1
|
Park YM, Lee BH, Shekhtman T, Kelsoe JR. Association of prescription data with clinical manifestations and polygenic risk scores in patients with bipolar I disorder: An exploratory study. J Affect Disord 2024; 367:31-37. [PMID: 39142578 DOI: 10.1016/j.jad.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND We assessed the association of prescription data with clinical manifestations and polygenic risk scores (PRS) in patients with bipolar I disorder. METHODS We enrolled 1471 individuals with BID and divided them into several groups according to treatment options and clinical manifestations. BD-PRS of each patient was calculated using the Psychiatric Genomics Consortium data. Data on single nucleotide polymorphisms, clinical manifestations, and prescriptions were extracted from BiGS. RESULTS Chronicity, suicidality, substance misuse, mixed symptoms, and deterioration of life functioning were significantly more severe in the group that was not prescribed any mood stabilizers (MS). Chronicity, psychotic symptoms, suicidality, and deterioration of life functioning were significantly severe in the group that received two or more antipsychotics (APs). BD-PRS between the group with AP(s) only and that with other treatment options significantly differed. BD-PRS of the group with AP(s) only was significantly lower than that with other treatment options. Our linear regression results showed that high severity of particular clinical aspects, lower BD-PRS, and prescriptions with fewer MSs or more APs were independently associated with poor life functioning. LIMITATIONS This study had a cross-sectional design, without differentiating the bipolar phase, which could influence our results. CONCLUSIONS Poor life functioning in patients with BID was associated with a high severity of particular clinical aspects, BD-PRS, and prescriptions including fewer MSs or more APs. BD-PRS was significantly higher in the group receiving only AP(s) than that in the groups receiving other drugs.
Collapse
Affiliation(s)
- Young-Min Park
- Psychiaric Clinic in Your Brain and Mind, Goyang, Republic of Korea; BM Brain Medicine institute, Republic of Korea.
| | - Bun-Hee Lee
- Maum & Maum Psychiatric Clinic, Seoul, Republic of Korea
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Koch E, Pardiñas AF, O'Connell KS, Selvaggi P, Camacho Collados J, Babic A, Marshall SE, Van der Eycken E, Angulo C, Lu Y, Sullivan PF, Dale AM, Molden E, Posthuma D, White N, Schubert A, Djurovic S, Heimer H, Stefánsson H, Stefánsson K, Werge T, Sønderby I, O'Donovan MC, Walters JTR, Milani L, Andreassen OA. How Real-World Data Can Facilitate the Development of Precision Medicine Treatment in Psychiatry. Biol Psychiatry 2024; 96:543-551. [PMID: 38185234 DOI: 10.1016/j.biopsych.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders.
Collapse
Affiliation(s)
- Elise Koch
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - José Camacho Collados
- CardiffNLP, School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | | | | | - Erik Van der Eycken
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Cecilia Angulo
- Global Alliance of Mental Illness Advocacy Networks-Europe, Brussels, Belgium
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden; Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, California; Departments of Radiology, Psychiatry, and Neurosciences, University of California, San Diego, La Jolla, California
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nathan White
- CorTechs Laboratories, Inc., San Diego, California
| | | | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; The Norwegian Centre for Mental Disorders Research Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hakon Heimer
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Nordic Society of Human Genetics and Precision Medicine, Copenhagen, Denmark
| | | | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark; Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ida Sønderby
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia; Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Jonsson L, Song J, Joas E, Pålsson E, Landén M. Polygenic scores for psychiatric disorders associate with year of first bipolar disorder diagnosis: A register-based study between 1972 and 2016. Psychiatry Res 2024; 339:116081. [PMID: 38996631 DOI: 10.1016/j.psychres.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The diagnostic criteria of bipolar disorder (BD) have changed over time. To test if these changes are reflected in the polygenic profile in BD, we studied the association between first BD diagnosis year (during 1972-2016) and polygenic scores (PGS) for psychiatric disorders in BD patients (N = 3,818). We found significant associations between diagnosis year and PGS for BD, depression, and attention deficit hyperactivity disorder (ADHD). The PGS remained largely stable over time in BD type 1, while changes were observed in BD type 2. These findings bear significance not only for genetic research but also for clinical practise, as shifts in patient characteristics can influence treatment response.
Collapse
Affiliation(s)
- Lina Jonsson
- Department of psychiatry and neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Blå stråket 15, Gothenburg 413 45, Sweden.
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Erik Joas
- Department of psychiatry and neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Blå stråket 15, Gothenburg 413 45, Sweden
| | - Erik Pålsson
- Department of psychiatry and neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Blå stråket 15, Gothenburg 413 45, Sweden
| | - Mikael Landén
- Department of psychiatry and neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Blå stråket 15, Gothenburg 413 45, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Sanchez-Ruiz JA, Coombes BJ, Pazdernik VM, Melhuish Beaupre LM, Jenkins GD, Pendegraft RS, Batzler A, Ozerdem A, McElroy SL, Gardea-Resendez MA, Cuellar-Barboza AB, Prieto ML, Frye MA, Biernacka JM. Clinical and genetic contributions to medical comorbidity in bipolar disorder: a study using electronic health records-linked biobank data. Mol Psychiatry 2024; 29:2701-2713. [PMID: 38548982 PMCID: PMC11544602 DOI: 10.1038/s41380-024-02530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 06/14/2024]
Abstract
Bipolar disorder is a chronic and complex polygenic disease with high rates of comorbidity. However, the independent contribution of either diagnosis or genetic risk of bipolar disorder to the medical comorbidity profile of individuals with the disease remains unresolved. Here, we conducted a multi-step phenome-wide association study (PheWAS) of bipolar disorder using phenomes derived from the electronic health records of participants enrolled in the Mayo Clinic Biobank and the Mayo Clinic Bipolar Disorder Biobank. First, we explored the conditions associated with a diagnosis of bipolar disorder by conducting a phenotype-based PheWAS followed by LASSO-penalized regression to account for correlations within the phenome. Then, we explored the conditions associated with bipolar disorder polygenic risk score (BD-PRS) using a PRS-based PheWAS with a sequential exclusion approach to account for the possibility that diagnosis, instead of genetic risk, may drive such associations. 53,386 participants (58.7% women) with a mean age at analysis of 67.8 years (SD = 15.6) were included. A bipolar disorder diagnosis (n = 1479) was associated with higher rates of psychiatric conditions, injuries and poisonings, endocrine/metabolic and neurological conditions, viral hepatitis C, and asthma. BD-PRS was associated with psychiatric comorbidities but, in contrast, had no positive associations with general medical conditions. While our findings warrant confirmation with longitudinal-prospective studies, the limited associations between bipolar disorder genetics and medical conditions suggest that shared environmental effects or environmental consequences of diagnosis may have a greater impact on the general medical comorbidity profile of individuals with bipolar disorder than its genetic risk.
Collapse
Affiliation(s)
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Greg D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susan L McElroy
- Lindner Center of HOPE/University of Cincinnati, Cincinnati, OH, USA
| | - Manuel A Gardea-Resendez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Sharew NT, Clark SR, Schubert KO, Amare AT. Pharmacogenomic scores in psychiatry: systematic review of current evidence. Transl Psychiatry 2024; 14:322. [PMID: 39107294 PMCID: PMC11303815 DOI: 10.1038/s41398-024-02998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
In the past two decades, significant progress has been made in the development of polygenic scores (PGSs). One specific application of PGSs is the development and potential use of pharmacogenomic- scores (PGx-scores) to identify patients who can benefit from a specific medication or are likely to experience side effects. This systematic review comprehensively evaluates published PGx-score studies in psychiatry and provides insights into their potential clinical use and avenues for future development. A systematic literature search was conducted across PubMed, EMBASE, and Web of Science databases until 22 August 2023. This review included fifty-three primary studies, of which the majority (69.8%) were conducted using samples of European ancestry. We found that over 90% of PGx-scores in psychiatry have been developed based on psychiatric and medical diagnoses or trait variants, rather than pharmacogenomic variants. Among these PGx-scores, the polygenic score for schizophrenia (PGSSCZ) has been most extensively studied in relation to its impact on treatment outcomes (32 publications). Twenty (62.5%) of these studies suggest that individuals with higher PGSSCZ have negative outcomes from psychotropic treatment - poorer treatment response, higher rates of treatment resistance, more antipsychotic-induced side effects, or more psychiatric hospitalizations, while the remaining studies did not find significant associations. Although PGx-scores alone accounted for at best 5.6% of the variance in treatment outcomes (in schizophrenia treatment resistance), together with clinical variables they explained up to 13.7% (in bipolar lithium response), suggesting that clinical translation might be achieved by including PGx-scores in multivariable models. In conclusion, our literature review found that there are still very few studies developing PGx-scores using pharmacogenomic variants. Research with larger and diverse populations is required to develop clinically relevant PGx-scores, using biology-informed and multi-phenotypic polygenic scoring approaches, as well as by integrating clinical variables with these scores to facilitate their translation to psychiatric practice.
Collapse
Affiliation(s)
- Nigussie T Sharew
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Mental Health, Northern Adelaide Local Health Network, SA Health, Adelaide, Australia
- Headspace Adelaide Early Psychosis - Sonder, Adelaide, SA, Australia
| | - Azmeraw T Amare
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Grigoroiu-Serbanescu M, van der Veen T, Bigdeli T, Herms S, Diaconu CC, Neagu AI, Bass N, Thygesen J, Forstner AJ, Nöthen MM, McQuillin A. Schizophrenia polygenic risk scores, clinical variables and genetic pathways as predictors of phenotypic traits of bipolar I disorder. J Affect Disord 2024; 356:507-518. [PMID: 38640977 DOI: 10.1016/j.jad.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
AIM We investigated the predictive value of polygenic risk scores (PRS) derived from the schizophrenia GWAS (Trubetskoy et al., 2022) (SCZ3) for phenotypic traits of bipolar disorder type-I (BP-I) in 1878 BP-I cases and 2751 controls from Romania and UK. METHODS We used PRSice-v2.3.3 and PRS-CS for computing SCZ3-PRS for testing the predictive power of SCZ3-PRS alone and in combination with clinical variables for several BP-I subphenotypes and for pathway analysis. Non-linear predictive models were also used. RESULTS SCZ3-PRS significantly predicted psychosis, incongruent and congruent psychosis, general age-of-onset (AO) of BP-I, AO-depression, AO-Mania, rapid cycling in univariate regressions. A negative correlation between the number of depressive episodes and psychosis, mainly incongruent and an inverse relationship between increased SCZ3-SNP loading and BP-I-rapid cycling were observed. In random forest models comparing the predictive power of SCZ3-PRS alone and in combination with nine clinical variables, the best predictions were provided by combinations of SCZ3-PRS-CS and clinical variables closely followed by models containing only clinical variables. SCZ3-PRS performed worst. Twenty-two significant pathways underlying psychosis were identified. LIMITATIONS The combined RO-UK sample had a certain degree of heterogeneity of the BP-I severity: only the RO sample and partially the UK sample included hospitalized BP-I cases. The hospitalization is an indicator of illness severity. Not all UK subjects had complete subphenotype information. CONCLUSION Our study shows that the SCZ3-PRS have a modest clinical value for predicting phenotypic traits of BP-I. For clinical use their best performance is in combination with clinical variables.
Collapse
Affiliation(s)
- Maria Grigoroiu-Serbanescu
- Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - Tracey van der Veen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Tim Bigdeli
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Stefan Herms
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | | | | | - Nicholas Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Johan Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK; Institute of Health Informatics, University College London, London, UK
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
7
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. Int J Bipolar Disord 2024; 12:20. [PMID: 38865039 PMCID: PMC11169116 DOI: 10.1186/s40345-024-00341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Fliedner Klinik Berlin, Berlin, Germany
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Unitat de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), University of Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Antonio Benabarre
- Bipolar Disorder Program, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | | | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Micah Cearns
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Bruno Etain
- Département de Psychiatrie et de Médecine Addictologique, INSERM UMR-S 1144, Université Paris Cité, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière, F. Widal, Paris, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Louise Frisén
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Janice M Fullerton
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martín de Porres, Peru
| | - Sébastien Gard
- Service de Psychiatrie, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ottawa, Canada
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Roland Hasler
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznań, Poland
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Herms
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Human Genomics Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Yi-Hsiang Hsu
- Program for Quantitative Genomics, Harvard School of Public Health and HSL Institute for Aging Research, Harvard Medical School, Boston, USA
| | - Stephane Jamain
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, Créteil, France
| | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marion Leboyer
- Univ. Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Mondor University Hospital, DMU Impact, Fondation FondaMental, Créteil, France
| | - Susan G Leckband
- Office of Mental Health, VA San Diego Healthcare System, California, USA
| | - Mario Maj
- Department of Psychiatry, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006, Paris, France
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan L McElroy
- Department of Psychiatry, Lindner Center of Hope/University of Cincinnati, Cincinnati, USA
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Mitjans
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Institut de Biomedicina de La Universitat de Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | | | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Norio Ozaki
- Department of Psychiatry & Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Division of Psychiatric Specialities, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine at Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research, Australia and School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, Australia
| | - Eva C Schulte
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Katzutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Christian Simhandl
- Medical Faculty, Bipolar Center Wiener Neustadt, Sigmund Freud University, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, ISCIII, Barcelona, Spain
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Baltimore, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster and Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, University of Melbourne and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
9
|
Mishra BH, Raitoharju E, Mononen N, Saarinen A, Viikari J, Juonala M, Hutri-Kähönen N, Kähönen M, Raitakari OT, Lehtimäki T, Mishra PP. Identification of gene networks jointly associated with depressive symptoms and cardiovascular health metrics using whole blood transcriptome in the Young Finns Study. Front Psychiatry 2024; 15:1345159. [PMID: 38726387 PMCID: PMC11079127 DOI: 10.3389/fpsyt.2024.1345159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 05/12/2024] Open
Abstract
Background Studies have shown that cardiovascular health (CVH) is related to depression. We aimed to identify gene networks jointly associated with depressive symptoms and cardiovascular health metrics using the whole blood transcriptome. Materials and methods We analyzed human blood transcriptomic data to identify gene co-expression networks, termed gene modules, shared by Beck's depression inventory (BDI-II) scores and cardiovascular health (CVH) metrics as markers of depression and cardiovascular health, respectively. The BDI-II scores were derived from Beck's Depression Inventory, a 21-item self-report inventory that measures the characteristics and symptoms of depression. CVH metrics were defined according to the American Heart Association criteria using seven indices: smoking, diet, physical activity, body mass index (BMI), blood pressure, total cholesterol, and fasting glucose. Joint association of the modules, identified with weighted co-expression analysis, as well as the member genes of the modules with the markers of depression and CVH were tested with multivariate analysis of variance (MANOVA). Results We identified a gene module with 256 genes that were significantly correlated with both the BDI-II score and CVH metrics. Based on the MANOVA test results adjusted for age and sex, the module was associated with both depression and CVH markers. The three most significant member genes in the module were YOD1, RBX1, and LEPR. Genes in the module were enriched with biological pathways involved in brain diseases such as Alzheimer's, Parkinson's, and Huntington's. Conclusions The identified gene module and its members can provide new joint biomarkers for depression and CVH.
Collapse
Affiliation(s)
- Binisha H. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki. Helsinki, Finland
- Helsinki University Central Hospital, Adolescent Psychiatry Outpatient Clinic, Helsinki, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Pashupati P. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
10
|
Herrera-Rivero M, Gutiérrez-Fragoso K, Kurtz J, Baune BT. Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder. Transl Psychiatry 2024; 14:174. [PMID: 38570518 PMCID: PMC10991481 DOI: 10.1038/s41398-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3β. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
| | - Karina Gutiérrez-Fragoso
- Division of Engineering in Computational Systems, Higher Technological Institute of the East of the State of Hidalgo, Hidalgo, Mexico
| | - Joachim Kurtz
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany.
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Ferensztajn-Rochowiak E, Lewitzka U, Chłopocka-Woźniak M, Rybakowski JK. Effectiveness of ultra-long-term lithium treatment: relevant factors and case series. Int J Bipolar Disord 2024; 12:7. [PMID: 38489135 PMCID: PMC10942952 DOI: 10.1186/s40345-024-00328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The phenomenon of preventing the recurrences of mood disorders by the long-term lithium administration was discovered sixty years ago. Such a property of lithium has been unequivocally confirmed in subsequent years, and the procedure makes nowadays the gold standard for the pharmacological prophylaxis of bipolar disorder (BD). The efficacy of lithium prophylaxis surpasses other mood stabilizers, and the drug has the longest record as far as the duration of its administration is concerned. The continuation of lithium administration in case of good response could be a lifetime and last for several decades. The stability of lithium prophylactic efficacy in most patients is pretty steady. However, resuming lithium after its discontinuation may, in some patients, be less efficient. MAIN BODY In the article, the clinical and biological factors connected with the prophylactic efficacy of long-term lithium administration are listed. Next, the adverse and beneficial side effects of such longitudinal treatment are presented. The main problems of long-term lithium therapy, which could make an obstacle to lithium continuation, are connected with lithium's adverse effects on the kidney and, to lesser extent, on thyroid and parathyroid functions. In the paper, the management of these adversities is proposed. Finally, the case reports of three patients who have completed 50 years of lithium therapy are described. CONCLUSIONS The authors of the paper reckon that in the case of good response, lithium can be given indefinitely. Given the appropriate candidates for such therapy and successful management of the adverse effects, ultra-long term lithium therapy is possible and beneficial for such patients.
Collapse
Affiliation(s)
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Carl Gustav Carus, Dresden, Germany.
| | | | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Hörbeck E, Jonsson L, Malwade S, Karlsson R, Pålsson E, Sigström R, Sellgren CM, Landén M. Dissecting the impact of complement component 4A in bipolar disorder. Brain Behav Immun 2024; 116:150-159. [PMID: 38070620 DOI: 10.1016/j.bbi.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
The genetic overlap between schizophrenia (SZ) and bipolar disorder (BD) is substantial. Polygenic risk scores have been shown to dissect different symptom dimensions within and across these two disorders. Here, we focused on the most strongly associated SZ risk locus located in the extended MHC region, which is largely explained by copy numbers of the gene coding for complement component 4A (C4A). First, we utilized existing brain tissue collections (N = 1,202 samples) and observed no altered C4A expression in BD samples. The generated C4A seeded co-expression networks displayed no genetic enrichment for BD. To study if genetically predicted C4A expression discriminates between subphenotypes of BD, we applied C4A expression scores to symptom dimensions in a total of 4,739 BD cases with deep phenotypic data. We identified a significant association between C4A expression and psychotic mood episodes in BD type 1 (BDI). No significant association was observed between C4A expression and the occurrence of non-affective psychotic episodes in BDI, the psychosis dimensions in the total BD sample, or any other subphenotype of BD. Overall, these results points to a distinct role of C4A in BD that is restricted to vulnerability for developing psychotic symptoms during mood episodes in BDI.
Collapse
Affiliation(s)
- Elin Hörbeck
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Herrera-Rivero M, Adli M, Akiyama K, Akula N, Amare AT, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark SR, Colom F, Cruceanu C, Czerski PM, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisén L, Frye MA, Fullerton JM, Gallo C, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu YH, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy MJ, McElroy SL, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Novák T, Nöthen MM, O'Donovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schubert KO, Schulte EC, Schweizer BW, Severino G, Shekhtman T, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Streit F, Tekola-Ayele F, Thalamuthu A, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt SH, Zandi PP, Alda M, Bauer M, McMahon FJ, Mitchell PB, Rietschel M, Schulze TG, Baune BT. Exploring the genetics of lithium response in bipolar disorders. RESEARCH SQUARE 2023:rs.3.rs-3677630. [PMID: 38077040 PMCID: PMC10705597 DOI: 10.21203/rs.3.rs-3677630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Collapse
Affiliation(s)
| | | | | | - Nirmala Akula
- United States Department of Health and Human Services
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Josef Frank
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liping Hou
- United States Department of Health and Human Services
| | | | | | | | | | - Layla Kassem
- United States Department of Health and Human Services
| | | | | | | | | | | | | | - Gonzalo Laje
- United States Department of Health and Human Services
| | | | | | | | | | - Mario Maj
- University of Campania 'Luigi Vanvitelli'
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Pfennig
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fabian Streit
- Central Institute of Mental Health, University of Heidelberg
| | | | | | | | | | | | - Eduard Vieta
- Hospital Clinic, University of Barcelona, IDIBAPS
| | | | | | | | | | - Michael Bauer
- University Hospital Carl Gustav Carus, Technische Universität Dresden
| | | | | | | | | | | |
Collapse
|
14
|
Amare AT, Thalamuthu A, Schubert KO, Fullerton JM, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Hasler R, Richard-Lepouriel H, Perroud N, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski PM, Dalkner N, Del Zompo M, DePaulo JR, Étain B, Jamain S, Falkai P, Forstner AJ, Frisen L, Frye MA, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Fallgatter AJ, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman JL, Kohshour MO, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich D, Figge C, Jäger M, Lang FU, Juckel G, Konrad C, Reimer J, Schmauß M, Schmitt A, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer TFM, Fischer A, Bermpohl F, Ritter P, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haussleiter IS, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, Kuo PH, Kato T, Kelsoe J, Kittel-Schneider S, Ferensztajn-Rochowiak E, König B, Kusumi I, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Tortorella A, Manchia M, Martinsson L, McCarthy MJ, McElroy S, Colom F, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, O'Donovan C, Ozaki N, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schweizer BW, Severino G, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Maj M, Turecki G, Vieta E, Veeh J, Witt SH, Wright A, Zandi PP, Mitchell PB, Bauer M, Alda M, Rietschel M, McMahon FJ, Schulze TG, Clark SR, Baune BT. Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder. Mol Psychiatry 2023; 28:5251-5261. [PMID: 37433967 DOI: 10.1038/s41380-023-02149-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
Collapse
Affiliation(s)
- Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia.
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, UNSW Medicine & Health, University of New South Wales, Sydney, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Muktar Ahmed
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Simon Hartmann
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR Klinikum Essen, University of Duisburg-Essen, Rheinische Kliniken, Essen, Germany
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Yi-Hsiang Hsu
- HSL Institute for Aging Research, Harvard Medical School, Boston, MA, USA
- Program for Quantitative Genomics, Harvard School of Public Health, Boston, MA, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Unitat de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), University of Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Roland Hasler
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Nader Perroud
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Frank Bellivier
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
| | - Antonio Benabarre
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006, Paris, France
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Bruno Étain
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
| | - Stephane Jamain
- Inserm U955, Translational Psychiatry laboratory, Fondation FondaMental, Créteil, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Louise Frisen
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sébastien Gard
- Pôle de Psychiatrie Générale Universitaire, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Andreas J Fallgatter
- University Department of Psychiatry and Psychotherapy Tuebingen, University of Tübingen, Tuebingen, Germany
| | - Sophia Stegmaier
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Thomas Ethofer
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
- Department of Biomedical Resonance, University of Tuebingen, Tuebingen, Germany
| | - Silvia Biere
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Kristiyana Petrova
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Ceylan Schuster
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, 26160, Germany
| | - Markus Jäger
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Fabian U Lang
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychiatry, Health North Hospital Group, Bremen, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Till F M Andlauer
- Department of Neurology, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Silke Matura
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Anna Gryaznova
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Cüneyt Yildiz
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julia Schmidt
- Institute for Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Marius Koch
- Institute for Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Trost
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Ida S Haussleiter
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja C Rohenkohl
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vivien Kraft
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ontario, Canada
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Esther Jiménez
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Wurzburg, Germany
| | | | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Inserm U955, Translational Psychiatry laboratory, Université Paris-Est-Créteil, Department of Psychiatry and Addictology of Mondor University Hospital, AP-HP, Fondation FondaMental, Créteil, France
| | - Susan G Leckband
- Office of Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan McElroy
- Department of Psychiatry, Lindner Center of Hope / University of Cincinnati, Mason, OH, USA
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marina Mitjans
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norio Ozaki
- Department of Psychiatry & Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Katzutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Christian Simhandl
- Bipolar Center Wiener Neustadt, Sigmund Freud University, Medical Faculty, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Department of Clinical Psychiatry and Psychotherapy, Brandenburg Medical School, Brandenburg, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Eduard Vieta
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Norton College of Medicine, Syracuse, NY, USA
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Liu H, Wang L, Yu H, Chen J, Sun P. Polygenic Risk Scores for Bipolar Disorder: Progress and Perspectives. Neuropsychiatr Dis Treat 2023; 19:2617-2626. [PMID: 38050614 PMCID: PMC10693760 DOI: 10.2147/ndt.s433023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Bipolar disorder (BD) is a common and highly heritable psychiatric disorder, the study of BD genetic characteristics can help with early prevention and individualized treatment. At the same time, BD is a highly heterogeneous polygenic genetic disorder with significant genetic overlap with other psychiatric disorders. In recent years, polygenic risk scores (PRS) derived from genome-wide association studies (GWAS) data have been widely used in genetic studies of various complex diseases and can be used to explore the genetic susceptibility of diseases. This review discusses phenotypic associations and genetic correlations with other conditions of BD based on PRS, and provides ideas for genetic studies and prevention of BD.
Collapse
Affiliation(s)
- Huanxi Liu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Ligang Wang
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Hui Yu
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, 266034, People’s Republic of China
| |
Collapse
|
16
|
Zhai S, Mehrotra DV, Shen J. Applying polygenic risk score methods to pharmacogenomics GWAS: challenges and opportunities. Brief Bioinform 2023; 25:bbad470. [PMID: 38152980 PMCID: PMC10782924 DOI: 10.1093/bib/bbad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Polygenic risk scores (PRSs) have emerged as promising tools for the prediction of human diseases and complex traits in disease genome-wide association studies (GWAS). Applying PRSs to pharmacogenomics (PGx) studies has begun to show great potential for improving patient stratification and drug response prediction. However, there are unique challenges that arise when applying PRSs to PGx GWAS beyond those typically encountered in disease GWAS (e.g. Eurocentric or trans-ethnic bias). These challenges include: (i) the lack of knowledge about whether PGx or disease GWAS/variants should be used in the base cohort (BC); (ii) the small sample sizes in PGx GWAS with corresponding low power and (iii) the more complex PRS statistical modeling required for handling both prognostic and predictive effects simultaneously. To gain insights in this landscape about the general trends, challenges and possible solutions, we first conduct a systematic review of both PRS applications and PRS method development in PGx GWAS. To further address the challenges, we propose (i) a novel PRS application strategy by leveraging both PGx and disease GWAS summary statistics in the BC for PRS construction and (ii) a new Bayesian method (PRS-PGx-Bayesx) to reduce Eurocentric or cross-population PRS prediction bias. Extensive simulations are conducted to demonstrate their advantages over existing PRS methods applied in PGx GWAS. Our systematic review and methodology research work not only highlights current gaps and key considerations while applying PRS methods to PGx GWAS, but also provides possible solutions for better PGx PRS applications and future research.
Collapse
Affiliation(s)
- Song Zhai
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Devan V Mehrotra
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, PA 19454, USA
| | - Judong Shen
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
17
|
Van Assche E, Hohoff C, Zang J, Knight MJ, Baune BT. Longitudinal early epigenomic signatures inform molecular paths of therapy response and remission in depressed patients. Front Mol Neurosci 2023; 16:1223216. [PMID: 37664245 PMCID: PMC10472456 DOI: 10.3389/fnmol.2023.1223216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The etiology of major depressive disorder (MDD) involves the interaction between genes and environment, including treatment. Early molecular signatures for treatment response and remission are relevant in a context of personalized medicine and stratification and reduce the time-to-decision. Therefore, we focused the analyses on patients that responded or remitted following a cognitive intervention of 8 weeks. Methods We used data from a randomized controlled trial (RCT) with MDD patients (N = 112) receiving a cognitive intervention. At baseline and 8 weeks, blood for DNA methylation (Illumina Infinium MethylationEPIC 850k BeadChip) was collected, as well as MADRS. First, responders (N = 24; MADRS-reduction of at least 50%) were compared with non-responders (N = 60). Then, we performed longitudinal within-individual analyses, for response (N = 21) and for remission (N = 18; MADRS smaller or equal to 9 and higher than 9 at baseline), respectively, as well as patients with no change in MADRS over time. At 8 weeks the sample comprised 84 individuals; 73 patients had DNA methylation for both time-points. The RnBeads package (R) was used for data cleaning, quality control, and differential DNA-methylation (limma). The within-individual paired longitudinal analysis was performed using Welch's t-test. Subsequently gene-ontology (GO) pathway analyses were performed. Results No CpG was genome-wide significant CpG (p < 5 × 10-8). The most significant CpG in the differential methylation analysis comparing response versus non-response was in the IQSEC1 gene (cg01601845; p = 1.53 × 10-6), linked to neurotransmission. The most significant GO-terms were linked to telomeres. The longitudinal response analysis returned 67 GO pathways with a p < 0.05. Two of the three most significant pathways were linked to sodium transport. The analysis for remission returned 46 GO terms with a p-value smaller than 0.05 with pathways linked to phosphatase regulation and synaptic functioning. The analysis with stable patients returned mainly GO-terms linked to basic cellular processes. Discussion Our result suggest that DNA methylation can be suitable to capture early signs of treatment response and remission following a cognitive intervention in depression. Despite not being genome-wide significant, the CpG locations and GO-terms returned by our analysis comparing patients with and without cognitive impairment, are in line with prior knowledge on pathways and genes relevant for depression treatment and cognition. Our analysis provides new hypotheses for the understanding of how treatment for depression can act through DNA methylation and induce response and remission.
Collapse
Affiliation(s)
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Johannes Zang
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Matthew J. Knight
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bernhard T. Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Saarinen A, Hietala J, Lyytikäinen LP, Hamal Mishra B, Sormunen E, Kähönen M, Rovio S, Viikari J, Raitakari O, Lehtimäki T, Keltikangas-Järvinen L. Polygenic liabilities underlying job stress and exhaustion over a 10-year follow-up: A general population study. Psychiatry Res 2023; 326:115355. [PMID: 37487461 DOI: 10.1016/j.psychres.2023.115355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
We investigated whether individuals, who have a high polygenic loading for schizophrenia and major depression (PGL) but have not developed the respective disorders, are still susceptible to experience milder forms of ill-being in terms of job strain or exhaustion. We used the population-based Young Finns Study data (n = 928). PGL was assessed with a cumulative score of the polygenic risk scores for schizophrenia and depression. Participants (24-49-year-olds) evaluated their exhaustion levels and perceived job characteristics over a 10-year follow-up (2001, 2007, 2011). Participants with diagnosed psychotic or affective disorders were excluded. We found that high PGL did not predict less favorable perceptions of job environment (job strain, demands, control, satisfaction, social support at work) but high PGL predicted a higher trajectory of exhaustion in early adulthood and middle age. Additionally, high (vs. low) PGL predicted a stronger increase in exhaustion at increased levels of job strain. These findings remained after controlling for sex, socioeconomic factors, health behaviors, and cognitive performance. In conclusion, individuals with high PGL may have an elevated liability to experience exhaustion especially in early adulthood and middle age (despite they perceive their job environment similarly than others), and especially and at high levels of job strain.
Collapse
Affiliation(s)
- Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland.
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland; Department of Cardiology, Heart Center, Tampere University Hospital, Tampere; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Binisha Hamal Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Elina Sormunen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suvi Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | |
Collapse
|
19
|
Herrera-Rivero M, Gutiérrez-Fragoso K, Thalamuthu A, Amare AT, Adli M, Akiyama K, Akula N, Ardau R, Arias B, Aubry JM, Backlund L, Bellivier F, Benabarre A, Bengesser S, Abesh B, Biernacka J, Birner A, Cearns M, Cervantes P, Chen HC, Chillotti C, Cichon S, Clark S, Colom F, Cruceanu C, Czerski P, Dalkner N, Degenhardt F, Del Zompo M, DePaulo JR, Etain B, Falkai P, Ferensztajn-Rochowiak E, Forstner AJ, Frank J, Frisen L, Frye M, Fullerton J, Gallo C, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Grof P, Hashimoto R, Hasler R, Hauser J, Heilbronner U, Herms S, Hoffmann P, Hou L, Hsu Y, Jamain S, Jiménez E, Kahn JP, Kassem L, Kato T, Kelsoe J, Kittel-Schneider S, Kuo PH, Kurtz J, Kusumi I, König B, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband S, Maj M, Manchia M, Marie-Claire C, Martinsson L, McCarthy M, McElroy SL, Millischer V, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Novak T, Nöthen M, Odonovan C, Ozaki N, Papiol S, Pfennig A, Pisanu C, Potash J, Reif A, Reininghaus E, Richard-Lepouriel H, Roberts G, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schubert KO, Schulte E, Schweizer B, Severino G, Shekhtman T, Shilling P, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Streit F, Ayele F, Tortorella A, Turecki G, Veeh J, Vieta E, Viswanath B, Witt S, Zandi P, Alda M, Bauer M, McMahon F, Mitchell P, Rietschel M, Schulze T, Baune B. Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder. RESEARCH SQUARE 2023:rs.3.rs-3068352. [PMID: 37461719 PMCID: PMC10350128 DOI: 10.21203/rs.3.rs-3068352/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3β. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University
| | - Nirmala Akula
- National Institutes of Health, US Dept of Health & Human Services
| | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich
| | | | | | - Liping Hou
- National Institute of Mental Health Intramural Research Program, National Institutes of Health
| | | | | | | | | | | | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | - Tomas Novak
- National Institute of Mental Health, Klecany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | | | - Gustavo Turecki
- Douglas Institute, Department of Psychiatry, McGill University
| | | | | | - Biju Viswanath
- National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | | | | | | |
Collapse
|
20
|
Pisanu C, Squassina A. RNA Biomarkers in Bipolar Disorder and Response to Mood Stabilizers. Int J Mol Sci 2023; 24:10067. [PMID: 37373213 DOI: 10.3390/ijms241210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Bipolar disorder (BD) is a severe chronic disorder that represents one of the main causes of disability among young people. To date, no reliable biomarkers are available to inform the diagnosis of BD or clinical response to pharmacological treatment. Studies focused on coding and noncoding transcripts may provide information complementary to genome-wide association studies, allowing to correlate the dynamic evolution of different types of RNAs based on specific cell types and developmental stage with disease development or clinical course. In this narrative review, we summarize findings from human studies that evaluated the potential utility of messenger RNAs and noncoding transcripts, such as microRNAs, circular RNAs and long noncoding RNAs, as peripheral markers of BD and/or response to lithium and other mood stabilizers. The majority of available studies investigated specific targets or pathways, with large heterogeneity in the included type of cells or biofluids. However, a growing number of studies are using hypothesis-free designs, with some studies also integrating data on coding and noncoding RNAs measured in the same participants. Finally, studies conducted in neurons derived from induced-pluripotent stem cells or in brain organoids provide promising preliminary findings supporting the power and utility of these cellular models to investigate the molecular determinants of BD and clinical response.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
21
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
22
|
Zhai S, Guo B, Wu B, Mehrotra DV, Shen J. Integrating multiple traits for improving polygenic risk prediction in disease and pharmacogenomics GWAS. Brief Bioinform 2023:7169140. [PMID: 37200155 DOI: 10.1093/bib/bbad181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Polygenic risk score (PRS) has been recently developed for predicting complex traits and drug responses. It remains unknown whether multi-trait PRS (mtPRS) methods, by integrating information from multiple genetically correlated traits, can improve prediction accuracy and power for PRS analysis compared with single-trait PRS (stPRS) methods. In this paper, we first review commonly used mtPRS methods and find that they do not directly model the underlying genetic correlations among traits, which has been shown to be useful in guiding multi-trait association analysis in the literature. To overcome this limitation, we propose a mtPRS-PCA method to combine PRSs from multiple traits with weights obtained from performing principal component analysis (PCA) on the genetic correlation matrix. To accommodate various genetic architectures covering different effect directions, signal sparseness and across-trait correlation structures, we further propose an omnibus mtPRS method (mtPRS-O) by combining P values from mtPRS-PCA, mtPRS-ML (mtPRS based on machine learning) and stPRSs using Cauchy Combination Test. Our extensive simulation studies show that mtPRS-PCA outperforms other mtPRS methods in both disease and pharmacogenomics (PGx) genome-wide association studies (GWAS) contexts when traits are similarly correlated, with dense signal effects and in similar effect directions, and mtPRS-O is consistently superior to most other methods due to its robustness under various genetic architectures. We further apply mtPRS-PCA, mtPRS-O and other methods to PGx GWAS data from a randomized clinical trial in the cardiovascular domain and demonstrate performance improvement of mtPRS-PCA in both prediction accuracy and patient stratification as well as the robustness of mtPRS-O in PRS association test.
Collapse
Affiliation(s)
- Song Zhai
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Bin Guo
- Data and Genome Science, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Baolin Wu
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, CA 92697, USA
| | - Devan V Mehrotra
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, PA 19454, USA
| | - Judong Shen
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
23
|
Sanchez Ruiz JA, Coombes BJ, Pendegraft RS, Ozerdem A, McElroy SL, Cuellar-Barboza AB, Prieto ML, Frye MA, Winham SJ, Biernacka JM. Pharmacotherapy exposure as a marker of disease complexity in bipolar disorder: Associations with clinical & genetic risk factors. Psychiatry Res 2023; 323:115174. [PMID: 36965208 DOI: 10.1016/j.psychres.2023.115174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Individuals with bipolar disorder (BD) require chronic pharmacotherapy, typically including medication switches or polypharmacy due to persisting symptoms or intolerable side effects. Here, we quantified pharmacotherapy exposure (PE) of Mayo Clinic BD Biobank participants using the number of cross-sectional (at enrollment) and lifetime BD-specific medications and medication classes, to understand the relationship between PE and markers of disease severity or treatment failure, psychiatric comorbidities, and polygenic risk scores (PRS) for six major psychiatric disorders. Being female (p < 0.05), older (p < 0.01), having history of suicide attempts (p < 0.0001), and comorbid attention-deficit/hyperactivity disorder (p < 0.05) or generalized anxiety disorder (p < 0.05) were uniformly associated with higher PE. Lifetime exposure to unique medication classes among participants with BD-I was significantly lower than for those with schizoaffective disorder (estimate = -2.1, p < 0.0001) while significantly higher than for those with BD-II (estimate = 0.5, p < 0.01). Further, higher PRS for schizophrenia (SCZ) and anxiety resulted in greater lifetime medication counts (p < 0.01), both driven by antipsychotic (p < 0.001) and anxiolytic use (p < 0.05). Our results provide initial evidence of the utility of PE as a measure of disease complexity or treatment resistance, and that PE may be predicted by higher genetic risk for SCZ and anxiety.
Collapse
Affiliation(s)
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susan L McElroy
- Lindner Center of HOPE/University of Cincinnati, Cincinnati, OH, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad de Los Andes, Santiago, Chile
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Tripathi U, Mizrahi L, Alda M, Falkovich G, Stern S. Information theory characteristics improve the prediction of lithium response in bipolar disorder patients using a support vector machine classifier. Bipolar Disord 2023; 25:110-127. [PMID: 36479788 DOI: 10.1111/bdi.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. METHODS We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. RESULTS Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). CONCLUSION The addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gregory Falkovich
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
25
|
R Kelsoe J. Polygenic Polarity in Bipolar Disorder. Am J Psychiatry 2023; 180:177-178. [PMID: 36855878 DOI: 10.1176/appi.ajp.20230040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- John R Kelsoe
- Department of Psychiatry, University of California, San Diego
| |
Collapse
|
26
|
Amare A, Thalamuthu A, Schubert KO, Fullerton J, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka J, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski P, Dalkner N, Del Zompo M, DePaulo JR, Etain B, Jamain S, Falkai P, Forstner AJ, Frisén L, Frye M, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Fallgatter A, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman J, Oraki Kohshour M, Reich-Erkelenz D, Schaupp S, Schulte E, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich DE, Figge C, Jäger M, Lang F, Juckel G, Spitzer C, Reimer J, Schmauß M, Schmitt A, Konrad C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer T, Fischer A, Bermpohl F, Kraft V, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haußleiter I, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, Kuo PH, Kato T, Kelsoe J, Kittel-Schneider S, Ferensztajn-Rochowiak E, König B, Kusumi I, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Tortorella A, Manchia M, Martinsson L, McCarthy M, McElroy SL, Colom F, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Nöthen M, Novak T, O'Donovan C, Ozaki N, Pfennig A, Pisanu C, Potash J, Reif A, Reininghaus E, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schweizer BW, Severino G, Shilling PD, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Maj M, Turecki G, Vieta E, Veeh J, Witt S, Wright A, Zandi P, Mitchell P, Bauer M, Alda M, Rietschel M, McMahon F, Schulze TG, Millischer V, Clark S, Baune B. Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder. RESEARCH SQUARE 2023:rs.3.rs-2580252. [PMID: 36824922 PMCID: PMC9949170 DOI: 10.21203/rs.3.rs-2580252/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mazda Adli
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | - Frank Bellivier
- Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Louise Frisén
- Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Till Andlauer
- Technical University of Munich, Klinikum rechts der Isar
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Esther Jiménez
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jean-Pierre Kahn
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Layla Kassem
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | - Mario Maj
- University of Campania "Luigi Vanvitelli", Naples
| | | | | | | | | | | | - Peter Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | | | | | | |
Collapse
|
27
|
Wolter JM, Le BD, Matoba N, Lafferty MJ, Aygün N, Liang D, Courtney K, Song J, Piven J, Zylka MJ, Stein JL. Cellular Genome-wide Association Study Identifies Common Genetic Variation Influencing Lithium-Induced Neural Progenitor Proliferation. Biol Psychiatry 2023; 93:8-17. [PMID: 36307327 PMCID: PMC9982734 DOI: 10.1016/j.biopsych.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/22/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bipolar disorder is a highly heritable neuropsychiatric condition affecting more than 1% of the human population. Lithium salts are commonly prescribed as a mood stabilizer for individuals with bipolar disorder. Lithium is clinically effective in approximately half of treated individuals, and their genetic backgrounds are known to influence treatment outcomes. While the mechanism of lithium's therapeutic action is unclear, it stimulates adult neural progenitor cell proliferation, similar to some antidepressant drugs. METHODS To identify common genetic variants that modulate lithium-induced proliferation, we conducted an EdU incorporation assay in a library of 80 genotyped human neural progenitor cells treated with lithium. These data were used to perform a genome-wide association study to identify common genetic variants that influence lithium-induced neural progenitor cell proliferation. We manipulated the expression of a putatively causal gene using CRISPRi/a (clustered regularly interspaced short palindromic repeats interference/activation) constructs to experimentally verify lithium-induced proliferation effects. RESULTS We identified a locus on chr3p21.1 associated with lithium-induced proliferation. This locus is also associated with bipolar disorder risk, schizophrenia risk, and interindividual differences in intelligence. We identified a single gene, GNL3, whose expression temporally increased in an allele-specific fashion following lithium treatment. Experimentally increasing the expression of GNL3 led to increased proliferation under baseline conditions, while experimentally decreasing GNL3 expression suppressed lithium-induced proliferation. CONCLUSIONS Our experiments reveal that common genetic variation modulates lithium-induced neural progenitor proliferation and that GNL3 expression is necessary for the full proliferation-stimulating effects of lithium. These results suggest that performing genome-wide associations in genetically diverse human cell lines is a useful approach to discover context-specific pharmacogenomic effects.
Collapse
Affiliation(s)
- Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brandon D Le
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nana Matoba
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael J Lafferty
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nil Aygün
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dan Liang
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenan Courtney
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Juan Song
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason L Stein
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
28
|
Fusar-Poli L, Rutten BPF, van Os J, Aguglia E, Guloksuz S. Polygenic risk scores for predicting outcomes and treatment response in psychiatry: hope or hype? Int Rev Psychiatry 2022; 34:663-675. [PMID: 36786114 DOI: 10.1080/09540261.2022.2101352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Over the last years, the decreased costs and enhanced accessibility to large genome-wide association studies datasets have laid the foundations for the development of polygenic risk scores (PRSs). A PRS is calculated on the weighted sum of single nucleotide polymorphisms and measures the individual genetic predisposition to develop a certain phenotype. An increasing number of studies have attempted to utilize the PRSs for risk stratification and prognostic evaluation. The present narrative review aims to discuss the potential clinical utility of PRSs in predicting outcomes and treatment response in psychiatry. After summarizing the evidence on major mental disorders, we have discussed the advantages and limitations of currently available PRSs. Although PRSs represent stable trait features with a normal distribution in the general population and can be relatively easily calculated in terms of time and costs, their real-world applicability is reduced by several limitations, such as low predictive power and lack of population diversity. Even with the rapid expansion of the psychiatric genetic knowledge base, pure genetic prediction in clinical psychiatry appears to be out of reach in the near future. Therefore, combining genomic and exposomic vulnerabilities for mental disorders with a detailed clinical characterization is needed to personalize care.
Collapse
Affiliation(s)
- Laura Fusar-Poli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands.,UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Sigström R, Kowalec K, Jonsson L, Clements CC, Karlsson R, Nordenskjöld A, Pålsson E, Sullivan PF, Landén M. Association Between Polygenic Risk Scores and Outcome of ECT. Am J Psychiatry 2022; 179:844-852. [PMID: 36069021 PMCID: PMC10113810 DOI: 10.1176/appi.ajp.22010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Identifying biomarkers associated with response to electroconvulsive therapy (ECT) may aid clinical decisions. The authors examined whether greater polygenic liabilities for major depressive disorder, bipolar disorder, and schizophrenia are associated with improvement following ECT for a major depressive episode. METHODS Between 2013 and 2017, patients who had at least one treatment series recorded in the Swedish National Quality Register for ECT were invited to provide a blood sample for genotyping. The present study included 2,320 participants (median age, 51 years; 62.8% women) who had received an ECT series for a major depressive episode (77.1% unipolar depression), who had a registered treatment outcome, and whose polygenic risk scores (PRSs) could be calculated. Ordinal logistic regression was used to estimate the effect of PRS on Clinical Global Impressions improvement scale (CGI-I) score after each ECT series. RESULTS Greater PRS for major depressive disorder was significantly associated with less improvement on the CGI-I (odds ratio per standard deviation, 0.89, 95% CI=0.82, 0.96; R2=0.004), and greater PRS for bipolar disorder was associated with greater improvement on the CGI-I (odds ratio per standard deviation, 1.14, 95% CI=1.05, 1.23; R2=0.005) after ECT. PRS for schizophrenia was not associated with improvement. In an overlapping sample (N=1,207) with data on response and remission derived from the self-rated version of the Montgomery-Åsberg Depression Rating Scale, results were similar except that schizophrenia PRS was also associated with remission. CONCLUSIONS Improvement after ECT is associated with polygenic liability for major depressive disorder and bipolar disorder, providing evidence of a genetic component for ECT clinical response. These liabilities may be considered along with clinical predictors in future prediction models of ECT outcomes.
Collapse
Affiliation(s)
- Robert Sigström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Kaarina Kowalec
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Caitlin C Clements
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Robert Karlsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Axel Nordenskjöld
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Patrick F Sullivan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sigström, Jonsson, Pålsson, Landén); Department of Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden (Sigström); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (Kowalec, Clements, Karlsson, Sullivan, Landén); College of Pharmacy, University of Manitoba, Winnipeg, Canada (Kowalec); Department of Psychology, University of Pennsylvania, Philadelphia (Clements); University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (Nordenskjöld); Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill (Sullivan)
| |
Collapse
|
30
|
Papiol S, Schulze TG, Heilbronner U. Lithium response in bipolar disorder: Genetics, genomics, and beyond. Neurosci Lett 2022; 785:136786. [PMID: 35817312 DOI: 10.1016/j.neulet.2022.136786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Lithium is an effective mood stabilizer in bipolar disorder (BD). There is, however, high variability in treatment response to lithium and only 20-30% of individuals with BD are excellent responders. This subgroup has been shown to have specific phenotypic characteristics, and family studies have implicated genetics as an important factor. However, candidate gene studies did not find evidence for major effect genes. Genome-wide association studies (GWAS) have emphasized that lithium response is a polygenic trait. GWAS based on larger sample sizes and non-European ancestries are likely to shed light on the genomic architecture of this trait. Furthermore, induced pluripotent stem cells, transcriptomics, epigenetics, the integration of multiple omics data, and their combination with advanced machine learning techniques hold promise for the understanding of the complex biological underpinnings of lithium treatment response.
Collapse
Affiliation(s)
- Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich 80336, Germany.
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich 80336, Germany
| |
Collapse
|
31
|
Jones G, Rong C, Vecera CM, Gurguis CI, Chudal R, Khairova R, Leung E, Ruiz AC, Shahani L, Zanetti MV, de Sousa RT, Busatto G, Soares J, Gattaz WF, Machado-Vieira R. The role of lithium treatment on comorbid anxiety symptoms in patients with bipolar depression. J Affect Disord 2022; 308:71-75. [PMID: 35427708 DOI: 10.1016/j.jad.2022.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Comorbid anxiety is pervasive and carries an immense psychosocial burden for patients with bipolar disorder. Despite this, trials reporting anxiety-related outcomes in this population are uncommon, particularly with regards to monotherapies. METHODS Patients (n = 31) with both bipolar I or II disorder in current depressive episodes were enrolled in a six-week, open-label, single-center trial assessing the efficacy of lithium monotherapy in treating symptoms depression and comorbid anxiety. Patients were mostly medication-free and lithium-naïve at baseline. RESULTS Significant improvements in depression (HAMD) and anxiety (HAM-A) were observed at the six-week endpoint, with remission and response rates greater than 50%. There was a positive correlation between endpoint HAM-A scores and HAM-D scores, r = 0.80, (p < 0.01). Improvements were realized at low serum lithium concentrations (0.49 ± 0.20 mEq/L). LIMITATIONS Lack of placebo control and small sample size warrants validation in larger randomized studies. CONCLUSIONS Taken in the context of prior evidence, lithium may have an important role in treating comorbid anxiety in bipolar disorder, both as adjunct and monotherapy. Lower doses of lithium may provide equivalent efficacy and enhance tolerability and compliance.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Carola Rong
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher I Gurguis
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Roshan Chudal
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rushaniya Khairova
- Saint Louis School of Medicine, Department of Psychiatry and Behavioral Neuroscience, Saint Louis, MO, USA
| | - Edison Leung
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ana C Ruiz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lokesh Shahani
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marcus V Zanetti
- LIM27, Department of Psychiatry, University of São Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | | | - Geraldo Busatto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Jair Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wagner F Gattaz
- LIM27, Department of Psychiatry, University of São Paulo, Brazil
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
32
|
Pisanu C, Meloni A, Severino G, Squassina A. Genetic and Epigenetic Markers of Lithium Response. Int J Mol Sci 2022; 23:1555. [PMID: 35163479 PMCID: PMC8836013 DOI: 10.3390/ijms23031555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
The mood stabilizer lithium represents a cornerstone in the long term treatment of bipolar disorder (BD), although with substantial interindividual variability in clinical response. This variability appears to be modulated by genetics, which has been significantly investigated in the last two decades with some promising findings. In addition, recently, the interest in the role of epigenetics has grown significantly, since the exploration of these mechanisms might allow the elucidation of the gene-environment interactions and explanation of missing heritability. In this article, we provide an overview of the most relevant findings regarding the pharmacogenomics and pharmacoepigenomics of lithium response in BD. We describe the most replicated findings among candidate gene studies, results from genome-wide association studies (GWAS) as well as post-GWAS approaches supporting an association between high genetic load for schizophrenia, major depressive disorder or attention deficit/hyperactivity disorder and poor lithium response. Next, we describe results from studies investigating epigenetic mechanisms, such as changes in methylation or noncoding RNA levels, which play a relevant role as regulators of gene expression. Finally, we discuss challenges related to the search for the molecular determinants of lithium response and potential future research directions to pave the path towards a biomarker guided approach in lithium treatment.
Collapse
Affiliation(s)
- Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Section of Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Meloni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Giovanni Severino
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|