1
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Wu Q, Wang J, Tu C, Chen P, Deng Y, Yu L, Xu X, Fang X, Li W. Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats. Am J Physiol Gastrointest Liver Physiol 2025; 328:G110-G124. [PMID: 39679941 DOI: 10.1152/ajpgi.00167.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Olanzapine-induced fatty liver disease continues to pose vital therapeutic challenges in the treatment of psychiatric disorders. In addition, we observed that some patients were less prone to hepatic steatosis induced by olanzapine. Therefore, we aimed to investigate the role and the underlying mechanism of the intestinal flora in olanzapine-mediated hepatic side effects and explore the possible countermeasures. Our results showed that patients with different susceptibilities to olanzapine-induced fatty liver disease had different gut microbial diversity and composition. Furthermore, we performed fecal microbiota treatment (FMT), and confirmed that the gut microbiome of patients less prone to the fatty liver caused by olanzapine exhibited an alleviation against fatty liver disease in rats. In terms of mechanism, we revealed that the cross talk of leptin with the gut-short-chain fatty acid (SCFA)-liver axis play a critical role in olanzapine-related fatty degeneration in liver. These findings propose a promising strategy for overcoming the issues associated with olanzapine application and will hopefully inspire future in-depth research of fecal microbiota-based therapy in olanzapine-induced fatty liver disease.NEW & NOTEWORTHY Patients who were less inclined to have olanzapine-induced fatty liver had different gut microbiota profiles than did those in the susceptible cohort. Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Butyricicoccaceae, and Christensenellaceae were enriched in patients who were less prone to fatty liver disease caused by olanzapine. Fecal microbiota treatment (FMT) with these fecal samples promoted short-chain fatty acid (SCFA) production, which attenuated the circulating leptin and inhibited FASN and ACC1, thereby suppressing lipid synthesis in the liver, ultimately leading to alleviation of hepatic steatosis.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chuyue Tu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Peiru Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojin Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangming Fang
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, People's Republic of China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Dalile B, Boyle NB, Ruiz FT, Chakrabarti A, Respondek F, Dodd GF, Kadosh KC, Hepsomali P, Brummer RJ, McArthur S, Dam V, Zanzer YC, Vermeiren Y, Schellekens H. Targeting Cognitive Resilience through Prebiotics: A Focused Perspective. Adv Nutr 2025; 16:100343. [PMID: 39551433 PMCID: PMC11663957 DOI: 10.1016/j.advnut.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
This perspective article is a product of the work of an expert group within the Prebiotic Task Force convened by the International Life Sciences Institute Europe, a non-profit organization that brings together experts from academia, industry, and public service to catalyze nutrition science for public benefit. An expert group was conceived in October 2023 to discuss the evidence base on the use of prebiotics to promote cognitive functioning, with a focus on highlighting knowledge gaps and proposing a list of recommendations to guide this specific area of research forward. To address this, we evaluated existing systematic reviews and meta-analyses of human intervention studies that examine the effects of prebiotics on cognitive functioning. These are predominantly conducted in healthy participants under basal conditions and have, to date, revealed limited effects. In this perspective, we propose that prebiotics should be investigated as agents to promote cognitive resilience by testing their effects on cognitive performance under certain cognition-taxing factors that individuals encounter across their lifespan. These include stress, poor sleep outcomes, sedentary behavior, and unhealthy dietary patterns, all of which have been shown to be associated with altered microbiome and impact global cognition or specific cognitive domains. In addition, we recommend identifying vulnerable populations that are either subclinical or that struggle chronically or periodically with 1 or more cognition-taxing factors, to better uncover the boundary conditions for prebiotic effectiveness. By broadening the scope of research to include diverse populations and challenging conditions in daily life or experimental settings, we can expand our understanding of the role of prebiotics not only in cognitive health or impairment, but also as potential preventative agents that may promote cognitive resilience during aging and in response to various lifestyle-related challenges.
Collapse
Affiliation(s)
- Boushra Dalile
- Brain Research on Affective Mechanisms (BRAMLab), Laboratory of Biological Psychology, Research Unit Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Neil B Boyle
- School of Psychology, University of Leeds, Leeds, United Kingdom; Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Franco T Ruiz
- Translational Research Center for Gastrointestinal Disorder (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Robert J Brummer
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Veerle Dam
- Sensus B.V., Roosendaal, The Netherlands
| | | | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Kamath S, Sokolenko E, Collins K, Chan NSL, Mills N, Clark SR, Marques FZ, Joyce P. IUPHAR themed review: The gut microbiome in schizophrenia. Pharmacol Res 2025; 211:107561. [PMID: 39732352 DOI: 10.1016/j.phrs.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Gut microbial dysbiosis or altered gut microbial consortium, in schizophrenia suggests a pathogenic role through the gut-brain axis, influencing neuroinflammatory and neurotransmitter pathways critical to psychotic, affective, and cognitive symptoms. Paradoxically, conventional psychotropic interventions may exacerbate this dysbiosis, with antipsychotics, particularly olanzapine, demonstrating profound effects on microbial architecture through disruption of bacterial phyla ratios, diminished taxonomic diversity, and attenuated short-chain fatty acid synthesis. To address these challenges, novel therapeutic strategies targeting the gut microbiome, encompassing probiotic supplementation, prebiotic compounds, faecal microbiota transplantation, and rationalised co-pharmacotherapy, show promise in attenuating antipsychotic-induced metabolic disruptions while enhancing therapeutic efficacy. Harnessing such insights, precision medicine approaches promise to transform antipsychotic prescribing practices by identifying patients at risk of metabolic side effects based on their microbial profiles. This IUPHAR review collates the current literature landscape of the gut-brain axis and its intricate relationship with schizophrenia while advocating for integrating microbiome assessments and therapeutic management. Such a fundamental shift in proposing microbiome-informed psychotropic prescriptions to optimise therapeutic efficacy and reduce adverse metabolic impacts would align antipsychotic treatments with microbiome safety, prioritising 'gut-neutral' or gut-favourable drugs to safeguard long-term patient outcomes in schizophrenia therapy.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate Collins
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Nicole S L Chan
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Natalie Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Francine Z Marques
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Hypertension Research Laboratory, School of Biological Sciences and Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
5
|
Kamath S, Hunter A, Collins K, Wignall A, Joyce P. The atypical antipsychotics lurasidone and olanzapine exert contrasting effects on the gut microbiome and metabolic function of rats. Br J Pharmacol 2024; 181:4531-4545. [PMID: 39075330 DOI: 10.1111/bph.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND PURPOSE Antipsychotics such as olanzapine are associated with significant metabolic dysfunction, attributed to gut microbiome dysbiosis. A recent notion that most psychotropics are detrimental to the gut microbiome has arisen from consistent findings of metabolic adverse effects. However, unlike olanzapine, the metabolic effects of lurasidone are conflicting. Thus, this study investigates the contrasting effects of olanzapine and lurasidone on the gut microbiome to explore the hypothesis of 'gut neutrality' for lurasidone exposure. EXPERIMENTAL APPROACH Using Sprague-Dawley rats, the effects of olanzapine and lurasidone on the gut microbiome were explored. Faecal and blood samples were collected weekly over a 21-day period to analyse changes to the gut microbiome and related metabolic markers. KEY RESULTS Lurasidone triggered no significant weight gain or metabolic alterations, instead positively modulating the gut microbiome through increases in mean operational taxonomical units (OTUs) and alpha diversity. This novel finding suggests an underlying mechanism for lurasidone's metabolic inertia. In contrast, olanzapine triggered a statistically significant decrease in mean OTUs, substantial compositional variation and a depletion in short-chain fatty acid abundance. Microbiome depletion correlated with metabolic dysfunction, producing a 30% increase in weight gain, increased pro-inflammatory cytokine expression, and increased blood glycaemic and triglyceride levels. CONCLUSION AND IMPLICATIONS Our results challenge the notion that all antipsychotics disrupt the gut microbiome similarly and highlights the potential benefits of gut-neutral antipsychotics, such as lurasidone, in managing metabolic side effects. Further research is warranted to validate these findings in humans to guide personalised pharmacological treatment regimens for schizophrenia.
Collapse
Affiliation(s)
- Srinivas Kamath
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander Hunter
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kate Collins
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation (CPI), UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Ling Z, Lan Z, Cheng Y, Liu X, Li Z, Yu Y, Wang Y, Shao L, Zhu Z, Gao J, Lei W, Ding W, Liao R. Altered gut microbiota and systemic immunity in Chinese patients with schizophrenia comorbid with metabolic syndrome. J Transl Med 2024; 22:729. [PMID: 39103909 PMCID: PMC11302365 DOI: 10.1186/s12967-024-05533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in β-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China.
| | - Zhiyong Lan
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhimeng Li
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Ying Yu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
- Department of Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Rongxian Liao
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China.
| |
Collapse
|
7
|
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA, Rizos E. Association of gut dysbiosis with first‑episode psychosis (Review). Mol Med Rep 2024; 30:130. [PMID: 38785152 PMCID: PMC11148526 DOI: 10.3892/mmr.2024.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The gut‑microbiota‑brain axis is a complex bidirectional communication system linking the gastrointestinal tract to the brain. Changes in the balance, composition and diversity of the gut‑microbiota (gut dysbiosis) have been found to be associated with the development of psychosis. Early‑life stress, along with various stressors encountered in different developmental phases, have been shown to be associated with the abnormal composition of the gut microbiota, leading to irregular immunological and neuroendocrine functions, which are potentially responsible for the occurrence of first‑episode psychosis (FEP). The aim of the present narrative review was to summarize the significant differences of the altered microbiome composition in patients suffering from FEP vs. healthy controls, and to discuss its effects on the occurrence and intensity of symptoms in FEP.
Collapse
Affiliation(s)
- Christos Theleritis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Marina Demetriou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Propaedeutic Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
8
|
Zeng C, Chen H, Cao T, Wang L, Jiao S, Lin C, Zhang B, Cai H. B-GOS alleviates olanzapine-induced lipid disturbances in mice by enriching Akkermansia and upregulation of PGRMC1-Wnt signaling. Food Chem Toxicol 2024; 185:114490. [PMID: 38325638 DOI: 10.1016/j.fct.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Although olanzapine (OLZ) remains one of the most efficacious antipsychotic medications for the treatment of schizophrenia, there are significant tolerability issues related to its metabolic profile such as weight gain and dyslipidemia. Our previous studies have demonstrated that progesterone receptor membrane component 1 (PGRMC1) plays a key role in antipsychotic-induced metabolic side effects. Prebiotics showed positive effects on lipid metabolism, however, limited studies focused on their therapeutic potential and mechanisms in treating antipsychotic-induced lipid metabolic disorders. Herein, our study aims to explore the effects of the prebiotic B-GOS on lipid disturbances induced by OLZ and elucidate its underlying mechanisms via PGRMC1 pathway. In an 8-week study, long-term intraperitoneal administration of OLZ at a dosage of 8 mg/kg/day in mice induced lipid disturbances as manifested by significantly increased lipid indexes in plasma and liver. B-GOS effectively alleviated the OLZ-induced abnormal lipid metabolism by enhancing the diversity of the gut microbiota, with a 100-fold increase in Akkermansia abundance and a 10-fold decrease in Faecalibaculum abundance. Followed by the B-GOS related changes of gut microbiota, OLZ-induced substantial hepatic inhibition of PGRMC1, and associated protein factors of Wnt signaling pathway (Wnt3a, β-catenin, and PPAR-γ) were reversed without affecting plasma levels of short-chain fatty acids. Taken together, prebiotics like B-GOS enriching Akkermansia offer a promising novel approach to alleviate antipsychotic-induced lipid disturbances by modulating the PGRMC1-Wnt signaling pathway.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shimeng Jiao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
9
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
10
|
Mötteli S, Vetter S, Colla M, Hotzy F. Are probiotics effective in reducing the metabolic side effects of psychiatric medication? A scoping review of evidence from clinical studies. Transl Psychiatry 2024; 14:26. [PMID: 38225232 PMCID: PMC10789870 DOI: 10.1038/s41398-024-02735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
The psychopharmacological treatment of patients with schizophrenia or depression is often accompanied by serious side effects. In particular, the clinical findings of weight gain are worrying, as this side effect can lead to various medical sequelae in the future. However, the treatment of metabolic changes in psychiatric patients is often neglected or unsuccessful. An improved knowledge of possible therapeutic approaches is needed. The aim of this study was to provide an overview of the utilisation and effectiveness of probiotics in reducing weight gain in patients with severe mental illness. A scoping review of studies published until 15 June 2022 was conducted to identify studies using probiotics in people with schizophrenia or depression. We systematically searched the databases EMBASE, PubMed (MEDLINE), Web of Science and SCOPUS with a predefined search string. In addition, reference lists of relevant publications were examined for additional studies. The studies were assessed by two reviewers. The primary outcomes were weight-related measurements. The secondary outcomes were metabolic blood parameters and gut microbiota. Four studies ultimately met the inclusion criteria. Two studies in which probiotics were administered did not find significant effects on pharmacologically induced weight gain. The other two studies examined the effects of synbiotics (a combination of probiotics and prebiotics). Interestingly, less weight gain was observed in individuals with this combined intervention. Adjustments in diet can be helpful and are generally well-accepted interventions in the fight against pharmacologically induced weight gain. The clinical use of probiotics and prebiotics (or synbiotics) as dietary interventions may represent a promising additional strategy in this regard. However, the few studies available showed no clear conclusions.
Collapse
Affiliation(s)
- Sonja Mötteli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Michael Colla
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Florian Hotzy
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Zuo YF, Zhang BH, Guo MR, Li BB, Wang BC, Duan D, Wang YX, Xi J, He M, Sun TL. HFD-exacerbated Metabolic Side Effects of Olanzapine Are Suppressed by ER Stress Inhibitor. Curr Med Sci 2023; 43:1116-1132. [PMID: 38079053 DOI: 10.1007/s11596-023-2781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Numerous schizophrenic patients are suffering from obesity primarily attributed to antipsychotic medication and poor dietary habits. This study investigated the progressive deterioration of olanzapine-induced metabolic disorders in the presence of a high-fat diet (HFD) and explored the involvement of endoplasmic reticulum (ER) stress. METHODS Female Sprague-Dawley rats fed on a standard chow diet or HFD were treated with olanzapine (3 mg/kg/day) and the ER stress inhibitor 4-phenylbutyric acid (4-PBA, 1 and 0.5 g/kg/day) for 8 days. Changes in body weight, food intake, and plasma lipids were assessed. Hepatic fat accumulation was evaluated using oil red O staining. Western blotting and immunofluorescence assays were employed to examine the expression of ER stress markers, NOD-like receptor pyrin domain-containing protein 3 (NLRP3), and proopiomelanocortin (POMC) in the hypothalamus or liver. RESULTS Compared to olanzapine alone, olanzapine+HFD induced greater weight gain, increased hyperlipidemia, and enhanced hepatic fat accumulation (P<0.05). Co-treatment with 4-PBA exhibited a dose-dependent inhibition of these effects (P<0.05). Further mechanistic investigations revealed that olanzapine alone activated ER stress, upregulated NLRP3 expression in the hypothalamus and liver, and downregulated hypothalamic POMC expression. The HFD exacerbated these effects by 50%-100%. Moreover, co-administration of 4-PBA dose-dependently attenuated the olanzapine+HFD-induced alterations in ER stress, NLRP3, and POMC expression in the hypothalamus and liver (P<0.05). CONCLUSION HFD worsened olanzapine-induced weight gain and lipid metabolic disorders, possibly through ER stress-POMC and ER stress-NLRP3 signaling. ER stress inhibitors could be effective in preventing olanzapine+HFD-induced metabolic disorders.
Collapse
Affiliation(s)
- Yu-Feng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Ming-Rui Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Ben-Ben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bao-Cui Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Deng Duan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Xin Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Xi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
12
|
Fang X, Gao C, Wu W, Hu X, Shao M, Zhou C, Cai R, Fang J, Li Y, Xu Y, Zhang X. The role of the gut microbiome in weight-gain in schizophrenia patients treated with atypical antipsychotics: Evidence based on altered composition and function in a cross-sectional study. Psychiatry Res 2023; 328:115463. [PMID: 37717547 DOI: 10.1016/j.psychres.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES We aimed to explore the interconnection between the weight-gain in schizophrenia patients with atypical antipsychotic treatment and gut microbiome. METHODS This study employed a cross-sectional design, encompassing a total of 88 schizophrenia patients with long-term atypical antipsychotic treatment. The 16S rRNA gene sequencing was used to identify gut microbiome contents. RESULTS No significant differences in alpha diversity between normal-weight and overweight schizophrenia treated with atypical antipsychotics. The beta diversity analysis showed that overweight patients clustered tightly while normal-weight patients clustered widely. For taxonomic composition, overweight patients had a lower relative abundance in Porphyromonadaceae at family level and Butyrivibrio at genus level, but higher relative abundance in Ruminococcus2 and Clostridium_XIVa at genus level than normal-weight patients. Function prediction revelated that four pathways (including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection and Meiosis-yeast) were significantly different between groups. Correlation analysis indicated that Klebsiella, Butyrivibrio, Unassigned, Methanosphaera, Holdemania, Anaerotruncus were negatively, while Veillonella was positively correlated with BMI in patients. CONCLUSION Our findings offer evidence that perturbations in the gut microbiome composition, encompassing taxa such as Porphyromonadaceae, Butyrivibrio, Ruminococcus2, and Clostridium_XIVa, in conjunction with distinct functional pathways including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection, and Meiosis-yeast, might contribute to the weight-gain in schizophrenia treated with atypical antipsychotics.
Collapse
Affiliation(s)
- Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunying Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou De'an Hospital, Changzhou, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Public Health and Medical Center, Nanjing, China
| | - Xiuxiu Hu
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Miaomiao Shao
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Chou Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Renliang Cai
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Xu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Kamath S, Stringer AM, Prestidge CA, Joyce P. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery. Expert Opin Drug Deliv 2023; 20:1315-1331. [PMID: 37405390 DOI: 10.1080/17425247.2023.2233900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrea M Stringer
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
15
|
Nuncio-Mora L, Lanzagorta N, Nicolini H, Sarmiento E, Ortiz G, Sosa F, Genis-Mendoza AD. The Role of the Microbiome in First Episode of Psychosis. Biomedicines 2023; 11:1770. [PMID: 37371865 DOI: 10.3390/biomedicines11061770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The relationship between the gut-brain-microbiome axis has gained great importance in the study of psychiatric disorders, as it may represent a new target for their treatment. To date, the available literature suggests that the microbiota may influence the pathophysiology of several diseases, including psychosis. The aim of this review is to summarize the clinical and preclinical studies that have evaluated the differences in microbiota as well as the metabolic consequences related to psychosis. Current data suggest that the genera Lactobacillus and Megasphaera are increased in schizophrenia (SZ), as well as alterations in the glutamate-glutamine-GABA cycle, serum levels of tryptophan, kynurenic acid (KYNA), and short-chain fatty acids (SCFAs). There are still very few studies on early-onset psychosis, thus more studies are needed to be able to propose targeted therapies for a point when the disease has just started or has not yet progressed.
Collapse
Affiliation(s)
- Lucero Nuncio-Mora
- Laboratory of Genomics of Psychiatric and Neurodegenerative Diseases, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Posgraduate Studies in Biological Sciences, Posgraduate Unit, Posgraduate Circuit, Universitary City, Building D, 1st Floor, Coyoacan, Mexico City 04510, Mexico
| | | | - Humberto Nicolini
- Laboratory of Genomics of Psychiatric and Neurodegenerative Diseases, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Carraci Medical Group, Mexico City 03740, Mexico
| | - Emmanuel Sarmiento
- Psychiatric Children's Hospital Dr. Juan N. Navarro, Mexico City 14080, Mexico
| | - Galo Ortiz
- Psychiatric Children's Hospital Dr. Juan N. Navarro, Mexico City 14080, Mexico
| | - Fernanda Sosa
- Carraci Medical Group, Mexico City 03740, Mexico
- Psychiatric Children's Hospital Dr. Juan N. Navarro, Mexico City 14080, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratory of Genomics of Psychiatric and Neurodegenerative Diseases, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Psychiatric Children's Hospital Dr. Juan N. Navarro, Mexico City 14080, Mexico
| |
Collapse
|
16
|
Lima LAR, Torres SM, Macêdo SRB, Tenorio FDCAM, Tenorio BM, Amaro da Silva Junior V. Olanzapine treatment of lactating females causes testicular atrophy in prepuberal rat offspring. Biotech Histochem 2023; 98:179-186. [PMID: 36475412 DOI: 10.1080/10520295.2022.2150314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The antipsychotic drug, olanzapine, is prescribed for postpartum psychosis. Possible adverse effects on fertility of offspring are unclear. We investigated the effects of administering olanzapine via lactation on testicular development and endocrine function of prepuberal male rats. Olanzapine was administered to mothers at 2.5, 5 or 10 mg/kg. We found in male offspring increased body weight, decreased gonadosomatic index, testicular weight and epididymal weight. The volume of seminiferous tubules, seminiferous epithelium, Leydig cells, intertubule tissue and lymphatic space was reduced in rat pups exposed to olanzapine. Tubule diameter and length, seminiferous epithelium height, Leydig cell size and nuclear diameter also were reduced. Testosterone levels were reduced in the groups exposed to olanzapine, while prolactin levels were increased. We observed histopathology in testes of animals whose mothers had been treated with 2.5 mg/kg olanzapine; more severe pathology was observed in offspring whose mothers were administered higher doses. Administration of olanzapine to mothers during lactation produced testicular and endocrine pathology in prepuberal rats in a dose-dependent manner.
Collapse
Affiliation(s)
| | - Sandra Maria Torres
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | - Bruno Mendes Tenorio
- Department of Histology and Embryology, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
17
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
18
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
19
|
Chronic agmatine treatment prevents olanzapine-induced obesity and metabolic dysregulation in female rats. Brain Res Bull 2022; 191:69-77. [DOI: 10.1016/j.brainresbull.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
|
20
|
Grant RK, Brindle WM, Donnelly MC, McConville PM, Stroud TG, Bandieri L, Plevris JN. Gastrointestinal and liver disease in patients with schizophrenia: A narrative review. World J Gastroenterol 2022; 28:5515-5529. [PMID: 36304087 PMCID: PMC9594005 DOI: 10.3748/wjg.v28.i38.5515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe mental illness which can have a devastating impact on an individual's quality of life. Comorbidities are high amongst patients and life expectancy is approximately 15 years less than the general population. Despite the well-known increased mortality, little is known about the impact of gastrointestinal and liver disease on patients with schizophrenia. We aimed to review the literature and to make recommendations regarding future care. Literature searches were performed on PubMed to identify studies related to gastrointestinal and liver disease in patients with schizophrenia. High rates of chronic liver disease were reported, with Non-Alcoholic Fatty Liver Disease being of particular concern; antipsychotics and metabolic syndrome were contributing factors. Rates of acute liver failure were low but have been associated with antipsychotic use and paracetamol overdose. Coeliac disease has historically been linked to schizophrenia; however, recent research suggests that a causal link is yet to be proven. Evidence is emerging regarding the relationships between schizophrenia and peptic ulcer disease, inflammatory bowel disease and irritable bowel syndrome; clinical vigilance regarding these conditions should be high. Patients with schizophrenia poorly engage with bowel cancer screening programmes, leading to late diagnosis and increased mortality. Clozapine induced constipation is a significant issue for many patients and requires close monitoring. There is a significant burden of gastrointestinal and liver disease amongst patients with schizophrenia. Better levels of support from all members of the medical team are essential to ensure that appropriate, timely care is provided.
Collapse
Affiliation(s)
- Rebecca K Grant
- The Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| | - William M Brindle
- The Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| | - Mhairi C Donnelly
- The Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| | - Pauline M McConville
- General Adult Psychiatry, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - Thomas G Stroud
- General Adult Psychiatry, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - Lorenzo Bandieri
- General Adult Psychiatry, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - John N Plevris
- The Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, United Kingdom
| |
Collapse
|
21
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
22
|
Zhu Z, Gu Y, Zeng C, Yang M, Yu H, Chen H, Zhang B, Cai H. Olanzapine-induced lipid disturbances: A potential mechanism through the gut microbiota-brain axis. Front Pharmacol 2022; 13:897926. [PMID: 35991866 PMCID: PMC9388751 DOI: 10.3389/fphar.2022.897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Long-term use of olanzapine can induce various side effects such as lipid metabolic disorders, but the mechanism remains to be elucidated. The gut microbiota-brain axis plays an important role in lipid metabolism, and may be related to the metabolic side effects of olanzapine. Therefore, we explored the mechanism by which olanzapine-induced lipid disturbances through the gut microbiota-brain axis. Methods: Sprague Dawley rats were randomly divided into two groups, which underwent subphrenic vagotomy and sham surgery. Then the two groups were further randomly divided into two subgroups, one was administered olanzapine (10 mg/kg/day) by intragastric administration, and the other was administered normal saline by intragastric administration (4 ml/kg/day) for 2 weeks. The final changes in lipid parameters, gut microbes and their metabolites, and orexin-related neuropeptides in the hypothalamus were investigated among the different groups. Results: Olanzapine induced lipid disturbances as indicated by increased weight gain, elevated ratio of white adipose tissue to brown adipose tissue, as well as increased triglyceride and total cholesterol. Olanzapine also increased the Firmicutes/Bacteroides (F/B) ratio in the gut, which was even aggravated by subphrenic vagotomy. In addition, olanzapine reduced the abundance of short-chain fatty acids (SCFAs) metabolism related microbiome and 5-hydroxytryptamine (5-HT) levels in the rat cecum, and increased the gene and protein expression of the appetite-related neuropeptide Y/agouti-related peptide (NPY/AgRP) in the hypothalamus. Conclusion: The abnormal lipid metabolism caused by olanzapine may be closely related to the vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yuxiu Gu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Man Yang
- School of Pharmacy, Changsha Medical University, Changsha, China
| | - Hao Yu
- School of Pharmacy, Hunan University of Medicine, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
23
|
Simon MS, Barton BB, Glocker C, Musil R. A comprehensive approach to predicting weight gain and therapy response in psychopharmacologically treated major depressed patients: A cohort study protocol. PLoS One 2022; 17:e0271793. [PMID: 35862413 PMCID: PMC9302848 DOI: 10.1371/journal.pone.0271793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background A subgroup of patients with Major Depressive Disorder shows signs of low-grade inflammation and metabolic abberances, while antidepressants can induce weight gain and subsequent metabolic disorders, and lacking antidepressant response is associated with inflammation. Objectives A comprehensive investigation of patient phenotypes and their predictive capability for weight gain and treatment response after psychotropic treatment will be performed. The following factors will be analyzed: inflammatory and metabolic markers, gut microbiome composition, lifestyle indicators (eating behavior, physical activity, chronotype, patient characteristics (childhood adversity among others), and polygenic risk scores. Methods Psychiatric inpatients with at least moderate Major Depressive Disorder will be enrolled in a prospective, observational, naturalistic, monocentric study using stratified sampling. Ethical approval was obtained. Primary outcomes at 4 weeks will be percent weight change and symptom score change on the Montgomery Asberg Depression Rating Scale. Both outcomes will also be binarized into clinically relevant outcomes at 5% weight gain and 50% symptom score reduction. Predictors for weight gain and treatment response will be tested using multiple hierachical regression for continuous outcomes, and multiple binary logistic regression for binarized outcomes. Psychotropic premedication, current medication, eating behavior, baseline BMI, age, and sex will be included as covariates. Further, a comprehensive analysis will be carried out using machine learning. Polygenic risk scores will be added in a second step to estimate the additional variance explained by genetic markers. Sample size calculation yielded a total amount of N = 171 subjects. Discussion Patient and physician expectancies regarding the primary outcomes and non-random sampling may affect internal validity and external validity, respectively. Through the prospective and naturalistic design, results will gain relevance to clinical practice. Examining the predictive value of patient profiles for weight gain and treatment response during pharmacotherapy will allow for targeted adjustments before and concomitantly to the start of treatment.
Collapse
Affiliation(s)
- Maria S. Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Barbara B. Barton
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Catherine Glocker
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Huang J, Liu C, Yang Y, Kang D, Xiao J, Long Y, Lang B, Peng X, Wang W, Wang X, Liu F, Zhao J, Shi Z, Yuan TF, Wu R. The effects of probiotics plus dietary fiber on antipsychotic-induced weight gain: a randomized clinical trial. Transl Psychiatry 2022; 12:185. [PMID: 35508529 PMCID: PMC9068806 DOI: 10.1038/s41398-022-01958-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Probiotics plus dietary fiber has demonstrated efficacy in improving metabolic abnormalities. However, the efficacy of probiotics and dietary fiber as well as their association with microbiota in attenuating antipsychotic-induced weight gain and metabolic disturbance remains poorly understood. Here we analyzed results from the double-blind, randomized, placebo-controlled study to compare and evaluate the effects of probiotics, dietary fiber, and their combination for antipsychotic-induced weight gain in patients with a severe mental disorder. We found that probiotics plus dietary fiber was significantly superior to probiotics alone, dietary fiber only, and the placebo for weight, BMI, and total cholesterol reduction; insulin resistance was worse in the placebo group, with significant increases during the 12-week treatment; probiotics plus dietary fiber significantly reduced weight and prevented further deterioration of metabolic disturbances; and probiotics or dietary fiber alone can prevent further weight gain. We further performed 16 S ribosomal RNA sequencing revealed an increased abundance of microbiota after probiotics plus dietary fiber treatment. Moreover, logistic regression analyses revealed that the higher richness of microbiota was associated with favorable weight loss. These findings suggested that probiotics and dietary fiber co-administration were safe and effective interventions to reduce weight gain in patients treated with antipsychotic medications.
Collapse
Affiliation(s)
- Jing Huang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Chenchen Liu
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Ye Yang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Dongyu Kang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Jingmei Xiao
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Yujun Long
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Bing Lang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Xingjie Peng
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Weiyan Wang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Xiaoyi Wang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Fangkun Liu
- grid.452223.00000 0004 1757 7615Department of Neurosurgery, Xiangya Hospital, Central South University, 410008 Changsha, Hunan China
| | - Jingping Zhao
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China
| | - Zhe Shi
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011 Changsha, Hunan China ,grid.488482.a0000 0004 1765 5169Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, 410208 Changsha, Hunan China ,grid.415630.50000 0004 1782 6212Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
25
|
Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Res Rev 2022; 75:101556. [PMID: 34990844 DOI: 10.1016/j.arr.2021.101556] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for more than 50 million patients worldwide. Current evidence suggests the exact mechanism behind this devastating disease to be of multifactorial origin, which seriously complicates the quest for an effective disease-modifying therapy, as well as impedes the search for strategic preventative measures. Of interest, preclinical studies point to serotonergic alterations, either induced via selective serotonin reuptake inhibitors or serotonin receptor (ant)agonists, in mitigating AD brain neuropathology next to its clinical symptoms, the latter being supported by a handful of human intervention trials. Additionally, a substantial amount of preclinical trials highlight the potential of diet, fecal microbiota transplantations, as well as pre- and probiotics in modulating the brain's serotonergic neurotransmitter system, starting from the gut. Whether such interventions could truly prevent, reverse or slow down AD progression likewise, should be initially tested in preclinical studies with AD mouse models, including sufficient analytical measurements both in gut and brain. Thereafter, its potential therapeutic effect could be confirmed in rigorously randomized controlled trials in humans, preferentially across the Alzheimer's continuum, but especially from the prodromal up to the mild stages, where both high adherence to such therapies, as well as sufficient room for noticeable enhancement are feasible still. In the end, such studies might aid in the development of a comprehensive approach to tackle this complex multifactorial disease, since serotonin and its derivatives across the microbiota-gut-brain axis might serve as possible biomarkers of disease progression, next to forming a valuable target in AD drug development. In this narrative review, the available evidence concerning the orchestrating role of serotonin within the microbiota-gut-brain axis in the development of AD is summarized and discussed, and general considerations for future studies are highlighted.
Collapse
Affiliation(s)
- Emma Aaldijk
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands; Faculty of Medicine & Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
26
|
Vasileva SS, Tucker J, Siskind D, Eyles D. Does the gut microbiome mediate antipsychotic-induced metabolic side effects in schizophrenia? Expert Opin Drug Saf 2022; 21:625-639. [PMID: 35189774 DOI: 10.1080/14740338.2022.2042251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Second-generation antipsychotics (SGAs) are the most effective treatment for people with schizophrenia. Despite their effectiveness in treating psychotic symptoms, they have been linked to metabolic, cardiovascular and gastrointestinal side-effects. The gut microbiome has been implicated in potentiating symptoms of schizophrenia, response to treatment and medication-induced side effects and thus presents a novel target mediating second-generation antipsychotic-induced side effects in patients. AREAS COVERED This narrative review presents evidence from clinical and pre-clinical studies exploring the relationship between the gut microbiome, schizophrenia, second-generation antipsychotics and antipsychotic-induced side-effects. It also covers evidence for psychobiotic treatment as a potential supplementary therapy for people with schizophrenia. EXPERT OPINION The gut microbiome has the potential to mediate antipsychotic-induced side-effects in people with schizophrenia. Microbiome-focused treatments should be considered in combination with standard therapy in order to ameliorate debilitating drug-induced side effects, increase quality of life and potentially improve psychotic symptoms. Future studies should aim to collect not only microbiome data, but also metabolomic measures, dietary information and behavioral data.
Collapse
Affiliation(s)
| | - Jack Tucker
- Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia
| | - Dan Siskind
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| |
Collapse
|
27
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
28
|
Pu Z, Sun Y, Jiang H, Hou Q, Yan H, Wen H, Li G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1949-1963. [PMID: 34961418 DOI: 10.1142/s0192415x21500920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Secondary metabolic disturbances in patients with schizophrenia or bipolar disorder may be attributed to olanzapine. It is important to prevent mild metabolic disorders progressing to metabolic syndrome. This study aims to investigate the effects of berberine on intestinal flora in patients with mild metabolic disorders induced by olanzapine. A total of 132 patients with schizophrenia, bipolar disorder, or schizoaffective psychosis that had been treated with olanzapine for at least 9 months were randomly assigned ([Formula: see text] = 66 each) to receive berberine or placebo tablets for 12 weeks. Metabolic assessments and intestinal flora were quantified at baseline and after 4, 8, and 12 weeks of treatment. Incidence rates of adverse reactions were recorded. FPG, FPI, HOMA-IR, HbA1, TG, BMI, and WC were significantly lower in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). The abundance of firmicutes and coliform were significantly lower and the abundance of bacteroides significantly higher in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). In patients who received berberine, the abundance of firmicutes was significantly decreased, and the abundance of bacteroides was significantly increased, and in patients who received placebo, the abundance of firmicutes was significantly increased post-treatment, compared to baseline (both [Formula: see text]< 0.05). In conclusions, berberine may regulate intestinal flora and metabolism in patients with schizophrenia or bipolar disorder and mild metabolic disturbances induced by olanzapine.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Xuhui 200030, Shanghai, P. R. China.,Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Yunying Sun
- Endocrinology Department, First People's Hospital of Haining, Haining 314400, Zhejiang, P. R. China
| | - Hongxia Jiang
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Qingmei Hou
- Department of Clinical Psychology, The Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, P. R. China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, P. R. China
| | - Hui Wen
- Department of Traditional Chinese Medicine, Second People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang, P. R. China
| | - Guorong Li
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| |
Collapse
|
29
|
Yang C, Lin X, Wang X, Liu H, Huang J, Wang S. The schizophrenia and gut microbiota: A bibliometric and visual analysis. Front Psychiatry 2022; 13:1022472. [PMID: 36458121 PMCID: PMC9705344 DOI: 10.3389/fpsyt.2022.1022472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Many studies have explored the link between the gut microbiota and schizophrenia. To date, there have been no bibliometric analyses to summarize the association between the gut microbiota and schizophrenia. We aimed to conduct a bibliometric study of this association to determine the current status and areas for advancement in this field. MATERIALS AND METHODS Publications related to the gut microbiota and schizophrenia were retrieved from the Web of Science Core Collection (WoSCC). The WoSCC literature analysis wire and VOSviewer 1.6.16 were used to conduct the analysis. RESULTS In total, 162 publications were included in our study. The publications generally showed an upward trend from 2014. A total of 873 authors from 355 organizations and 40 countries/regions contributed to this field. The leading authors were Timothy Dinan, John F Cryan, and Emily Severance. The leading institutions were Johns Hopkins University, the University College Cork, and the University of Toronto. The most productive countries were the United States (US), China, and Canada. In total, 95 journals contributed to this field. Among them, the top three productive journals were Schizophrenia Research, Progress in Neuro Psychopharmacology Biological Psychiatry, and Frontiers in Psychiatry. The important keywords in the clusters were gut microbiome, bipolar disorder, schizophrenia, antipsychotics, weight gain, metabolic syndrome, gut-brain axis, autism, depression, inflammation, and brain. CONCLUSION The main research hotspots involving the connection between schizophrenia and the gut microbiota were the characteristics of the microbiota composition in schizophrenia patients, the gut-brain axis, and microbial-based interventions for schizophrenia. The studies about the association between gut microbiota and schizophrenia are limited, and more studies are needed to provide new insights into the gut microbiota in the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Chao Yang
- Department of Psychiatry, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Lin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianteng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Chaohu, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Translation Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Alagiakrishnan K, Halverson T. Microbial Therapeutics in Neurocognitive and Psychiatric Disorders. J Clin Med Res 2021; 13:439-459. [PMID: 34691318 PMCID: PMC8510649 DOI: 10.14740/jocmr4575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial therapeutics, which include gut biotics and fecal transplantation, are interventions designed to improve the gut microbiome. Gut biotics can be considered as the administration of direct microbial populations. The delivery of this can be done through live microbial flora, certain food like fiber, microbial products (metabolites and elements) obtained through the fermentation of food products, or as genetically engineered substances, that may have therapeutic benefit on different health disorders. Dietary intervention and pharmacological supplements with gut biotics aim at correcting disruption of the gut microbiota by repopulating with beneficial microorganism leading to decrease in gut permeability, inflammation, and alteration in metabolic activities, through a variety of mechanisms of action. Our understanding of the pharmacokinetics of microbial therapeutics has improved with in vitro models, sampling techniques in the gut, and tools for the reliable identification of gut biotics. Evidence from human studies points out that prebiotics, probiotics and synbiotics have the potential for treating and preventing mental health disorders, whereas with paraprobiotics, proteobiotics and postbiotics, the research is limited at this point. Some animal studies point out that gut biotics can be used with conventional treatments for a synergistic effect on mental health disorders. If future research shows that there is a possibility of synergistic effect of psychotropic medications with gut biotics, then a gut biotic or nutritional prescription can be given along with psychotropics. Even though the overall safety of gut biotics seems to be good, caution is needed to watch for any known and unknown side effects as well as the need for risk benefit analysis with certain vulnerable populations. Future research is needed before wide spread use of natural and genetically engineered gut biotics. Regulatory framework for gut biotics needs to be optimized. Holistic understanding of gut dysbiosis, along with life style factors, by health care providers is necessary for the better management of these conditions. In conclusion, microbial therapeutics are a new psychotherapeutic approach which offer some hope in certain conditions like dementia and depression. Future of microbial therapeutics will be driven by well-done randomized controlled trials and longitudinal research, as well as by replication studies in human subjects.
Collapse
Affiliation(s)
- Kannayiram Alagiakrishnan
- Division of Geriatric Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tyler Halverson
- Division of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Clouard C, Reimert I, Fleming SA, Koopmans SJ, Schuurman T, Hauser J. Dietary sialylated oligosaccharides in early-life may promote cognitive flexibility during development in context of obesogenic dietary intake. Nutr Neurosci 2021; 25:2461-2478. [PMID: 34565309 DOI: 10.1080/1028415x.2021.1975877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Oligosaccharides found in mammalian milk have shown the potential to alter brain development across multiple species. The diversity and concentration of these oligosaccharides is species-specific and varies greatly between individuals, thus understanding their role in cognitive development is warranted. We investigated the impact of early life dietary fucosylated/neutral or sialylated human milk oligosaccharides (HMO) on behaviours in tasks assessing anxiety, motivation, appetite, learning, and memory.Methods: Sixty-four female Göttingen minipigs were artificially reared from 2 weeks postnatal and provided milk replacers. The study used four groups: no additional oligosaccharides (Con), fucosylated and neutral oligosaccharides (FN, 4 g/L), sialylated oligosaccharides (SL, 0.68 g/L), or both FN and SL (FN + SL, 4 g/L) from 2 to 11 weeks postnatal. One reference group was sow-reared. Weaning occurred between 10 and 11 weeks postnatal, and thereafter an obesogenic diet was provided. Behavioral tasks were conducted over three periods: 1) 0-11 weeks; 2) 16-29 weeks; 3) 39-45 weeks. Tasks included a spatial holeboard task, open field task, exposure to a novel object, runway task, single-feed task, and home pen behaviour observation.Results: In the holeboard, the SL group demonstrated improved reference memory during reversal trials between 16-29 weeks. All groups demonstrated equivalent behavior in open field, novel object, runway, and single-feed tasks, as well as in their home pens (Ps > 0.05).Discussion: These results suggest that early life dietary intake of sialylated oligosaccharides may provide an improvement to cognition during the equivalent developmental stage of adolescence.
Collapse
Affiliation(s)
- Caroline Clouard
- Department of Animal Sciences, Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands.,PEGASE, INRAE, Institut Agro, Saint-Gilles, France
| | - Inonge Reimert
- Department of Animal Sciences, Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sietse-Jan Koopmans
- Wageningen Livestock Research, Wageningen University & Research, Netherlands
| | - Teun Schuurman
- Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Jonas Hauser
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1005 Lausanne, Switzerland
| |
Collapse
|
32
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
33
|
La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e3. [PMID: 39296317 PMCID: PMC11406392 DOI: 10.1017/gmb.2021.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 09/21/2024]
Abstract
Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Yang Y, Long Y, Kang D, Liu C, Xiao J, Wu R, Zhao J. Effect of Bifidobacterium on olanzapine-induced body weight and appetite changes in patients with psychosis. Psychopharmacology (Berl) 2021; 238:2449-2457. [PMID: 34002246 DOI: 10.1007/s00213-021-05866-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
RATIONALE Gut microbiota plays an important role in host metabolism. Antipsychotic drugs can result in metabolic abnormalities. Probiotics may ameliorate the antipsychotic drug-induced metabolic abnormalities by regulating gut microbiota. OBJECTIVE To determine whether Bifidobacterium intervention can ameliorate olanzapine-induced weight increase. METHODS Enrolled patients were assigned to either the olanzapine or olanzapine plus Bifidobacterium group. The following were assessed: body weight, body mass index (BMI), appetite, latency to increased appetite, and baseline weight increase of more than 7%. All assessments were conducted at baseline and at 4, 8, and 12 weeks of treatment. RESULTS We enrolled 70 patients with schizophrenia or schizophrenic affective disorder, and 67 completed the study. Treatment for 4 weeks led to between-group differences in weight change (2.4 vs. 1.1 kg, p < 0.05) and BMI (0.9 vs. 0.4, p < 0.05). However, this difference disappeared at 8 and 12 weeks of treatment (both p > 0.05). The two groups did not differ in appetite increase at any time point (p > 0.05). The mean time from olanzapine initiation to appetite increase was also not significantly different between the two groups (t = 1.243, p = 0.220). CONCLUSIONS Probiotics may mitigate olanzapine-induced weight gain in the early stage of treatment and delay olanzapine-induced appetite increase.
Collapse
Affiliation(s)
- Ye Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Yujun Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Dongyu Kang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Chenchen Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China.
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 410011, Hunan, China
| |
Collapse
|
35
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
36
|
Li WT, Huang XF, Deng C, Zhang BH, Qian K, He M, Sun TL. Olanzapine Induces Inflammation and Immune Response via Activating ER Stress in the Rat Prefrontal Cortex. Curr Med Sci 2021; 41:788-802. [PMID: 34403105 DOI: 10.1007/s11596-021-2401-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Antipsychotics, in particular olanzapine, are first-line medications for schizophrenia. The prefrontal cortex (PFC) is an important region for antipsychotics' therapeutic effects. The PFC inflammatory and immune pathways are associated with schizophrenia pathogenesis. However, the effect of antipsychotics on the inflammatory and immune pathways in the PFC remains unclear. We aimed to examined the time-dependent effect of olanzapine on inflammatory and immune markers in the PFC of rats. Since the inflammatory and immune pathways are related to endoplasmic reticulum (ER) stress, we further investigated whether or not olanzapine-induced inflammation and immune responses were related to ER stress. METHODS Expression of pro-inflammatory markers including IkappaB kinase β (IKKβ), nuclear factor kappa B (NFκB), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and IL-1β, and immune-related proteins including inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) were examined by Western blotting. RESULTS Olanzapine treatments for 1, 8 and 36 days significantly activated the inflammatory IKKβ/NFκB signaling, and increased the expression of TNF-α, IL-6, IL-1β and immune-related proteins such as iNOS, TLR4 and CD14. Olanzapine treatment for 1 day, 8 and 36 days also induced ER stress in the PFC. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced inflammation and the immune response in the PFC. CONCLUSION These results suggested olanzapine exposure could be a factor that induces central inflammation and immunological abnormities in schizophrenia subjects. Olanzapine induces PFC inflammation and immune response, possibly via activating ER stress signaling.
Collapse
Affiliation(s)
- Wen-Ting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Deng
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bao-Hua Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| | - Tao-Lei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
37
|
Minichino A, Brondino N, Solmi M, Del Giovane C, Fusar-Poli P, Burnet P, Cipriani A, Lennox BR. The gut-microbiome as a target for the treatment of schizophrenia: A systematic review and meta-analysis of randomised controlled trials of add-on strategies. Schizophr Res 2021; 234:1-13. [PMID: 32295752 DOI: 10.1016/j.schres.2020.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
The gut-microbiome has been hypothesised as a novel potential target for intervention for schizophrenia. We tested this hypothesis with a systematic review and meta-analysis of studies investigating the efficacy and acceptability of add-on strategies known to affect the gut-microbiome for the treatment of schizophrenia. Following PRISMA guidelines, we searched from inception to August 2019 all the randomised double-blind controlled trials of add-on antibiotics, antimicrobials, pre/probiotics, and faecal transplant in schizophrenia. Primary outcomes were severity of negative symptoms and acceptability of treatment. Data were independently extracted by multiple observers and a random-mixed model was used for the analysis. Heterogeneity was assessed with the I2 index. We identified 28 eligible trials: 21 investigated antibiotics, 4 antimicrobials (Artemisinin, Artemether, and Sodium Benzoate), 3 pre/probiotics, none faecal transplant. Results showed no effect of D-Cycloserine (10 studies; SMD, -0.16; 95% CI -0.40, 0.08; P = .20; I2: 28.2%), Minocycline (7 studies; SMD: -0.35; 95% CI -0.70, 0.00; P = .05, I2:77.7%), other antibiotics (2 studies), probiotics alone (1 study), and Artemisinin (1 study) on negative symptoms of schizophrenia when compared to placebo. Limited evidence suggests efficacy on negative symptoms for Sodium benzoate (2 studies; SMD, -0.63; 95%CI -1.03, -0.23; P < .001; I2:0%), Artemether (1 study), and probiotics combined with Vitamin D (1 study) when compared to placebo. Acceptability of intervention was similar to placebo. Negative findings were mainly led by antibiotics trials, with paucity of evidence available on pre/probiotics. There is a need of expanding our knowledge on the clinical relevance of gut-microbiome-host interaction in psychosis before engaging in further trials.
Collapse
Affiliation(s)
| | - Natascia Brondino
- Section of Psychiatry, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marco Solmi
- Padua Neuroscience Center, University of Padua, Padua, Italy; Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | | | - Paolo Fusar-Poli
- Section of Psychiatry, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, IoPPN, King's College London, UK; OASIS Service, South London and the Maudsley NHS National Health Service Foundation Trust, UK
| | - Philip Burnet
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
38
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
39
|
Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, Massa L, Carpita B, Barberi FM, Mucci F, Dell’Osso L. The Microbiota/Microbiome and the Gut-Brain Axis: How Much Do They Matter in Psychiatry? Life (Basel) 2021; 11:life11080760. [PMID: 34440503 PMCID: PMC8401073 DOI: 10.3390/life11080760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The functioning of the central nervous system (CNS) is the result of the constant integration of bidirectional messages between the brain and peripheral organs, together with their connections with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is highly related to the CNS through the so-called "gut-brain axis". The aim of this paper was to review and comment on the current literature on the role of the intestinal microbiota and the gut-brain axis in some common neuropsychiatric conditions. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network while supporting its possible role in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurodegenerative disorders. Alterations in the gut microbiota composition were observed in mood disorders and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might represent an interesting field of research for a better understanding of the pathophysiology of common neuropsychiatric disorders and possibly as a target for the development of innovative treatments that some authors have already labelled "psychobiotics".
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
- Correspondence:
| | - Beatrice Buccianelli
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Maria Francesca Beatino
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Lucia Massa
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Filippo M. Barberi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Federico Mucci
- Dipartimento di Biochimica e Biologia Molecolare, University of Siena, 53100 Siena, Italy;
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| |
Collapse
|
40
|
Nutritional and therapeutic approaches for protecting human gut microbiota from psychotropic treatments. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110182. [PMID: 33232785 DOI: 10.1016/j.pnpbp.2020.110182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence highlighted the essential role played by the microbiota-gut-brain axis in maintaining human homeostasis, including nutrition, immunity, and metabolism. Much recent work has linked the gut microbiota to many psychiatric and neurodegenerative disorders such as depression, schizophrenia, and Alzheimer's disease. Shared gut microbiota alterations or dysbiotic microbiota have been identified in these separate disorders relative to controls. Much attention has focused on the bidirectional interplay between the gut microbiota and the brain, establishing gut dysbiotic status as a critical factor in psychiatric disorders. Still, the antibiotic-like effect of psychotropic drugs, medications used for the treatment of these disorders, on gut microbiota is largely neglected. In this review, we summarize the current findings on the impact of psychotropics on gut microbiota and how their antimicrobial potency can trigger dysbiosis. We also discuss the potential therapeutic strategies, including probiotics, prebiotics, and fecal transplantation, to attenuate the dysbiosis related to psychotropics intake.
Collapse
|
41
|
Guo L, Xiao P, Zhang X, Yang Y, Yang M, Wang T, Lu H, Tian H, Wang H, Liu J. Inulin ameliorates schizophrenia via modulation of the gut microbiota and anti-inflammation in mice. Food Funct 2021; 12:1156-1175. [PMID: 33432310 DOI: 10.1039/d0fo02778b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome-gut-brain (MGB) axis, which regulates neurological and cognitive functions, plays an essential role in schizophrenia (SCZ) progression. Dietary inulin could be a novel strategy for the treatment of SCZ due to its modulating effects on the gut microbiota. In this study, the effects of inulin on mice with SCZ were studied. As indicated by the behavioural tests, expression of neurotransmitters, inflammatory indicators, and brain morphology, inulin administration ameliorated aberrant behaviours (locomotor hypoactivity, anxiety disorders and depressive behaviours, and impaired learning and spatial recognition memory) and effectively reduced neuroinflammation and neuronal damage. In addition, inulin improved intestinal integrity and permeability, as indicated by the elevated expression of tight junction proteins (p < 0.05). The results of 16S rRNA sequencing and analysis showed that inulin increased the abundance of Lactobacillus and Bifidobacterium, which were negatively correlated with 5-hydroxytryptamine and inflammatory cytokines and positively correlated with brain-derived neurotrophic factor (BDNF). Inulin caused a reduction in Akkermansia that was positively correlated with inflammatory cytokines and negatively correlated with BDNF. These results suggested that dietary inulin modulated the gut microbiota and exerted anti-inflammatory effects in mice though the MGB axis, which further ameliorated SCZ. Therefore, the results of this study provide a potential explanation for inulin intervention in the treatment of SCZ.
Collapse
Affiliation(s)
- Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Peilun Xiao
- Department of Anatomy, Weifang Medical University, Weifang 261042, Shandong, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yang Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hongyan Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
42
|
Liu JCW, Gorbovskaya I, Hahn MK, Müller DJ. The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients 2021; 13:nu13041152. [PMID: 33807241 PMCID: PMC8065775 DOI: 10.3390/nu13041152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GMB) plays an important role in developmental processes and has been implicated in the etiology of psychiatric disorders. However, the relationship between GMB and schizophrenia remains unclear. In this article, we review the existing evidence surrounding the gut microbiome in schizophrenia and the potential for antipsychotics to cause adverse metabolic events by altering the gut microbiome. We also evaluate the current evidence for the clinical use of probiotic and prebiotic treatment in schizophrenia. The current data on microbiome alteration in schizophrenia remain conflicting. Longitudinal and larger studies will help elucidate the confounding effect on the microbiome. Current studies help lay the groundwork for further investigations into the role of the GMB in the development, presentation, progression and potential treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan C. W. Liu
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ilona Gorbovskaya
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, ON M5G 2C4, Canada
| | - Daniel J. Müller
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Correspondence:
| |
Collapse
|
43
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
45
|
Liu C, Kang D, Xiao J, Huang Y, Peng X, Wang W, Xie P, Yang Y, Zhao J, Wu R. Dietary fiber and probiotics for the treatment of atypical antipsychotic-induced metabolic side effects: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2021; 22:159. [PMID: 33622382 PMCID: PMC7903643 DOI: 10.1186/s13063-021-05123-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Background Atypical antipsychotic medications, which are effective for the treatment of schizophrenia and bipolar disorder, are associated with features of metabolic syndrome, such as weight gain, hyperglycemia, dyslipidemia, and insulin resistance. Although there are a few studies on the effects of dietary fiber or probiotics on weight loss in obese people, no published trials have reported the efficacy of dietary fiber and probiotics on reducing atypical antipsychotic-induced weight gain. Methods For this 12-week randomized, double-blind, placebo-controlled study, 100 patients with a weight gain of more than 10% after taking atypical antipsychotic medications were recruited. Participants were randomized to four groups as follows: probiotics (840 mg twice daily (bid)) plus dietary fiber (30 g bid), probiotics (840 mg bid) plus placebo, placebo plus dietary fiber (30 g bid), or placebo group. The primary outcome was the change in body weight. Secondary outcomes included changes in metabolic syndrome parameters, appetite score, biomarkers associated with a change in weight, and gut microbiota composition and function. Discussion To date, this is the first randomized, placebo-controlled, double-blinded trial investigating the efficacy of dietary fiber and probiotics alone and in combination to reduce metabolic side effects induced by atypical antipsychotic medications. If effective, it is possible to conclude that dietary fiber and probiotics can reduce atypical antipsychotic-induced metabolic side effects. Trial registration number ClinicalTrials.gov NCT03379597. Registered on 19 November 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05123-w.
Collapse
Affiliation(s)
- Chenchen Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Dongyu Kang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuyan Huang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xingjie Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Weiyan Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ye Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
46
|
Hebert JC, Radford-Smith DE, Probert F, Ilott N, Chan KW, Anthony DC, Burnet PWJ. Mom's diet matters: Maternal prebiotic intake in mice reduces anxiety and alters brain gene expression and the fecal microbiome in offspring. Brain Behav Immun 2021; 91:230-244. [PMID: 33031920 DOI: 10.1016/j.bbi.2020.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Compelling evidence links enteric microbes to brain function and behavior. Galacto-oligosaccharide prebiotics have been shown to modulate the composition of gut flora and induce metabolic, neurochemical, and behavioral changes in adult rodents. Despite the brain being most susceptible to environmental factors, such as nutrients and toxins, during the earliest stages of development, it is unknown whether maternal prebiotic supplementation during gestation and lactation influences the offspring gut microbiome, brain, or behavior. The aim of this study was to test whether maternal galacto-oligosaccharide intake during pregnancy and lactation alters the brain and behavior in naïve and endotoxin-challenged offspring. CD1 female mice received either normal drinking water or water supplemented with Bimuno® galacto-oligosaccharides (B-GOS) during gestation and suckling. Offspring behavior was tested at weaning age or adulthood, and a cross-foster design was employed in a separate cohort to differentiate between effects of prenatal and postnatal maternal B-GOS intake. Lipopolysaccharide was also administered to pups at postnatal day 9 to determine whether maternal B-GOS influences the neurobiological and behavioral effects of a neonatal pro-inflammatory challenge in adulthood. Fecal microbiome composition and metabolites were analyzed to explore potential relationships between the maternal microbiome, the offspring gut microbiome, and the offspring brain and behavior. Maternal B-GOS supplementation increased exploratory behavior and reduced expression of hippocampal glutamate receptor genes in young, weaning-age offspring. In addition, postnatal, but not prenatal, B-GOS supplementation increased fecal butyrate and propionate levels. Finally, in adult offspring, perinatal B-GOS intake increased cortical glutamate receptor subunits in females, increased social preference, and reduced anxiety. We provide novel and comprehensive evidence for the influence of maternal prebiotic intake on offspring behavior, brain gene expression, and gut microbiome composition in mice.
Collapse
Affiliation(s)
- Jenna C Hebert
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK
| | | | - Fay Probert
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Nicholas Ilott
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Ka Wai Chan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK.
| |
Collapse
|
47
|
Luo C, Wang X, Huang HX, Mao XY, Zhou HH, Liu ZQ. Coadministration of metformin prevents olanzapine-induced metabolic dysfunction and regulates the gut-liver axis in rats. Psychopharmacology (Berl) 2021; 238:239-248. [PMID: 33095288 DOI: 10.1007/s00213-020-05677-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Olanzapine is widely prescribed for patients with mental disorders; however, it may induce metabolic dysfunction. Metformin is an efficient adjuvant for preventing olanzapine-induced metabolic dysfunction in clinical practice. Although the mechanism of how metformin prevents this metabolic dysfunction remains unknown, changes in the gut-liver axis are considered a potential explanation. METHODS Forty-eight male rats were gavaged with olanzapine and/or metformin for 35 consecutive days. Body weight, food intake, and water intake were measured daily. Histopathological and biochemical tests were performed to evaluate the metabolic dysfunction. The 16S rRNA obtained from fecal bacterial DNA was assessed. RESULTS Olanzapine treatment increased the body weight, blood glucose and triglyceride levels, and the number of adipocytes in the liver. While coadministration of metformin, there was a dose-dependent reverse of the abnormal changes induced by olanzapine treatment. Both olanzapine and metformin treatments altered the composition of the gut microbiota. Bacteroides acidifaciens and Lactobacillus gasseri were possibly played a positive role in metformin-mediated olanzapine-induced metabolic dysfunction prevention. CONCLUSION Metformin prevented olanzapine-induced metabolic dysfunction and regulated the gut microbiota in a dose-dependent manner.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.,School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Han-Xue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
48
|
Dalile B, Vervliet B, Bergonzelli G, Verbeke K, Van Oudenhove L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology 2020; 45:2257-2266. [PMID: 32521538 PMCID: PMC7784980 DOI: 10.1038/s41386-020-0732-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
Short-chain fatty acids (SCFAs) are products of microbial fermentation of dietary fiber in the colon and may mediate microbiota-gut-brain communication. However, their role in modulating psychobiological processes that underlie the development of stress- and anxiety-related disorders is not mechanistically studied in humans. In this triple-blind, randomized, placebo-controlled intervention trial, we examine in a parallel group design the effects of 1-week colonic SCFA-mixture delivery in doses equivalent to fermentation of 10 g or 20 g of arabinoxylan oligosaccharides on responses to psychosocial stress and fear tasks in 66 healthy men. We demonstrate that low and high doses of SCFAs significantly attenuate the cortisol response to psychosocial stress compared to placebo. Both doses of SCFAs increase serum SCFA levels and this increase in circulating SCFAs co-varies significantly with the attenuation of the cortisol response to psychosocial stress. Colonic SCFA delivery does not modulate fecal SCFA concentrations, serum brain-derived neurotrophic factor, cortisol awakening response, fear learning and extinction, or subjective mood ratings. These results demonstrate that colon-delivered SCFAs modulate hypothalamic-pituitary-adrenal axis reactivity to psychosocial stress, thereby supporting their hypothesized role in microbiota-gut-brain communication.
Collapse
Affiliation(s)
- Boushra Dalile
- grid.5596.f0000 0001 0668 7884Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology, Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Gabriela Bergonzelli
- grid.419905.00000 0001 0066 4948Department of Gastrointestinal Health, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kristin Verbeke
- grid.5596.f0000 0001 0668 7884Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Halverson T, Alagiakrishnan K. Gut microbes in neurocognitive and mental health disorders. Ann Med 2020; 52:423-443. [PMID: 32772900 PMCID: PMC7877977 DOI: 10.1080/07853890.2020.1808239] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION As individuals age, the prevalence of neurocognitive and mental health disorders increases. Current biomedical treatments do not completely address the management of these conditions. Despite new pharmacological therapy the challenges of managing these diseases remain.There is increasing evidence that the Gut Microbiome (GM) and microbial dysbiosis contribute to some of the more prevalent mental health and neurocognitive disorders, such as depression, anxiety, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), schizophrenia, bipolar disorder (BP), and dementia as well as the behavioural and psychological symptoms of dementia (BPSD) through the microbiota-gut-brain axis. Methodology: Scoping review about the effect of gut microbiota on neurocognitive and mental health disorders. RESULTS This scoping review found there is an evolving evidence of the involvement of the gut microbiota in the pathophysiology of neurocognitive and mental health disorders. This manuscript also discusses how the psychotropics used to treat these conditions may have an antimicrobial effect on GM, and the potential for new strategies of management with probiotics and faecal transplantation. CONCLUSIONS This understanding can open up the need for a gut related approach in these disorders as well as unlock the door for the role of gut related microbiota management. KEY MESSAGES Challenges of managing mental health conditions remain in spite of new pharmacological therapy. Gut dysbiosis is seen in various mental health conditions. Various psychotropic medications can have an influence on the gut microbiota by their antimicrobial effect.
Collapse
Affiliation(s)
- Tyler Halverson
- Department of Medicine, Division of Psychiatry, University of Alberta, Edmonton, Alberta Canada
| | - Kannayiram Alagiakrishnan
- Department of Medicine, Division of Geriatric Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
50
|
Xia Y, Zhu J, Xu Y, Zhang H, Zou F, Meng X. Effects of ecologically relevant concentrations of cadmium on locomotor activity and microbiota in zebrafish. CHEMOSPHERE 2020; 257:127220. [PMID: 32531487 DOI: 10.1016/j.chemosphere.2020.127220] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is widely spread in the aquatic environment, and its impact on humans and the ecosystem is an important issue in public health. However, its effects on zebrafish microbiota are still poorly understood. In this study, the potential developmental neurotoxicity and microbiota dysbiosis of ecologically relevant concentrations of Cd (0, 1.25, 2.5 and 5 μg/L) was evaluated by waterborne exposure for 7 days. The data showed that exposure to 5 μg/L of Cd significantly decreased survival rates and impaired locomotor activities. Uptake of Cd was enhanced with the increase of the concentration and duration of exposure. High-throughput sequencing analysis revealed a significant change in the richness and diversity of the microbiota of Cd-treated zebrafish. At the phylum level, the abundance of Proteobacteria increased, while that Firmicutes was significantly decreased after exposure to 5 μg/L Cd. At the genus level, there were significant changes in the abundances of several bacteria involved in the regulation of neurodegenerative diseases (Pseudomonas, Ruminococcaceae, Blautia, Bacteroides, Lactobacillus, Lachnospiraceae, and Phascolarctobacterium) in the Cd-treatment groups, as compared to the control group. In addition, the mRNA expression profiles of bdnf and genes involved in serotonin signaling and metabolism were changed in the Cd exposure groups. Together, these data suggest that Cd could be harmful to zebrafish health by inducing the microbiota changes, and the microbiota could serve as a potential target to protect against the adverse effects of Cd toxicity.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|