT-related markers such as E-cadherin, α- smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), vimentin and zinc finger E-box binding homeobox 1 (ZEB1). We also found that GLUT3 accelerated the invasive ability of CRC cells. Mechanistically, TGF-β induced the expression of GLUT3 through the phosphorylation of JNK/ATF2, one of the SMAD-independent pathways. TGF-β induced the expression of GLUT3 by increasing the phosphorylation of JNK, the nuclear translocation of the ATF2 transcription factor, and the binding of ATF2 to the promoter region of GLUT3, which increased EMT in CRC cells. Collectively, our results provide a new comprehensive mechanism that GLUT3 promotes EMT process through the TGF-β/JNK/ATF2 signaling pathway, which could be a potential target for the treatment of metastatic CRC.
Collapse
|
46
|
Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance. Nat Commun 2022; 13:4007. [PMID: 35817773 PMCID: PMC9273595 DOI: 10.1038/s41467-022-31248-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolites in the tumor microenvironment are a critical factor for tumor progression. However, the lack of knowledge about the metabolic profile in the bone marrow (BM) microenvironment of multiple myeloma (MM) limits our understanding of MM progression. Here, we show that the glycine concentration in the BM microenvironment is elevated due to bone collagen degradation mediated by MM cell-secreted matrix metallopeptidase 13 (MMP13), while the elevated glycine level is linked to MM progression. MM cells utilize the channel protein solute carrier family 6 member 9 (SLC6A9) to absorb extrinsic glycine subsequently involved in the synthesis of glutathione (GSH) and purines. Inhibiting glycine utilization via SLC6A9 knockdown or the treatment with betaine suppresses MM cell proliferation and enhances the effects of bortezomib on MM cells. Together, we identify glycine as a key metabolic regulator of MM, unveil molecular mechanisms governing MM progression, and provide a promising therapeutic strategy for MM treatment. The bone tumour microenvironment plays an essential role in multiple myeloma (MM) development. Here, the authors show that bone collagen degradation provides glycine to support MM progression through glutathione and purine synthesis.
Collapse
|
47
|
LncRNA RPL34-AS1 sponges miR-3656 to suppress cell proliferation in colorectal cancer. In Vitro Cell Dev Biol Anim 2022; 58:462-470. [PMID: 35773374 DOI: 10.1007/s11626-022-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022]
Abstract
The function of long non-coding RNA (lncRNA) RPL34-AS1 and microRNA (miR-3656) has been studied in several types of cancer, but their role in colorectal cancer (CRC) is unclear. We predicted that they could interact with each other; this study was carried out to explore their interaction in CRC. The expression of RPL34-AS1 and miR-3656 in CRC tissues and their paired non-tumor tissues from 62 CRC patients was determined by RT-qPCR. The direct interaction between RPL34-AS1 (both WT and mutant) and miR-3656 was determined by RNA-RNA pull-down assay. The interaction between them was studied with overexpression assay. Their role in cell proliferation was analyzed with BrdU assay. The role of RPL34-AS1 in regulating the expression of ACAP2 was explored by RT-qPCR and Western blot analysis. In this study, increased expression levels of miR-3656 and decreased expression levels of RPL34-AS1 were observed in CRC tissues. MiR-3656 directly interacted with RPL34-AS1, but not the RPL34-AS1 mutant with disrupted binding sites. RPL34-AS1 and miR-3565 did not affect the expression of each other. RPL34-AS1 suppressed the role of miR-3565 in enhancing cell proliferation, while RPL34-AS1 mutant did not affect cell behaviors and the role of miR-3565 in cell proliferation. RPL34-AS1 positively regulated the expression of ACAP2 at both mRNA and protein levels. Therefore, RPL34-AS1 is downregulated in CRC and may sponge miR-3656 to suppress cell proliferation in CRC.
Collapse
|
48
|
Dysfunction of the energy sensor NFE2L1 triggers uncontrollable AMPK signaling and glucose metabolism reprogramming. Cell Death Dis 2022; 13:501. [PMID: 35614059 PMCID: PMC9133051 DOI: 10.1038/s41419-022-04917-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
The antioxidant transcription factor NFE2L1 (also called Nrf1) acts as a core regulator of redox signaling and metabolism homeostasis, and thus, its dysfunction results in multiple systemic metabolic diseases. However, the molecular mechanism(s) by which NFE2L1 regulates glycose and lipid metabolism remains elusive. Here, we found that loss of NFE2L1 in human HepG2 cells led to a lethal phenotype upon glucose deprivation and NFE2L1 deficiency could affect the uptake of glucose. Further experiments revealed that glycosylation of NFE2L1 enabled it to sense the energy state. These results indicated that NFE2L1 can serve as a dual sensor and regulator of glucose homeostasis. The transcriptome, metabolome, and seahorse data further revealed that disruption of NFE2L1 could reprogram glucose metabolism to aggravate the Warburg effect in NFE2L1-silenced hepatoma cells, concomitant with mitochondrial damage. Co-expression and Co-immunoprecipitation experiments demonstrated that NFE2L1 could directly interact and inhibit AMPK. Collectively, NFE2L1 functioned as an energy sensor and negatively regulated AMPK signaling through directly interacting with AMPK. The novel NFE2L1/AMPK signaling pathway delineate the mechanism underlying of NFE2L1-related metabolic diseases and highlight the crosstalk between redox homeostasis and metabolism homeostasis.
Collapse
|
49
|
Aragoneses-Cazorla G, Buendia-Nacarino MP, Mena ML, Luque-Garcia JL. A Multi-Omics Approach to Evaluate the Toxicity Mechanisms Associated with Silver Nanoparticles Exposure. NANOMATERIALS 2022; 12:nano12101762. [PMID: 35630985 PMCID: PMC9146515 DOI: 10.3390/nano12101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) are currently used in many different industrial, commercial and health fields, mainly due to their antibacterial properties. Due to this widespread use, humans and the environment are increasingly exposed to these types of nanoparticles, which is the reason why the evaluation of the potential toxicity associated with AgNPs is of great importance. Although some of the toxic effects induced by AgNPs have already been shown, the elucidation of more complete mechanisms is yet to be achieved. In this sense, and since the integration of metabolomics and transcriptomics approaches constitutes a very useful strategy, in the present study targeted and untargeted metabolomics and DNA microarrays assays have been combined to evaluate the molecular mechanisms involved in the toxicity induced by 10 nm AgNPs. The results have shown that AgNPs induce the synthesis of glutathione as a cellular defense mechanism to face the oxidative environment, while inducing the depletion of relevant molecules implicated in the synthesis of important antioxidants. In addition, it has been observed that AgNPs completely impair the intracellular energetic metabolism, especially affecting the production of adenosine triphosphate (ATP) and disrupting the tricarboxylic acids cycle. It has been demonstrated that AgNPs exposure also affects the glycolysis pathway. The effect on such pathway differs depending on the step of the cycle, which a significant increase in the levels of glucose as way to counterbalance the depleted levels of ATP.
Collapse
|
50
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|